xref: /netbsd-src/sys/kern/vfs_bio.c (revision 1ffa7b76c40339c17a0fb2a09fac93f287cfc046)
1 /*	$NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $	*/
2 
3 /*-
4  * Copyright (c) 1994 Christopher G. Demetriou
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
42  */
43 
44 /*
45  * Some references:
46  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
48  *		UNIX Operating System (Addison Welley, 1989)
49  */
50 
51 #include "opt_softdep.h"
52 
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $");
55 
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/buf.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/malloc.h>
63 #include <sys/resourcevar.h>
64 #include <sys/conf.h>
65 
66 #include <uvm/uvm.h>
67 
68 #include <miscfs/specfs/specdev.h>
69 
70 /* Macros to clear/set/test flags. */
71 #define	SET(t, f)	(t) |= (f)
72 #define	CLR(t, f)	(t) &= ~(f)
73 #define	ISSET(t, f)	((t) & (f))
74 
75 /*
76  * Definitions for the buffer hash lists.
77  */
78 #define	BUFHASH(dvp, lbn)	\
79 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
81 u_long	bufhash;
82 #ifndef SOFTDEP
83 struct bio_ops bioops;	/* I/O operation notification */
84 #endif
85 
86 /*
87  * Insq/Remq for the buffer hash lists.
88  */
89 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
91 
92 /*
93  * Definitions for the buffer free lists.
94  */
95 #define	BQUEUES		4		/* number of free buffer queues */
96 
97 #define	BQ_LOCKED	0		/* super-blocks &c */
98 #define	BQ_LRU		1		/* lru, useful buffers */
99 #define	BQ_AGE		2		/* rubbish */
100 #define	BQ_EMPTY	3		/* buffer headers with no memory */
101 
102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
103 int needbuffer;
104 
105 /*
106  * Buffer queue lock.
107  * Take this lock first if also taking some buffer's b_interlock.
108  */
109 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
110 
111 /*
112  * Buffer pool for I/O buffers.
113  */
114 struct pool bufpool;
115 
116 /*
117  * bread()/breadn() helper.
118  */
119 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
120 					struct ucred *, int);
121 int count_lock_queue(void);
122 
123 /*
124  * Insq/Remq for the buffer free lists.
125  * Call with buffer queue locked.
126  */
127 #define	binsheadfree(bp, dp)	TAILQ_INSERT_HEAD(dp, bp, b_freelist)
128 #define	binstailfree(bp, dp)	TAILQ_INSERT_TAIL(dp, bp, b_freelist)
129 
130 void
131 bremfree(bp)
132 	struct buf *bp;
133 {
134 	struct bqueues *dp = NULL;
135 
136 	/*
137 	 * We only calculate the head of the freelist when removing
138 	 * the last element of the list as that is the only time that
139 	 * it is needed (e.g. to reset the tail pointer).
140 	 *
141 	 * NB: This makes an assumption about how tailq's are implemented.
142 	 */
143 	if (TAILQ_NEXT(bp, b_freelist) == NULL) {
144 		for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
145 			if (dp->tqh_last == &bp->b_freelist.tqe_next)
146 				break;
147 		if (dp == &bufqueues[BQUEUES])
148 			panic("bremfree: lost tail");
149 	}
150 	TAILQ_REMOVE(dp, bp, b_freelist);
151 }
152 
153 /*
154  * Initialize buffers and hash links for buffers.
155  */
156 void
157 bufinit()
158 {
159 	struct buf *bp;
160 	struct bqueues *dp;
161 	u_int i, base, residual;
162 
163 	/*
164 	 * Initialize the buffer pool.  This pool is used for buffers
165 	 * which are strictly I/O control blocks, not buffer cache
166 	 * buffers.
