1 /* $NetBSD: vfs_bio.c,v 1.137 2004/11/13 19:16:18 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 37 */ 38 39 /*- 40 * Copyright (c) 1994 Christopher G. Demetriou 41 * 42 * Redistribution and use in source and binary forms, with or without 43 * modification, are permitted provided that the following conditions 44 * are met: 45 * 1. Redistributions of source code must retain the above copyright 46 * notice, this list of conditions and the following disclaimer. 47 * 2. Redistributions in binary form must reproduce the above copyright 48 * notice, this list of conditions and the following disclaimer in the 49 * documentation and/or other materials provided with the distribution. 50 * 3. All advertising materials mentioning features or use of this software 51 * must display the following acknowledgement: 52 * This product includes software developed by the University of 53 * California, Berkeley and its contributors. 54 * 4. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 71 */ 72 73 /* 74 * Some references: 75 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 76 * Leffler, et al.: The Design and Implementation of the 4.3BSD 77 * UNIX Operating System (Addison Welley, 1989) 78 */ 79 80 #include "opt_bufcache.h" 81 #include "opt_softdep.h" 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.137 2004/11/13 19:16:18 christos Exp $"); 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/kernel.h> 89 #include <sys/proc.h> 90 #include <sys/buf.h> 91 #include <sys/vnode.h> 92 #include <sys/mount.h> 93 #include <sys/malloc.h> 94 #include <sys/resourcevar.h> 95 #include <sys/sysctl.h> 96 #include <sys/conf.h> 97 98 #include <uvm/uvm.h> 99 100 #include <miscfs/specfs/specdev.h> 101 102 #ifndef BUFPAGES 103 # define BUFPAGES 0 104 #endif 105 106 #ifdef BUFCACHE 107 # if (BUFCACHE < 5) || (BUFCACHE > 95) 108 # error BUFCACHE is not between 5 and 95 109 # endif 110 #else 111 # define BUFCACHE 15 112 #endif 113 114 u_int nbuf; /* XXX - for softdep_lockedbufs */ 115 u_int bufpages = BUFPAGES; /* optional hardwired count */ 116 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 117 118 /* Function prototypes */ 119 struct bqueue; 120 121 static void buf_setwm(void); 122 static int buf_trim(void); 123 static void *bufpool_page_alloc(struct pool *, int); 124 static void bufpool_page_free(struct pool *, void *); 125 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int, 126 struct ucred *, int); 127 static int buf_lotsfree(void); 128 static int buf_canrelease(void); 129 static __inline u_long buf_mempoolidx(u_long); 130 static __inline u_long buf_roundsize(u_long); 131 static __inline caddr_t buf_malloc(size_t); 132 static void buf_mrelease(caddr_t, size_t); 133 static __inline void binsheadfree(struct buf *, struct bqueue *); 134 static __inline void binstailfree(struct buf *, struct bqueue *); 135 int count_lock_queue(void); /* XXX */ 136 #ifdef DEBUG 137 static int checkfreelist(struct buf *, struct bqueue *); 138 #endif 139 140 /* Macros to clear/set/test flags. */ 141 #define SET(t, f) (t) |= (f) 142 #define CLR(t, f) (t) &= ~(f) 143 #define ISSET(t, f) ((t) & (f)) 144 145 /* 146 * Definitions for the buffer hash lists. 147 */ 148 #define BUFHASH(dvp, lbn) \ 149 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 150 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 151 u_long bufhash; 152 #ifndef SOFTDEP 153 struct bio_ops bioops; /* I/O operation notification */ 154 #endif 155 156 /* 157 * Insq/Remq for the buffer hash lists. 158 */ 159 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 160 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 161 162 /* 163 * Definitions for the buffer free lists. 164 */ 165 #define BQUEUES 3 /* number of free buffer queues */ 166 167 #define BQ_LOCKED 0 /* super-blocks &c */ 168 #define BQ_LRU 1 /* lru, useful buffers */ 169 #define BQ_AGE 2 /* rubbish */ 170 171 struct bqueue { 172 TAILQ_HEAD(, buf) bq_queue; 173 uint64_t bq_bytes; 174 } bufqueues[BQUEUES]; 175 int needbuffer; 176 177 /* 178 * Buffer queue lock. 179 * Take this lock first if also taking some buffer's b_interlock. 180 */ 181 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER; 182 183 /* 184 * Buffer pool for I/O buffers. 185 */ 186 struct pool bufpool; 187 188 /* XXX - somewhat gross.. */ 189 #if MAXBSIZE == 0x2000 190 #define NMEMPOOLS 4 191 #elif MAXBSIZE == 0x4000 192 #define NMEMPOOLS 5 193 #elif MAXBSIZE == 0x8000 194 #define NMEMPOOLS 6 195 #else 196 #define NMEMPOOLS 7 197 #endif 198 199 #define MEMPOOL_INDEX_OFFSET 10 /* smallest pool is 1k */ 200 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 201 #error update vfs_bio buffer memory parameters 202 #endif 203 204 /* Buffer memory pools */ 205 static struct pool bmempools[NMEMPOOLS]; 206 207 struct vm_map *buf_map; 208 209 /* 210 * Buffer memory pool allocator. 211 */ 212 static void * 213 bufpool_page_alloc(struct pool *pp, int flags) 214 { 215 216 return (void *)uvm_km_kmemalloc1(buf_map, 217 uvm.kernel_object, MAXBSIZE, MAXBSIZE, UVM_UNKNOWN_OFFSET, 218 (flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK); 219 } 220 221 static void 222 bufpool_page_free(struct pool *pp, void *v) 223 { 224 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE); 225 } 226 227 static struct pool_allocator bufmempool_allocator = { 228 bufpool_page_alloc, bufpool_page_free, MAXBSIZE, 229 }; 230 231 /* Buffer memory management variables */ 232 u_long bufmem_valimit; 233 u_long bufmem_hiwater; 234 u_long bufmem_lowater; 235 u_long bufmem; 236 237 /* 238 * MD code can call this to set a hard limit on the amount 239 * of virtual memory used by the buffer cache. 