1 /* $NetBSD: vfs_bio.c,v 1.77 2001/11/12 15:25:35 lukem Exp $ */ 2 3 /*- 4 * Copyright (c) 1994 Christopher G. Demetriou 5 * Copyright (c) 1982, 1986, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 42 */ 43 44 /* 45 * Some references: 46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 47 * Leffler, et al.: The Design and Implementation of the 4.3BSD 48 * UNIX Operating System (Addison Welley, 1989) 49 */ 50 51 #include <sys/cdefs.h> 52 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.77 2001/11/12 15:25:35 lukem Exp $"); 53 54 #include <sys/param.h> 55 #include <sys/systm.h> 56 #include <sys/proc.h> 57 #include <sys/buf.h> 58 #include <sys/vnode.h> 59 #include <sys/mount.h> 60 #include <sys/malloc.h> 61 #include <sys/resourcevar.h> 62 #include <sys/conf.h> 63 64 #include <uvm/uvm.h> 65 66 #include <miscfs/specfs/specdev.h> 67 68 /* Macros to clear/set/test flags. */ 69 #define SET(t, f) (t) |= (f) 70 #define CLR(t, f) (t) &= ~(f) 71 #define ISSET(t, f) ((t) & (f)) 72 73 /* 74 * Definitions for the buffer hash lists. 75 */ 76 #define BUFHASH(dvp, lbn) \ 77 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 78 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 79 u_long bufhash; 80 struct bio_ops bioops; /* I/O operation notification */ 81 82 /* 83 * Insq/Remq for the buffer hash lists. 84 */ 85 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash) 86 #define bremhash(bp) LIST_REMOVE(bp, b_hash) 87 88 /* 89 * Definitions for the buffer free lists. 90 */ 91 #define BQUEUES 4 /* number of free buffer queues */ 92 93 #define BQ_LOCKED 0 /* super-blocks &c */ 94 #define BQ_LRU 1 /* lru, useful buffers */ 95 #define BQ_AGE 2 /* rubbish */ 96 #define BQ_EMPTY 3 /* buffer headers with no memory */ 97 98 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES]; 99 int needbuffer; 100 101 /* 102 * Buffer pool for I/O buffers. 103 */ 104 struct pool bufpool; 105 106 /* 107 * Insq/Remq for the buffer free lists. 108 */ 109 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist) 110 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist) 111 112 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int, 113 struct ucred *, int)); 114 int count_lock_queue __P((void)); 115 116 void 117 bremfree(bp) 118 struct buf *bp; 119 { 120 int s = splbio(); 121 122 struct bqueues *dp = NULL; 123 124 /* 125 * We only calculate the head of the freelist when removing 126 * the last element of the list as that is the only time that 127 * it is needed (e.g. to reset the tail pointer). 128 * 129 * NB: This makes an assumption about how tailq's are implemented. 130 */ 131 if (bp->b_freelist.tqe_next == NULL) { 132 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 133 if (dp->tqh_last == &bp->b_freelist.tqe_next) 134 break; 135 if (dp == &bufqueues[BQUEUES]) 136 panic("bremfree: lost tail"); 137 } 138 TAILQ_REMOVE(dp, bp, b_freelist); 139 splx(s); 140 } 141 142 /* 143 * Initialize buffers and hash links for buffers. 144 */ 145 void 146 bufinit() 147 { 148 struct buf *bp; 149 struct bqueues *dp; 150 int i; 151 int base, residual; 152 153 /* 154 * Initialize the buffer pool. This pool is used for buffers 155 * which are strictly I/O control blocks, not buffer cache 156 * buffers. 