167 	 */
168 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
169 
170 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
171 		TAILQ_INIT(dp);
172 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
173 	base = bufpages / nbuf;
174 	residual = bufpages % nbuf;
175 	for (i = 0; i < nbuf; i++) {
176 		bp = &buf[i];
177 		memset((char *)bp, 0, sizeof(*bp));
178 		BUF_INIT(bp);
179 		bp->b_dev = NODEV;
180 		bp->b_vnbufs.le_next = NOLIST;
181 		bp->b_data = buffers + i * MAXBSIZE;
182 		if (i < residual)
183 			bp->b_bufsize = (base + 1) * PAGE_SIZE;
184 		else
185 			bp->b_bufsize = base * PAGE_SIZE;
186 		bp->b_flags = B_INVAL;
187 		dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
188 		binsheadfree(bp, dp);
189 		binshash(bp, &invalhash);
190 	}
191 }
192 
193 static __inline struct buf *
194 bio_doread(vp, blkno, size, cred, async)
195 	struct vnode *vp;
196 	daddr_t blkno;
197 	int size;
198 	struct ucred *cred;
199 	int async;
200 {
201 	struct buf *bp;
202 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
203 	struct proc *p = l->l_proc;
204 
205 	bp = getblk(vp, blkno, size, 0, 0);
206 
207 #ifdef DIAGNOSTIC
208 	if (bp == NULL) {
209 		panic("bio_doread: no such buf");
210 	}
211 #endif
212 
213 	/*
214 	 * If buffer does not have data valid, start a read.
215 	 * Note that if buffer is B_INVAL, getblk() won't return it.
216 	 * Therefore, it's valid if its I/O has completed or been delayed.
217 	 */
218 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
219 		/* Start I/O for the buffer. */
220 		SET(bp->b_flags, B_READ | async);
221 		VOP_STRATEGY(bp);
222 
223 		/* Pay for the read. */
224 		p->p_stats->p_ru.ru_inblock++;
225 	} else if (async) {
226 		brelse(bp);
227 	}
228 
229 	return (bp);
230 }
231 
232 /*
233  * Read a disk block.
234  * This algorithm described in Bach (p.54).
235  */
236 int
237 bread(vp, blkno, size, cred, bpp)
238 	struct vnode *vp;
239 	daddr_t blkno;
240 	int size;
241 	struct ucred *cred;
242 	struct buf **bpp;
243 {
244 	struct buf *bp;
245 
246 	/* Get buffer for block. */
247 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
248 
249 	/* Wait for the read to complete, and return result. */
250 	return (biowait(bp));
251 }
252 
253 /*
254  * Read-ahead multiple disk blocks. The first is sync, the rest async.
255  * Trivial modification to the breada algorithm presented in Bach (p.55).
256  */
257 int
258 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
259 	struct vnode *vp;
260 	daddr_t blkno; int size;
261 	daddr_t rablks[]; int rasizes[];
262 	int nrablks;
263 	struct ucred *cred;
264 	struct buf **bpp;
265 {
266 	struct buf *bp;
267 	int i;
268 
269 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
270 
271 	/*
272 	 * For each of the read-ahead blocks, start a read, if necessary.
273 	 */
274 	for (i = 0; i < nrablks; i++) {
275 		/* If it's in the cache, just go on to next one. */
276 		if (incore(vp, rablks[i]))
277 			continue;
278 
279 		/* Get a buffer for the read-ahead block */
280 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
281 	}
282 
283 	/* Otherwise, we had to start a read for it; wait until it's valid. */
284 	return (biowait(bp));
285 }
286 
287 /*
288  * Read with single-block read-ahead.  Defined in Bach (p.55), but
289  * implemented as a call to breadn().
290  * XXX for compatibility with old file systems.
