1 /* $NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 1994 Christopher G. Demetriou 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 42 */ 43 44 /* 45 * Some references: 46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 47 * Leffler, et al.: The Design and Implementation of the 4.3BSD 48 * UNIX Operating System (Addison Welley, 1989) 49 */ 50 51 #include "opt_softdep.h" 52 53 #include <sys/cdefs.h> 54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $"); 55 56 #include <sys/param.h> 57 #include <sys/systm.h> 58 #include <sys/proc.h> 59 #include <sys/buf.h> 60 #include <sys/vnode.h> 61 #include <sys/mount.h> 62 #include <sys/malloc.h> 63 #include <sys/resourcevar.h> 64 #include <sys/conf.h> 65 66 #include <uvm/uvm.h> 67 68 #include <miscfs/specfs/specdev.h> 69 70 /* Macros to clear/set/test flags. */ 71 #define SET(t, f) (t) |= (f) 72 #define CLR(t, f) (t) &= ~(f) 73 #define ISSET(t, f) ((t) & (f)) 74 75 /* 76 * Definitions for the buffer hash lists. 77 */ 78 #define BUFHASH(dvp, lbn) \ 79 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 81 u_long bufhash; 82 #ifndef SOFTDEP 83 struct bio_ops bioops; /* I/O operation notification */ 84 #endif 85 86 /* 87 * Insq/Remq for the buffer hash lists. 88 */ 89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 90 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 91 92 /* 93 * Definitions for the buffer free lists. 94 */ 95 #define BQUEUES 4 /* number of free buffer queues */ 96 97 #define BQ_LOCKED 0 /* super-blocks &c */ 98 #define BQ_LRU 1 /* lru, useful buffers */ 99 #define BQ_AGE 2 /* rubbish */ 100 #define BQ_EMPTY 3 /* buffer headers with no memory */ 101 102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 103 int needbuffer; 104 105 /* 106 * Buffer queue lock. 107 * Take this lock first if also taking some buffer's b_interlock. 108 */ 109 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER; 110 111 /* 112 * Buffer pool for I/O buffers. 113 */ 114 struct pool bufpool; 115 116 /* 117 * bread()/breadn() helper. 118 */ 119 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int, 120 struct ucred *, int); 121 int count_lock_queue(void); 122 123 /* 124 * Insq/Remq for the buffer free lists. 125 * Call with buffer queue locked. 126 */ 127 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 128 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 129 130 void 131 bremfree(bp) 132 struct buf *bp; 133 { 134 struct bqueues *dp = NULL; 135 136 /* 137 * We only calculate the head of the freelist when removing 138 * the last element of the list as that is the only time that 139 * it is needed (e.g. to reset the tail pointer). 140 * 141 * NB: This makes an assumption about how tailq's are implemented. 142 */ 143 if (TAILQ_NEXT(bp, b_freelist) == NULL) { 144 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 145 if (dp->tqh_last == &bp->b_freelist.tqe_next) 146 break; 147 if (dp == &bufqueues[BQUEUES]) 148 panic("bremfree: lost tail"); 149 } 150 TAILQ_REMOVE(dp, bp, b_freelist); 151 } 152 153 /* 154 * Initialize buffers and hash links for buffers. 155 */ 156 void 157 bufinit() 158 { 159 struct buf *bp; 160 struct bqueues *dp; 161 u_int i, base, residual; 162 163 /* 164 * Initialize the buffer pool. This pool is used for buffers 165 * which are strictly I/O control blocks, not buffer cache 166 * buffers. 