1 /* $NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $ */ 2 3 /*- 4 * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran, and by Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 66 */ 67 68 /*- 69 * Copyright (c) 1994 Christopher G. Demetriou 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions 73 * are met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce the above copyright 77 * notice, this list of conditions and the following disclaimer in the 78 * documentation and/or other materials provided with the distribution. 79 * 3. All advertising materials mentioning features or use of this software 80 * must display the following acknowledgement: 81 * This product includes software developed by the University of 82 * California, Berkeley and its contributors. 83 * 4. Neither the name of the University nor the names of its contributors 84 * may be used to endorse or promote products derived from this software 85 * without specific prior written permission. 86 * 87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 97 * SUCH DAMAGE. 98 * 99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 100 */ 101 102 /* 103 * Some references: 104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 105 * Leffler, et al.: The Design and Implementation of the 4.3BSD 106 * UNIX Operating System (Addison Welley, 1989) 107 */ 108 109 #include <sys/cdefs.h> 110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $"); 111 112 #include "fs_ffs.h" 113 #include "opt_bufcache.h" 114 115 #include <sys/param.h> 116 #include <sys/systm.h> 117 #include <sys/kernel.h> 118 #include <sys/proc.h> 119 #include <sys/buf.h> 120 #include <sys/vnode.h> 121 #include <sys/mount.h> 122 #include <sys/resourcevar.h> 123 #include <sys/sysctl.h> 124 #include <sys/conf.h> 125 #include <sys/kauth.h> 126 #include <sys/fstrans.h> 127 #include <sys/intr.h> 128 #include <sys/cpu.h> 129 #include <sys/wapbl.h> 130 131 #include <uvm/uvm.h> 132 133 #include <miscfs/specfs/specdev.h> 134 135 #ifndef BUFPAGES 136 # define BUFPAGES 0 137 #endif 138 139 #ifdef BUFCACHE 140 # if (BUFCACHE < 5) || (BUFCACHE > 95) 141 # error BUFCACHE is not between 5 and 95 142 # endif 143 #else 144 # define BUFCACHE 15 145 #endif 146 147 u_int nbuf; /* desired number of buffer headers */ 148 u_int bufpages = BUFPAGES; /* optional hardwired count */ 149 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 150 151 /* Function prototypes */ 152 struct bqueue; 153 154 static void buf_setwm(void); 155 static int buf_trim(void); 156 static void *bufpool_page_alloc(struct pool *, int); 157 static void bufpool_page_free(struct pool *, void *); 158 static buf_t *bio_doread(struct vnode *, daddr_t, int, 159 kauth_cred_t, int); 160 static buf_t *getnewbuf(int, int, int); 161 static int buf_lotsfree(void); 162 static int buf_canrelease(void); 163 static u_long buf_mempoolidx(u_long); 164 static u_long buf_roundsize(u_long); 165 static void *buf_malloc(size_t); 166 static void buf_mrelease(void *, size_t); 167 static void binsheadfree(buf_t *, struct bqueue *); 168 static void binstailfree(buf_t *, struct bqueue *); 169 int count_lock_queue(void); /* XXX */ 170 #ifdef DEBUG 171 static int checkfreelist(buf_t *, struct bqueue *, int); 172 #endif 173 static void biointr(void *); 174 static void biodone2(buf_t *); 175 static void bref(buf_t *); 176 static void brele(buf_t *); 177 static void sysctl_kern_buf_setup(void); 178 static void sysctl_vm_buf_setup(void); 179 180 /* 181 * Definitions for the buffer hash lists. 182 */ 183 #define BUFHASH(dvp, lbn) \ 184 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 185 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 186 u_long bufhash; 187 struct bqueue bufqueues[BQUEUES]; 188 189 static kcondvar_t needbuffer_cv; 190 191 /* 192 * Buffer queue lock. 193 */ 194 kmutex_t bufcache_lock; 195 kmutex_t buffer_lock; 196 197 /* Software ISR for completed transfers. */ 198 static void *biodone_sih; 199 200 /* Buffer pool for I/O buffers. */ 201 static pool_cache_t buf_cache; 202 static pool_cache_t bufio_cache; 203 204 /* XXX - somewhat gross.. */ 205 #if MAXBSIZE == 0x2000 206 #define NMEMPOOLS 5 207 #elif MAXBSIZE == 0x4000 208 #define NMEMPOOLS 6 209 #elif MAXBSIZE == 0x8000 210 #define NMEMPOOLS 7 211 #else 212 #define NMEMPOOLS 8 213 #endif 214 215 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */ 216 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 217 #error update vfs_bio buffer memory parameters 218 #endif 219 220 /* Buffer memory pools */ 221 static struct pool bmempools[NMEMPOOLS]; 222 223 static struct vm_map *buf_map; 224 225 /* 226 * Buffer memory pool allocator. 227 */ 228 static void * 229 bufpool_page_alloc(struct pool *pp, int flags) 230 { 231 232 return (void *)uvm_km_alloc(buf_map, 233 MAXBSIZE, MAXBSIZE, 234 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 235 | UVM_KMF_WIRED); 236 } 237 238 static void 239 bufpool_page_free(struct pool *pp, void *v) 240 { 241 242 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED); 243 } 244 245 static struct pool_allocator bufmempool_allocator = { 246 .pa_alloc = bufpool_page_alloc, 247 .pa_free = bufpool_page_free, 248 .pa_pagesz = MAXBSIZE, 249 }; 250 251 /* Buffer memory management variables */ 252 u_long bufmem_valimit; 253 u_long bufmem_hiwater; 254 u_long bufmem_lowater; 255 u_long bufmem; 256 257 /* 258 * MD code can call this to set a hard limit on the amount 259 * of virtual memory used by the buffer cache. 260 */ 261 int 262 buf_setvalimit(vsize_t sz) 263 { 264 265 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 266 if (sz < NMEMPOOLS * MAXBSIZE) 267 return EINVAL; 268 269 bufmem_valimit = sz; 270 return 0; 271 } 272 273 static void 274 buf_setwm(void) 275 { 276 277 bufmem_hiwater = buf_memcalc(); 278 /* lowater is approx. 