157 */ 158 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", 0, 159 NULL, NULL, M_DEVBUF); 160 161 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) 162 TAILQ_INIT(dp); 163 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash); 164 base = bufpages / nbuf; 165 residual = bufpages % nbuf; 166 for (i = 0; i < nbuf; i++) { 167 bp = &buf[i]; 168 memset((char *)bp, 0, sizeof(*bp)); 169 bp->b_dev = NODEV; 170 bp->b_vnbufs.le_next = NOLIST; 171 LIST_INIT(&bp->b_dep); 172 bp->b_data = buffers + i * MAXBSIZE; 173 if (i < residual) 174 bp->b_bufsize = (base + 1) * PAGE_SIZE; 175 else 176 bp->b_bufsize = base * PAGE_SIZE; 177 bp->b_flags = B_INVAL; 178 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY]; 179 binsheadfree(bp, dp); 180 binshash(bp, &invalhash); 181 } 182 } 183 184 static __inline struct buf * 185 bio_doread(vp, blkno, size, cred, async) 186 struct vnode *vp; 187 daddr_t blkno; 188 int size; 189 struct ucred *cred; 190 int async; 191 { 192 struct buf *bp; 193 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */ 194 195 bp = getblk(vp, blkno, size, 0, 0); 196 197 /* 198 * If buffer does not have data valid, start a read. 199 * Note that if buffer is B_INVAL, getblk() won't return it. 200 * Therefore, it's valid if it's I/O has completed or been delayed. 201 */ 202 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) { 203 /* Start I/O for the buffer. */ 204 SET(bp->b_flags, B_READ | async); 205 VOP_STRATEGY(bp); 206 207 /* Pay for the read. */ 208 p->p_stats->p_ru.ru_inblock++; 209 } else if (async) { 210 brelse(bp); 211 } 212 213 return (bp); 214 } 215 216 /* 217 * Read a disk block. 218 * This algorithm described in Bach (p.54). 219 */ 220 int 221 bread(vp, blkno, size, cred, bpp) 222 struct vnode *vp; 223 daddr_t blkno; 224 int size; 225 struct ucred *cred; 226 struct buf **bpp; 227 { 228 struct buf *bp; 229 230 /* Get buffer for block. */ 231 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 232 233 /* 234 * Delayed write buffers are found in the cache and have 235 * valid contents. Also, B_ERROR is not set, otherwise 236 * getblk() would not have returned them. 237 */ 238 if (ISSET(bp->b_flags, B_DONE|B_DELWRI)) 239 return (0); 240 241 /* 242 * Otherwise, we had to start a read for it; wait until 243 * it's valid and return the result. 244 */ 245 return (biowait(bp)); 246 } 247 248 /* 249 * Read-ahead multiple disk blocks. The first is sync, the rest async. 250 * Trivial modification to the breada algorithm presented in Bach (p.55). 251 */ 252 int 253 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp) 254 struct vnode *vp; 255 daddr_t blkno; int size; 256 daddr_t rablks[]; int rasizes[]; 257 int nrablks; 258 struct ucred *cred; 259 struct buf **bpp; 260 { 261 struct buf *bp; 262 int i; 263 264 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 265 266 /* 267 * For each of the read-ahead blocks, start a read, if necessary. 268 */ 269 for (i = 0; i < nrablks; i++) { 270 /* If it's in the cache, just go on to next one. */ 271 if (incore(vp, rablks[i])) 272 continue; 273 274 /* Get a buffer for the read-ahead block */ 275 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 276 } 277 278 /* 279 * Delayed write buffers are found in the cache and have 280 * valid contents. Also, B_ERROR is not set, otherwise 281 * getblk() would not have returned them. 282 */ 283 if (ISSET(bp->b_flags, B_DONE|B_DELWRI)) 284 return (0); 285 286 /* 287 * Otherwise, we had to start a read for it; wait until 288 * it's valid and return the result. 289 */ 290 return (biowait(bp)); 291 } 292 293 /* 294 * Read with single-block read-ahead. Defined in Bach (p.55), but 295 * implemented as a call to breadn(). 296 * XXX for compatibility with old file systems. 