240 */ 241 int 242 buf_setvalimit(vsize_t sz) 243 { 244 245 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 246 if (sz < NMEMPOOLS * MAXBSIZE) 247 return EINVAL; 248 249 bufmem_valimit = sz; 250 return 0; 251 } 252 253 static void 254 buf_setwm(void) 255 { 256 257 bufmem_hiwater = buf_memcalc(); 258 /* lowater is approx. 2% of memory (with bufcache = 15) */ 259 #define BUFMEM_WMSHIFT 3 260 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT) 261 if (bufmem_hiwater < BUFMEM_HIWMMIN) 262 /* Ensure a reasonable minimum value */ 263 bufmem_hiwater = BUFMEM_HIWMMIN; 264 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT; 265 } 266 267 #ifdef DEBUG 268 int debug_verify_freelist = 0; 269 static int 270 checkfreelist(struct buf *bp, struct bqueue *dp) 271 { 272 struct buf *b; 273 274 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) { 275 if (b == bp) 276 return 1; 277 } 278 return 0; 279 } 280 #endif 281 282 /* 283 * Insq/Remq for the buffer hash lists. 284 * Call with buffer queue locked. 285 */ 286 static __inline void 287 binsheadfree(struct buf *bp, struct bqueue *dp) 288 { 289 290 KASSERT(bp->b_freelistindex == -1); 291 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist); 292 dp->bq_bytes += bp->b_bufsize; 293 bp->b_freelistindex = dp - bufqueues; 294 } 295 296 static __inline void 297 binstailfree(struct buf *bp, struct bqueue *dp) 298 { 299 300 KASSERT(bp->b_freelistindex == -1); 301 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist); 302 dp->bq_bytes += bp->b_bufsize; 303 bp->b_freelistindex = dp - bufqueues; 304 } 305 306 void 307 bremfree(struct buf *bp) 308 { 309 struct bqueue *dp; 310 int bqidx = bp->b_freelistindex; 311 312 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 313 314 KASSERT(bqidx != -1); 315 dp = &bufqueues[bqidx]; 316 KDASSERT(!debug_verify_freelist || checkfreelist(bp, dp)); 317 KASSERT(dp->bq_bytes >= bp->b_bufsize); 318 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist); 319 dp->bq_bytes -= bp->b_bufsize; 320 #if defined(DIAGNOSTIC) 321 bp->b_freelistindex = -1; 322 #endif /* defined(DIAGNOSTIC) */ 323 } 324 325 u_long 326 buf_memcalc(void) 327 { 328 u_long n; 329 330 /* 331 * Determine the upper bound of memory to use for buffers. 332 * 333 * - If bufpages is specified, use that as the number 334 * pages. 335 * 336 * - Otherwise, use bufcache as the percentage of 337 * physical memory. 338 */ 339 if (bufpages != 0) { 340 n = bufpages; 341 } else { 342 if (bufcache < 5) { 343 printf("forcing bufcache %d -> 5", bufcache); 344 bufcache = 5; 345 } 346 if (bufcache > 95) { 347 printf("forcing bufcache %d -> 95", bufcache); 348 bufcache = 95; 349 } 350 n = physmem / 100 * bufcache; 351 } 352 353 n <<= PAGE_SHIFT; 354 if (bufmem_valimit != 0 && n > bufmem_valimit) 355 n = bufmem_valimit; 356 357 return (n); 358 } 359 360 /* 361 * Initialize buffers and hash links for buffers. 362 */ 363 void 364 bufinit(void) 365 { 366 struct bqueue *dp; 367 int use_std; 368 u_int i; 369 370 /* 371 * Initialize buffer cache memory parameters. 372 */ 373 bufmem = 0; 374 buf_setwm(); 375 376 if (bufmem_valimit != 0) { 377 vaddr_t minaddr = 0, maxaddr; 378 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 379 bufmem_valimit, VM_MAP_PAGEABLE, 380 FALSE, 0); 381 if (buf_map == NULL) 382 panic("bufinit: cannot allocate submap"); 383 } else 384 buf_map = kernel_map; 385 386 /* 387 * Initialize the buffer pools. 388 */ 389 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 390 391 /* On "small" machines use small pool page sizes where possible */ 392 use_std = (physmem < atop(16*1024*1024)); 393 394 /* 395 * Also use them on systems that can map the pool pages using 396 * a direct-mapped segment. 397 */ 398 #ifdef PMAP_MAP_POOLPAGE 399 use_std = 1; 400 #endif 401 402 for (i = 0; i < NMEMPOOLS; i++) { 403 struct pool_allocator *pa; 404 struct pool *pp = &bmempools[i]; 405 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 406 char *name = malloc(8, M_TEMP, M_WAITOK); 407 snprintf(name, 8, "buf%dk", 1 << i); 408 pa = (size <= PAGE_SIZE && use_std) 409 ? &pool_allocator_nointr 410 : &bufmempool_allocator; 411 pool_init(pp, size, 0, 0, 0, name, pa); 412 pool_setlowat(pp, 1); 413 pool_sethiwat(pp, 1); 414 } 415 416 /* Initialize the buffer queues */ 417 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) { 418 TAILQ_INIT(&dp->bq_queue); 419 dp->bq_bytes = 0; 420 } 421 422 /* 423 * Estimate hash table size based on the amount of memory we 424 * intend to use for the buffer cache. The average buffer 425 * size is dependent on our clients (i.e. filesystems). 426 * 427 * For now, use an empirical 3K per buffer. 428 */ 429 nbuf = (bufmem_hiwater / 1024) / 3; 430 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 431 } 432 433 static int 434 buf_lotsfree(void) 435 { 436 int try, thresh; 437 struct lwp *l = curlwp; 438 439 /* Always allocate if doing copy on write */ 440 if (l->l_flag & L_COWINPROGRESS) 441 return 1; 442 443 /* Always allocate if less than the low water mark. */ 444 if (bufmem < bufmem_lowater) 445 return 1; 446 447 /* Never allocate if greater than the high water mark. */ 448 if (bufmem > bufmem_hiwater) 449 return 0; 450 451 /* If there's anything on the AGE list, it should be eaten. */ 452 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL) 453 return 0; 454 455 /* 456 * The probabily of getting a new allocation is inversely 457 * proportional to the current size of the cache, using 458 * a granularity of 16 steps. 