2% of memory (with bufcache = 15) */ 279 #define BUFMEM_WMSHIFT 3 280 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT) 281 if (bufmem_hiwater < BUFMEM_HIWMMIN) 282 /* Ensure a reasonable minimum value */ 283 bufmem_hiwater = BUFMEM_HIWMMIN; 284 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT; 285 } 286 287 #ifdef DEBUG 288 int debug_verify_freelist = 0; 289 static int 290 checkfreelist(buf_t *bp, struct bqueue *dp, int ison) 291 { 292 buf_t *b; 293 294 if (!debug_verify_freelist) 295 return 1; 296 297 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) { 298 if (b == bp) 299 return ison ? 1 : 0; 300 } 301 302 return ison ? 0 : 1; 303 } 304 #endif 305 306 /* 307 * Insq/Remq for the buffer hash lists. 308 * Call with buffer queue locked. 309 */ 310 static void 311 binsheadfree(buf_t *bp, struct bqueue *dp) 312 { 313 314 KASSERT(mutex_owned(&bufcache_lock)); 315 KASSERT(bp->b_freelistindex == -1); 316 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist); 317 dp->bq_bytes += bp->b_bufsize; 318 bp->b_freelistindex = dp - bufqueues; 319 } 320 321 static void 322 binstailfree(buf_t *bp, struct bqueue *dp) 323 { 324 325 KASSERT(mutex_owned(&bufcache_lock)); 326 KASSERT(bp->b_freelistindex == -1); 327 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist); 328 dp->bq_bytes += bp->b_bufsize; 329 bp->b_freelistindex = dp - bufqueues; 330 } 331 332 void 333 bremfree(buf_t *bp) 334 { 335 struct bqueue *dp; 336 int bqidx = bp->b_freelistindex; 337 338 KASSERT(mutex_owned(&bufcache_lock)); 339 340 KASSERT(bqidx != -1); 341 dp = &bufqueues[bqidx]; 342 KDASSERT(checkfreelist(bp, dp, 1)); 343 KASSERT(dp->bq_bytes >= bp->b_bufsize); 344 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist); 345 dp->bq_bytes -= bp->b_bufsize; 346 347 /* For the sysctl helper. */ 348 if (bp == dp->bq_marker) 349 dp->bq_marker = NULL; 350 351 #if defined(DIAGNOSTIC) 352 bp->b_freelistindex = -1; 353 #endif /* defined(DIAGNOSTIC) */ 354 } 355 356 /* 357 * Add a reference to an buffer structure that came from buf_cache. 358 */ 359 static inline void 360 bref(buf_t *bp) 361 { 362 363 KASSERT(mutex_owned(&bufcache_lock)); 364 KASSERT(bp->b_refcnt > 0); 365 366 bp->b_refcnt++; 367 } 368 369 /* 370 * Free an unused buffer structure that came from buf_cache. 371 */ 372 static inline void 373 brele(buf_t *bp) 374 { 375 376 KASSERT(mutex_owned(&bufcache_lock)); 377 KASSERT(bp->b_refcnt > 0); 378 379 if (bp->b_refcnt-- == 1) { 380 buf_destroy(bp); 381 #ifdef DEBUG 382 memset((char *)bp, 0, sizeof(*bp)); 383 #endif 384 pool_cache_put(buf_cache, bp); 385 } 386 } 387 388 /* 389 * note that for some ports this is used by pmap bootstrap code to 390 * determine kva size. 391 */ 392 u_long 393 buf_memcalc(void) 394 { 395 u_long n; 396 397 /* 398 * Determine the upper bound of memory to use for buffers. 399 * 400 * - If bufpages is specified, use that as the number 401 * pages. 402 * 403 * - Otherwise, use bufcache as the percentage of 404 * physical memory. 405 */ 406 if (bufpages != 0) { 407 n = bufpages; 408 } else { 409 if (bufcache < 5) { 410 printf("forcing bufcache %d -> 5", bufcache); 411 bufcache = 5; 412 } 413 if (bufcache > 95) { 414 printf("forcing bufcache %d -> 95", bufcache); 415 bufcache = 95; 416 } 417 n = calc_cache_size(buf_map, bufcache, 418 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT) 419 / PAGE_SIZE; 420 } 421 422 n <<= PAGE_SHIFT; 423 if (bufmem_valimit != 0 && n > bufmem_valimit) 424 n = bufmem_valimit; 425 426 return (n); 427 } 428 429 /* 430 * Initialize buffers and hash links for buffers. 431 */ 432 void 433 bufinit(void) 434 { 435 struct bqueue *dp; 436 int use_std; 437 u_int i; 438 439 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE); 440 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE); 441 cv_init(&needbuffer_cv, "needbuf"); 442 443 if (bufmem_valimit != 0) { 444 vaddr_t minaddr = 0, maxaddr; 445 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 446 bufmem_valimit, 0, false, 0); 447 if (buf_map == NULL) 448 panic("bufinit: cannot allocate submap"); 449 } else 450 buf_map = kernel_map; 451 452 /* 453 * Initialize buffer cache memory parameters. 454 */ 455 bufmem = 0; 456 buf_setwm(); 457 458 /* On "small" machines use small pool page sizes where possible */ 459 use_std = (physmem < atop(16*1024*1024)); 460 461 /* 462 * Also use them on systems that can map the pool pages using 463 * a direct-mapped segment. 464 */ 465 #ifdef PMAP_MAP_POOLPAGE 466 use_std = 1; 467 #endif 468 469 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0, 470 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL); 471 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0, 472 "biopl", NULL, IPL_BIO, NULL, NULL, NULL); 473 474 bufmempool_allocator.pa_backingmap = buf_map; 475 for (i = 0; i < NMEMPOOLS; i++) { 476 struct pool_allocator *pa; 477 struct pool *pp = &bmempools[i]; 478 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 479 char *name = kmem_alloc(8, KM_SLEEP); 480 if (__predict_true(size >= 1024)) 481 (void)snprintf(name, 8, "buf%dk", size / 1024); 482 else 483 (void)snprintf(name, 8, "buf%db", size); 484 pa = (size <= PAGE_SIZE && use_std) 485 ? &pool_allocator_nointr 486 : &bufmempool_allocator; 487 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE); 488 pool_setlowat(pp, 1); 489 pool_sethiwat(pp, 1); 490 } 491 492 /* Initialize the buffer queues */ 493 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) { 494 TAILQ_INIT(&dp->bq_queue); 495 dp->bq_bytes = 0; 496 } 497 498 /* 499 * Estimate hash table size based on the amount of memory we 500 * intend to use for the buffer cache. The average buffer 501 * size is dependent on our clients (i.e. filesystems). 