xref: /netbsd-src/sys/kern/vfs_bio.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: vfs_bio.c,v 1.137 2004/11/13 19:16:18 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
37  */
38 
39 /*-
40  * Copyright (c) 1994 Christopher G. Demetriou
41  *
42  * Redistribution and use in source and binary forms, with or without
43  * modification, are permitted provided that the following conditions
44  * are met:
45  * 1. Redistributions of source code must retain the above copyright
46  *    notice, this list of conditions and the following disclaimer.
47  * 2. Redistributions in binary form must reproduce the above copyright
48  *    notice, this list of conditions and the following disclaimer in the
49  *    documentation and/or other materials provided with the distribution.
50  * 3. All advertising materials mentioning features or use of this software
51  *    must display the following acknowledgement:
52  *	This product includes software developed by the University of
53  *	California, Berkeley and its contributors.
54  * 4. Neither the name of the University nor the names of its contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68  * SUCH DAMAGE.
69  *
70  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
71  */
72 
73 /*
74  * Some references:
75  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
76  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
77  *		UNIX Operating System (Addison Welley, 1989)
78  */
79 
80 #include "opt_bufcache.h"
81 #include "opt_softdep.h"
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.137 2004/11/13 19:16:18 christos Exp $");
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/proc.h>
90 #include <sys/buf.h>
91 #include <sys/vnode.h>
92 #include <sys/mount.h>
93 #include <sys/malloc.h>
94 #include <sys/resourcevar.h>
95 #include <sys/sysctl.h>
96 #include <sys/conf.h>
97 
98 #include <uvm/uvm.h>
99 
100 #include <miscfs/specfs/specdev.h>
101 
102 #ifndef	BUFPAGES
103 # define BUFPAGES 0
104 #endif
105 
106 #ifdef BUFCACHE
107 # if (BUFCACHE < 5) || (BUFCACHE > 95)
108 #  error BUFCACHE is not between 5 and 95
109 # endif
110 #else
111 # define BUFCACHE 15
112 #endif
113 
114 u_int	nbuf;			/* XXX - for softdep_lockedbufs */
115 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
116 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
117 
118 /* Function prototypes */
119 struct bqueue;
120 
121 static void buf_setwm(void);
122 static int buf_trim(void);
123 static void *bufpool_page_alloc(struct pool *, int);
124 static void bufpool_page_free(struct pool *, void *);
125 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
126     struct ucred *, int);
127 static int buf_lotsfree(void);
128 static int buf_canrelease(void);
129 static __inline u_long buf_mempoolidx(u_long);
130 static __inline u_long buf_roundsize(u_long);
131 static __inline caddr_t buf_malloc(size_t);
132 static void buf_mrelease(caddr_t, size_t);
133 static __inline void binsheadfree(struct buf *, struct bqueue *);
134 static __inline void binstailfree(struct buf *, struct bqueue *);
135 int count_lock_queue(void); /* XXX */
136 #ifdef DEBUG
137 static int checkfreelist(struct buf *, struct bqueue *);
138 #endif
139 
140 /* Macros to clear/set/test flags. */
141 #define	SET(t, f)	(t) |= (f)
142 #define	CLR(t, f)	(t) &= ~(f)
143 #define	ISSET(t, f)	((t) & (f))
144 
145 /*
146  * Definitions for the buffer hash lists.
147  */
148 #define	BUFHASH(dvp, lbn)	\
149 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
151 u_long	bufhash;
152 #ifndef SOFTDEP
153 struct bio_ops bioops;	/* I/O operation notification */
154 #endif
155 
156 /*
157  * Insq/Remq for the buffer hash lists.
158  */
159 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
160 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
161 
162 /*
163  * Definitions for the buffer free lists.
164  */
165 #define	BQUEUES		3		/* number of free buffer queues */
166 
167 #define	BQ_LOCKED	0		/* super-blocks &c */
168 #define	BQ_LRU		1		/* lru, useful buffers */
169 #define	BQ_AGE		2		/* rubbish */
170 
171 struct bqueue {
172 	TAILQ_HEAD(, buf) bq_queue;
173 	uint64_t bq_bytes;
174 } bufqueues[BQUEUES];
175 int needbuffer;
176 
177 /*
178  * Buffer queue lock.
179  * Take this lock first if also taking some buffer's b_interlock.
180  */
181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
182 
183 /*
184  * Buffer pool for I/O buffers.
185  */
186 struct pool bufpool;
187 
188 /* XXX - somewhat gross.. */
189 #if MAXBSIZE == 0x2000
190 #define NMEMPOOLS 4
191 #elif MAXBSIZE == 0x4000
192 #define NMEMPOOLS 5
193 #elif MAXBSIZE == 0x8000
194 #define NMEMPOOLS 6
195 #else
196 #define NMEMPOOLS 7
197 #endif
198 
199 #define MEMPOOL_INDEX_OFFSET 10		/* smallest pool is 1k */
200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
201 #error update vfs_bio buffer memory parameters
202 #endif
203 
204 /* Buffer memory pools */
205 static struct pool bmempools[NMEMPOOLS];
206 
207 struct vm_map *buf_map;
208 
209 /*
210  * Buffer memory pool allocator.
211  */
212 static void *
213 bufpool_page_alloc(struct pool *pp, int flags)
214 {
215 
216 	return (void *)uvm_km_kmemalloc1(buf_map,
217 	    uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET,
218 	    (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
219 }
220 
221 static void
222 bufpool_page_free(struct pool *pp, void *v)
223 {
224 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE);
225 }
226 
227 static struct pool_allocator bufmempool_allocator = {
228 	bufpool_page_alloc, bufpool_page_free, MAXBSIZE,
229 };
230 
231 /* Buffer memory management variables */
232 u_long bufmem_valimit;
233 u_long bufmem_hiwater;
234 u_long bufmem_lowater;
235 u_long bufmem;
236 
237 /*
238  * MD code can call this to set a hard limit on the amount
239  * of virtual memory used by the buffer cache.
240  */
241 int
242 buf_setvalimit(vsize_t sz)
243 {
244 
245 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
246 	if (sz < NMEMPOOLS * MAXBSIZE)
247 		return EINVAL;
248 
249 	bufmem_valimit = sz;
250 	return 0;
251 }
252 
253 static void
254 buf_setwm(void)
255 {
256 
257 	bufmem_hiwater = buf_memcalc();
258 	/* lowater is approx. 2% of memory (with bufcache = 15) */
259 #define	BUFMEM_WMSHIFT	3
260 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
261 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
262 		/* Ensure a reasonable minimum value */
263 		bufmem_hiwater = BUFMEM_HIWMMIN;
264 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
265 }
266 
267 #ifdef DEBUG
268 int debug_verify_freelist = 0;
269 static int
270 checkfreelist(struct buf *bp, struct bqueue *dp)
271 {
272 	struct buf *b;
273 
274 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
275 		if (b == bp)
276 			return 1;
277 	}
278 	return 0;
279 }
280 #endif
281 
282 /*
283  * Insq/Remq for the buffer hash lists.