297 */ 298 int 299 breada(vp, blkno, size, rablkno, rabsize, cred, bpp) 300 struct vnode *vp; 301 daddr_t blkno; int size; 302 daddr_t rablkno; int rabsize; 303 struct ucred *cred; 304 struct buf **bpp; 305 { 306 307 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp)); 308 } 309 310 /* 311 * Block write. Described in Bach (p.56) 312 */ 313 int 314 bwrite(bp) 315 struct buf *bp; 316 { 317 int rv, sync, wasdelayed, s; 318 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */ 319 struct vnode *vp; 320 struct mount *mp; 321 322 vp = bp->b_vp; 323 if (vp != NULL) { 324 if (vp->v_type == VBLK) 325 mp = vp->v_specmountpoint; 326 else 327 mp = vp->v_mount; 328 } else { 329 mp = NULL; 330 } 331 332 /* 333 * Remember buffer type, to switch on it later. If the write was 334 * synchronous, but the file system was mounted with MNT_ASYNC, 335 * convert it to a delayed write. 336 * XXX note that this relies on delayed tape writes being converted 337 * to async, not sync writes (which is safe, but ugly). 338 */ 339 sync = !ISSET(bp->b_flags, B_ASYNC); 340 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 341 bdwrite(bp); 342 return (0); 343 } 344 345 /* 346 * Collect statistics on synchronous and asynchronous writes. 347 * Writes to block devices are charged to their associated 348 * filesystem (if any). 349 */ 350 if (mp != NULL) { 351 if (sync) 352 mp->mnt_stat.f_syncwrites++; 353 else 354 mp->mnt_stat.f_asyncwrites++; 355 } 356 357 wasdelayed = ISSET(bp->b_flags, B_DELWRI); 358 359 s = splbio(); 360 361 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI)); 362 363 /* 364 * Pay for the I/O operation and make sure the buf is on the correct 365 * vnode queue. 366 */ 367 if (wasdelayed) 368 reassignbuf(bp, bp->b_vp); 369 else 370 p->p_stats->p_ru.ru_oublock++; 371 372 /* Initiate disk write. Make sure the appropriate party is charged. */ 373 bp->b_vp->v_numoutput++; 374 splx(s); 375 376 VOP_STRATEGY(bp); 377 378 if (sync) { 379 /* If I/O was synchronous, wait for it to complete. */ 380 rv = biowait(bp); 381 382 /* Release the buffer. */ 383 brelse(bp); 384 385 return (rv); 386 } else { 387 return (0); 388 } 389 } 390 391 int 392 vn_bwrite(v) 393 void *v; 394 { 395 struct vop_bwrite_args *ap = v; 396 397 return (bwrite(ap->a_bp)); 398 } 399 400 /* 401 * Delayed write. 402 * 403 * The buffer is marked dirty, but is not queued for I/O. 404 * This routine should be used when the buffer is expected 405 * to be modified again soon, typically a small write that 406 * partially fills a buffer. 407 * 408 * NB: magnetic tapes cannot be delayed; they must be 409 * written in the order that the writes are requested. 410 * 411 * Described in Leffler, et al. (pp. 208-213). 412 */ 413 void 414 bdwrite(bp) 415 struct buf *bp; 416 { 417 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */ 418 int s; 419 420 /* If this is a tape block, write the block now. */ 421 /* XXX NOTE: the memory filesystem usurpes major device */ 422 /* XXX number 255, which is a bad idea. */ 423 if (bp->b_dev != NODEV && 424 major(bp->b_dev) != 255 && /* XXX - MFS buffers! */ 425 bdevsw[major(bp->b_dev)].d_type == D_TAPE) { 426 bawrite(bp); 427 return; 428 } 429 430 /* 431 * If the block hasn't been seen before: 432 * (1) Mark it as having been seen, 433 * (2) Charge for the write, 434 * (3) Make sure it's on its vnode's correct block list. 435 */ 436 s = splbio(); 437 438 if (!ISSET(bp->b_flags, B_DELWRI)) { 439 SET(bp->b_flags, B_DELWRI); 440 p->p_stats->p_ru.ru_oublock++; 441 reassignbuf(bp, bp->b_vp); 442 } 443 444 /* Otherwise, the "write" is done, so mark and release the buffer. */ 445 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE); 446 splx(s); 447 448 brelse(bp); 449 } 450 451 /* 452 * Asynchronous block write; just an asynchronous bwrite(). 