502 * 503 * For now, use an empirical 3K per buffer. 504 */ 505 nbuf = (bufmem_hiwater / 1024) / 3; 506 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash); 507 508 sysctl_kern_buf_setup(); 509 sysctl_vm_buf_setup(); 510 } 511 512 void 513 bufinit2(void) 514 { 515 516 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr, 517 NULL); 518 if (biodone_sih == NULL) 519 panic("bufinit2: can't establish soft interrupt"); 520 } 521 522 static int 523 buf_lotsfree(void) 524 { 525 int try, thresh; 526 527 /* Always allocate if less than the low water mark. */ 528 if (bufmem < bufmem_lowater) 529 return 1; 530 531 /* Never allocate if greater than the high water mark. */ 532 if (bufmem > bufmem_hiwater) 533 return 0; 534 535 /* If there's anything on the AGE list, it should be eaten. */ 536 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL) 537 return 0; 538 539 /* 540 * The probabily of getting a new allocation is inversely 541 * proportional to the current size of the cache, using 542 * a granularity of 16 steps. 543 */ 544 try = random() & 0x0000000fL; 545 546 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */ 547 thresh = (bufmem - bufmem_lowater) / 548 ((bufmem_hiwater - bufmem_lowater) / 16); 549 550 if (try >= thresh) 551 return 1; 552 553 /* Otherwise don't allocate. */ 554 return 0; 555 } 556 557 /* 558 * Return estimate of bytes we think need to be 559 * released to help resolve low memory conditions. 560 * 561 * => called with bufcache_lock held. 562 */ 563 static int 564 buf_canrelease(void) 565 { 566 int pagedemand, ninvalid = 0; 567 568 KASSERT(mutex_owned(&bufcache_lock)); 569 570 if (bufmem < bufmem_lowater) 571 return 0; 572 573 if (bufmem > bufmem_hiwater) 574 return bufmem - bufmem_hiwater; 575 576 ninvalid += bufqueues[BQ_AGE].bq_bytes; 577 578 pagedemand = uvmexp.freetarg - uvmexp.free; 579 if (pagedemand < 0) 580 return ninvalid; 581 return MAX(ninvalid, MIN(2 * MAXBSIZE, 582 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 583 } 584 585 /* 586 * Buffer memory allocation helper functions 587 */ 588 static u_long 589 buf_mempoolidx(u_long size) 590 { 591 u_int n = 0; 592 593 size -= 1; 594 size >>= MEMPOOL_INDEX_OFFSET; 595 while (size) { 596 size >>= 1; 597 n += 1; 598 } 599 if (n >= NMEMPOOLS) 600 panic("buf mem pool index %d", n); 601 return n; 602 } 603 604 static u_long 605 buf_roundsize(u_long size) 606 { 607 /* Round up to nearest power of 2 */ 608 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 609 } 610 611 static void * 612 buf_malloc(size_t size) 613 { 614 u_int n = buf_mempoolidx(size); 615 void *addr; 616 617 while (1) { 618 addr = pool_get(&bmempools[n], PR_NOWAIT); 619 if (addr != NULL) 620 break; 621 622 /* No memory, see if we can free some. If so, try again */ 623 mutex_enter(&bufcache_lock); 624 if (buf_drain(1) > 0) { 625 mutex_exit(&bufcache_lock); 626 continue; 627 } 628 629 if (curlwp == uvm.pagedaemon_lwp) { 630 mutex_exit(&bufcache_lock); 631 return NULL; 632 } 633 634 /* Wait for buffers to arrive on the LRU queue */ 635 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4); 636 mutex_exit(&bufcache_lock); 637 } 638 639 return addr; 640 } 641 642 static void 643 buf_mrelease(void *addr, size_t size) 644 { 645 646 pool_put(&bmempools[buf_mempoolidx(size)], addr); 647 } 648 649 /* 650 * bread()/breadn() helper. 651 */ 652 static buf_t * 653 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred, 654 int async) 655 { 656 buf_t *bp; 657 struct mount *mp; 658 659 bp = getblk(vp, blkno, size, 0, 0); 660 661 #ifdef DIAGNOSTIC 662 if (bp == NULL) { 663 panic("bio_doread: no such buf"); 664 } 665 #endif 666 667 /* 668 * If buffer does not have data valid, start a read. 669 * Note that if buffer is BC_INVAL, getblk() won't return it. 670 * Therefore, it's valid if its I/O has completed or been delayed. 671 */ 672 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) { 673 /* Start I/O for the buffer. */ 674 SET(bp->b_flags, B_READ | async); 675 if (async) 676 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 677 else 678 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 679 VOP_STRATEGY(vp, bp); 680 681 /* Pay for the read. */ 682 curlwp->l_ru.ru_inblock++; 683 } else if (async) 684 brelse(bp, 0); 685 686 if (vp->v_type == VBLK) 687 mp = vp->v_specmountpoint; 688 else 689 mp = vp->v_mount; 690 691 /* 692 * Collect statistics on synchronous and asynchronous reads. 693 * Reads from block devices are charged to their associated 694 * filesystem (if any). 695 */ 696 if (mp != NULL) { 697 if (async == 0) 698 mp->mnt_stat.f_syncreads++; 699 else 700 mp->mnt_stat.f_asyncreads++; 701 } 702 703 return (bp); 704 } 705 706 /* 707 * Read a disk block. 708 * This algorithm described in Bach (p.54). 709 */ 710 int 711 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred, 712 int flags, buf_t **bpp) 713 { 714 buf_t *bp; 715 int error; 716 717 /* Get buffer for block. */ 718 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 719 720 /* Wait for the read to complete, and return result. */ 721 error = biowait(bp); 722 if (error == 0 && (flags & B_MODIFY) != 0) /* XXXX before the next code block or after? */ 723 error = fscow_run(bp, true); 724 725 return error; 726 } 727 728 /* 729 * Read-ahead multiple disk blocks. The first is sync, the rest async. 730 * Trivial modification to the breada algorithm presented in Bach (p.55). 731 */ 732 int 733 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 734 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp) 735 { 736 buf_t *bp; 737 int error, i; 738 739 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 740 741 /* 742 * For each of the read-ahead blocks, start a read, if necessary. 