459 */ 460 try = random() & 0x0000000fL; 461 462 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */ 463 thresh = (bufmem - bufmem_lowater) / 464 ((bufmem_hiwater - bufmem_lowater) / 16); 465 466 if (try >= thresh) 467 return 1; 468 469 /* Otherwise don't allocate. */ 470 return 0; 471 } 472 473 /* 474 * Return estimate of bytes we think need to be 475 * released to help resolve low memory conditions. 476 * 477 * => called at splbio. 478 * => called with bqueue_slock held. 479 */ 480 static int 481 buf_canrelease(void) 482 { 483 int pagedemand, ninvalid = 0; 484 485 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 486 487 if (bufmem < bufmem_lowater) 488 return 0; 489 490 ninvalid += bufqueues[BQ_AGE].bq_bytes; 491 492 pagedemand = uvmexp.freetarg - uvmexp.free; 493 if (pagedemand < 0) 494 return ninvalid; 495 return MAX(ninvalid, MIN(2 * MAXBSIZE, 496 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 497 } 498 499 /* 500 * Buffer memory allocation helper functions 501 */ 502 static __inline u_long 503 buf_mempoolidx(u_long size) 504 { 505 u_int n = 0; 506 507 size -= 1; 508 size >>= MEMPOOL_INDEX_OFFSET; 509 while (size) { 510 size >>= 1; 511 n += 1; 512 } 513 if (n >= NMEMPOOLS) 514 panic("buf mem pool index %d", n); 515 return n; 516 } 517 518 static __inline u_long 519 buf_roundsize(u_long size) 520 { 521 /* Round up to nearest power of 2 */ 522 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 523 } 524 525 static __inline caddr_t 526 buf_malloc(size_t size) 527 { 528 u_int n = buf_mempoolidx(size); 529 caddr_t addr; 530 int s; 531 532 while (1) { 533 addr = pool_get(&bmempools[n], PR_NOWAIT); 534 if (addr != NULL) 535 break; 536 537 /* No memory, see if we can free some. If so, try again */ 538 if (buf_drain(1) > 0) 539 continue; 540 541 /* Wait for buffers to arrive on the LRU queue */ 542 s = splbio(); 543 simple_lock(&bqueue_slock); 544 needbuffer = 1; 545 ltsleep(&needbuffer, PNORELOCK | (PRIBIO + 1), 546 "buf_malloc", 0, &bqueue_slock); 547 splx(s); 548 } 549 550 return addr; 551 } 552 553 static void 554 buf_mrelease(caddr_t addr, size_t size) 555 { 556 557 pool_put(&bmempools[buf_mempoolidx(size)], addr); 558 } 559 560 /* 561 * bread()/breadn() helper. 562 */ 563 static __inline struct buf * 564 bio_doread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 565 int async) 566 { 567 struct buf *bp; 568 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 569 struct proc *p = l->l_proc; 570 struct mount *mp; 571 572 bp = getblk(vp, blkno, size, 0, 0); 573 574 #ifdef DIAGNOSTIC 575 if (bp == NULL) { 576 panic("bio_doread: no such buf"); 577 } 578 #endif 579 580 /* 581 * If buffer does not have data valid, start a read. 582 * Note that if buffer is B_INVAL, getblk() won't return it. 583 * Therefore, it's valid if its I/O has completed or been delayed. 584 */ 585 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 586 /* Start I/O for the buffer. */ 587 SET(bp->b_flags, B_READ | async); 588 if (async) 589 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 590 else 591 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 592 VOP_STRATEGY(vp, bp); 593 594 /* Pay for the read. */ 595 p->p_stats->p_ru.ru_inblock++; 596 } else if (async) { 597 brelse(bp); 598 } 599 600 if (vp->v_type == VBLK) 601 mp = vp->v_specmountpoint; 602 else 603 mp = vp->v_mount; 604 605 /* 606 * Collect statistics on synchronous and asynchronous reads. 607 * Reads from block devices are charged to their associated 608 * filesystem (if any). 609 */ 610 if (mp != NULL) { 611 if (async == 0) 612 mp->mnt_stat.f_syncreads++; 613 else 614 mp->mnt_stat.f_asyncreads++; 615 } 616 617 return (bp); 618 } 619 620 /* 621 * Read a disk block. 622 * This algorithm described in Bach (p.54). 623 */ 624 int 625 bread(struct vnode *vp, daddr_t blkno, int size, struct ucred *cred, 626 struct buf **bpp) 627 { 628 struct buf *bp; 629 630 /* Get buffer for block. */ 631 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 632 633 /* Wait for the read to complete, and return result. */ 634 return (biowait(bp)); 635 } 636 637 /* 638 * Read-ahead multiple disk blocks. The first is sync, the rest async. 639 * Trivial modification to the breada algorithm presented in Bach (p.55). 640 */ 641 int 642 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 643 int *rasizes, int nrablks, struct ucred *cred, struct buf **bpp) 644 { 645 struct buf *bp; 646 int i; 647 648 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 649 650 /* 651 * For each of the read-ahead blocks, start a read, if necessary. 652 */ 653 for (i = 0; i < nrablks; i++) { 654 /* If it's in the cache, just go on to next one. */ 655 if (incore(vp, rablks[i])) 656 continue; 657 658 /* Get a buffer for the read-ahead block */ 659 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 660 } 661 662 /* Otherwise, we had to start a read for it; wait until it's valid. */ 663 return (biowait(bp)); 664 } 665 666 /* 667 * Read with single-block read-ahead. Defined in Bach (p.55), but 668 * implemented as a call to breadn(). 669 * XXX for compatibility with old file systems. 670 */ 671 int 672 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 673 int rabsize, struct ucred *cred, struct buf **bpp) 674 { 675 676 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 677 } 678 679 /* 680 * Block write. Described in Bach (p.56) 681 */ 682 int 683 bwrite(struct buf *bp) 684 { 685 int rv, sync, wasdelayed, s; 686 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 687 struct proc *p = l->l_proc; 688 struct vnode *vp; 689 struct mount *mp; 690 691 KASSERT(ISSET(bp->b_flags, B_BUSY)); 692 693 vp = bp->b_vp; 694 if (vp != NULL) { 695 if (vp->v_type == VBLK) 696 mp = vp->v_specmountpoint; 697 else 698 mp = vp->v_mount; 699 } else { 700 mp = NULL; 701 } 702 703 /* 704 * Remember buffer type, to switch on it later. If the write was 705 * synchronous, but the file system was mounted with MNT_ASYNC, 706 * convert it to a delayed write. 