453 */ 454 void 455 bawrite(bp) 456 struct buf *bp; 457 { 458 459 SET(bp->b_flags, B_ASYNC); 460 VOP_BWRITE(bp); 461 } 462 463 /* 464 * Ordered block write; asynchronous, but I/O will occur in order queued. 465 */ 466 void 467 bowrite(bp) 468 struct buf *bp; 469 { 470 471 SET(bp->b_flags, B_ASYNC | B_ORDERED); 472 VOP_BWRITE(bp); 473 } 474 475 /* 476 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 477 */ 478 void 479 bdirty(bp) 480 struct buf *bp; 481 { 482 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */ 483 int s; 484 485 s = splbio(); 486 487 CLR(bp->b_flags, B_AGE); 488 489 if (!ISSET(bp->b_flags, B_DELWRI)) { 490 SET(bp->b_flags, B_DELWRI); 491 p->p_stats->p_ru.ru_oublock++; 492 reassignbuf(bp, bp->b_vp); 493 } 494 495 splx(s); 496 } 497 498 /* 499 * Release a buffer on to the free lists. 500 * Described in Bach (p. 46). 501 */ 502 void 503 brelse(bp) 504 struct buf *bp; 505 { 506 struct bqueues *bufq; 507 int s; 508 509 KASSERT(ISSET(bp->b_flags, B_BUSY)); 510 511 /* Wake up any processes waiting for any buffer to become free. */ 512 if (needbuffer) { 513 needbuffer = 0; 514 wakeup(&needbuffer); 515 } 516 517 /* Block disk interrupts. */ 518 s = splbio(); 519 520 /* Wake up any proceeses waiting for _this_ buffer to become free. */ 521 if (ISSET(bp->b_flags, B_WANTED)) { 522 CLR(bp->b_flags, B_WANTED|B_AGE); 523 wakeup(bp); 524 } 525 526 /* 527 * Determine which queue the buffer should be on, then put it there. 528 */ 529 530 /* If it's locked, don't report an error; try again later. */ 531 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR)) 532 CLR(bp->b_flags, B_ERROR); 533 534 /* If it's not cacheable, or an error, mark it invalid. */ 535 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR))) 536 SET(bp->b_flags, B_INVAL); 537 538 if (ISSET(bp->b_flags, B_VFLUSH)) { 539 /* 540 * This is a delayed write buffer that was just flushed to 541 * disk. It is still on the LRU queue. If it's become 542 * invalid, then we need to move it to a different queue; 543 * otherwise leave it in its current position. 544 */ 545 CLR(bp->b_flags, B_VFLUSH); 546 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE)) 547 goto already_queued; 548 else 549 bremfree(bp); 550 } 551 552 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) { 553 /* 554 * If it's invalid or empty, dissociate it from its vnode 555 * and put on the head of the appropriate queue. 556 */ 557 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 558 (*bioops.io_deallocate)(bp); 559 CLR(bp->b_flags, B_DONE|B_DELWRI); 560 if (bp->b_vp) { 561 reassignbuf(bp, bp->b_vp); 562 brelvp(bp); 563 } 564 if (bp->b_bufsize <= 0) 565 /* no data */ 566 bufq = &bufqueues[BQ_EMPTY]; 567 else 568 /* invalid data */ 569 bufq = &bufqueues[BQ_AGE]; 570 binsheadfree(bp, bufq); 571 } else { 572 /* 573 * It has valid data. Put it on the end of the appropriate 574 * queue, so that it'll stick around for as long as possible. 