743 */ 744 mutex_enter(&bufcache_lock); 745 for (i = 0; i < nrablks; i++) { 746 /* If it's in the cache, just go on to next one. */ 747 if (incore(vp, rablks[i])) 748 continue; 749 750 /* Get a buffer for the read-ahead block */ 751 mutex_exit(&bufcache_lock); 752 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 753 mutex_enter(&bufcache_lock); 754 } 755 mutex_exit(&bufcache_lock); 756 757 /* Otherwise, we had to start a read for it; wait until it's valid. */ 758 error = biowait(bp); 759 if (error == 0 && (flags & B_MODIFY) != 0) 760 error = fscow_run(bp, true); 761 return error; 762 } 763 764 /* 765 * Read with single-block read-ahead. Defined in Bach (p.55), but 766 * implemented as a call to breadn(). 767 * XXX for compatibility with old file systems. 768 */ 769 int 770 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 771 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp) 772 { 773 774 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, 775 cred, flags, bpp)); 776 } 777 778 /* 779 * Block write. Described in Bach (p.56) 780 */ 781 int 782 bwrite(buf_t *bp) 783 { 784 int rv, sync, wasdelayed; 785 struct vnode *vp; 786 struct mount *mp; 787 788 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 789 KASSERT(!cv_has_waiters(&bp->b_done)); 790 791 vp = bp->b_vp; 792 if (vp != NULL) { 793 KASSERT(bp->b_objlock == &vp->v_interlock); 794 if (vp->v_type == VBLK) 795 mp = vp->v_specmountpoint; 796 else 797 mp = vp->v_mount; 798 } else { 799 mp = NULL; 800 } 801 802 if (mp && mp->mnt_wapbl) { 803 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) { 804 bdwrite(bp); 805 return 0; 806 } 807 } 808 809 /* 810 * Remember buffer type, to switch on it later. If the write was 811 * synchronous, but the file system was mounted with MNT_ASYNC, 812 * convert it to a delayed write. 813 * XXX note that this relies on delayed tape writes being converted 814 * to async, not sync writes (which is safe, but ugly). 815 */ 816 sync = !ISSET(bp->b_flags, B_ASYNC); 817 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 818 bdwrite(bp); 819 return (0); 820 } 821 822 /* 823 * Collect statistics on synchronous and asynchronous writes. 824 * Writes to block devices are charged to their associated 825 * filesystem (if any). 826 */ 827 if (mp != NULL) { 828 if (sync) 829 mp->mnt_stat.f_syncwrites++; 830 else 831 mp->mnt_stat.f_asyncwrites++; 832 } 833 834 /* 835 * Pay for the I/O operation and make sure the buf is on the correct 836 * vnode queue. 837 */ 838 bp->b_error = 0; 839 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI); 840 CLR(bp->b_flags, B_READ); 841 if (wasdelayed) { 842 mutex_enter(&bufcache_lock); 843 mutex_enter(bp->b_objlock); 844 CLR(bp->b_oflags, BO_DONE | BO_DELWRI); 845 reassignbuf(bp, bp->b_vp); 846 mutex_exit(&bufcache_lock); 847 } else { 848 curlwp->l_ru.ru_oublock++; 849 mutex_enter(bp->b_objlock); 850 CLR(bp->b_oflags, BO_DONE | BO_DELWRI); 851 } 852 if (vp != NULL) 853 vp->v_numoutput++; 854 mutex_exit(bp->b_objlock); 855 856 /* Initiate disk write. */ 857 if (sync) 858 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 859 else 860 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 861 862 VOP_STRATEGY(vp, bp); 863 864 if (sync) { 865 /* If I/O was synchronous, wait for it to complete. */ 866 rv = biowait(bp); 867 868 /* Release the buffer. */ 869 brelse(bp, 0); 870 871 return (rv); 872 } else { 873 return (0); 874 } 875 } 876 877 int 878 vn_bwrite(void *v) 879 { 880 struct vop_bwrite_args *ap = v; 881 882 return (bwrite(ap->a_bp)); 883 } 884 885 /* 886 * Delayed write. 887 * 888 * The buffer is marked dirty, but is not queued for I/O. 889 * This routine should be used when the buffer is expected 890 * to be modified again soon, typically a small write that 891 * partially fills a buffer. 892 * 893 * NB: magnetic tapes cannot be delayed; they must be 894 * written in the order that the writes are requested. 895 * 896 * Described in Leffler, et al. (pp. 208-213). 897 */ 898 void 899 bdwrite(buf_t *bp) 900 { 901 902 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS || 903 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE)); 904 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 905 KASSERT(!cv_has_waiters(&bp->b_done)); 906 907 /* If this is a tape block, write the block now. */ 908 if (bdev_type(bp->b_dev) == D_TAPE) { 909 bawrite(bp); 910 return; 911 } 912 913 if (wapbl_vphaswapbl(bp->b_vp)) { 914 struct mount *mp = wapbl_vptomp(bp->b_vp); 915 916 if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) { 917 WAPBL_ADD_BUF(mp, bp); 918 } 919 } 920 921 /* 922 * If the block hasn't been seen before: 923 * (1) Mark it as having been seen, 924 * (2) Charge for the write, 925 * (3) Make sure it's on its vnode's correct block list. 926 */ 927 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock); 928 929 if (!ISSET(bp->b_oflags, BO_DELWRI)) { 930 mutex_enter(&bufcache_lock); 931 mutex_enter(bp->b_objlock); 932 SET(bp->b_oflags, BO_DELWRI); 933 curlwp->l_ru.ru_oublock++; 934 reassignbuf(bp, bp->b_vp); 935 mutex_exit(&bufcache_lock); 936 } else { 937 mutex_enter(bp->b_objlock); 938 } 939 /* Otherwise, the "write" is done, so mark and release the buffer. */ 940 CLR(bp->b_oflags, BO_DONE); 941 mutex_exit(bp->b_objlock); 942 943 brelse(bp, 0); 944 } 945 946 /* 947 * Asynchronous block write; just an asynchronous bwrite(). 