167 */ 168 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL); 169 170 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 171 TAILQ_INIT(dp); 172 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 173 base = bufpages / nbuf; 174 residual = bufpages % nbuf; 175 for (i = 0; i < nbuf; i++) { 176 bp = &buf[i]; 177 memset((char *)bp, 0, sizeof(*bp)); 178 BUF_INIT(bp); 179 bp->b_dev = NODEV; 180 bp->b_vnbufs.le_next = NOLIST; 181 bp->b_data = buffers + i * MAXBSIZE; 182 if (i < residual) 183 bp->b_bufsize = (base + 1) * PAGE_SIZE; 184 else 185 bp->b_bufsize = base * PAGE_SIZE; 186 bp->b_flags = B_INVAL; 187 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY]; 188 binsheadfree(bp, dp); 189 binshash(bp, &invalhash); 190 } 191 } 192 193 static __inline struct buf * 194 bio_doread(vp, blkno, size, cred, async) 195 struct vnode *vp; 196 daddr_t blkno; 197 int size; 198 struct ucred *cred; 199 int async; 200 { 201 struct buf *bp; 202 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 203 struct proc *p = l->l_proc; 204 205 bp = getblk(vp, blkno, size, 0, 0); 206 207 #ifdef DIAGNOSTIC 208 if (bp == NULL) { 209 panic("bio_doread: no such buf"); 210 } 211 #endif 212 213 /* 214 * If buffer does not have data valid, start a read. 215 * Note that if buffer is B_INVAL, getblk() won't return it. 216 * Therefore, it's valid if its I/O has completed or been delayed. 217 */ 218 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 219 /* Start I/O for the buffer. */ 220 SET(bp->b_flags, B_READ | async); 221 VOP_STRATEGY(bp); 222 223 /* Pay for the read. */ 224 p->p_stats->p_ru.ru_inblock++; 225 } else if (async) { 226 brelse(bp); 227 } 228 229 return (bp); 230 } 231 232 /* 233 * Read a disk block. 234 * This algorithm described in Bach (p.54). 235 */ 236 int 237 bread(vp, blkno, size, cred, bpp) 238 struct vnode *vp; 239 daddr_t blkno; 240 int size; 241 struct ucred *cred; 242 struct buf **bpp; 243 { 244 struct buf *bp; 245 246 /* Get buffer for block. */ 247 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 248 249 /* Wait for the read to complete, and return result. */ 250 return (biowait(bp)); 251 } 252 253 /* 254 * Read-ahead multiple disk blocks. The first is sync, the rest async. 255 * Trivial modification to the breada algorithm presented in Bach (p.55). 256 */ 257 int 258 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp) 259 struct vnode *vp; 260 daddr_t blkno; int size; 261 daddr_t rablks[]; int rasizes[]; 262 int nrablks; 263 struct ucred *cred; 264 struct buf **bpp; 265 { 266 struct buf *bp; 267 int i; 268 269 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 270 271 /* 272 * For each of the read-ahead blocks, start a read, if necessary. 273 */ 274 for (i = 0; i < nrablks; i++) { 275 /* If it's in the cache, just go on to next one. */ 276 if (incore(vp, rablks[i])) 277 continue; 278 279 /* Get a buffer for the read-ahead block */ 280 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 281 } 282 283 /* Otherwise, we had to start a read for it; wait until it's valid. */ 284 return (biowait(bp)); 285 } 286 287 /* 288 * Read with single-block read-ahead. Defined in Bach (p.55), but 289 * implemented as a call to breadn(). 290 * XXX for compatibility with old file systems. 291 */ 292 int 293 breada(vp, blkno, size, rablkno, rabsize, cred, bpp) 294 struct vnode *vp; 295 daddr_t blkno; int size; 296 daddr_t rablkno; int rabsize; 297 struct ucred *cred; 298 struct buf **bpp; 299 { 300 301 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 302 } 303 304 /* 305 * Block write. Described in Bach (p.56) 306 */ 307 int 308 bwrite(bp) 309 struct buf *bp; 310 { 311 int rv, sync, wasdelayed, s; 312 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 313 struct proc *p = l->l_proc; 314 struct vnode *vp; 315 struct mount *mp; 316 317 KASSERT(ISSET(bp->b_flags, B_BUSY)); 318 319 vp = bp->b_vp; 320 if (vp != NULL) { 321 if (vp->v_type == VBLK) 322 mp = vp->v_specmountpoint; 323 else 324 mp = vp->v_mount; 325 } else { 326 mp = NULL; 327 } 328 329 /* 330 * Remember buffer type, to switch on it later. If the write was 331 * synchronous, but the file system was mounted with MNT_ASYNC, 332 * convert it to a delayed write. 