284  * Call with buffer queue locked.
285  */
286 static __inline void
287 binsheadfree(struct buf *bp, struct bqueue *dp)
288 {
289 
290 	KASSERT(bp->b_freelistindex == -1);
291 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
292 	dp->bq_bytes += bp->b_bufsize;
293 	bp->b_freelistindex = dp - bufqueues;
294 }
295 
296 static __inline void
297 binstailfree(struct buf *bp, struct bqueue *dp)
298 {
299 
300 	KASSERT(bp->b_freelistindex == -1);
301 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
302 	dp->bq_bytes += bp->b_bufsize;
303 	bp->b_freelistindex = dp - bufqueues;
304 }
305 
306 void
307 bremfree(struct buf *bp)
308 {
309 	struct bqueue *dp;
310 	int bqidx = bp->b_freelistindex;
311 
312 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
313 
314 	KASSERT(bqidx != -1);
315 	dp = &bufqueues[bqidx];
316 	KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp));
317 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
318 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
319 	dp->bq_bytes -= bp->b_bufsize;
320 #if defined(DIAGNOSTIC)
321 	bp->b_freelistindex = -1;
322 #endif /* defined(DIAGNOSTIC) */
323 }
324 
325 u_long
326 buf_memcalc(void)
327 {
328 	u_long n;
329 
330 	/*
331 	 * Determine the upper bound of memory to use for buffers.
332 	 *
333 	 *	- If bufpages is specified, use that as the number
334 	 *	  pages.
335 	 *
336 	 *	- Otherwise, use bufcache as the percentage of
337 	 *	  physical memory.
338 	 */
339 	if (bufpages != 0) {
340 		n = bufpages;
341 	} else {
342 		if (bufcache < 5) {
343 			printf("forcing bufcache %d -> 5", bufcache);
344 			bufcache = 5;
345 		}
346 		if (bufcache > 95) {
347 			printf("forcing bufcache %d -> 95", bufcache);
348 			bufcache = 95;
349 		}
350 		n = physmem / 100 * bufcache;
351 	}
352 
353 	n <<= PAGE_SHIFT;
354 	if (bufmem_valimit != 0 && n > bufmem_valimit)
355 		n = bufmem_valimit;
356 
357 	return (n);
358 }
359 
360 /*
361  * Initialize buffers and hash links for buffers.
362  */
363 void
364 bufinit(void)
365 {
366 	struct bqueue *dp;
367 	int use_std;
368 	u_int i;
369 
370 	/*
371 	 * Initialize buffer cache memory parameters.
372 	 */
373 	bufmem = 0;
374 	buf_setwm();
375 
376 	if (bufmem_valimit != 0) {
377 		vaddr_t minaddr = 0, maxaddr;
378 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
379 					  bufmem_valimit, VM_MAP_PAGEABLE,
380 					  FALSE, 0);
381 		if (buf_map == NULL)
382 			panic("bufinit: cannot allocate submap");
383 	} else
384 		buf_map = kernel_map;
385 
386 	/*
387 	 * Initialize the buffer pools.
388 	 */
389 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
390 
391 	/* On "small" machines use small pool page sizes where possible */
392 	use_std = (physmem < atop(16*1024*1024));
393 
394 	/*
395 	 * Also use them on systems that can map the pool pages using
396 	 * a direct-mapped segment.
397 	 */
398 #ifdef PMAP_MAP_POOLPAGE
399 	use_std = 1;
400 #endif
401 
402 	for (i = 0; i < NMEMPOOLS; i++) {
403 		struct pool_allocator *pa;
404 		struct pool *pp = &bmempools[i];
405 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
406 		char *name = malloc(8, M_TEMP, M_WAITOK);
407 		snprintf(name, 8, "buf%dk", 1 << i);
408 		pa = (size <= PAGE_SIZE && use_std)
409 			? &pool_allocator_nointr
410 			: &bufmempool_allocator;
411 		pool_init(pp, size, 0, 0, 0, name, pa);
412 		pool_setlowat(pp, 1);
413 		pool_sethiwat(pp, 1);
414 	}
415 
416 	/* Initialize the buffer queues */
417 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
418 		TAILQ_INIT(&dp->bq_queue);
419 		dp->bq_bytes = 0;
420 	}
421 
422 	/*
423 	 * Estimate hash table size based on the amount of memory we
424 	 * intend to use for the buffer cache. The average buffer
425 	 * size is dependent on our clients (i.e. filesystems).
426 	 *
427 	 * For now, use an empirical 3K per buffer.
428 	 */
429 	nbuf = (bufmem_hiwater / 1024) / 3;
430 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
431 }
432 
433 static int
434 buf_lotsfree(void)
435 {
436 	int try, thresh;
437 	struct lwp *l = curlwp;
438 
439 	/* Always allocate if doing copy on write */
440 	if (l->l_flag & L_COWINPROGRESS)
441 		return 1;
442 
443 	/* Always allocate if less than the low water mark. */
444 	if (bufmem < bufmem_lowater)
445 		return 1;
446 
447 	/* Never allocate if greater than the high water mark. */
448 	if (bufmem > bufmem_hiwater)
449 		return 0;
450 
451 	/* If there's anything on the AGE list, it should be eaten. */
452 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
453 		return 0;
454 
455 	/*
456 	 * The probabily of getting a new allocation is inversely
457 	 * proportional to the current size of the cache, using
458 	 * a granularity of 16 steps.
459 	 */
460 	try = random() & 0x0000000fL;
461 
462 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
463 	thresh = (bufmem - bufmem_lowater) /
464 	    ((bufmem_hiwater - bufmem_lowater) / 16);
465 
466 	if (try >= thresh)
467 		return 1;
468 
469 	/* Otherwise don't allocate. */
470 	return 0;
471 }
472 
473 /*
474  * Return estimate of bytes we think need to be
475  * released to help resolve low memory conditions.
476  *
477  * => called at splbio.
478  * => called with bqueue_slock held.