291  */
292 int
293 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
294 	struct vnode *vp;
295 	daddr_t blkno; int size;
296 	daddr_t rablkno; int rabsize;
297 	struct ucred *cred;
298 	struct buf **bpp;
299 {
300 
301 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
302 }
303 
304 /*
305  * Block write.  Described in Bach (p.56)
306  */
307 int
308 bwrite(bp)
309 	struct buf *bp;
310 {
311 	int rv, sync, wasdelayed, s;
312 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
313 	struct proc *p = l->l_proc;
314 	struct vnode *vp;
315 	struct mount *mp;
316 
317 	KASSERT(ISSET(bp->b_flags, B_BUSY));
318 
319 	vp = bp->b_vp;
320 	if (vp != NULL) {
321 		if (vp->v_type == VBLK)
322 			mp = vp->v_specmountpoint;
323 		else
324 			mp = vp->v_mount;
325 	} else {
326 		mp = NULL;
327 	}
328 
329 	/*
330 	 * Remember buffer type, to switch on it later.  If the write was
331 	 * synchronous, but the file system was mounted with MNT_ASYNC,
332 	 * convert it to a delayed write.
333 	 * XXX note that this relies on delayed tape writes being converted
334 	 * to async, not sync writes (which is safe, but ugly).
335 	 */
336 	sync = !ISSET(bp->b_flags, B_ASYNC);
337 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
338 		bdwrite(bp);
339 		return (0);
340 	}
341 
342 	/*
343 	 * Collect statistics on synchronous and asynchronous writes.
344 	 * Writes to block devices are charged to their associated
345 	 * filesystem (if any).
346 	 */
347 	if (mp != NULL) {
348 		if (sync)
349 			mp->mnt_stat.f_syncwrites++;
350 		else
351 			mp->mnt_stat.f_asyncwrites++;
352 	}
353 
354 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
355 
356 	s = splbio();
357 	simple_lock(&bp->b_interlock);
358 
359 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
360 
361 	/*
362 	 * Pay for the I/O operation and make sure the buf is on the correct
363 	 * vnode queue.
364 	 */
365 	if (wasdelayed)
366 		reassignbuf(bp, bp->b_vp);
367 	else
368 		p->p_stats->p_ru.ru_oublock++;
369 
370 	/* Initiate disk write.  Make sure the appropriate party is charged. */
371 	V_INCR_NUMOUTPUT(bp->b_vp);
372 	simple_unlock(&bp->b_interlock);
373 	splx(s);
374 
375 	VOP_STRATEGY(bp);
376 
377 	if (sync) {
378 		/* If I/O was synchronous, wait for it to complete. */
379 		rv = biowait(bp);
380 
381 		/* Release the buffer. */
382 		brelse(bp);
383 
384 		return (rv);
385 	} else {
386 		return (0);
387 	}
388 }
389 
390 int
391 vn_bwrite(v)
392 	void *v;
393 {
394 	struct vop_bwrite_args *ap = v;
395 
396 	return (bwrite(ap->a_bp));
397 }
398 
399 /*
400  * Delayed write.
401  *
402  * The buffer is marked dirty, but is not queued for I/O.
403  * This routine should be used when the buffer is expected
404  * to be modified again soon, typically a small write that
405  * partially fills a buffer.
406  *
407  * NB: magnetic tapes cannot be delayed; they must be
408  * written in the order that the writes are requested.
409  *
410  * Described in Leffler, et al. (pp. 208-213).
411  */
412 void
413 bdwrite(bp)
414 	struct buf *bp;
415 {
416 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
417 	struct proc *p = l->l_proc;
418 	const struct bdevsw *bdev;
419 	int s;
420 
421 	KASSERT(ISSET(bp->b_flags, B_BUSY));
422 
423 	/* If this is a tape block, write the block now. */
424 	bdev = bdevsw_lookup(bp->b_dev);
425 	if (bdev != NULL && bdev->d_type == D_TAPE) {
426 		bawrite(bp);
427 		return;
428 	}
429 
430 	/*
431 	 * If the block hasn't been seen before:
432 	 *	(1) Mark it as having been seen,
433 	 *	(2) Charge for the write,
434 	 *	(3) Make sure it's on its vnode's correct block list.