333 * XXX note that this relies on delayed tape writes being converted 334 * to async, not sync writes (which is safe, but ugly). 335 */ 336 sync = !ISSET(bp->b_flags, B_ASYNC); 337 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 338 bdwrite(bp); 339 return (0); 340 } 341 342 /* 343 * Collect statistics on synchronous and asynchronous writes. 344 * Writes to block devices are charged to their associated 345 * filesystem (if any). 346 */ 347 if (mp != NULL) { 348 if (sync) 349 mp->mnt_stat.f_syncwrites++; 350 else 351 mp->mnt_stat.f_asyncwrites++; 352 } 353 354 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 355 356 s = splbio(); 357 simple_lock(&bp->b_interlock); 358 359 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 360 361 /* 362 * Pay for the I/O operation and make sure the buf is on the correct 363 * vnode queue. 364 */ 365 if (wasdelayed) 366 reassignbuf(bp, bp->b_vp); 367 else 368 p->p_stats->p_ru.ru_oublock++; 369 370 /* Initiate disk write. Make sure the appropriate party is charged. */ 371 V_INCR_NUMOUTPUT(bp->b_vp); 372 simple_unlock(&bp->b_interlock); 373 splx(s); 374 375 VOP_STRATEGY(bp); 376 377 if (sync) { 378 /* If I/O was synchronous, wait for it to complete. */ 379 rv = biowait(bp); 380 381 /* Release the buffer. */ 382 brelse(bp); 383 384 return (rv); 385 } else { 386 return (0); 387 } 388 } 389 390 int 391 vn_bwrite(v) 392 void *v; 393 { 394 struct vop_bwrite_args *ap = v; 395 396 return (bwrite(ap->a_bp)); 397 } 398 399 /* 400 * Delayed write. 401 * 402 * The buffer is marked dirty, but is not queued for I/O. 403 * This routine should be used when the buffer is expected 404 * to be modified again soon, typically a small write that 405 * partially fills a buffer. 406 * 407 * NB: magnetic tapes cannot be delayed; they must be 408 * written in the order that the writes are requested. 409 * 410 * Described in Leffler, et al. (pp. 208-213). 411 */ 412 void 413 bdwrite(bp) 414 struct buf *bp; 415 { 416 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 417 struct proc *p = l->l_proc; 418 const struct bdevsw *bdev; 419 int s; 420 421 KASSERT(ISSET(bp->b_flags, B_BUSY)); 422 423 /* If this is a tape block, write the block now. */ 424 bdev = bdevsw_lookup(bp->b_dev); 425 if (bdev != NULL && bdev->d_type == D_TAPE) { 426 bawrite(bp); 427 return; 428 } 429 430 /* 431 * If the block hasn't been seen before: 432 * (1) Mark it as having been seen, 433 * (2) Charge for the write, 434 * (3) Make sure it's on its vnode's correct block list. 435 */ 436 s = splbio(); 437 simple_lock(&bp->b_interlock); 438 439 if (!ISSET(bp->b_flags, B_DELWRI)) { 440 SET(bp->b_flags, B_DELWRI); 441 p->p_stats->p_ru.ru_oublock++; 442 reassignbuf(bp, bp->b_vp); 443 } 444 445 /* Otherwise, the "write" is done, so mark and release the buffer. */ 446 CLR(bp->b_flags, B_DONE); 447 simple_unlock(&bp->b_interlock); 448 splx(s); 449 450 brelse(bp); 451 } 452 453 /* 454 * Asynchronous block write; just an asynchronous bwrite(). 455 */ 456 void 457 bawrite(bp) 458 struct buf *bp; 459 { 460 int s; 461 462 KASSERT(ISSET(bp->b_flags, B_BUSY)); 463 464 s = splbio(); 465 simple_lock(&bp->b_interlock); 466 SET(bp->b_flags, B_ASYNC); 467 simple_unlock(&bp->b_interlock); 468 splx(s); 469 VOP_BWRITE(bp); 470 } 471 472 /* 473 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 474 * Call at splbio() and with the buffer interlock locked. 