479  */
480 static int
481 buf_canrelease(void)
482 {
483 	int pagedemand, ninvalid = 0;
484 
485 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
486 
487 	if (bufmem < bufmem_lowater)
488 		return 0;
489 
490 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
491 
492 	pagedemand = uvmexp.freetarg - uvmexp.free;
493 	if (pagedemand < 0)
494 		return ninvalid;
495 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
496 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
497 }
498 
499 /*
500  * Buffer memory allocation helper functions
501  */
502 static __inline u_long
503 buf_mempoolidx(u_long size)
504 {
505 	u_int n = 0;
506 
507 	size -= 1;
508 	size >>= MEMPOOL_INDEX_OFFSET;
509 	while (size) {
510 		size >>= 1;
511 		n += 1;
512 	}
513 	if (n >= NMEMPOOLS)
514 		panic("buf mem pool index %d", n);
515 	return n;
516 }
517 
518 static __inline u_long
519 buf_roundsize(u_long size)
520 {
521 	/* Round up to nearest power of 2 */
522 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
523 }
524 
525 static __inline caddr_t
526 buf_malloc(size_t size)
527 {
528 	u_int n = buf_mempoolidx(size);
529 	caddr_t addr;
530 	int s;
531 
532 	while (1) {
533 		addr = pool_get(&bmempools[n], PR_NOWAIT);
534 		if (addr != NULL)
535 			break;
536 
537 		/* No memory, see if we can free some. If so, try again */
538 		if (buf_drain(1) > 0)
539 			continue;
540 
541 		/* Wait for buffers to arrive on the LRU queue */
542 		s = splbio();
543 		simple_lock(&bqueue_slock);
544 		needbuffer = 1;
545 		ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1),
546 			"buf_malloc", 0, &bqueue_slock);
547 		splx(s);
548 	}
549 
550 	return addr;
551 }
552 
553 static void
554 buf_mrelease(caddr_t addr, size_t size)
555 {
556 
557 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
558 }
559 
560 /*
561  * bread()/breadn() helper.
562  */
563 static __inline struct buf *
564 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
565     int async)
566 {
567 	struct buf *bp;
568 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
569 	struct proc *p = l->l_proc;
570 	struct mount *mp;
571 
572 	bp = getblk(vp, blkno, size, 0, 0);
573 
574 #ifdef DIAGNOSTIC
575 	if (bp == NULL) {
576 		panic("bio_doread: no such buf");
577 	}
578 #endif
579 
580 	/*
581 	 * If buffer does not have data valid, start a read.
582 	 * Note that if buffer is B_INVAL, getblk() won't return it.
583 	 * Therefore, it's valid if its I/O has completed or been delayed.
584 	 */
585 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
586 		/* Start I/O for the buffer. */
587 		SET(bp->b_flags, B_READ | async);
588 		if (async)
589 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
590 		else
591 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
592 		VOP_STRATEGY(vp, bp);
593 
594 		/* Pay for the read. */
595 		p->p_stats->p_ru.ru_inblock++;
596 	} else if (async) {
597 		brelse(bp);
598 	}
599 
600 	if (vp->v_type == VBLK)
601 		mp = vp->v_specmountpoint;
602 	else
603 		mp = vp->v_mount;
604 
605 	/*
606 	 * Collect statistics on synchronous and asynchronous reads.
607 	 * Reads from block devices are charged to their associated
608 	 * filesystem (if any).
609 	 */
610 	if (mp != NULL) {
611 		if (async == 0)
612 			mp->mnt_stat.f_syncreads++;
613 		else
614 			mp->mnt_stat.f_asyncreads++;
615 	}
616 
617 	return (bp);
618 }
619 
620 /*
621  * Read a disk block.
622  * This algorithm described in Bach (p.54).
623  */
624 int
625 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred,
626     struct buf **bpp)
627 {
628 	struct buf *bp;
629 
630 	/* Get buffer for block. */
631 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
632 
633 	/* Wait for the read to complete, and return result. */
634 	return (biowait(bp));
635 }
636 
637 /*
638  * Read-ahead multiple disk blocks. The first is sync, the rest async.
639  * Trivial modification to the breada algorithm presented in Bach (p.55).
640  */
641 int
642 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
643     int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp)
644 {
645 	struct buf *bp;
646 	int i;
647 
648 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
649 
650 	/*
651 	 * For each of the read-ahead blocks, start a read, if necessary.
652 	 */
653 	for (i = 0; i < nrablks; i++) {
654 		/* If it's in the cache, just go on to next one. */
655 		if (incore(vp, rablks[i]))
656 			continue;
657 
658 		/* Get a buffer for the read-ahead block */
659 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
660 	}
661 
662 	/* Otherwise, we had to start a read for it; wait until it's valid. */
663 	return (biowait(bp));
664 }
665 
666 /*
667  * Read with single-block read-ahead.  Defined in Bach (p.55), but
668  * implemented as a call to breadn().
669  * XXX for compatibility with old file systems.
670  */
671 int
672 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
673     int rabsize, struct ucred *cred, struct buf **bpp)
674 {
675 
676 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
677 }
678 
679 /*
680  * Block write.  Described in Bach (p.56)
681  */
682 int
683 bwrite(struct buf *bp)
684 {
685 	int rv, sync, wasdelayed, s;
686 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
687 	struct proc *p = l->l_proc;
688 	struct vnode *vp;
689 	struct mount *mp;
690 
691 	KASSERT(ISSET(bp->b_flags, B_BUSY));
692 
693 	vp = bp->b_vp;
694 	if (vp != NULL) {
695 		if (vp->v_type == VBLK)
696 			mp = vp->v_specmountpoint;
697 		else
698 			mp = vp->v_mount;
699 	} else {
700 		mp = NULL;
701 	}
702 
703 	/*
704 	 * Remember buffer type, to switch on it later.  If the write was
705 	 * synchronous, but the file system was mounted with MNT_ASYNC,
706 	 * convert it to a delayed write.
707 	 * XXX note that this relies on delayed tape writes being converted
708 	 * to async, not sync writes (which is safe, but ugly).
709 	 */
710 	sync = !ISSET(bp->b_flags, B_ASYNC);
711 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
712 		bdwrite(bp);
713 		return (0);
714 	}
715 
716 	/*
717 	 * Collect statistics on synchronous and asynchronous writes.
718 	 * Writes to block devices are charged to their associated
719 	 * filesystem (if any).
720 	 */
721 	if (mp != NULL) {
722 		if (sync)
723 			mp->mnt_stat.f_syncwrites++;
724 		else
725 			mp->mnt_stat.f_asyncwrites++;
726 	}
727 
728 	s = splbio();
729 	simple_lock(&bp->b_interlock);
730 
731 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
732 
733 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
734 
735 	/*
736 	 * Pay for the I/O operation and make sure the buf is on the correct
737 	 * vnode queue.