435 	 */
436 	s = splbio();
437 	simple_lock(&bp->b_interlock);
438 
439 	if (!ISSET(bp->b_flags, B_DELWRI)) {
440 		SET(bp->b_flags, B_DELWRI);
441 		p->p_stats->p_ru.ru_oublock++;
442 		reassignbuf(bp, bp->b_vp);
443 	}
444 
445 	/* Otherwise, the "write" is done, so mark and release the buffer. */
446 	CLR(bp->b_flags, B_DONE);
447 	simple_unlock(&bp->b_interlock);
448 	splx(s);
449 
450 	brelse(bp);
451 }
452 
453 /*
454  * Asynchronous block write; just an asynchronous bwrite().
455  */
456 void
457 bawrite(bp)
458 	struct buf *bp;
459 {
460 	int s;
461 
462 	KASSERT(ISSET(bp->b_flags, B_BUSY));
463 
464 	s = splbio();
465 	simple_lock(&bp->b_interlock);
466 	SET(bp->b_flags, B_ASYNC);
467 	simple_unlock(&bp->b_interlock);
468 	splx(s);
469 	VOP_BWRITE(bp);
470 }
471 
472 /*
473  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
474  * Call at splbio() and with the buffer interlock locked.
475  * Note: called only from biodone() through ffs softdep's bioops.io_complete()
476  */
477 void
478 bdirty(bp)
479 	struct buf *bp;
480 {
481 	struct lwp *l  = (curlwp != NULL ? curlwp : &lwp0);	/* XXX */
482 	struct proc *p = l->l_proc;
483 
484 	KASSERT(ISSET(bp->b_flags, B_BUSY));
485 	LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
486 
487 	CLR(bp->b_flags, B_AGE);
488 
489 	if (!ISSET(bp->b_flags, B_DELWRI)) {
490 		SET(bp->b_flags, B_DELWRI);
491 		p->p_stats->p_ru.ru_oublock++;
492 		reassignbuf(bp, bp->b_vp);
493 	}
494 }
495 
496 /*
497  * Release a buffer on to the free lists.
498  * Described in Bach (p. 46).
499  */
500 void
501 brelse(bp)
502 	struct buf *bp;
503 {
504 	struct bqueues *bufq;
505 	int s;
506 
507 	KASSERT(ISSET(bp->b_flags, B_BUSY));
508 
509 	/* Block disk interrupts. */
510 	s = splbio();
511 	simple_lock(&bqueue_slock);
512 	simple_lock(&bp->b_interlock);
513 
514 	/* Wake up any processes waiting for any buffer to become free. */
515 	if (needbuffer) {
516 		needbuffer = 0;
517 		wakeup(&needbuffer);
518 	}
519 
520 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
521 	if (ISSET(bp->b_flags, B_WANTED)) {
522 		CLR(bp->b_flags, B_WANTED|B_AGE);
523 		wakeup(bp);
524 	}
525 
526 	/*
527 	 * Determine which queue the buffer should be on, then put it there.
528 	 */
529 
530 	/* If it's locked, don't report an error; try again later. */
531 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
532 		CLR(bp->b_flags, B_ERROR);
533 
534 	/* If it's not cacheable, or an error, mark it invalid. */
535 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
536 		SET(bp->b_flags, B_INVAL);
537 
538 	if (ISSET(bp->b_flags, B_VFLUSH)) {
539 		/*
540 		 * This is a delayed write buffer that was just flushed to
541 		 * disk.  It is still on the LRU queue.  If it's become
542 		 * invalid, then we need to move it to a different queue;
543 		 * otherwise leave it in its current position.
544 		 */
545 		CLR(bp->b_flags, B_VFLUSH);
546 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
547 			goto already_queued;
548 		else
549 			bremfree(bp);
550 	}
551 
552 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
553 		/*
554 		 * If it's invalid or empty, dissociate it from its vnode
555 		 * and put on the head of the appropriate queue.