475 * Note: called only from biodone() through ffs softdep's bioops.io_complete() 476 */ 477 void 478 bdirty(bp) 479 struct buf *bp; 480 { 481 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */ 482 struct proc *p = l->l_proc; 483 484 KASSERT(ISSET(bp->b_flags, B_BUSY)); 485 LOCK_ASSERT(simple_lock_held(&bp->b_interlock)); 486 487 CLR(bp->b_flags, B_AGE); 488 489 if (!ISSET(bp->b_flags, B_DELWRI)) { 490 SET(bp->b_flags, B_DELWRI); 491 p->p_stats->p_ru.ru_oublock++; 492 reassignbuf(bp, bp->b_vp); 493 } 494 } 495 496 /* 497 * Release a buffer on to the free lists. 498 * Described in Bach (p. 46). 499 */ 500 void 501 brelse(bp) 502 struct buf *bp; 503 { 504 struct bqueues *bufq; 505 int s; 506 507 KASSERT(ISSET(bp->b_flags, B_BUSY)); 508 509 /* Block disk interrupts. */ 510 s = splbio(); 511 simple_lock(&bqueue_slock); 512 simple_lock(&bp->b_interlock); 513 514 /* Wake up any processes waiting for any buffer to become free. */ 515 if (needbuffer) { 516 needbuffer = 0; 517 wakeup(&needbuffer); 518 } 519 520 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 521 if (ISSET(bp->b_flags, B_WANTED)) { 522 CLR(bp->b_flags, B_WANTED|B_AGE); 523 wakeup(bp); 524 } 525 526 /* 527 * Determine which queue the buffer should be on, then put it there. 528 */ 529 530 /* If it's locked, don't report an error; try again later. */ 531 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 532 CLR(bp->b_flags, B_ERROR); 533 534 /* If it's not cacheable, or an error, mark it invalid. */ 535 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 536 SET(bp->b_flags, B_INVAL); 537 538 if (ISSET(bp->b_flags, B_VFLUSH)) { 539 /* 540 * This is a delayed write buffer that was just flushed to 541 * disk. It is still on the LRU queue. If it's become 542 * invalid, then we need to move it to a different queue; 543 * otherwise leave it in its current position. 544 */ 545 CLR(bp->b_flags, B_VFLUSH); 546 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) 547 goto already_queued; 548 else 549 bremfree(bp); 550 } 551 552 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 553 /* 554 * If it's invalid or empty, dissociate it from its vnode 555 * and put on the head of the appropriate queue. 556 */ 557 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 558 (*bioops.io_deallocate)(bp); 559 CLR(bp->b_flags, B_DONE|B_DELWRI); 560 if (bp->b_vp) { 561 reassignbuf(bp, bp->b_vp); 562 brelvp(bp); 563 } 564 if (bp->b_bufsize <= 0) 565 /* no data */ 566 bufq = &bufqueues[BQ_EMPTY]; 567 else 568 /* invalid data */ 569 bufq = &bufqueues[BQ_AGE]; 570 binsheadfree(bp, bufq); 571 } else { 572 /* 573 * It has valid data. Put it on the end of the appropriate 574 * queue, so that it'll stick around for as long as possible. 575 * If buf is AGE, but has dependencies, must put it on last 576 * bufqueue to be scanned, ie LRU. This protects against the 577 * livelock where BQ_AGE only has buffers with dependencies, 578 * and we thus never get to the dependent buffers in BQ_LRU. 579 */ 580 if (ISSET(bp->b_flags, B_LOCKED)) 581 /* locked in core */ 582 bufq = &bufqueues[BQ_LOCKED]; 583 else if (!ISSET(bp->b_flags, B_AGE)) 584 /* valid data */ 585 bufq = &bufqueues[BQ_LRU]; 586 else { 587 /* stale but valid data */ 588 int has_deps; 589 590 if (LIST_FIRST(&bp->b_dep) != NULL && 591 bioops.io_countdeps) 592 has_deps = (*bioops.io_countdeps)(bp, 0); 593 else 594 has_deps = 0; 595 bufq = has_deps ? &bufqueues[BQ_LRU] : 596 &bufqueues[BQ_AGE]; 597 } 598 binstailfree(bp, bufq); 599 } 600 601 already_queued: 602 /* Unlock the buffer. */ 603 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE); 604 SET(bp->b_flags, B_CACHE); 605 606 /* Allow disk interrupts. */ 607 simple_unlock(&bp->b_interlock); 608 simple_unlock(&bqueue_slock); 609 splx(s); 610 } 611 612 /* 613 * Determine if a block is in the cache. 