738 	 */
739 	if (wasdelayed)
740 		reassignbuf(bp, bp->b_vp);
741 	else
742 		p->p_stats->p_ru.ru_oublock++;
743 
744 	/* Initiate disk write.  Make sure the appropriate party is charged. */
745 	V_INCR_NUMOUTPUT(bp->b_vp);
746 	simple_unlock(&bp->b_interlock);
747 	splx(s);
748 
749 	if (sync)
750 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
751 	else
752 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
753 
754 	VOP_STRATEGY(vp, bp);
755 
756 	if (sync) {
757 		/* If I/O was synchronous, wait for it to complete. */
758 		rv = biowait(bp);
759 
760 		/* Release the buffer. */
761 		brelse(bp);
762 
763 		return (rv);
764 	} else {
765 		return (0);
766 	}
767 }
768 
769 int
770 vn_bwrite(void *v)
771 {
772 	struct vop_bwrite_args *ap = v;
773 
774 	return (bwrite(ap->a_bp));
775 }
776 
777 /*
778  * Delayed write.
779  *
780  * The buffer is marked dirty, but is not queued for I/O.
781  * This routine should be used when the buffer is expected
782  * to be modified again soon, typically a small write that
783  * partially fills a buffer.
784  *
785  * NB: magnetic tapes cannot be delayed; they must be
786  * written in the order that the writes are requested.
787  *
788  * Described in Leffler, et al. (pp. 208-213).
789  */
790 void
791 bdwrite(struct buf *bp)
792 {
793 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
794 	struct proc *p = l->l_proc;
795 	const struct bdevsw *bdev;
796 	int s;
797 
798 	/* If this is a tape block, write the block now. */
799 	bdev = bdevsw_lookup(bp->b_dev);
800 	if (bdev != NULL && bdev->d_type == D_TAPE) {
801 		bawrite(bp);
802 		return;
803 	}
804 
805 	/*
806 	 * If the block hasn't been seen before:
807 	 *	(1) Mark it as having been seen,
808 	 *	(2) Charge for the write,
809 	 *	(3) Make sure it's on its vnode's correct block list.
810 	 */
811 	s = splbio();
812 	simple_lock(&bp->b_interlock);
813 
814 	KASSERT(ISSET(bp->b_flags, B_BUSY));
815 
816 	if (!ISSET(bp->b_flags, B_DELWRI)) {
817 		SET(bp->b_flags, B_DELWRI);
818 		p->p_stats->p_ru.ru_oublock++;
819 		reassignbuf(bp, bp->b_vp);
820 	}
821 
822 	/* Otherwise, the "write" is done, so mark and release the buffer. */
823 	CLR(bp->b_flags, B_DONE);
824 	simple_unlock(&bp->b_interlock);
825 	splx(s);
826 
827 	brelse(bp);
828 }
829 
830 /*
831  * Asynchronous block write; just an asynchronous bwrite().
832  */
833 void
834 bawrite(struct buf *bp)
835 {
836 	int s;
837 
838 	s = splbio();
839 	simple_lock(&bp->b_interlock);
840 
841 	KASSERT(ISSET(bp->b_flags, B_BUSY));
842 
843 	SET(bp->b_flags, B_ASYNC);
844 	simple_unlock(&bp->b_interlock);
845 	splx(s);
846 	VOP_BWRITE(bp);
847 }
848 
849 /*
850  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
851  * Call at splbio() and with the buffer interlock locked.
852  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
853  */
854 void
855 bdirty(struct buf *bp)
856 {
857 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
858 	struct proc *p = l->l_proc;
859 
860 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
861 	KASSERT(ISSET(bp->b_flags, B_BUSY));
862 
863 	CLR(bp->b_flags, B_AGE);
864 
865 	if (!ISSET(bp->b_flags, B_DELWRI)) {
866 		SET(bp->b_flags, B_DELWRI);
867 		p->p_stats->p_ru.ru_oublock++;
868 		reassignbuf(bp, bp->b_vp);
869 	}
870 }
871 
872 /*
873  * Release a buffer on to the free lists.
874  * Described in Bach (p. 46).
875  */
876 void
877 brelse(struct buf *bp)
878 {
879 	struct bqueue *bufq;
880 	int s;
881 
882 	/* Block disk interrupts. */
883 	s = splbio();
884 	simple_lock(&bqueue_slock);
885 	simple_lock(&bp->b_interlock);
886 
887 	KASSERT(ISSET(bp->b_flags, B_BUSY));
888 	KASSERT(!ISSET(bp->b_flags, B_CALL));
889 
890 	/* Wake up any processes waiting for any buffer to become free. */
891 	if (needbuffer) {
892 		needbuffer = 0;
893 		wakeup(&needbuffer);
894 	}
895 
896 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
897 	if (ISSET(bp->b_flags, B_WANTED)) {
898 		CLR(bp->b_flags, B_WANTED|B_AGE);
899 		wakeup(bp);
900 	}
901 
902 	/*
903 	 * Determine which queue the buffer should be on, then put it there.
904 	 */
905 
906 	/* If it's locked, don't report an error; try again later. */
907 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
908 		CLR(bp->b_flags, B_ERROR);
909 
910 	/* If it's not cacheable, or an error, mark it invalid. */
911 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
912 		SET(bp->b_flags, B_INVAL);
913 
914 	if (ISSET(bp->b_flags, B_VFLUSH)) {
915 		/*
916 		 * This is a delayed write buffer that was just flushed to
917 		 * disk.  It is still on the LRU queue.  If it's become
918 		 * invalid, then we need to move it to a different queue;
919 		 * otherwise leave it in its current position.
920 		 */
921 		CLR(bp->b_flags, B_VFLUSH);
922 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) {
923 			KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU]));
924 			goto already_queued;
925 		} else {
926 			bremfree(bp);
927 		}
928 	}
929 
930   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE]));
931   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU]));
932   KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED]));
933 
934 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
935 		/*
936 		 * If it's invalid or empty, dissociate it from its vnode
937 		 * and put on the head of the appropriate queue.