556 		 */
557 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
558 			(*bioops.io_deallocate)(bp);
559 		CLR(bp->b_flags, B_DONE|B_DELWRI);
560 		if (bp->b_vp) {
561 			reassignbuf(bp, bp->b_vp);
562 			brelvp(bp);
563 		}
564 		if (bp->b_bufsize <= 0)
565 			/* no data */
566 			bufq = &bufqueues[BQ_EMPTY];
567 		else
568 			/* invalid data */
569 			bufq = &bufqueues[BQ_AGE];
570 		binsheadfree(bp, bufq);
571 	} else {
572 		/*
573 		 * It has valid data.  Put it on the end of the appropriate
574 		 * queue, so that it'll stick around for as long as possible.
575 		 * If buf is AGE, but has dependencies, must put it on last
576 		 * bufqueue to be scanned, ie LRU. This protects against the
577 		 * livelock where BQ_AGE only has buffers with dependencies,
578 		 * and we thus never get to the dependent buffers in BQ_LRU.
579 		 */
580 		if (ISSET(bp->b_flags, B_LOCKED))
581 			/* locked in core */
582 			bufq = &bufqueues[BQ_LOCKED];
583 		else if (!ISSET(bp->b_flags, B_AGE))
584 			/* valid data */
585 			bufq = &bufqueues[BQ_LRU];
586 		else {
587 			/* stale but valid data */
588 			int has_deps;
589 
590 			if (LIST_FIRST(&bp->b_dep) != NULL &&
591 			    bioops.io_countdeps)
592 				has_deps = (*bioops.io_countdeps)(bp, 0);
593 			else
594 				has_deps = 0;
595 			bufq = has_deps ? &bufqueues[BQ_LRU] :
596 			    &bufqueues[BQ_AGE];
597 		}
598 		binstailfree(bp, bufq);
599 	}
600 
601 already_queued:
602 	/* Unlock the buffer. */
603 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
604 	SET(bp->b_flags, B_CACHE);
605 
606 	/* Allow disk interrupts. */
607 	simple_unlock(&bp->b_interlock);
608 	simple_unlock(&bqueue_slock);
609 	splx(s);
610 }
611 
612 /*
613  * Determine if a block is in the cache.
614  * Just look on what would be its hash chain.  If it's there, return
615  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
616  * we normally don't return the buffer, unless the caller explicitly
617  * wants us to.
618  */
619 struct buf *
620 incore(vp, blkno)
621 	struct vnode *vp;
622 	daddr_t blkno;
623 {
624 	struct buf *bp;
625 
626 	/* Search hash chain */
627 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
628 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
629 		    !ISSET(bp->b_flags, B_INVAL))
630 		return (bp);
631 	}
632 
633 	return (NULL);
634 }
635 
636 /*
637  * Get a block of requested size that is associated with
638  * a given vnode and block offset. If it is found in the
639  * block cache, mark it as having been found, make it busy
640  * and return it. Otherwise, return an empty block of the
641  * correct size. It is up to the caller to insure that the
642  * cached blocks be of the correct size.
643  */
644 struct buf *
645 getblk(vp, blkno, size, slpflag, slptimeo)
646 	struct vnode *vp;
647 	daddr_t blkno;
648 	int size, slpflag, slptimeo;
649 {
650 	struct buf *bp;
651 	int s, err;
652 
653 start:
654 	s = splbio();
655 	simple_lock(&bqueue_slock);
656 	bp = incore(vp, blkno);
657 	if (bp != NULL) {
658 		simple_lock(&bp->b_interlock);
659 		if (ISSET(bp->b_flags, B_BUSY)) {
660 			simple_unlock(&bqueue_slock);
661 			if (curproc == uvm.pagedaemon_proc) {
662 				simple_unlock(&bp->b_interlock);
663 				splx(s);
664 				return NULL;
665 			}
666 			SET(bp->b_flags, B_WANTED);
667 			err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
668 					"getblk", slptimeo, &bp->b_interlock);
669 			splx(s);
670 			if (err)
671 				return (NULL);
672 			goto start;
673 		}
674 #ifdef DIAGNOSTIC
675 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
676 		    bp->b_bcount < size && vp->v_type != VBLK)
677 			panic("getblk: block size invariant failed");
678 #endif
679 		SET(bp->b_flags, B_BUSY);
680 		bremfree(bp);
681 	} else {
682 		if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) {
683 			simple_unlock(&bqueue_slock);
684 			splx(s);
685 			goto start;
686 		}
687 
688 		binshash(bp, BUFHASH(vp, blkno));
689 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
690 		bgetvp(vp, bp);
691 	}
692 	simple_unlock(&bp->b_interlock);
693 	simple_unlock(&bqueue_slock);
694 	splx(s);
695 	allocbuf(bp, size);
696 	return (bp);
697 }
698 
699 /*
700  * Get an empty, disassociated buffer of given size.