614 * Just look on what would be its hash chain. If it's there, return 615 * a pointer to it, unless it's marked invalid. If it's marked invalid, 616 * we normally don't return the buffer, unless the caller explicitly 617 * wants us to. 618 */ 619 struct buf * 620 incore(vp, blkno) 621 struct vnode *vp; 622 daddr_t blkno; 623 { 624 struct buf *bp; 625 626 /* Search hash chain */ 627 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 628 if (bp->b_lblkno == blkno && bp->b_vp == vp && 629 !ISSET(bp->b_flags, B_INVAL)) 630 return (bp); 631 } 632 633 return (NULL); 634 } 635 636 /* 637 * Get a block of requested size that is associated with 638 * a given vnode and block offset. If it is found in the 639 * block cache, mark it as having been found, make it busy 640 * and return it. Otherwise, return an empty block of the 641 * correct size. It is up to the caller to insure that the 642 * cached blocks be of the correct size. 643 */ 644 struct buf * 645 getblk(vp, blkno, size, slpflag, slptimeo) 646 struct vnode *vp; 647 daddr_t blkno; 648 int size, slpflag, slptimeo; 649 { 650 struct buf *bp; 651 int s, err; 652 653 start: 654 s = splbio(); 655 simple_lock(&bqueue_slock); 656 bp = incore(vp, blkno); 657 if (bp != NULL) { 658 simple_lock(&bp->b_interlock); 659 if (ISSET(bp->b_flags, B_BUSY)) { 660 simple_unlock(&bqueue_slock); 661 if (curproc == uvm.pagedaemon_proc) { 662 simple_unlock(&bp->b_interlock); 663 splx(s); 664 return NULL; 665 } 666 SET(bp->b_flags, B_WANTED); 667 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK, 668 "getblk", slptimeo, &bp->b_interlock); 669 splx(s); 670 if (err) 671 return (NULL); 672 goto start; 673 } 674 #ifdef DIAGNOSTIC 675 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && 676 bp->b_bcount < size && vp->v_type != VBLK) 677 panic("getblk: block size invariant failed"); 678 #endif 679 SET(bp->b_flags, B_BUSY); 680 bremfree(bp); 681 } else { 682 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) { 683 simple_unlock(&bqueue_slock); 684 splx(s); 685 goto start; 686 } 687 688 binshash(bp, BUFHASH(vp, blkno)); 689 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 690 bgetvp(vp, bp); 691 } 692 simple_unlock(&bp->b_interlock); 693 simple_unlock(&bqueue_slock); 694 splx(s); 695 allocbuf(bp, size); 696 return (bp); 697 } 698 699 /* 700 * Get an empty, disassociated buffer of given size. 701 */ 702 struct buf * 703 geteblk(size) 704 int size; 705 { 706 struct buf *bp; 707 int s; 708 709 s = splbio(); 710 simple_lock(&bqueue_slock); 711 while ((bp = getnewbuf(0, 0)) == 0) 712 ; 713 714 SET(bp->b_flags, B_INVAL); 715 binshash(bp, &invalhash); 716 simple_unlock(&bqueue_slock); 717 simple_unlock(&bp->b_interlock); 718 splx(s); 719 allocbuf(bp, size); 720 return (bp); 721 } 722 723 /* 724 * Expand or contract the actual memory allocated to a buffer. 725 * 726 * If the buffer shrinks, data is lost, so it's up to the 727 * caller to have written it out *first*; this routine will not 728 * start a write. If the buffer grows, it's the callers 729 * responsibility to fill out the buffer's additional contents. 730 */ 731 void 732 allocbuf(bp, size) 733 struct buf *bp; 734 int size; 735 { 736 struct buf *nbp; 737 vsize_t desired_size; 738 int s; 739 740 desired_size = round_page((vsize_t)size); 741 if (desired_size > MAXBSIZE) 742 panic("allocbuf: buffer larger than MAXBSIZE requested"); 743 744 if (bp->b_bufsize == desired_size) 745 goto out; 746 747 /* 748 * If the buffer is smaller than the desired size, we need to snarf 749 * it from other buffers. Get buffers (via getnewbuf()), and 750 * steal their pages. 