938 		 */
939 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
940 			(*bioops.io_deallocate)(bp);
941 		CLR(bp->b_flags, B_DONE|B_DELWRI);
942 		if (bp->b_vp) {
943 			reassignbuf(bp, bp->b_vp);
944 			brelvp(bp);
945 		}
946 		if (bp->b_bufsize <= 0)
947 			/* no data */
948 			goto already_queued;
949 		else
950 			/* invalid data */
951 			bufq = &bufqueues[BQ_AGE];
952 		binsheadfree(bp, bufq);
953 	} else {
954 		/*
955 		 * It has valid data.  Put it on the end of the appropriate
956 		 * queue, so that it'll stick around for as long as possible.
957 		 * If buf is AGE, but has dependencies, must put it on last
958 		 * bufqueue to be scanned, ie LRU. This protects against the
959 		 * livelock where BQ_AGE only has buffers with dependencies,
960 		 * and we thus never get to the dependent buffers in BQ_LRU.
961 		 */
962 		if (ISSET(bp->b_flags, B_LOCKED))
963 			/* locked in core */
964 			bufq = &bufqueues[BQ_LOCKED];
965 		else if (!ISSET(bp->b_flags, B_AGE))
966 			/* valid data */
967 			bufq = &bufqueues[BQ_LRU];
968 		else {
969 			/* stale but valid data */
970 			int has_deps;
971 
972 			if (LIST_FIRST(&bp->b_dep) != NULL &&
973 			    bioops.io_countdeps)
974 				has_deps = (*bioops.io_countdeps)(bp, 0);
975 			else
976 				has_deps = 0;
977 			bufq = has_deps ? &bufqueues[BQ_LRU] :
978 			    &bufqueues[BQ_AGE];
979 		}
980 		binstailfree(bp, bufq);
981 	}
982 
983 already_queued:
984 	/* Unlock the buffer. */
985 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
986 	SET(bp->b_flags, B_CACHE);
987 
988 	/* Allow disk interrupts. */
989 	simple_unlock(&bp->b_interlock);
990 	simple_unlock(&bqueue_slock);
991 	if (bp->b_bufsize <= 0) {
992 #ifdef DEBUG
993 		memset((char *)bp, 0, sizeof(*bp));
994 #endif
995 		pool_put(&bufpool, bp);
996 	}
997 	splx(s);
998 }
999 
1000 /*
1001  * Determine if a block is in the cache.
1002  * Just look on what would be its hash chain.  If it's there, return
1003  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1004  * we normally don't return the buffer, unless the caller explicitly
1005  * wants us to.
1006  */
1007 struct buf *
1008 incore(struct vnode *vp, daddr_t blkno)
1009 {
1010 	struct buf *bp;
1011 
1012 	/* Search hash chain */
1013 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1014 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1015 		    !ISSET(bp->b_flags, B_INVAL))
1016 		return (bp);
1017 	}
1018 
1019 	return (NULL);
1020 }
1021 
1022 /*
1023  * Get a block of requested size that is associated with
1024  * a given vnode and block offset. If it is found in the
1025  * block cache, mark it as having been found, make it busy
1026  * and return it. Otherwise, return an empty block of the
1027  * correct size. It is up to the caller to insure that the
1028  * cached blocks be of the correct size.
1029  */
1030 struct buf *
1031 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1032 {
1033 	struct buf *bp;
1034 	int s, err;
1035 	int preserve;
1036 
1037 start:
1038 	s = splbio();
1039 	simple_lock(&bqueue_slock);
1040 	bp = incore(vp, blkno);
1041 	if (bp != NULL) {
1042 		simple_lock(&bp->b_interlock);
1043 		if (ISSET(bp->b_flags, B_BUSY)) {
1044 			simple_unlock(&bqueue_slock);
1045 			if (curproc == uvm.pagedaemon_proc) {
1046 				simple_unlock(&bp->b_interlock);
1047 				splx(s);
1048 				return NULL;
1049 			}
1050 			SET(bp->b_flags, B_WANTED);
1051 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
1052 					"getblk", slptimeo, &bp->b_interlock);
1053 			splx(s);
1054 			if (err)
1055 				return (NULL);
1056 			goto start;
1057 		}
1058 #ifdef DIAGNOSTIC
1059 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
1060 		    bp->b_bcount < size && vp->v_type != VBLK)
1061 			panic("getblk: block size invariant failed");
1062 #endif
1063 		SET(bp->b_flags, B_BUSY);
1064 		bremfree(bp);
1065 		preserve = 1;
1066 	} else {
1067 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) {
1068 			simple_unlock(&bqueue_slock);
1069 			splx(s);
1070 			goto start;
1071 		}
1072 
1073 		binshash(bp, BUFHASH(vp, blkno));
1074 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1075 		bgetvp(vp, bp);
1076 		preserve = 0;
1077 	}
1078 	simple_unlock(&bp->b_interlock);
1079 	simple_unlock(&bqueue_slock);
1080 	splx(s);
1081 	/*
1082 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1083 	 * if we re-size buffers here.
1084 	 */
1085 	if (ISSET(bp->b_flags, B_LOCKED)) {
1086 		KASSERT(bp->b_bufsize >= size);
1087 	} else {
1088 		allocbuf(bp, size, preserve);
1089 	}
1090 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1091 	return (bp);
1092 }
1093 
1094 /*
1095  * Get an empty, disassociated buffer of given size.
1096  */
1097 struct buf *
1098 geteblk(int size)
1099 {
1100 	struct buf *bp;
1101 	int s;
1102 
1103 	s = splbio();
1104 	simple_lock(&bqueue_slock);
1105 	while ((bp = getnewbuf(0, 0, 0)) == 0)
1106 		;
1107 
1108 	SET(bp->b_flags, B_INVAL);
1109 	binshash(bp, &invalhash);
1110 	simple_unlock(&bqueue_slock);
1111 	simple_unlock(&bp->b_interlock);
1112 	splx(s);
1113 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1114 	allocbuf(bp, size, 0);
1115 	return (bp);
1116 }
1117 
1118 /*
1119  * Expand or contract the actual memory allocated to a buffer.
1120  *
1121  * If the buffer shrinks, data is lost, so it's up to the
1122  * caller to have written it out *first*; this routine will not
1123  * start a write.  If the buffer grows, it's the callers
1124  * responsibility to fill out the buffer's additional contents.
1125  */
1126 void
1127 allocbuf(struct buf *bp, int size, int preserve)
1128 {
1129 	vsize_t oldsize, desired_size;
1130 	caddr_t addr;
1131 	int s, delta;
1132 
1133 	desired_size = buf_roundsize(size);
1134 	if (desired_size > MAXBSIZE)
1135 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1136 
1137 	bp->b_bcount = size;
1138 
1139 	oldsize = bp->b_bufsize;
1140 	if (oldsize == desired_size)
1141 		return;
1142 
1143 	/*
1144 	 * If we want a buffer of a different size, re-allocate the
1145 	 * buffer's memory; copy old content only if needed.