707 * XXX note that this relies on delayed tape writes being converted 708 * to async, not sync writes (which is safe, but ugly). 709 */ 710 sync = !ISSET(bp->b_flags, B_ASYNC); 711 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 712 bdwrite(bp); 713 return (0); 714 } 715 716 /* 717 * Collect statistics on synchronous and asynchronous writes. 718 * Writes to block devices are charged to their associated 719 * filesystem (if any). 720 */ 721 if (mp != NULL) { 722 if (sync) 723 mp->mnt_stat.f_syncwrites++; 724 else 725 mp->mnt_stat.f_asyncwrites++; 726 } 727 728 s = splbio(); 729 simple_lock(&bp->b_interlock); 730 731 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 732 733 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 734 735 /* 736 * Pay for the I/O operation and make sure the buf is on the correct 737 * vnode queue. 738 */ 739 if (wasdelayed) 740 reassignbuf(bp, bp->b_vp); 741 else 742 p->p_stats->p_ru.ru_oublock++; 743 744 /* Initiate disk write. Make sure the appropriate party is charged. */ 745 V_INCR_NUMOUTPUT(bp->b_vp); 746 simple_unlock(&bp->b_interlock); 747 splx(s); 748 749 if (sync) 750 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 751 else 752 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 753 754 VOP_STRATEGY(vp, bp); 755 756 if (sync) { 757 /* If I/O was synchronous, wait for it to complete. */ 758 rv = biowait(bp); 759 760 /* Release the buffer. */ 761 brelse(bp); 762 763 return (rv); 764 } else { 765 return (0); 766 } 767 } 768 769 int 770 vn_bwrite(void *v) 771 { 772 struct vop_bwrite_args *ap = v; 773 774 return (bwrite(ap->a_bp)); 775 } 776 777 /* 778 * Delayed write. 779 * 780 * The buffer is marked dirty, but is not queued for I/O. 781 * This routine should be used when the buffer is expected 782 * to be modified again soon, typically a small write that 783 * partially fills a buffer. 784 * 785 * NB: magnetic tapes cannot be delayed; they must be 786 * written in the order that the writes are requested. 787 * 788 * Described in Leffler, et al. (pp. 208-213). 789 */ 790 void 791 bdwrite(struct buf *bp) 792 { 793 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 794 struct proc *p = l->l_proc; 795 const struct bdevsw *bdev; 796 int s; 797 798 /* If this is a tape block, write the block now. */ 799 bdev = bdevsw_lookup(bp->b_dev); 800 if (bdev != NULL && bdev->d_type == D_TAPE) { 801 bawrite(bp); 802 return; 803 } 804 805 /* 806 * If the block hasn't been seen before: 807 * (1) Mark it as having been seen, 808 * (2) Charge for the write, 809 * (3) Make sure it's on its vnode's correct block list. 810 */ 811 s = splbio(); 812 simple_lock(&bp->b_interlock); 813 814 KASSERT(ISSET(bp->b_flags, B_BUSY)); 815 816 if (!ISSET(bp->b_flags, B_DELWRI)) { 817 SET(bp->b_flags, B_DELWRI); 818 p->p_stats->p_ru.ru_oublock++; 819 reassignbuf(bp, bp->b_vp); 820 } 821 822 /* Otherwise, the "write" is done, so mark and release the buffer. */ 823 CLR(bp->b_flags, B_DONE); 824 simple_unlock(&bp->b_interlock); 825 splx(s); 826 827 brelse(bp); 828 } 829 830 /* 831 * Asynchronous block write; just an asynchronous bwrite(). 832 */ 833 void 834 bawrite(struct buf *bp) 835 { 836 int s; 837 838 s = splbio(); 839 simple_lock(&bp->b_interlock); 840 841 KASSERT(ISSET(bp->b_flags, B_BUSY)); 842 843 SET(bp->b_flags, B_ASYNC); 844 simple_unlock(&bp->b_interlock); 845 splx(s); 846 VOP_BWRITE(bp); 847 } 848 849 /* 850 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 851 * Call at splbio() and with the buffer interlock locked. 852 * Note: called only from biodone() through ffs softdep's bioops.io_complete() 853 */ 854 void 855 bdirty(struct buf *bp) 856 { 857 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 858 struct proc *p = l->l_proc; 859 860 LOCK_ASSERT(simple_lock_held(&bp->b_interlock)); 861 KASSERT(ISSET(bp->b_flags, B_BUSY)); 862 863 CLR(bp->b_flags, B_AGE); 864 865 if (!ISSET(bp->b_flags, B_DELWRI)) { 866 SET(bp->b_flags, B_DELWRI); 867 p->p_stats->p_ru.ru_oublock++; 868 reassignbuf(bp, bp->b_vp); 869 } 870 } 871 872 /* 873 * Release a buffer on to the free lists. 874 * Described in Bach (p. 46). 875 */ 876 void 877 brelse(struct buf *bp) 878 { 879 struct bqueue *bufq; 880 int s; 881 882 /* Block disk interrupts. */ 883 s = splbio(); 884 simple_lock(&bqueue_slock); 885 simple_lock(&bp->b_interlock); 886 887 KASSERT(ISSET(bp->b_flags, B_BUSY)); 888 KASSERT(!ISSET(bp->b_flags, B_CALL)); 889 890 /* Wake up any processes waiting for any buffer to become free. */ 891 if (needbuffer) { 892 needbuffer = 0; 893 wakeup(&needbuffer); 894 } 895 896 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 897 if (ISSET(bp->b_flags, B_WANTED)) { 898 CLR(bp->b_flags, B_WANTED|B_AGE); 899 wakeup(bp); 900 } 901 902 /* 903 * Determine which queue the buffer should be on, then put it there. 904 */ 905 906 /* If it's locked, don't report an error; try again later. */ 907 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 908 CLR(bp->b_flags, B_ERROR); 909 910 /* If it's not cacheable, or an error, mark it invalid. */ 911 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 912 SET(bp->b_flags, B_INVAL); 913 914 if (ISSET(bp->b_flags, B_VFLUSH)) { 915 /* 916 * This is a delayed write buffer that was just flushed to 917 * disk. It is still on the LRU queue. If it's become 918 * invalid, then we need to move it to a different queue; 919 * otherwise leave it in its current position. 