575 * If buf is AGE, but has dependencies, must put it on last 576 * bufqueue to be scanned, ie LRU. This protects against the 577 * livelock where BQ_AGE only has buffers with dependencies, 578 * and we thus never get to the dependent buffers in BQ_LRU. 579 */ 580 if (ISSET(bp->b_flags, B_LOCKED)) 581 /* locked in core */ 582 bufq = &bufqueues[BQ_LOCKED]; 583 else if (!ISSET(bp->b_flags, B_AGE)) 584 /* valid data */ 585 bufq = &bufqueues[BQ_LRU]; 586 else { 587 /* stale but valid data */ 588 int has_deps; 589 590 if (LIST_FIRST(&bp->b_dep) != NULL && 591 bioops.io_countdeps) 592 has_deps = (*bioops.io_countdeps)(bp, 0); 593 else 594 has_deps = 0; 595 bufq = has_deps ? &bufqueues[BQ_LRU] : 596 &bufqueues[BQ_AGE]; 597 } 598 binstailfree(bp, bufq); 599 } 600 601 already_queued: 602 /* Unlock the buffer. */ 603 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE|B_ORDERED); 604 SET(bp->b_flags, B_CACHE); 605 606 /* Allow disk interrupts. */ 607 splx(s); 608 } 609 610 /* 611 * Determine if a block is in the cache. 612 * Just look on what would be its hash chain. If it's there, return 613 * a pointer to it, unless it's marked invalid. If it's marked invalid, 614 * we normally don't return the buffer, unless the caller explicitly 615 * wants us to. 616 */ 617 struct buf * 618 incore(vp, blkno) 619 struct vnode *vp; 620 daddr_t blkno; 621 { 622 struct buf *bp; 623 624 bp = BUFHASH(vp, blkno)->lh_first; 625 626 /* Search hash chain */ 627 for (; bp != NULL; bp = bp->b_hash.le_next) { 628 if (bp->b_lblkno == blkno && bp->b_vp == vp && 629 !ISSET(bp->b_flags, B_INVAL)) 630 return (bp); 631 } 632 633 return (NULL); 634 } 635 636 /* 637 * Get a block of requested size that is associated with 638 * a given vnode and block offset. If it is found in the 639 * block cache, mark it as having been found, make it busy 640 * and return it. Otherwise, return an empty block of the 641 * correct size. It is up to the caller to insure that the 642 * cached blocks be of the correct size. 643 */ 644 struct buf * 645 getblk(vp, blkno, size, slpflag, slptimeo) 646 struct vnode *vp; 647 daddr_t blkno; 648 int size, slpflag, slptimeo; 649 { 650 struct buf *bp; 651 int s, err; 652 653 start: 654 bp = incore(vp, blkno); 655 if (bp != NULL) { 656 s = splbio(); 657 if (ISSET(bp->b_flags, B_BUSY)) { 658 if (curproc == uvm.pagedaemon_proc) { 659 splx(s); 660 return NULL; 661 } 662 SET(bp->b_flags, B_WANTED); 663 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk", 664 slptimeo); 665 splx(s); 666 if (err) 667 return (NULL); 668 goto start; 669 } 670 #ifdef DIAGNOSTIC 671 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && bp->b_bcount < size) 672 panic("getblk: block size invariant failed"); 673 #endif 674 SET(bp->b_flags, B_BUSY); 675 bremfree(bp); 676 splx(s); 677 } else { 678 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) 679 goto start; 680 681 binshash(bp, BUFHASH(vp, blkno)); 682 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 683 s = splbio(); 684 bgetvp(vp, bp); 685 splx(s); 686 } 687 allocbuf(bp, size); 688 return (bp); 689 } 690 691 /* 692 * Get an empty, disassociated buffer of given size. 693 */ 694 struct buf * 695 geteblk(size) 696 int size; 697 { 698 struct buf *bp; 699 700 while ((bp = getnewbuf(0, 0)) == 0) 701 ; 702 SET(bp->b_flags, B_INVAL); 703 binshash(bp, &invalhash); 704 allocbuf(bp, size); 705 return (bp); 706 } 707 708 /* 709 * Expand or contract the actual memory allocated to a buffer. 710 * 711 * If the buffer shrinks, data is lost, so it's up to the 712 * caller to have written it out *first*; this routine will not 713 * start a write. If the buffer grows, it's the callers 714 * responsibility to fill out the buffer's additional contents. 715 */ 716 void 717 allocbuf(bp, size) 718 struct buf *bp; 719 int size; 720 { 721 struct buf *nbp; 722 vsize_t desired_size; 723 int s; 724 725 desired_size = round_page((vsize_t)size); 726 if (desired_size > MAXBSIZE) 727 panic("allocbuf: buffer larger than MAXBSIZE requested"); 728 729 if (bp->b_bufsize == desired_size) 730 goto out; 731 732 /* 733 * If the buffer is smaller than the desired size, we need to snarf 734 * it from other buffers. Get buffers (via getnewbuf()), and 735 * steal their pages. 