701  */
702 struct buf *
703 geteblk(size)
704 	int size;
705 {
706 	struct buf *bp;
707 	int s;
708 
709 	s = splbio();
710 	simple_lock(&bqueue_slock);
711 	while ((bp = getnewbuf(0, 0)) == 0)
712 		;
713 
714 	SET(bp->b_flags, B_INVAL);
715 	binshash(bp, &invalhash);
716 	simple_unlock(&bqueue_slock);
717 	simple_unlock(&bp->b_interlock);
718 	splx(s);
719 	allocbuf(bp, size);
720 	return (bp);
721 }
722 
723 /*
724  * Expand or contract the actual memory allocated to a buffer.
725  *
726  * If the buffer shrinks, data is lost, so it's up to the
727  * caller to have written it out *first*; this routine will not
728  * start a write.  If the buffer grows, it's the callers
729  * responsibility to fill out the buffer's additional contents.
730  */
731 void
732 allocbuf(bp, size)
733 	struct buf *bp;
734 	int size;
735 {
736 	struct buf *nbp;
737 	vsize_t desired_size;
738 	int s;
739 
740 	desired_size = round_page((vsize_t)size);
741 	if (desired_size > MAXBSIZE)
742 		panic("allocbuf: buffer larger than MAXBSIZE requested");
743 
744 	if (bp->b_bufsize == desired_size)
745 		goto out;
746 
747 	/*
748 	 * If the buffer is smaller than the desired size, we need to snarf
749 	 * it from other buffers.  Get buffers (via getnewbuf()), and
750 	 * steal their pages.
751 	 */
752 	while (bp->b_bufsize < desired_size) {
753 		int amt;
754 
755 		/* find a buffer */
756 		s = splbio();
757 		simple_lock(&bqueue_slock);
758 		while ((nbp = getnewbuf(0, 0)) == NULL)
759 			;
760 
761 		SET(nbp->b_flags, B_INVAL);
762 		binshash(nbp, &invalhash);
763 
764 		simple_unlock(&nbp->b_interlock);
765 		simple_unlock(&bqueue_slock);
766 		splx(s);
767 
768 		/* and steal its pages, up to the amount we need */
769 		amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
770 		pagemove((nbp->b_data + nbp->b_bufsize - amt),
771 			 bp->b_data + bp->b_bufsize, amt);
772 		bp->b_bufsize += amt;
773 		nbp->b_bufsize -= amt;
774 
775 		/* reduce transfer count if we stole some data */
776 		if (nbp->b_bcount > nbp->b_bufsize)
777 			nbp->b_bcount = nbp->b_bufsize;
778 
779 #ifdef DIAGNOSTIC
780 		if (nbp->b_bufsize < 0)
781 			panic("allocbuf: negative bufsize");
782 #endif
783 		brelse(nbp);
784 	}
785 
786 	/*
787 	 * If we want a buffer smaller than the current size,
788 	 * shrink this buffer.  Grab a buf head from the EMPTY queue,
789 	 * move a page onto it, and put it on front of the AGE queue.
790 	 * If there are no free buffer headers, leave the buffer alone.