948 */ 949 void 950 bawrite(buf_t *bp) 951 { 952 953 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 954 955 SET(bp->b_flags, B_ASYNC); 956 VOP_BWRITE(bp); 957 } 958 959 /* 960 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 961 * Call with the buffer interlock held. 962 */ 963 void 964 bdirty(buf_t *bp) 965 { 966 967 KASSERT(mutex_owned(&bufcache_lock)); 968 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock); 969 KASSERT(mutex_owned(bp->b_objlock)); 970 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 971 972 CLR(bp->b_cflags, BC_AGE); 973 974 if (!ISSET(bp->b_oflags, BO_DELWRI)) { 975 SET(bp->b_oflags, BO_DELWRI); 976 curlwp->l_ru.ru_oublock++; 977 reassignbuf(bp, bp->b_vp); 978 } 979 } 980 981 /* 982 * Release a buffer on to the free lists. 983 * Described in Bach (p. 46). 984 */ 985 void 986 brelsel(buf_t *bp, int set) 987 { 988 struct bqueue *bufq; 989 struct vnode *vp; 990 991 KASSERT(mutex_owned(&bufcache_lock)); 992 KASSERT(!cv_has_waiters(&bp->b_done)); 993 KASSERT(bp->b_refcnt > 0); 994 995 SET(bp->b_cflags, set); 996 997 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 998 KASSERT(bp->b_iodone == NULL); 999 1000 /* Wake up any processes waiting for any buffer to become free. */ 1001 cv_signal(&needbuffer_cv); 1002 1003 /* Wake up any proceeses waiting for _this_ buffer to become */ 1004 if (ISSET(bp->b_cflags, BC_WANTED)) 1005 CLR(bp->b_cflags, BC_WANTED|BC_AGE); 1006 1007 /* 1008 * Determine which queue the buffer should be on, then put it there. 1009 */ 1010 1011 /* If it's locked, don't report an error; try again later. */ 1012 if (ISSET(bp->b_flags, B_LOCKED)) 1013 bp->b_error = 0; 1014 1015 /* If it's not cacheable, or an error, mark it invalid. */ 1016 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0) 1017 SET(bp->b_cflags, BC_INVAL); 1018 1019 if (ISSET(bp->b_cflags, BC_VFLUSH)) { 1020 /* 1021 * This is a delayed write buffer that was just flushed to 1022 * disk. It is still on the LRU queue. If it's become 1023 * invalid, then we need to move it to a different queue; 1024 * otherwise leave it in its current position. 1025 */ 1026 CLR(bp->b_cflags, BC_VFLUSH); 1027 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) && 1028 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) { 1029 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1)); 1030 goto already_queued; 1031 } else { 1032 bremfree(bp); 1033 } 1034 } 1035 1036 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0)); 1037 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0)); 1038 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0)); 1039 1040 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) { 1041 /* 1042 * If it's invalid or empty, dissociate it from its vnode 1043 * and put on the head of the appropriate queue. 1044 */ 1045 if (ISSET(bp->b_flags, B_LOCKED)) { 1046 if (wapbl_vphaswapbl(vp = bp->b_vp)) { 1047 struct mount *mp = wapbl_vptomp(vp); 1048 1049 KASSERT(bp->b_iodone 1050 != mp->mnt_wapbl_op->wo_wapbl_biodone); 1051 WAPBL_REMOVE_BUF(mp, bp); 1052 } 1053 } 1054 1055 mutex_enter(bp->b_objlock); 1056 CLR(bp->b_oflags, BO_DONE|BO_DELWRI); 1057 if ((vp = bp->b_vp) != NULL) { 1058 KASSERT(bp->b_objlock == &vp->v_interlock); 1059 reassignbuf(bp, bp->b_vp); 1060 brelvp(bp); 1061 mutex_exit(&vp->v_interlock); 1062 } else { 1063 KASSERT(bp->b_objlock == &buffer_lock); 1064 mutex_exit(bp->b_objlock); 1065 } 1066 1067 if (bp->b_bufsize <= 0) 1068 /* no data */ 1069 goto already_queued; 1070 else 1071 /* invalid data */ 1072 bufq = &bufqueues[BQ_AGE]; 1073 binsheadfree(bp, bufq); 1074 } else { 1075 /* 1076 * It has valid data. Put it on the end of the appropriate 1077 * queue, so that it'll stick around for as long as possible. 1078 * If buf is AGE, but has dependencies, must put it on last 1079 * bufqueue to be scanned, ie LRU. This protects against the 1080 * livelock where BQ_AGE only has buffers with dependencies, 1081 * and we thus never get to the dependent buffers in BQ_LRU. 1082 */ 1083 if (ISSET(bp->b_flags, B_LOCKED)) { 1084 /* locked in core */ 1085 bufq = &bufqueues[BQ_LOCKED]; 1086 } else if (!ISSET(bp->b_cflags, BC_AGE)) { 1087 /* valid data */ 1088 bufq = &bufqueues[BQ_LRU]; 1089 } else { 1090 /* stale but valid data */ 1091 bufq = &bufqueues[BQ_AGE]; 1092 } 1093 binstailfree(bp, bufq); 1094 } 1095 already_queued: 1096 /* Unlock the buffer. */ 1097 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE); 1098 CLR(bp->b_flags, B_ASYNC); 1099 cv_broadcast(&bp->b_busy); 1100 1101 if (bp->b_bufsize <= 0) 1102 brele(bp); 1103 } 1104 1105 void 1106 brelse(buf_t *bp, int set) 1107 { 1108 1109 mutex_enter(&bufcache_lock); 1110 brelsel(bp, set); 1111 mutex_exit(&bufcache_lock); 1112 } 1113 1114 /* 1115 * Determine if a block is in the cache. 1116 * Just look on what would be its hash chain. If it's there, return 1117 * a pointer to it, unless it's marked invalid. If it's marked invalid, 1118 * we normally don't return the buffer, unless the caller explicitly 1119 * wants us to. 1120 */ 1121 buf_t * 1122 incore(struct vnode *vp, daddr_t blkno) 1123 { 1124 buf_t *bp; 1125 1126 KASSERT(mutex_owned(&bufcache_lock)); 1127 1128 /* Search hash chain */ 1129 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 1130 if (bp->b_lblkno == blkno && bp->b_vp == vp && 1131 !ISSET(bp->b_cflags, BC_INVAL)) { 1132 KASSERT(bp->b_objlock == &vp->v_interlock); 1133 return (bp); 1134 } 1135 } 1136 1137 return (NULL); 1138 } 1139 1140 /* 1141 * Get a block of requested size that is associated with 1142 * a given vnode and block offset. If it is found in the 1143 * block cache, mark it as having been found, make it busy 1144 * and return it. Otherwise, return an empty block of the 1145 * correct size. It is up to the caller to insure that the 1146 * cached blocks be of the correct size. 1147 */ 1148 buf_t * 1149 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1150 { 1151 int err, preserve; 1152 buf_t *bp; 1153 1154 mutex_enter(&bufcache_lock); 1155 loop: 