736 */ 737 while (bp->b_bufsize < desired_size) { 738 int amt; 739 740 /* find a buffer */ 741 while ((nbp = getnewbuf(0, 0)) == NULL) 742 ; 743 744 SET(nbp->b_flags, B_INVAL); 745 binshash(nbp, &invalhash); 746 747 /* and steal its pages, up to the amount we need */ 748 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize)); 749 pagemove((nbp->b_data + nbp->b_bufsize - amt), 750 bp->b_data + bp->b_bufsize, amt); 751 bp->b_bufsize += amt; 752 nbp->b_bufsize -= amt; 753 754 /* reduce transfer count if we stole some data */ 755 if (nbp->b_bcount > nbp->b_bufsize) 756 nbp->b_bcount = nbp->b_bufsize; 757 758 #ifdef DIAGNOSTIC 759 if (nbp->b_bufsize < 0) 760 panic("allocbuf: negative bufsize"); 761 #endif 762 763 brelse(nbp); 764 } 765 766 /* 767 * If we want a buffer smaller than the current size, 768 * shrink this buffer. Grab a buf head from the EMPTY queue, 769 * move a page onto it, and put it on front of the AGE queue. 770 * If there are no free buffer headers, leave the buffer alone. 771 */ 772 if (bp->b_bufsize > desired_size) { 773 s = splbio(); 774 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) { 775 /* No free buffer head */ 776 splx(s); 777 goto out; 778 } 779 bremfree(nbp); 780 SET(nbp->b_flags, B_BUSY); 781 splx(s); 782 783 /* move the page to it and note this change */ 784 pagemove(bp->b_data + desired_size, 785 nbp->b_data, bp->b_bufsize - desired_size); 786 nbp->b_bufsize = bp->b_bufsize - desired_size; 787 bp->b_bufsize = desired_size; 788 nbp->b_bcount = 0; 789 SET(nbp->b_flags, B_INVAL); 790 791 /* release the newly-filled buffer and leave */ 792 brelse(nbp); 793 } 794 795 out: 796 bp->b_bcount = size; 797 } 798 799 /* 800 * Find a buffer which is available for use. 801 * Select something from a free list. 802 * Preference is to AGE list, then LRU list. 803 */ 804 struct buf * 805 getnewbuf(slpflag, slptimeo) 806 int slpflag, slptimeo; 807 { 808 struct buf *bp; 809 int s; 810 811 start: 812 s = splbio(); 813 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL || 814 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) { 815 bremfree(bp); 816 } else { 817 /* wait for a free buffer of any kind */ 818 needbuffer = 1; 819 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo); 820 splx(s); 821 return (NULL); 822 } 823 824 if (ISSET(bp->b_flags, B_VFLUSH)) { 825 /* 826 * This is a delayed write buffer being flushed to disk. Make 827 * sure it gets aged out of the queue when it's finished, and 828 * leave it off the LRU queue. 829 */ 830 CLR(bp->b_flags, B_VFLUSH); 831 SET(bp->b_flags, B_AGE); 832 splx(s); 833 goto start; 834 } 835 836 /* Buffer is no longer on free lists. */ 837 SET(bp->b_flags, B_BUSY); 838 839 /* 840 * If buffer was a delayed write, start it and return NULL 841 * (since we might sleep while starting the write). 842 */ 843 if (ISSET(bp->b_flags, B_DELWRI)) { 844 splx(s); 845 /* 846 * This buffer has gone through the LRU, so make sure it gets 847 * reused ASAP. 848 */ 849 SET(bp->b_flags, B_AGE); 850 bawrite(bp); 851 return (NULL); 852 } 853 854 /* disassociate us from our vnode, if we had one... */ 855 if (bp->b_vp) 856 brelvp(bp); 857 splx(s); 858 859 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate) 860 (*bioops.io_deallocate)(bp); 861 862 /* clear out various other fields */ 863 bp->b_flags = B_BUSY; 864 bp->b_dev = NODEV; 865 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0; 866 bp->b_iodone = 0; 867 bp->b_error = 0; 868 bp->b_resid = 0; 869 bp->b_bcount = 0; 870 871 bremhash(bp); 872 return (bp); 873 } 874 875 /* 876 * Wait for operations on the buffer to complete. 