791 	 */
792 	if (bp->b_bufsize > desired_size) {
793 		s = splbio();
794 		simple_lock(&bqueue_slock);
795 		if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) {
796 			/* No free buffer head */
797 			simple_unlock(&bqueue_slock);
798 			splx(s);
799 			goto out;
800 		}
801 		/* No need to lock nbp since it came from the empty queue */
802 		bremfree(nbp);
803 		SET(nbp->b_flags, B_BUSY | B_INVAL);
804 		simple_unlock(&bqueue_slock);
805 		splx(s);
806 
807 		/* move the page to it and note this change */
808 		pagemove(bp->b_data + desired_size,
809 		    nbp->b_data, bp->b_bufsize - desired_size);
810 		nbp->b_bufsize = bp->b_bufsize - desired_size;
811 		bp->b_bufsize = desired_size;
812 		nbp->b_bcount = 0;
813 
814 		/* release the newly-filled buffer and leave */
815 		brelse(nbp);
816 	}
817 
818 out:
819 	bp->b_bcount = size;
820 }
821 
822 /*
823  * Find a buffer which is available for use.
824  * Select something from a free list.
825  * Preference is to AGE list, then LRU list.
826  *
827  * Called with buffer queues locked.
828  * Return buffer locked.
829  */
830 struct buf *
831 getnewbuf(slpflag, slptimeo)
832 	int slpflag, slptimeo;
833 {
834 	struct buf *bp;
835 
836 start:
837 	LOCK_ASSERT(simple_lock_held(&bqueue_slock));
838 
839 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
840 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
841 		simple_lock(&bp->b_interlock);
842 		bremfree(bp);
843 	} else {
844 		/* wait for a free buffer of any kind */
845 		needbuffer = 1;
846 		ltsleep(&needbuffer, slpflag|(PRIBIO+1),
847 			"getnewbuf", slptimeo, &bqueue_slock);
848 		return (NULL);
849 	}
850 
851 	if (ISSET(bp->b_flags, B_VFLUSH)) {
852 		/*
853 		 * This is a delayed write buffer being flushed to disk.  Make
854 		 * sure it gets aged out of the queue when it's finished, and
855 		 * leave it off the LRU queue.
856 		 */
857 		CLR(bp->b_flags, B_VFLUSH);
858 		SET(bp->b_flags, B_AGE);
859 		simple_unlock(&bp->b_interlock);
860 		goto start;
861 	}
862 
863 	/* Buffer is no longer on free lists. */
864 	SET(bp->b_flags, B_BUSY);
865 
866 	/*
867 	 * If buffer was a delayed write, start it and return NULL
868 	 * (since we might sleep while starting the write).
869 	 */
870 	if (ISSET(bp->b_flags, B_DELWRI)) {
871 		/*
872 		 * This buffer has gone through the LRU, so make sure it gets
873 		 * reused ASAP.
874 		 */
875 		SET(bp->b_flags, B_AGE);
876 		simple_unlock(&bp->b_interlock);
877 		simple_unlock(&bqueue_slock);
878 		bawrite(bp);
879 		simple_lock(&bqueue_slock);
880 		return (NULL);
881 	}
882 
883 	/* disassociate us from our vnode, if we had one... */
884 	if (bp->b_vp)
885 		brelvp(bp);
886 
887 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
888 		(*bioops.io_deallocate)(bp);
889 
890 	/* clear out various other fields */
891 	bp->b_flags = B_BUSY;
892 	bp->b_dev = NODEV;
893 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
894 	bp->b_iodone = 0;
895 	bp->b_error = 0;
896 	bp->b_resid = 0;
897 	bp->b_bcount = 0;
898 
899 	bremhash(bp);
900 	return (bp);
901 }
902 
903 /*
904  * Wait for operations on the buffer to complete.
905  * When they do, extract and return the I/O's error value.