920 */ 921 CLR(bp->b_flags, B_VFLUSH); 922 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) { 923 KDASSERT(!debug_verify_freelist || checkfreelist(bp, &bufqueues[BQ_LRU])); 924 goto already_queued; 925 } else { 926 bremfree(bp); 927 } 928 } 929 930 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_AGE])); 931 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LRU])); 932 KDASSERT(!debug_verify_freelist || !checkfreelist(bp, &bufqueues[BQ_LOCKED])); 933 934 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 935 /* 936 * If it's invalid or empty, dissociate it from its vnode 937 * and put on the head of the appropriate queue. 938 */ 939 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 940 (*bioops.io_deallocate)(bp); 941 CLR(bp->b_flags, B_DONE|B_DELWRI); 942 if (bp->b_vp) { 943 reassignbuf(bp, bp->b_vp); 944 brelvp(bp); 945 } 946 if (bp->b_bufsize <= 0) 947 /* no data */ 948 goto already_queued; 949 else 950 /* invalid data */ 951 bufq = &bufqueues[BQ_AGE]; 952 binsheadfree(bp, bufq); 953 } else { 954 /* 955 * It has valid data. Put it on the end of the appropriate 956 * queue, so that it'll stick around for as long as possible. 957 * If buf is AGE, but has dependencies, must put it on last 958 * bufqueue to be scanned, ie LRU. This protects against the 959 * livelock where BQ_AGE only has buffers with dependencies, 960 * and we thus never get to the dependent buffers in BQ_LRU. 961 */ 962 if (ISSET(bp->b_flags, B_LOCKED)) 963 /* locked in core */ 964 bufq = &bufqueues[BQ_LOCKED]; 965 else if (!ISSET(bp->b_flags, B_AGE)) 966 /* valid data */ 967 bufq = &bufqueues[BQ_LRU]; 968 else { 969 /* stale but valid data */ 970 int has_deps; 971 972 if (LIST_FIRST(&bp->b_dep) != NULL && 973 bioops.io_countdeps) 974 has_deps = (*bioops.io_countdeps)(bp, 0); 975 else 976 has_deps = 0; 977 bufq = has_deps ? &bufqueues[BQ_LRU] : 978 &bufqueues[BQ_AGE]; 979 } 980 binstailfree(bp, bufq); 981 } 982 983 already_queued: 984 /* Unlock the buffer. */ 985 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE); 986 SET(bp->b_flags, B_CACHE); 987 988 /* Allow disk interrupts. */ 989 simple_unlock(&bp->b_interlock); 990 simple_unlock(&bqueue_slock); 991 if (bp->b_bufsize <= 0) { 992 #ifdef DEBUG 993 memset((char *)bp, 0, sizeof(*bp)); 994 #endif 995 pool_put(&bufpool, bp); 996 } 997 splx(s); 998 } 999 1000 /* 1001 * Determine if a block is in the cache. 1002 * Just look on what would be its hash chain. If it's there, return 1003 * a pointer to it, unless it's marked invalid. If it's marked invalid, 1004 * we normally don't return the buffer, unless the caller explicitly 1005 * wants us to. 1006 */ 1007 struct buf * 1008 incore(struct vnode *vp, daddr_t blkno) 1009 { 1010 struct buf *bp; 1011 1012 /* Search hash chain */ 1013 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 1014 if (bp->b_lblkno == blkno && bp->b_vp == vp && 1015 !ISSET(bp->b_flags, B_INVAL)) 1016 return (bp); 1017 } 1018 1019 return (NULL); 1020 } 1021 1022 /* 1023 * Get a block of requested size that is associated with 1024 * a given vnode and block offset. If it is found in the 1025 * block cache, mark it as having been found, make it busy 1026 * and return it. Otherwise, return an empty block of the 1027 * correct size. It is up to the caller to insure that the 1028 * cached blocks be of the correct size. 1029 */ 1030 struct buf * 1031 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1032 { 1033 struct buf *bp; 1034 int s, err; 1035 int preserve; 1036 1037 start: 1038 s = splbio(); 1039 simple_lock(&bqueue_slock); 1040 bp = incore(vp, blkno); 1041 if (bp != NULL) { 1042 simple_lock(&bp->b_interlock); 1043 if (ISSET(bp->b_flags, B_BUSY)) { 1044 simple_unlock(&bqueue_slock); 1045 if (curproc == uvm.pagedaemon_proc) { 1046 simple_unlock(&bp->b_interlock); 1047 splx(s); 1048 return NULL; 1049 } 1050 SET(bp->b_flags, B_WANTED); 1051 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK, 1052 "getblk", slptimeo, &bp->b_interlock); 1053 splx(s); 1054 if (err) 1055 return (NULL); 1056 goto start; 1057 } 1058 #ifdef DIAGNOSTIC 1059 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && 1060 bp->b_bcount < size && vp->v_type != VBLK) 1061 panic("getblk: block size invariant failed"); 1062 #endif 1063 SET(bp->b_flags, B_BUSY); 1064 bremfree(bp); 1065 preserve = 1; 1066 } else { 1067 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) { 1068 simple_unlock(&bqueue_slock); 1069 splx(s); 1070 goto start; 1071 } 1072 1073 binshash(bp, BUFHASH(vp, blkno)); 1074 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 1075 bgetvp(vp, bp); 1076 preserve = 0; 1077 } 1078 simple_unlock(&bp->b_interlock); 1079 simple_unlock(&bqueue_slock); 1080 splx(s); 1081 /* 1082 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1083 * if we re-size buffers here. 1084 */ 1085 if (ISSET(bp->b_flags, B_LOCKED)) { 1086 KASSERT(bp->b_bufsize >= size); 1087 } else { 1088 allocbuf(bp, size, preserve); 1089 } 1090 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1091 return (bp); 1092 } 1093 1094 /* 1095 * Get an empty, disassociated buffer of given size. 1096 */ 1097 struct buf * 1098 geteblk(int size) 1099 { 1100 struct buf *bp; 1101 int s; 1102 1103 s = splbio(); 1104 simple_lock(&bqueue_slock); 1105 while ((bp = getnewbuf(0, 0, 0)) == 0) 1106 ; 1107 1108 SET(bp->b_flags, B_INVAL); 1109 binshash(bp, &invalhash); 1110 simple_unlock(&bqueue_slock); 1111 simple_unlock(&bp->b_interlock); 1112 splx(s); 1113 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1114 allocbuf(bp, size, 0); 1115 return (bp); 1116 } 1117 1118 /* 1119 * Expand or contract the actual memory allocated to a buffer. 