1146 	 */
1147 	addr = buf_malloc(desired_size);
1148 	if (preserve)
1149 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1150 	if (bp->b_data != NULL)
1151 		buf_mrelease(bp->b_data, oldsize);
1152 	bp->b_data = addr;
1153 	bp->b_bufsize = desired_size;
1154 
1155 	/*
1156 	 * Update overall buffer memory counter (protected by bqueue_slock)
1157 	 */
1158 	delta = (long)desired_size - (long)oldsize;
1159 
1160 	s = splbio();
1161 	simple_lock(&bqueue_slock);
1162 	if ((bufmem += delta) > bufmem_hiwater) {
1163 		/*
1164 		 * Need to trim overall memory usage.
1165 		 */
1166 		while (buf_canrelease()) {
1167 			if (buf_trim() == 0)
1168 				break;
1169 		}
1170 	}
1171 
1172 	simple_unlock(&bqueue_slock);
1173 	splx(s);
1174 }
1175 
1176 /*
1177  * Find a buffer which is available for use.
1178  * Select something from a free list.
1179  * Preference is to AGE list, then LRU list.
1180  *
1181  * Called at splbio and with buffer queues locked.
1182  * Return buffer locked.
1183  */
1184 struct buf *
1185 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1186 {
1187 	struct buf *bp;
1188 
1189 start:
1190 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
1191 
1192 	/*
1193 	 * Get a new buffer from the pool; but use NOWAIT because
1194 	 * we have the buffer queues locked.
1195 	 */
1196 	if (!from_bufq && buf_lotsfree() &&
1197 	    (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) {
1198 		memset((char *)bp, 0, sizeof(*bp));
1199 		BUF_INIT(bp);
1200 		bp->b_dev = NODEV;
1201 		bp->b_vnbufs.le_next = NOLIST;
1202 		bp->b_flags = B_BUSY;
1203 		simple_lock(&bp->b_interlock);
1204 #if defined(DIAGNOSTIC)
1205 		bp->b_freelistindex = -1;
1206 #endif /* defined(DIAGNOSTIC) */
1207 		return (bp);
1208 	}
1209 
1210 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1211 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1212 		simple_lock(&bp->b_interlock);
1213 		bremfree(bp);
1214 	} else {
1215 		/*
1216 		 * XXX: !from_bufq should be removed.
1217 		 */
1218 		if (!from_bufq || curproc != uvm.pagedaemon_proc) {
1219 			/* wait for a free buffer of any kind */
1220 			needbuffer = 1;
1221 			ltsleep(&needbuffer, slpflag|(PRIBIO + 1),
1222 			    "getnewbuf", slptimeo, &bqueue_slock);
1223 		}
1224 		return (NULL);
1225 	}
1226 
1227 #ifdef DIAGNOSTIC
1228 	if (bp->b_bufsize <= 0)
1229 		panic("buffer %p: on queue but empty", bp);
1230 #endif
1231 
1232 	if (ISSET(bp->b_flags, B_VFLUSH)) {
1233 		/*
1234 		 * This is a delayed write buffer being flushed to disk.  Make
1235 		 * sure it gets aged out of the queue when it's finished, and
1236 		 * leave it off the LRU queue.
1237 		 */
1238 		CLR(bp->b_flags, B_VFLUSH);
1239 		SET(bp->b_flags, B_AGE);
1240 		simple_unlock(&bp->b_interlock);
1241 		goto start;
1242 	}
1243 
1244 	/* Buffer is no longer on free lists. */
1245 	SET(bp->b_flags, B_BUSY);
1246 
1247 	/*
1248 	 * If buffer was a delayed write, start it and return NULL
1249 	 * (since we might sleep while starting the write).
1250 	 */
1251 	if (ISSET(bp->b_flags, B_DELWRI)) {
1252 		/*
1253 		 * This buffer has gone through the LRU, so make sure it gets
1254 		 * reused ASAP.
1255 		 */
1256 		SET(bp->b_flags, B_AGE);
1257 		simple_unlock(&bp->b_interlock);
1258 		simple_unlock(&bqueue_slock);
1259 		bawrite(bp);
1260 		simple_lock(&bqueue_slock);
1261 		return (NULL);
1262 	}
1263 
1264 	/* disassociate us from our vnode, if we had one... */
1265 	if (bp->b_vp)
1266 		brelvp(bp);
1267 
1268 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1269 		(*bioops.io_deallocate)(bp);
1270 
1271 	/* clear out various other fields */
1272 	bp->b_flags = B_BUSY;
1273 	bp->b_dev = NODEV;
1274 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
1275 	bp->b_iodone = 0;
1276 	bp->b_error = 0;
1277 	bp->b_resid = 0;
1278 	bp->b_bcount = 0;
1279 
1280 	bremhash(bp);
1281 	return (bp);
1282 }
1283 
1284 /*
1285  * Attempt to free an aged buffer off the queues.
1286  * Called at splbio and with queue lock held.
1287  * Returns the amount of buffer memory freed.
1288  */
1289 static int
1290 buf_trim(void)
1291 {
1292 	struct buf *bp;
1293 	long size = 0;
1294 
1295 	/* Instruct getnewbuf() to get buffers off the queues */
1296 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1297 		return 0;
1298 
1299 	KASSERT(!ISSET(bp->b_flags, B_WANTED));
1300 	simple_unlock(&bp->b_interlock);
1301 	size = bp->b_bufsize;
1302 	bufmem -= size;
1303 	simple_unlock(&bqueue_slock);
1304 	if (size > 0) {
1305 		buf_mrelease(bp->b_data, size);
1306 		bp->b_bcount = bp->b_bufsize = 0;
1307 	}
1308 	/* brelse() will return the buffer to the global buffer pool */
1309 	brelse(bp);
1310 	simple_lock(&bqueue_slock);
1311 	return size;
1312 }
1313 
1314 int
1315 buf_drain(int n)
1316 {
1317 	int s, size = 0, sz;
1318 
1319 	s = splbio();
1320 	simple_lock(&bqueue_slock);
1321 
1322 	while (size < n && bufmem > bufmem_lowater) {
1323 		sz = buf_trim();
1324 		if (sz <= 0)
1325 			break;
1326 		size += sz;
1327 	}
1328 
1329 	simple_unlock(&bqueue_slock);
1330 	splx(s);
1331 	return size;
1332 }
1333 
1334 /*
1335  * Wait for operations on the buffer to complete.