906  */
907 int
908 biowait(bp)
909 	struct buf *bp;
910 {
911 	int s, error;
912 
913 	s = splbio();
914 	simple_lock(&bp->b_interlock);
915 	while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
916 		ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
917 
918 	/* check for interruption of I/O (e.g. via NFS), then errors. */
919 	if (ISSET(bp->b_flags, B_EINTR)) {
920 		CLR(bp->b_flags, B_EINTR);
921 		error = EINTR;
922 	} else if (ISSET(bp->b_flags, B_ERROR))
923 		error = bp->b_error ? bp->b_error : EIO;
924 	else
925 		error = 0;
926 
927 	simple_unlock(&bp->b_interlock);
928 	splx(s);
929 	return (error);
930 }
931 
932 /*
933  * Mark I/O complete on a buffer.
934  *
935  * If a callback has been requested, e.g. the pageout
936  * daemon, do so. Otherwise, awaken waiting processes.
937  *
938  * [ Leffler, et al., says on p.247:
939  *	"This routine wakes up the blocked process, frees the buffer
940  *	for an asynchronous write, or, for a request by the pagedaemon
941  *	process, invokes a procedure specified in the buffer structure" ]
942  *
943  * In real life, the pagedaemon (or other system processes) wants
944  * to do async stuff to, and doesn't want the buffer brelse()'d.
945  * (for swap pager, that puts swap buffers on the free lists (!!!),
946  * for the vn device, that puts malloc'd buffers on the free lists!)
947  */
948 void
949 biodone(bp)
950 	struct buf *bp;
951 {
952 	int s = splbio();
953 
954 	simple_lock(&bp->b_interlock);
955 	if (ISSET(bp->b_flags, B_DONE))
956 		panic("biodone already");
957 	SET(bp->b_flags, B_DONE);		/* note that it's done */
958 
959 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
960 		(*bioops.io_complete)(bp);
961 
962 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
963 		vwakeup(bp);
964 
965 	/*
966 	 * If necessary, call out.  Unlock the buffer before calling
967 	 * iodone() as the buffer isn't valid any more when it return.
968 	 */
969 	if (ISSET(bp->b_flags, B_CALL)) {
970 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
971 		simple_unlock(&bp->b_interlock);
972 		(*bp->b_iodone)(bp);
973 	} else {
974 		if (ISSET(bp->b_flags, B_ASYNC)) {	/* if async, release */
975 			simple_unlock(&bp->b_interlock);
976 			brelse(bp);
977 		} else {			/* or just wakeup the buffer */
978 			CLR(bp->b_flags, B_WANTED);
979 			wakeup(bp);
980 			simple_unlock(&bp->b_interlock);
981 		}
982 	}
983 
984 	splx(s);
985 }
986 
987 /*
988  * Return a count of buffers on the "locked" queue.
989  */
990 int
991 count_lock_queue()
992 {
993 	struct buf *bp;
994 	int n = 0;
995 
996 	simple_lock(&bqueue_slock);
997 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
998 		n++;
999 	simple_unlock(&bqueue_slock);
1000 	return (n);
1001 }
1002 
1003 #ifdef DEBUG
1004 /*
1005  * Print out statistics on the current allocation of the buffer pool.
1006  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1007  * in vfs_syscalls.c using sysctl.
1008  */
1009 void
1010 vfs_bufstats()
1011 {
1012 	int s, i, j, count;
1013 	struct buf *bp;
1014 	struct bqueues *dp;
1015 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1016 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
1017 
1018 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1019 		count = 0;
1020 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1021 			counts[j] = 0;
1022 		s = splbio();
1023 		TAILQ_FOREACH(bp, dp, b_freelist) {
1024 			counts[bp->b_bufsize/PAGE_SIZE]++;
1025 			count++;
1026 		}
1027 		splx(s);
1028 		printf("%s: total-%d", bname[i], count);
1029 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1030 			if (counts[j] != 0)
1031 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1032 		printf("\n");
1033 	}
1034 }
1035 #endif /* DEBUG */
1036