1120 * 1121 * If the buffer shrinks, data is lost, so it's up to the 1122 * caller to have written it out *first*; this routine will not 1123 * start a write. If the buffer grows, it's the callers 1124 * responsibility to fill out the buffer's additional contents. 1125 */ 1126 void 1127 allocbuf(struct buf *bp, int size, int preserve) 1128 { 1129 vsize_t oldsize, desired_size; 1130 caddr_t addr; 1131 int s, delta; 1132 1133 desired_size = buf_roundsize(size); 1134 if (desired_size > MAXBSIZE) 1135 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1136 1137 bp->b_bcount = size; 1138 1139 oldsize = bp->b_bufsize; 1140 if (oldsize == desired_size) 1141 return; 1142 1143 /* 1144 * If we want a buffer of a different size, re-allocate the 1145 * buffer's memory; copy old content only if needed. 1146 */ 1147 addr = buf_malloc(desired_size); 1148 if (preserve) 1149 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1150 if (bp->b_data != NULL) 1151 buf_mrelease(bp->b_data, oldsize); 1152 bp->b_data = addr; 1153 bp->b_bufsize = desired_size; 1154 1155 /* 1156 * Update overall buffer memory counter (protected by bqueue_slock) 1157 */ 1158 delta = (long)desired_size - (long)oldsize; 1159 1160 s = splbio(); 1161 simple_lock(&bqueue_slock); 1162 if ((bufmem += delta) > bufmem_hiwater) { 1163 /* 1164 * Need to trim overall memory usage. 1165 */ 1166 while (buf_canrelease()) { 1167 if (buf_trim() == 0) 1168 break; 1169 } 1170 } 1171 1172 simple_unlock(&bqueue_slock); 1173 splx(s); 1174 } 1175 1176 /* 1177 * Find a buffer which is available for use. 1178 * Select something from a free list. 1179 * Preference is to AGE list, then LRU list. 1180 * 1181 * Called at splbio and with buffer queues locked. 1182 * Return buffer locked. 1183 */ 1184 struct buf * 1185 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1186 { 1187 struct buf *bp; 1188 1189 start: 1190 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 1191 1192 /* 1193 * Get a new buffer from the pool; but use NOWAIT because 1194 * we have the buffer queues locked. 1195 */ 1196 if (!from_bufq && buf_lotsfree() && 1197 (bp = pool_get(&bufpool, PR_NOWAIT)) != NULL) { 1198 memset((char *)bp, 0, sizeof(*bp)); 1199 BUF_INIT(bp); 1200 bp->b_dev = NODEV; 1201 bp->b_vnbufs.le_next = NOLIST; 1202 bp->b_flags = B_BUSY; 1203 simple_lock(&bp->b_interlock); 1204 #if defined(DIAGNOSTIC) 1205 bp->b_freelistindex = -1; 1206 #endif /* defined(DIAGNOSTIC) */ 1207 return (bp); 1208 } 1209 1210 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL || 1211 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) { 1212 simple_lock(&bp->b_interlock); 1213 bremfree(bp); 1214 } else { 1215 /* 1216 * XXX: !from_bufq should be removed. 1217 */ 1218 if (!from_bufq || curproc != uvm.pagedaemon_proc) { 1219 /* wait for a free buffer of any kind */ 1220 needbuffer = 1; 1221 ltsleep(&needbuffer, slpflag|(PRIBIO + 1), 1222 "getnewbuf", slptimeo, &bqueue_slock); 1223 } 1224 return (NULL); 1225 } 1226 1227 #ifdef DIAGNOSTIC 1228 if (bp->b_bufsize <= 0) 1229 panic("buffer %p: on queue but empty", bp); 1230 #endif 1231 1232 if (ISSET(bp->b_flags, B_VFLUSH)) { 1233 /* 1234 * This is a delayed write buffer being flushed to disk. Make 1235 * sure it gets aged out of the queue when it's finished, and 1236 * leave it off the LRU queue. 1237 */ 1238 CLR(bp->b_flags, B_VFLUSH); 1239 SET(bp->b_flags, B_AGE); 1240 simple_unlock(&bp->b_interlock); 1241 goto start; 1242 } 1243 1244 /* Buffer is no longer on free lists. */ 1245 SET(bp->b_flags, B_BUSY); 1246 1247 /* 1248 * If buffer was a delayed write, start it and return NULL 1249 * (since we might sleep while starting the write). 1250 */ 1251 if (ISSET(bp->b_flags, B_DELWRI)) { 1252 /* 1253 * This buffer has gone through the LRU, so make sure it gets 1254 * reused ASAP. 1255 */ 1256 SET(bp->b_flags, B_AGE); 1257 simple_unlock(&bp->b_interlock); 1258 simple_unlock(&bqueue_slock); 1259 bawrite(bp); 1260 simple_lock(&bqueue_slock); 1261 return (NULL); 1262 } 1263 1264 /* disassociate us from our vnode, if we had one... */ 1265 if (bp->b_vp) 1266 brelvp(bp); 1267 1268 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 1269 (*bioops.io_deallocate)(bp); 1270 1271 /* clear out various other fields */ 1272 bp->b_flags = B_BUSY; 1273 bp->b_dev = NODEV; 1274 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 1275 bp->b_iodone = 0; 1276 bp->b_error = 0; 1277 bp->b_resid = 0; 1278 bp->b_bcount = 0; 1279 1280 bremhash(bp); 1281 return (bp); 1282 } 1283 1284 /* 1285 * Attempt to free an aged buffer off the queues. 1286 * Called at splbio and with queue lock held. 1287 * Returns the amount of buffer memory freed. 1288 */ 1289 static int 1290 buf_trim(void) 1291 { 1292 struct buf *bp; 1293 long size = 0; 1294 1295 /* Instruct getnewbuf() to get buffers off the queues */ 1296 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1297 return 0; 1298 1299 KASSERT(!ISSET(bp->b_flags, B_WANTED)); 1300 simple_unlock(&bp->b_interlock); 1301 size = bp->b_bufsize; 1302 bufmem -= size; 1303 simple_unlock(&bqueue_slock); 1304 if (size > 0) { 1305 buf_mrelease(bp->b_data, size); 1306 bp->b_bcount = bp->b_bufsize = 0; 1307 } 1308 /* brelse() will return the buffer to the global buffer pool */ 1309 brelse(bp); 1310 simple_lock(&bqueue_slock); 1311 return size; 1312 } 1313 1314 int 1315 buf_drain(int n) 1316 { 1317 int s, size = 0, sz; 1318 1319 s = splbio(); 1320 simple_lock(&bqueue_slock); 1321 1322 while (size < n && bufmem > bufmem_lowater) { 1323 sz = buf_trim(); 1324 if (sz <= 0) 1325 break; 1326 size += sz; 1327 } 1328 1329 simple_unlock(&bqueue_slock); 1330 splx(s); 1331 return size; 1332 } 1333 1334 /* 1335 * Wait for operations on the buffer to complete. 