1156 bp = incore(vp, blkno); 1157 if (bp != NULL) { 1158 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL); 1159 if (err != 0) { 1160 if (err == EPASSTHROUGH) 1161 goto loop; 1162 mutex_exit(&bufcache_lock); 1163 return (NULL); 1164 } 1165 KASSERT(!cv_has_waiters(&bp->b_done)); 1166 #ifdef DIAGNOSTIC 1167 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) && 1168 bp->b_bcount < size && vp->v_type != VBLK) 1169 panic("getblk: block size invariant failed"); 1170 #endif 1171 bremfree(bp); 1172 preserve = 1; 1173 } else { 1174 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) 1175 goto loop; 1176 1177 if (incore(vp, blkno) != NULL) { 1178 /* The block has come into memory in the meantime. */ 1179 brelsel(bp, 0); 1180 goto loop; 1181 } 1182 1183 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash); 1184 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 1185 mutex_enter(&vp->v_interlock); 1186 bgetvp(vp, bp); 1187 mutex_exit(&vp->v_interlock); 1188 preserve = 0; 1189 } 1190 mutex_exit(&bufcache_lock); 1191 1192 /* 1193 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1194 * if we re-size buffers here. 1195 */ 1196 if (ISSET(bp->b_flags, B_LOCKED)) { 1197 KASSERT(bp->b_bufsize >= size); 1198 } else { 1199 if (allocbuf(bp, size, preserve)) { 1200 mutex_enter(&bufcache_lock); 1201 LIST_REMOVE(bp, b_hash); 1202 mutex_exit(&bufcache_lock); 1203 brelse(bp, BC_INVAL); 1204 return NULL; 1205 } 1206 } 1207 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1208 return (bp); 1209 } 1210 1211 /* 1212 * Get an empty, disassociated buffer of given size. 1213 */ 1214 buf_t * 1215 geteblk(int size) 1216 { 1217 buf_t *bp; 1218 int error; 1219 1220 mutex_enter(&bufcache_lock); 1221 while ((bp = getnewbuf(0, 0, 0)) == NULL) 1222 ; 1223 1224 SET(bp->b_cflags, BC_INVAL); 1225 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1226 mutex_exit(&bufcache_lock); 1227 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1228 error = allocbuf(bp, size, 0); 1229 KASSERT(error == 0); 1230 return (bp); 1231 } 1232 1233 /* 1234 * Expand or contract the actual memory allocated to a buffer. 1235 * 1236 * If the buffer shrinks, data is lost, so it's up to the 1237 * caller to have written it out *first*; this routine will not 1238 * start a write. If the buffer grows, it's the callers 1239 * responsibility to fill out the buffer's additional contents. 1240 */ 1241 int 1242 allocbuf(buf_t *bp, int size, int preserve) 1243 { 1244 void *addr; 1245 vsize_t oldsize, desired_size; 1246 int oldcount; 1247 int delta; 1248 1249 desired_size = buf_roundsize(size); 1250 if (desired_size > MAXBSIZE) 1251 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1252 1253 oldcount = bp->b_bcount; 1254 1255 bp->b_bcount = size; 1256 1257 oldsize = bp->b_bufsize; 1258 if (oldsize == desired_size) { 1259 /* 1260 * Do not short cut the WAPBL resize, as the buffer length 1261 * could still have changed and this would corrupt the 1262 * tracking of the transaction length. 1263 */ 1264 goto out; 1265 } 1266 1267 /* 1268 * If we want a buffer of a different size, re-allocate the 1269 * buffer's memory; copy old content only if needed. 1270 */ 1271 addr = buf_malloc(desired_size); 1272 if (addr == NULL) 1273 return ENOMEM; 1274 if (preserve) 1275 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1276 if (bp->b_data != NULL) 1277 buf_mrelease(bp->b_data, oldsize); 1278 bp->b_data = addr; 1279 bp->b_bufsize = desired_size; 1280 1281 /* 1282 * Update overall buffer memory counter (protected by bufcache_lock) 1283 */ 1284 delta = (long)desired_size - (long)oldsize; 1285 1286 mutex_enter(&bufcache_lock); 1287 if ((bufmem += delta) > bufmem_hiwater) { 1288 /* 1289 * Need to trim overall memory usage. 1290 */ 1291 while (buf_canrelease()) { 1292 if (curcpu()->ci_schedstate.spc_flags & 1293 SPCF_SHOULDYIELD) { 1294 mutex_exit(&bufcache_lock); 1295 preempt(); 1296 mutex_enter(&bufcache_lock); 1297 } 1298 if (buf_trim() == 0) 1299 break; 1300 } 1301 } 1302 mutex_exit(&bufcache_lock); 1303 1304 out: 1305 if (wapbl_vphaswapbl(bp->b_vp)) 1306 WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount); 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * Find a buffer which is available for use. 1313 * Select something from a free list. 1314 * Preference is to AGE list, then LRU list. 1315 * 1316 * Called with the buffer queues locked. 1317 * Return buffer locked. 1318 */ 1319 buf_t * 1320 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1321 { 1322 buf_t *bp; 1323 struct vnode *vp; 1324 1325 start: 1326 KASSERT(mutex_owned(&bufcache_lock)); 1327 1328 /* 1329 * Get a new buffer from the pool. 1330 */ 1331 if (!from_bufq && buf_lotsfree()) { 1332 mutex_exit(&bufcache_lock); 1333 bp = pool_cache_get(buf_cache, PR_NOWAIT); 1334 if (bp != NULL) { 1335 memset((char *)bp, 0, sizeof(*bp)); 1336 buf_init(bp); 1337 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */ 1338 mutex_enter(&bufcache_lock); 1339 #if defined(DIAGNOSTIC) 1340 bp->b_freelistindex = -1; 1341 #endif /* defined(DIAGNOSTIC) */ 1342 return (bp); 1343 } 1344 mutex_enter(&bufcache_lock); 1345 } 1346 1347 KASSERT(mutex_owned(&bufcache_lock)); 1348 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL || 1349 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) { 1350 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH)); 1351 bremfree(bp); 1352 1353 /* Buffer is no longer on free lists. */ 1354 SET(bp->b_cflags, BC_BUSY); 1355 } else { 1356 /* 1357 * XXX: !from_bufq should be removed. 