877 * When they do, extract and return the I/O's error value. 878 */ 879 int 880 biowait(bp) 881 struct buf *bp; 882 { 883 int s; 884 885 s = splbio(); 886 while (!ISSET(bp->b_flags, B_DONE)) 887 tsleep(bp, PRIBIO + 1, "biowait", 0); 888 splx(s); 889 890 /* check for interruption of I/O (e.g. via NFS), then errors. */ 891 if (ISSET(bp->b_flags, B_EINTR)) { 892 CLR(bp->b_flags, B_EINTR); 893 return (EINTR); 894 } else if (ISSET(bp->b_flags, B_ERROR)) 895 return (bp->b_error ? bp->b_error : EIO); 896 else 897 return (0); 898 } 899 900 /* 901 * Mark I/O complete on a buffer. 902 * 903 * If a callback has been requested, e.g. the pageout 904 * daemon, do so. Otherwise, awaken waiting processes. 905 * 906 * [ Leffler, et al., says on p.247: 907 * "This routine wakes up the blocked process, frees the buffer 908 * for an asynchronous write, or, for a request by the pagedaemon 909 * process, invokes a procedure specified in the buffer structure" ] 910 * 911 * In real life, the pagedaemon (or other system processes) wants 912 * to do async stuff to, and doesn't want the buffer brelse()'d. 913 * (for swap pager, that puts swap buffers on the free lists (!!!), 914 * for the vn device, that puts malloc'd buffers on the free lists!) 915 */ 916 void 917 biodone(bp) 918 struct buf *bp; 919 { 920 int s = splbio(); 921 922 if (ISSET(bp->b_flags, B_DONE)) 923 panic("biodone already"); 924 SET(bp->b_flags, B_DONE); /* note that it's done */ 925 926 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete) 927 (*bioops.io_complete)(bp); 928 929 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */ 930 vwakeup(bp); 931 932 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */ 933 CLR(bp->b_flags, B_CALL); /* but note callout done */ 934 (*bp->b_iodone)(bp); 935 } else { 936 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */ 937 brelse(bp); 938 else { /* or just wakeup the buffer */ 939 CLR(bp->b_flags, B_WANTED); 940 wakeup(bp); 941 } 942 } 943 944 splx(s); 945 } 946 947 /* 948 * Return a count of buffers on the "locked" queue. 949 */ 950 int 951 count_lock_queue() 952 { 953 struct buf *bp; 954 int n = 0; 955 956 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp; 957 bp = bp->b_freelist.tqe_next) 958 n++; 959 return (n); 960 } 961 962 #ifdef DEBUG 963 /* 964 * Print out statistics on the current allocation of the buffer pool. 965 * Can be enabled to print out on every ``sync'' by setting "syncprt" 966 * in vfs_syscalls.c using sysctl. 967 */ 968 void 969 vfs_bufstats() 970 { 971 int s, i, j, count; 972 struct buf *bp; 973 struct bqueues *dp; 974 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 975 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" }; 976 977 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 978 count = 0; 979 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 980 counts[j] = 0; 981 s = splbio(); 982 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) { 983 counts[bp->b_bufsize/PAGE_SIZE]++; 984 count++; 985 } 986 splx(s); 987 printf("%s: total-%d", bname[i], count); 988 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 989 if (counts[j] != 0) 990 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 991 printf("\n"); 992 } 993 } 994 #endif /* DEBUG */ 995