751 */ 752 while (bp->b_bufsize < desired_size) { 753 int amt; 754 755 /* find a buffer */ 756 s = splbio(); 757 simple_lock(&bqueue_slock); 758 while ((nbp = getnewbuf(0, 0)) == NULL) 759 ; 760 761 SET(nbp->b_flags, B_INVAL); 762 binshash(nbp, &invalhash); 763 764 simple_unlock(&nbp->b_interlock); 765 simple_unlock(&bqueue_slock); 766 splx(s); 767 768 /* and steal its pages, up to the amount we need */ 769 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize)); 770 pagemove((nbp->b_data + nbp->b_bufsize - amt), 771 bp->b_data + bp->b_bufsize, amt); 772 bp->b_bufsize += amt; 773 nbp->b_bufsize -= amt; 774 775 /* reduce transfer count if we stole some data */ 776 if (nbp->b_bcount > nbp->b_bufsize) 777 nbp->b_bcount = nbp->b_bufsize; 778 779 #ifdef DIAGNOSTIC 780 if (nbp->b_bufsize < 0) 781 panic("allocbuf: negative bufsize"); 782 #endif 783 brelse(nbp); 784 } 785 786 /* 787 * If we want a buffer smaller than the current size, 788 * shrink this buffer. Grab a buf head from the EMPTY queue, 789 * move a page onto it, and put it on front of the AGE queue. 790 * If there are no free buffer headers, leave the buffer alone. 791 */ 792 if (bp->b_bufsize > desired_size) { 793 s = splbio(); 794 simple_lock(&bqueue_slock); 795 if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) { 796 /* No free buffer head */ 797 simple_unlock(&bqueue_slock); 798 splx(s); 799 goto out; 800 } 801 /* No need to lock nbp since it came from the empty queue */ 802 bremfree(nbp); 803 SET(nbp->b_flags, B_BUSY | B_INVAL); 804 simple_unlock(&bqueue_slock); 805 splx(s); 806 807 /* move the page to it and note this change */ 808 pagemove(bp->b_data + desired_size, 809 nbp->b_data, bp->b_bufsize - desired_size); 810 nbp->b_bufsize = bp->b_bufsize - desired_size; 811 bp->b_bufsize = desired_size; 812 nbp->b_bcount = 0; 813 814 /* release the newly-filled buffer and leave */ 815 brelse(nbp); 816 } 817 818 out: 819 bp->b_bcount = size; 820 } 821 822 /* 823 * Find a buffer which is available for use. 824 * Select something from a free list. 825 * Preference is to AGE list, then LRU list. 826 * 827 * Called with buffer queues locked. 828 * Return buffer locked. 829 */ 830 struct buf * 831 getnewbuf(slpflag, slptimeo) 832 int slpflag, slptimeo; 833 { 834 struct buf *bp; 835 836 start: 837 LOCK_ASSERT(simple_lock_held(&bqueue_slock)); 838 839 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL || 840 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) { 841 simple_lock(&bp->b_interlock); 842 bremfree(bp); 843 } else { 844 /* wait for a free buffer of any kind */ 845 needbuffer = 1; 846 ltsleep(&needbuffer, slpflag|(PRIBIO+1), 847 "getnewbuf", slptimeo, &bqueue_slock); 848 return (NULL); 849 } 850 851 if (ISSET(bp->b_flags, B_VFLUSH)) { 852 /* 853 * This is a delayed write buffer being flushed to disk. Make 854 * sure it gets aged out of the queue when it's finished, and 855 * leave it off the LRU queue. 856 */ 857 CLR(bp->b_flags, B_VFLUSH); 858 SET(bp->b_flags, B_AGE); 859 simple_unlock(&bp->b_interlock); 860 goto start; 861 } 862 863 /* Buffer is no longer on free lists. */ 864 SET(bp->b_flags, B_BUSY); 865 866 /* 867 * If buffer was a delayed write, start it and return NULL 868 * (since we might sleep while starting the write). 869 */ 870 if (ISSET(bp->b_flags, B_DELWRI)) { 871 /* 872 * This buffer has gone through the LRU, so make sure it gets 873 * reused ASAP. 874 */ 875 SET(bp->b_flags, B_AGE); 876 simple_unlock(&bp->b_interlock); 877 simple_unlock(&bqueue_slock); 878 bawrite(bp); 879 simple_lock(&bqueue_slock); 880 return (NULL); 881 } 882 883 /* disassociate us from our vnode, if we had one... */ 884 if (bp->b_vp) 885 brelvp(bp); 886 887 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 888 (*bioops.io_deallocate)(bp); 889 890 /* clear out various other fields */ 891 bp->b_flags = B_BUSY; 892 bp->b_dev = NODEV; 893 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 894 bp->b_iodone = 0; 895 bp->b_error = 0; 896 bp->b_resid = 0; 897 bp->b_bcount = 0; 898 899 bremhash(bp); 900 return (bp); 901 } 902 903 /* 904 * Wait for operations on the buffer to complete. 