1358 */ 1359 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) { 1360 /* wait for a free buffer of any kind */ 1361 if ((slpflag & PCATCH) != 0) 1362 (void)cv_timedwait_sig(&needbuffer_cv, 1363 &bufcache_lock, slptimeo); 1364 else 1365 (void)cv_timedwait(&needbuffer_cv, 1366 &bufcache_lock, slptimeo); 1367 } 1368 return (NULL); 1369 } 1370 1371 #ifdef DIAGNOSTIC 1372 if (bp->b_bufsize <= 0) 1373 panic("buffer %p: on queue but empty", bp); 1374 #endif 1375 1376 if (ISSET(bp->b_cflags, BC_VFLUSH)) { 1377 /* 1378 * This is a delayed write buffer being flushed to disk. Make 1379 * sure it gets aged out of the queue when it's finished, and 1380 * leave it off the LRU queue. 1381 */ 1382 CLR(bp->b_cflags, BC_VFLUSH); 1383 SET(bp->b_cflags, BC_AGE); 1384 goto start; 1385 } 1386 1387 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 1388 KASSERT(bp->b_refcnt > 0); 1389 KASSERT(!cv_has_waiters(&bp->b_done)); 1390 1391 /* 1392 * If buffer was a delayed write, start it and return NULL 1393 * (since we might sleep while starting the write). 1394 */ 1395 if (ISSET(bp->b_oflags, BO_DELWRI)) { 1396 /* 1397 * This buffer has gone through the LRU, so make sure it gets 1398 * reused ASAP. 1399 */ 1400 SET(bp->b_cflags, BC_AGE); 1401 mutex_exit(&bufcache_lock); 1402 bawrite(bp); 1403 mutex_enter(&bufcache_lock); 1404 return (NULL); 1405 } 1406 1407 vp = bp->b_vp; 1408 1409 /* clear out various other fields */ 1410 bp->b_cflags = BC_BUSY; 1411 bp->b_oflags = 0; 1412 bp->b_flags = 0; 1413 bp->b_dev = NODEV; 1414 bp->b_blkno = 0; 1415 bp->b_lblkno = 0; 1416 bp->b_rawblkno = 0; 1417 bp->b_iodone = 0; 1418 bp->b_error = 0; 1419 bp->b_resid = 0; 1420 bp->b_bcount = 0; 1421 1422 LIST_REMOVE(bp, b_hash); 1423 1424 /* Disassociate us from our vnode, if we had one... */ 1425 if (vp != NULL) { 1426 mutex_enter(&vp->v_interlock); 1427 brelvp(bp); 1428 mutex_exit(&vp->v_interlock); 1429 } 1430 1431 return (bp); 1432 } 1433 1434 /* 1435 * Attempt to free an aged buffer off the queues. 1436 * Called with queue lock held. 1437 * Returns the amount of buffer memory freed. 1438 */ 1439 static int 1440 buf_trim(void) 1441 { 1442 buf_t *bp; 1443 long size = 0; 1444 1445 KASSERT(mutex_owned(&bufcache_lock)); 1446 1447 /* Instruct getnewbuf() to get buffers off the queues */ 1448 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1449 return 0; 1450 1451 KASSERT((bp->b_cflags & BC_WANTED) == 0); 1452 size = bp->b_bufsize; 1453 bufmem -= size; 1454 if (size > 0) { 1455 buf_mrelease(bp->b_data, size); 1456 bp->b_bcount = bp->b_bufsize = 0; 1457 } 1458 /* brelse() will return the buffer to the global buffer pool */ 1459 brelsel(bp, 0); 1460 return size; 1461 } 1462 1463 int 1464 buf_drain(int n) 1465 { 1466 int size = 0, sz; 1467 1468 KASSERT(mutex_owned(&bufcache_lock)); 1469 1470 while (size < n && bufmem > bufmem_lowater) { 1471 sz = buf_trim(); 1472 if (sz <= 0) 1473 break; 1474 size += sz; 1475 } 1476 1477 return size; 1478 } 1479 1480 /* 1481 * Wait for operations on the buffer to complete. 1482 * When they do, extract and return the I/O's error value. 1483 */ 1484 int 1485 biowait(buf_t *bp) 1486 { 1487 1488 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 1489 KASSERT(bp->b_refcnt > 0); 1490 1491 mutex_enter(bp->b_objlock); 1492 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) 1493 cv_wait(&bp->b_done, bp->b_objlock); 1494 mutex_exit(bp->b_objlock); 1495 1496 return bp->b_error; 1497 } 1498 1499 /* 1500 * Mark I/O complete on a buffer. 1501 * 1502 * If a callback has been requested, e.g. the pageout 1503 * daemon, do so. Otherwise, awaken waiting processes. 1504 * 1505 * [ Leffler, et al., says on p.247: 1506 * "This routine wakes up the blocked process, frees the buffer 1507 * for an asynchronous write, or, for a request by the pagedaemon 1508 * process, invokes a procedure specified in the buffer structure" ] 1509 * 1510 * In real life, the pagedaemon (or other system processes) wants 1511 * to do async stuff to, and doesn't want the buffer brelse()'d. 1512 * (for swap pager, that puts swap buffers on the free lists (!!!), 1513 * for the vn device, that puts malloc'd buffers on the free lists!) 1514 */ 1515 void 1516 biodone(buf_t *bp) 1517 { 1518 int s; 1519 1520 KASSERT(!ISSET(bp->b_oflags, BO_DONE)); 1521 1522 if (cpu_intr_p()) { 1523 /* From interrupt mode: defer to a soft interrupt. */ 1524 s = splvm(); 1525 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq); 1526 softint_schedule(biodone_sih); 1527 splx(s); 1528 } else { 1529 /* Process now - the buffer may be freed soon. */ 1530 biodone2(bp); 1531 } 1532 } 1533 1534 static void 1535 biodone2(buf_t *bp) 1536 { 1537 void (*callout)(buf_t *); 1538 1539 mutex_enter(bp->b_objlock); 1540 /* Note that the transfer is done. */ 1541 if (ISSET(bp->b_oflags, BO_DONE)) 1542 panic("biodone2 already"); 1543 CLR(bp->b_flags, B_COWDONE); 1544 SET(bp->b_oflags, BO_DONE); 1545 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1546 1547 /* Wake up waiting writers. */ 1548 if (!ISSET(bp->b_flags, B_READ)) 1549 vwakeup(bp); 1550 1551 if ((callout = bp->b_iodone) != NULL) { 1552 /* Note callout done, then call out. */ 1553 KASSERT(!cv_has_waiters(&bp->b_done)); 1554 KERNEL_LOCK(1, NULL); /* XXXSMP */ 1555 bp->b_iodone = NULL; 1556 mutex_exit(bp->b_objlock); 1557 (*callout)(bp); 1558 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */ 1559 } else if (ISSET(bp->b_flags, B_ASYNC)) { 1560 /* If async, release. */ 1561 KASSERT(!cv_has_waiters(&bp->b_done)); 1562 mutex_exit(bp->b_objlock); 1563 brelse(bp, 0); 1564 } else { 1565 /* Otherwise just wake up waiters in biowait(). */ 1566 cv_broadcast(&bp->b_done); 1567 mutex_exit(bp->b_objlock); 1568 } 1569 } 1570 1571 static void 1572 biointr(void *cookie) 1573 { 1574 struct cpu_info *ci; 1575 buf_t *bp; 1576 int s; 1577 1578 ci = curcpu(); 1579 1580 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) { 1581 KASSERT(curcpu() == ci); 1582 1583 s = splvm(); 1584 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone); 1585 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq); 1586 splx(s); 1587 1588 biodone2(bp); 1589 } 1590 } 1591 1592 /* 1593 * Return a count of buffers on the "locked" queue. 