1336  * When they do, extract and return the I/O's error value.
1337  */
1338 int
1339 biowait(struct buf *bp)
1340 {
1341 	int s, error;
1342 
1343 	s = splbio();
1344 	simple_lock(&bp->b_interlock);
1345 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
1346 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
1347 
1348 	/* check for interruption of I/O (e.g. via NFS), then errors. */
1349 	if (ISSET(bp->b_flags, B_EINTR)) {
1350 		CLR(bp->b_flags, B_EINTR);
1351 		error = EINTR;
1352 	} else if (ISSET(bp->b_flags, B_ERROR))
1353 		error = bp->b_error ? bp->b_error : EIO;
1354 	else
1355 		error = 0;
1356 
1357 	simple_unlock(&bp->b_interlock);
1358 	splx(s);
1359 	return (error);
1360 }
1361 
1362 /*
1363  * Mark I/O complete on a buffer.
1364  *
1365  * If a callback has been requested, e.g. the pageout
1366  * daemon, do so. Otherwise, awaken waiting processes.
1367  *
1368  * [ Leffler, et al., says on p.247:
1369  *	"This routine wakes up the blocked process, frees the buffer
1370  *	for an asynchronous write, or, for a request by the pagedaemon
1371  *	process, invokes a procedure specified in the buffer structure" ]
1372  *
1373  * In real life, the pagedaemon (or other system processes) wants
1374  * to do async stuff to, and doesn't want the buffer brelse()'d.
1375  * (for swap pager, that puts swap buffers on the free lists (!!!),
1376  * for the vn device, that puts malloc'd buffers on the free lists!)
1377  */
1378 void
1379 biodone(struct buf *bp)
1380 {
1381 	int s = splbio();
1382 
1383 	simple_lock(&bp->b_interlock);
1384 	if (ISSET(bp->b_flags, B_DONE))
1385 		panic("biodone already");
1386 	SET(bp->b_flags, B_DONE);		/* note that it's done */
1387 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1388 
1389 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1390 		(*bioops.io_complete)(bp);
1391 
1392 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
1393 		vwakeup(bp);
1394 
1395 	/*
1396 	 * If necessary, call out.  Unlock the buffer before calling
1397 	 * iodone() as the buffer isn't valid any more when it return.
1398 	 */
1399 	if (ISSET(bp->b_flags, B_CALL)) {
1400 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
1401 		simple_unlock(&bp->b_interlock);
1402 		(*bp->b_iodone)(bp);
1403 	} else {
1404 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
1405 			simple_unlock(&bp->b_interlock);
1406 			brelse(bp);
1407 		} else {			/* or just wakeup the buffer */
1408 			CLR(bp->b_flags, B_WANTED);
1409 			wakeup(bp);
1410 			simple_unlock(&bp->b_interlock);
1411 		}
1412 	}
1413 
1414 	splx(s);
1415 }
1416 
1417 /*
1418  * Return a count of buffers on the "locked" queue.
1419  */
1420 int
1421 count_lock_queue(void)
1422 {
1423 	struct buf *bp;
1424 	int n = 0;
1425 
1426 	simple_lock(&bqueue_slock);
1427 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1428 		n++;
1429 	simple_unlock(&bqueue_slock);
1430 	return (n);
1431 }
1432 
1433 /*
1434  * Wait for all buffers to complete I/O
1435  * Return the number of "stuck" buffers.
1436  */
1437 int
1438 buf_syncwait(void)
1439 {
1440 	struct buf *bp;
1441 	int iter, nbusy, nbusy_prev = 0, dcount, s, ihash;
1442 
1443 	dcount = 10000;
1444 	for (iter = 0; iter < 20;) {
1445 		s = splbio();
1446 		simple_lock(&bqueue_slock);
1447 		nbusy = 0;
1448 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1449 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1450 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1451 				nbusy++;
1452 			/*
1453 			 * With soft updates, some buffers that are
1454 			 * written will be remarked as dirty until other
1455 			 * buffers are written.
1456 			 */
1457 			if (bp->b_vp && bp->b_vp->v_mount
1458 			    && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP)
1459 			    && (bp->b_flags & B_DELWRI)) {
1460 				simple_lock(&bp->b_interlock);
1461 				bremfree(bp);
1462 				bp->b_flags |= B_BUSY;
1463 				nbusy++;
1464 				simple_unlock(&bp->b_interlock);
1465 				simple_unlock(&bqueue_slock);
1466 				bawrite(bp);
1467 				if (dcount-- <= 0) {
1468 					printf("softdep ");
1469 					splx(s);
1470 					goto fail;
1471 				}
1472 				simple_lock(&bqueue_slock);
1473 			}
1474 		    }
1475 		}
1476 
1477 		simple_unlock(&bqueue_slock);
1478 		splx(s);
1479 
1480 		if (nbusy == 0)
1481 			break;
1482 		if (nbusy_prev == 0)
1483 			nbusy_prev = nbusy;
1484 		printf("%d ", nbusy);
1485 		tsleep(&nbusy, PRIBIO, "bflush",
1486 		    (iter == 0) ? 1 : hz / 25 * iter);
1487 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1488 			iter++;
1489 		else
1490 			nbusy_prev = nbusy;
1491 	}
1492 
1493 	if (nbusy) {
1494 fail:;
1495 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1496 		printf("giving up\nPrinting vnodes for busy buffers\n");
1497 		s = splbio();
1498 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1499 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1500 			if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY)
1501 				vprint(NULL, bp->b_vp);
1502 		    }
1503 		}
1504 		splx(s);
1505 #endif
1506 	}
1507 
1508 	return nbusy;
1509 }
1510 
1511 static void
1512 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o)
1513 {
1514 
1515 	o->b_flags = i->b_flags;
1516 	o->b_error = i->b_error;
1517 	o->b_prio = i->b_prio;
1518 	o->b_dev = i->b_dev;
1519 	o->b_bufsize = i->b_bufsize;
1520 	o->b_bcount = i->b_bcount;
1521 	o->b_resid = i->b_resid;
1522 	o->b_addr = PTRTOUINT64(i->b_un.b_addr);
1523 	o->b_blkno = i->b_blkno;
1524 	o->b_rawblkno = i->b_rawblkno;
1525 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1526 	o->b_proc = PTRTOUINT64(i->b_proc);
1527 	o->b_vp = PTRTOUINT64(i->b_vp);
1528 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1529 	o->b_lblkno = i->b_lblkno;
1530 }
1531 
1532 #define KERN_BUFSLOP 20
1533 static int
1534 sysctl_dobuf(SYSCTLFN_ARGS)
1535 {
1536 	struct buf *bp;
1537 	struct buf_sysctl bs;
1538 	char *dp;
1539 	u_int i, op, arg;
1540 	size_t len, needed, elem_size, out_size;
1541 	int error, s, elem_count;
1542 
1543 	if (namelen == 1 && name[0] == CTL_QUERY)
1544 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1545 
1546 	if (namelen != 4)
1547 		return (EINVAL);
1548 
1549 	dp = oldp;
1550 	len = (oldp != NULL) ? *oldlenp : 0;
1551 	op = name[0];
1552 	arg = name[1];
1553 	elem_size = name[2];
1554 	elem_count = name[3];
1555 	out_size = MIN(sizeof(bs), elem_size);
1556 
1557 	/*
1558 	 * at the moment, these are just "placeholders" to make the
1559 	 * API for retrieving kern.buf data more extensible in the
1560 	 * future.