1336 * When they do, extract and return the I/O's error value. 1337 */ 1338 int 1339 biowait(struct buf *bp) 1340 { 1341 int s, error; 1342 1343 s = splbio(); 1344 simple_lock(&bp->b_interlock); 1345 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI)) 1346 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock); 1347 1348 /* check for interruption of I/O (e.g. via NFS), then errors. */ 1349 if (ISSET(bp->b_flags, B_EINTR)) { 1350 CLR(bp->b_flags, B_EINTR); 1351 error = EINTR; 1352 } else if (ISSET(bp->b_flags, B_ERROR)) 1353 error = bp->b_error ? bp->b_error : EIO; 1354 else 1355 error = 0; 1356 1357 simple_unlock(&bp->b_interlock); 1358 splx(s); 1359 return (error); 1360 } 1361 1362 /* 1363 * Mark I/O complete on a buffer. 1364 * 1365 * If a callback has been requested, e.g. the pageout 1366 * daemon, do so. Otherwise, awaken waiting processes. 1367 * 1368 * [ Leffler, et al., says on p.247: 1369 * "This routine wakes up the blocked process, frees the buffer 1370 * for an asynchronous write, or, for a request by the pagedaemon 1371 * process, invokes a procedure specified in the buffer structure" ] 1372 * 1373 * In real life, the pagedaemon (or other system processes) wants 1374 * to do async stuff to, and doesn't want the buffer brelse()'d. 1375 * (for swap pager, that puts swap buffers on the free lists (!!!), 1376 * for the vn device, that puts malloc'd buffers on the free lists!) 1377 */ 1378 void 1379 biodone(struct buf *bp) 1380 { 1381 int s = splbio(); 1382 1383 simple_lock(&bp->b_interlock); 1384 if (ISSET(bp->b_flags, B_DONE)) 1385 panic("biodone already"); 1386 SET(bp->b_flags, B_DONE); /* note that it's done */ 1387 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1388 1389 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 1390 (*bioops.io_complete)(bp); 1391 1392 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 1393 vwakeup(bp); 1394 1395 /* 1396 * If necessary, call out. Unlock the buffer before calling 1397 * iodone() as the buffer isn't valid any more when it return. 1398 */ 1399 if (ISSET(bp->b_flags, B_CALL)) { 1400 CLR(bp->b_flags, B_CALL); /* but note callout done */ 1401 simple_unlock(&bp->b_interlock); 1402 (*bp->b_iodone)(bp); 1403 } else { 1404 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */ 1405 simple_unlock(&bp->b_interlock); 1406 brelse(bp); 1407 } else { /* or just wakeup the buffer */ 1408 CLR(bp->b_flags, B_WANTED); 1409 wakeup(bp); 1410 simple_unlock(&bp->b_interlock); 1411 } 1412 } 1413 1414 splx(s); 1415 } 1416 1417 /* 1418 * Return a count of buffers on the "locked" queue. 1419 */ 1420 int 1421 count_lock_queue(void) 1422 { 1423 struct buf *bp; 1424 int n = 0; 1425 1426 simple_lock(&bqueue_slock); 1427 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist) 1428 n++; 1429 simple_unlock(&bqueue_slock); 1430 return (n); 1431 } 1432 1433 /* 1434 * Wait for all buffers to complete I/O 1435 * Return the number of "stuck" buffers. 1436 */ 1437 int 1438 buf_syncwait(void) 1439 { 1440 struct buf *bp; 1441 int iter, nbusy, nbusy_prev = 0, dcount, s, ihash; 1442 1443 dcount = 10000; 1444 for (iter = 0; iter < 20;) { 1445 s = splbio(); 1446 simple_lock(&bqueue_slock); 1447 nbusy = 0; 1448 for (ihash = 0; ihash < bufhash+1; ihash++) { 1449 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1450 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1451 nbusy++; 1452 /* 1453 * With soft updates, some buffers that are 1454 * written will be remarked as dirty until other 1455 * buffers are written. 1456 */ 1457 if (bp->b_vp && bp->b_vp->v_mount 1458 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) 1459 && (bp->b_flags & B_DELWRI)) { 1460 simple_lock(&bp->b_interlock); 1461 bremfree(bp); 1462 bp->b_flags |= B_BUSY; 1463 nbusy++; 1464 simple_unlock(&bp->b_interlock); 1465 simple_unlock(&bqueue_slock); 1466 bawrite(bp); 1467 if (dcount-- <= 0) { 1468 printf("softdep "); 1469 splx(s); 1470 goto fail; 1471 } 1472 simple_lock(&bqueue_slock); 1473 } 1474 } 1475 } 1476 1477 simple_unlock(&bqueue_slock); 1478 splx(s); 1479 1480 if (nbusy == 0) 1481 break; 1482 if (nbusy_prev == 0) 1483 nbusy_prev = nbusy; 1484 printf("%d ", nbusy); 1485 tsleep(&nbusy, PRIBIO, "bflush", 1486 (iter == 0) ? 1 : hz / 25 * iter); 1487 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1488 iter++; 1489 else 1490 nbusy_prev = nbusy; 1491 } 1492 1493 if (nbusy) { 1494 fail:; 1495 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1496 printf("giving up\nPrinting vnodes for busy buffers\n"); 1497 s = splbio(); 1498 for (ihash = 0; ihash < bufhash+1; ihash++) { 1499 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1500 if ((bp->b_flags & (B_BUSY|B_INVAL|B_READ)) == B_BUSY) 1501 vprint(NULL, bp->b_vp); 1502 } 1503 } 1504 splx(s); 1505 #endif 1506 } 1507 1508 return nbusy; 1509 } 1510 1511 static void 1512 sysctl_fillbuf(struct buf *i, struct buf_sysctl *o) 1513 { 1514 1515 o->b_flags = i->b_flags; 1516 o->b_error = i->b_error; 1517 o->b_prio = i->b_prio; 1518 o->b_dev = i->b_dev; 1519 o->b_bufsize = i->b_bufsize; 1520 o->b_bcount = i->b_bcount; 1521 o->b_resid = i->b_resid; 1522 o->b_addr = PTRTOUINT64(i->b_un.b_addr); 1523 o->b_blkno = i->b_blkno; 1524 o->b_rawblkno = i->b_rawblkno; 1525 o->b_iodone = PTRTOUINT64(i->b_iodone); 1526 o->b_proc = PTRTOUINT64(i->b_proc); 1527 o->b_vp = PTRTOUINT64(i->b_vp); 1528 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr); 1529 o->b_lblkno = i->b_lblkno; 1530 } 1531 1532 #define KERN_BUFSLOP 20 1533 static int 1534 sysctl_dobuf(SYSCTLFN_ARGS) 1535 { 1536 struct buf *bp; 1537 struct buf_sysctl bs; 1538 char *dp; 1539 u_int i, op, arg; 1540 size_t len, needed, elem_size, out_size; 1541 int error, s, elem_count; 1542 1543 if (namelen == 1 && name[0] == CTL_QUERY) 1544 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1545 1546 if (namelen != 4) 1547 return (EINVAL); 1548 1549 dp = oldp; 1550 len = (oldp != NULL) ? *oldlenp : 0; 1551 op = name[0]; 1552 arg = name[1]; 1553 elem_size = name[2]; 1554 elem_count = name[3]; 1555 out_size = MIN(sizeof(bs), elem_size); 1556 1557 /* 1558 * at the moment, these are just "placeholders" to make the 1559 * API for retrieving kern.buf data more extensible in the 1560 * future. 