905 * When they do, extract and return the I/O's error value. 906 */ 907 int 908 biowait(bp) 909 struct buf *bp; 910 { 911 int s, error; 912 913 s = splbio(); 914 simple_lock(&bp->b_interlock); 915 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI)) 916 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock); 917 918 /* check for interruption of I/O (e.g. via NFS), then errors. */ 919 if (ISSET(bp->b_flags, B_EINTR)) { 920 CLR(bp->b_flags, B_EINTR); 921 error = EINTR; 922 } else if (ISSET(bp->b_flags, B_ERROR)) 923 error = bp->b_error ? bp->b_error : EIO; 924 else 925 error = 0; 926 927 simple_unlock(&bp->b_interlock); 928 splx(s); 929 return (error); 930 } 931 932 /* 933 * Mark I/O complete on a buffer. 934 * 935 * If a callback has been requested, e.g. the pageout 936 * daemon, do so. Otherwise, awaken waiting processes. 937 * 938 * [ Leffler, et al., says on p.247: 939 * "This routine wakes up the blocked process, frees the buffer 940 * for an asynchronous write, or, for a request by the pagedaemon 941 * process, invokes a procedure specified in the buffer structure" ] 942 * 943 * In real life, the pagedaemon (or other system processes) wants 944 * to do async stuff to, and doesn't want the buffer brelse()'d. 945 * (for swap pager, that puts swap buffers on the free lists (!!!), 946 * for the vn device, that puts malloc'd buffers on the free lists!) 947 */ 948 void 949 biodone(bp) 950 struct buf *bp; 951 { 952 int s = splbio(); 953 954 simple_lock(&bp->b_interlock); 955 if (ISSET(bp->b_flags, B_DONE)) 956 panic("biodone already"); 957 SET(bp->b_flags, B_DONE); /* note that it's done */ 958 959 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 960 (*bioops.io_complete)(bp); 961 962 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 963 vwakeup(bp); 964 965 /* 966 * If necessary, call out. Unlock the buffer before calling 967 * iodone() as the buffer isn't valid any more when it return. 968 */ 969 if (ISSET(bp->b_flags, B_CALL)) { 970 CLR(bp->b_flags, B_CALL); /* but note callout done */ 971 simple_unlock(&bp->b_interlock); 972 (*bp->b_iodone)(bp); 973 } else { 974 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */ 975 simple_unlock(&bp->b_interlock); 976 brelse(bp); 977 } else { /* or just wakeup the buffer */ 978 CLR(bp->b_flags, B_WANTED); 979 wakeup(bp); 980 simple_unlock(&bp->b_interlock); 981 } 982 } 983 984 splx(s); 985 } 986 987 /* 988 * Return a count of buffers on the "locked" queue. 989 */ 990 int 991 count_lock_queue() 992 { 993 struct buf *bp; 994 int n = 0; 995 996 simple_lock(&bqueue_slock); 997 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist) 998 n++; 999 simple_unlock(&bqueue_slock); 1000 return (n); 1001 } 1002 1003 #ifdef DEBUG 1004 /* 1005 * Print out statistics on the current allocation of the buffer pool. 1006 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1007 * in vfs_syscalls.c using sysctl. 1008 */ 1009 void 1010 vfs_bufstats() 1011 { 1012 int s, i, j, count; 1013 struct buf *bp; 1014 struct bqueues *dp; 1015 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1016 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" }; 1017 1018 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1019 count = 0; 1020 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1021 counts[j] = 0; 1022 s = splbio(); 1023 TAILQ_FOREACH(bp, dp, b_freelist) { 1024 counts[bp->b_bufsize/PAGE_SIZE]++; 1025 count++; 1026 } 1027 splx(s); 1028 printf("%s: total-%d", bname[i], count); 1029 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1030 if (counts[j] != 0) 1031 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1032 printf("\n"); 1033 } 1034 } 1035 #endif /* DEBUG */ 1036