1561 	 *
1562 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1563 	 * these will be resolved at a later point.
1564 	 */
1565 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1566 	    elem_size < 1 || elem_count < 0)
1567 		return (EINVAL);
1568 
1569 	error = 0;
1570 	needed = 0;
1571 	s = splbio();
1572 	simple_lock(&bqueue_slock);
1573 	for (i = 0; i < BQUEUES; i++) {
1574 		TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) {
1575 			if (len >= elem_size && elem_count > 0) {
1576 				sysctl_fillbuf(bp, &bs);
1577 				error = copyout(&bs, dp, out_size);
1578 				if (error)
1579 					goto cleanup;
1580 				dp += elem_size;
1581 				len -= elem_size;
1582 			}
1583 			if (elem_count > 0) {
1584 				needed += elem_size;
1585 				if (elem_count != INT_MAX)
1586 					elem_count--;
1587 			}
1588 		}
1589 	}
1590 cleanup:
1591 	simple_unlock(&bqueue_slock);
1592 	splx(s);
1593 
1594 	*oldlenp = needed;
1595 	if (oldp == NULL)
1596 		*oldlenp += KERN_BUFSLOP * sizeof(struct buf);
1597 
1598 	return (error);
1599 }
1600 
1601 static int
1602 sysctl_bufvm_update(SYSCTLFN_ARGS)
1603 {
1604 	int t, error;
1605 	struct sysctlnode node;
1606 
1607 	node = *rnode;
1608 	node.sysctl_data = &t;
1609 	t = *(int*)rnode->sysctl_data;
1610 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1611 	if (error || newp == NULL)
1612 		return (error);
1613 
1614 	if (rnode->sysctl_data == &bufcache) {
1615 		if (t < 0 || t > 100)
1616 			return (EINVAL);
1617 		bufcache = t;
1618 		buf_setwm();
1619 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1620 		if (bufmem_hiwater - bufmem_lowater < 16)
1621 			return (EINVAL);
1622 		bufmem_lowater = t;
1623 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1624 		if (bufmem_hiwater - bufmem_lowater < 16)
1625 			return (EINVAL);
1626 		bufmem_hiwater = t;
1627 	} else
1628 		return (EINVAL);
1629 
1630 	/* Drain until below new high water mark */
1631 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1632 		if (buf_drain(t / (2*1024)) <= 0)
1633 			break;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup")
1640 {
1641 
1642 	sysctl_createv(clog, 0, NULL, NULL,
1643 		       CTLFLAG_PERMANENT,
1644 		       CTLTYPE_NODE, "kern", NULL,
1645 		       NULL, 0, NULL, 0,
1646 		       CTL_KERN, CTL_EOL);
1647 	sysctl_createv(clog, 0, NULL, NULL,
1648 		       CTLFLAG_PERMANENT,
1649 		       CTLTYPE_NODE, "buf",
1650 		       SYSCTL_DESCR("Kernel buffer cache information"),
1651 		       sysctl_dobuf, 0, NULL, 0,
1652 		       CTL_KERN, KERN_BUF, CTL_EOL);
1653 }
1654 
1655 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup")
1656 {
1657 
1658 	sysctl_createv(clog, 0, NULL, NULL,
1659 		       CTLFLAG_PERMANENT,
1660 		       CTLTYPE_NODE, "vm", NULL,
1661 		       NULL, 0, NULL, 0,
1662 		       CTL_VM, CTL_EOL);
1663 
1664 	sysctl_createv(clog, 0, NULL, NULL,
1665 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1666 		       CTLTYPE_INT, "bufcache",
1667 		       SYSCTL_DESCR("Percentage of kernel memory to use for "
1668 				    "buffer cache"),
1669 		       sysctl_bufvm_update, 0, &bufcache, 0,
1670 		       CTL_VM, CTL_CREATE, CTL_EOL);
1671 	sysctl_createv(clog, 0, NULL, NULL,
1672 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1673 		       CTLTYPE_INT, "bufmem",
1674 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1675 				    "cache"),
1676 		       NULL, 0, &bufmem, 0,
1677 		       CTL_VM, CTL_CREATE, CTL_EOL);
1678 	sysctl_createv(clog, 0, NULL, NULL,
1679 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1680 		       CTLTYPE_INT, "bufmem_lowater",
1681 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1682 				    "reserve for buffer cache"),
1683 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1684 		       CTL_VM, CTL_CREATE, CTL_EOL);
1685 	sysctl_createv(clog, 0, NULL, NULL,
1686 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1687 		       CTLTYPE_INT, "bufmem_hiwater",
1688 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1689 				    "for buffer cache"),
1690 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1691 		       CTL_VM, CTL_CREATE, CTL_EOL);
1692 }
1693 
1694 #ifdef DEBUG
1695 /*
1696  * Print out statistics on the current allocation of the buffer pool.
1697  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1698  * in vfs_syscalls.c using sysctl.
1699  */
1700 void
1701 vfs_bufstats(void)
1702 {
1703 	int s, i, j, count;
1704 	struct buf *bp;
1705 	struct bqueue *dp;
1706 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1707 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1708 
1709 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1710 		count = 0;
1711 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1712 			counts[j] = 0;
1713 		s = splbio();
1714 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1715 			counts[bp->b_bufsize/PAGE_SIZE]++;
1716 			count++;
1717 		}
1718 		splx(s);
1719 		printf("%s: total-%d", bname[i], count);
1720 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1721 			if (counts[j] != 0)
1722 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1723 		printf("\n");
1724 	}
1725 }
1726 #endif /* DEBUG */
1727