1561 * 1562 * XXX kern.buf currently has "netbsd32" issues. hopefully 1563 * these will be resolved at a later point. 1564 */ 1565 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL || 1566 elem_size < 1 || elem_count < 0) 1567 return (EINVAL); 1568 1569 error = 0; 1570 needed = 0; 1571 s = splbio(); 1572 simple_lock(&bqueue_slock); 1573 for (i = 0; i < BQUEUES; i++) { 1574 TAILQ_FOREACH(bp, &bufqueues[i].bq_queue, b_freelist) { 1575 if (len >= elem_size && elem_count > 0) { 1576 sysctl_fillbuf(bp, &bs); 1577 error = copyout(&bs, dp, out_size); 1578 if (error) 1579 goto cleanup; 1580 dp += elem_size; 1581 len -= elem_size; 1582 } 1583 if (elem_count > 0) { 1584 needed += elem_size; 1585 if (elem_count != INT_MAX) 1586 elem_count--; 1587 } 1588 } 1589 } 1590 cleanup: 1591 simple_unlock(&bqueue_slock); 1592 splx(s); 1593 1594 *oldlenp = needed; 1595 if (oldp == NULL) 1596 *oldlenp += KERN_BUFSLOP * sizeof(struct buf); 1597 1598 return (error); 1599 } 1600 1601 static int 1602 sysctl_bufvm_update(SYSCTLFN_ARGS) 1603 { 1604 int t, error; 1605 struct sysctlnode node; 1606 1607 node = *rnode; 1608 node.sysctl_data = &t; 1609 t = *(int*)rnode->sysctl_data; 1610 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1611 if (error || newp == NULL) 1612 return (error); 1613 1614 if (rnode->sysctl_data == &bufcache) { 1615 if (t < 0 || t > 100) 1616 return (EINVAL); 1617 bufcache = t; 1618 buf_setwm(); 1619 } else if (rnode->sysctl_data == &bufmem_lowater) { 1620 if (bufmem_hiwater - bufmem_lowater < 16) 1621 return (EINVAL); 1622 bufmem_lowater = t; 1623 } else if (rnode->sysctl_data == &bufmem_hiwater) { 1624 if (bufmem_hiwater - bufmem_lowater < 16) 1625 return (EINVAL); 1626 bufmem_hiwater = t; 1627 } else 1628 return (EINVAL); 1629 1630 /* Drain until below new high water mark */ 1631 while ((t = bufmem - bufmem_hiwater) >= 0) { 1632 if (buf_drain(t / (2*1024)) <= 0) 1633 break; 1634 } 1635 1636 return 0; 1637 } 1638 1639 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup") 1640 { 1641 1642 sysctl_createv(clog, 0, NULL, NULL, 1643 CTLFLAG_PERMANENT, 1644 CTLTYPE_NODE, "kern", NULL, 1645 NULL, 0, NULL, 0, 1646 CTL_KERN, CTL_EOL); 1647 sysctl_createv(clog, 0, NULL, NULL, 1648 CTLFLAG_PERMANENT, 1649 CTLTYPE_NODE, "buf", 1650 SYSCTL_DESCR("Kernel buffer cache information"), 1651 sysctl_dobuf, 0, NULL, 0, 1652 CTL_KERN, KERN_BUF, CTL_EOL); 1653 } 1654 1655 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup") 1656 { 1657 1658 sysctl_createv(clog, 0, NULL, NULL, 1659 CTLFLAG_PERMANENT, 1660 CTLTYPE_NODE, "vm", NULL, 1661 NULL, 0, NULL, 0, 1662 CTL_VM, CTL_EOL); 1663 1664 sysctl_createv(clog, 0, NULL, NULL, 1665 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1666 CTLTYPE_INT, "bufcache", 1667 SYSCTL_DESCR("Percentage of kernel memory to use for " 1668 "buffer cache"), 1669 sysctl_bufvm_update, 0, &bufcache, 0, 1670 CTL_VM, CTL_CREATE, CTL_EOL); 1671 sysctl_createv(clog, 0, NULL, NULL, 1672 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1673 CTLTYPE_INT, "bufmem", 1674 SYSCTL_DESCR("Amount of kernel memory used by buffer " 1675 "cache"), 1676 NULL, 0, &bufmem, 0, 1677 CTL_VM, CTL_CREATE, CTL_EOL); 1678 sysctl_createv(clog, 0, NULL, NULL, 1679 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1680 CTLTYPE_INT, "bufmem_lowater", 1681 SYSCTL_DESCR("Minimum amount of kernel memory to " 1682 "reserve for buffer cache"), 1683 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1684 CTL_VM, CTL_CREATE, CTL_EOL); 1685 sysctl_createv(clog, 0, NULL, NULL, 1686 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1687 CTLTYPE_INT, "bufmem_hiwater", 1688 SYSCTL_DESCR("Maximum amount of kernel memory to use " 1689 "for buffer cache"), 1690 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1691 CTL_VM, CTL_CREATE, CTL_EOL); 1692 } 1693 1694 #ifdef DEBUG 1695 /* 1696 * Print out statistics on the current allocation of the buffer pool. 1697 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1698 * in vfs_syscalls.c using sysctl. 1699 */ 1700 void 1701 vfs_bufstats(void) 1702 { 1703 int s, i, j, count; 1704 struct buf *bp; 1705 struct bqueue *dp; 1706 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1707 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1708 1709 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1710 count = 0; 1711 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1712 counts[j] = 0; 1713 s = splbio(); 1714 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) { 1715 counts[bp->b_bufsize/PAGE_SIZE]++; 1716 count++; 1717 } 1718 splx(s); 1719 printf("%s: total-%d", bname[i], count); 1720 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1721 if (counts[j] != 0) 1722 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1723 printf("\n"); 1724 } 1725 } 1726 #endif /* DEBUG */ 1727