1594 */ 1595 int 1596 count_lock_queue(void) 1597 { 1598 buf_t *bp; 1599 int n = 0; 1600 1601 mutex_enter(&bufcache_lock); 1602 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist) 1603 n++; 1604 mutex_exit(&bufcache_lock); 1605 return (n); 1606 } 1607 1608 /* 1609 * Wait for all buffers to complete I/O 1610 * Return the number of "stuck" buffers. 1611 */ 1612 int 1613 buf_syncwait(void) 1614 { 1615 buf_t *bp; 1616 int iter, nbusy, nbusy_prev = 0, dcount, ihash; 1617 1618 dcount = 10000; 1619 for (iter = 0; iter < 20;) { 1620 mutex_enter(&bufcache_lock); 1621 nbusy = 0; 1622 for (ihash = 0; ihash < bufhash+1; ihash++) { 1623 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1624 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY) 1625 nbusy += ((bp->b_flags & B_READ) == 0); 1626 } 1627 } 1628 mutex_exit(&bufcache_lock); 1629 1630 if (nbusy == 0) 1631 break; 1632 if (nbusy_prev == 0) 1633 nbusy_prev = nbusy; 1634 printf("%d ", nbusy); 1635 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL); 1636 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1637 iter++; 1638 else 1639 nbusy_prev = nbusy; 1640 } 1641 1642 if (nbusy) { 1643 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1644 printf("giving up\nPrinting vnodes for busy buffers\n"); 1645 for (ihash = 0; ihash < bufhash+1; ihash++) { 1646 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1647 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY && 1648 (bp->b_flags & B_READ) == 0) 1649 vprint(NULL, bp->b_vp); 1650 } 1651 } 1652 #endif 1653 } 1654 1655 return nbusy; 1656 } 1657 1658 static void 1659 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o) 1660 { 1661 1662 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags; 1663 o->b_error = i->b_error; 1664 o->b_prio = i->b_prio; 1665 o->b_dev = i->b_dev; 1666 o->b_bufsize = i->b_bufsize; 1667 o->b_bcount = i->b_bcount; 1668 o->b_resid = i->b_resid; 1669 o->b_addr = PTRTOUINT64(i->b_data); 1670 o->b_blkno = i->b_blkno; 1671 o->b_rawblkno = i->b_rawblkno; 1672 o->b_iodone = PTRTOUINT64(i->b_iodone); 1673 o->b_proc = PTRTOUINT64(i->b_proc); 1674 o->b_vp = PTRTOUINT64(i->b_vp); 1675 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr); 1676 o->b_lblkno = i->b_lblkno; 1677 } 1678 1679 #define KERN_BUFSLOP 20 1680 static int 1681 sysctl_dobuf(SYSCTLFN_ARGS) 1682 { 1683 buf_t *bp; 1684 struct buf_sysctl bs; 1685 struct bqueue *bq; 1686 char *dp; 1687 u_int i, op, arg; 1688 size_t len, needed, elem_size, out_size; 1689 int error, elem_count, retries; 1690 1691 if (namelen == 1 && name[0] == CTL_QUERY) 1692 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1693 1694 if (namelen != 4) 1695 return (EINVAL); 1696 1697 retries = 100; 1698 retry: 1699 dp = oldp; 1700 len = (oldp != NULL) ? *oldlenp : 0; 1701 op = name[0]; 1702 arg = name[1]; 1703 elem_size = name[2]; 1704 elem_count = name[3]; 1705 out_size = MIN(sizeof(bs), elem_size); 1706 1707 /* 1708 * at the moment, these are just "placeholders" to make the 1709 * API for retrieving kern.buf data more extensible in the 1710 * future. 1711 * 1712 * XXX kern.buf currently has "netbsd32" issues. hopefully 1713 * these will be resolved at a later point. 1714 */ 1715 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL || 1716 elem_size < 1 || elem_count < 0) 1717 return (EINVAL); 1718 1719 error = 0; 1720 needed = 0; 1721 sysctl_unlock(); 1722 mutex_enter(&bufcache_lock); 1723 for (i = 0; i < BQUEUES; i++) { 1724 bq = &bufqueues[i]; 1725 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) { 1726 bq->bq_marker = bp; 1727 if (len >= elem_size && elem_count > 0) { 1728 sysctl_fillbuf(bp, &bs); 1729 mutex_exit(&bufcache_lock); 1730 error = copyout(&bs, dp, out_size); 1731 mutex_enter(&bufcache_lock); 1732 if (error) 1733 break; 1734 if (bq->bq_marker != bp) { 1735 /* 1736 * This sysctl node is only for 1737 * statistics. Retry; if the 1738 * queue keeps changing, then 1739 * bail out. 1740 */ 1741 if (retries-- == 0) { 1742 error = EAGAIN; 1743 break; 1744 } 1745 mutex_exit(&bufcache_lock); 1746 goto retry; 1747 } 1748 dp += elem_size; 1749 len -= elem_size; 1750 } 1751 needed += elem_size; 1752 if (elem_count > 0 && elem_count != INT_MAX) 1753 elem_count--; 1754 } 1755 if (error != 0) 1756 break; 1757 } 1758 mutex_exit(&bufcache_lock); 1759 sysctl_relock(); 1760 1761 *oldlenp = needed; 1762 if (oldp == NULL) 1763 *oldlenp += KERN_BUFSLOP * sizeof(buf_t); 1764 1765 return (error); 1766 } 1767 1768 static int 1769 sysctl_bufvm_update(SYSCTLFN_ARGS) 1770 { 1771 int t, error, rv; 1772 struct sysctlnode node; 1773 1774 node = *rnode; 1775 node.sysctl_data = &t; 1776 t = *(int *)rnode->sysctl_data; 1777 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1778 if (error || newp == NULL) 1779 return (error); 1780 1781 if (t < 0) 1782 return EINVAL; 1783 if (rnode->sysctl_data == &bufcache) { 1784 if (t > 100) 1785 return (EINVAL); 1786 bufcache = t; 1787 buf_setwm(); 1788 } else if (rnode->sysctl_data == &bufmem_lowater) { 1789 if (bufmem_hiwater - t < 16) 1790 return (EINVAL); 1791 bufmem_lowater = t; 1792 } else if (rnode->sysctl_data == &bufmem_hiwater) { 1793 if (t - bufmem_lowater < 16) 1794 return (EINVAL); 1795 bufmem_hiwater = t; 1796 } else 1797 return (EINVAL); 1798 1799 /* Drain until below new high water mark */ 1800 sysctl_unlock(); 1801 mutex_enter(&bufcache_lock); 1802 while ((t = bufmem - bufmem_hiwater) >= 0) { 1803 rv = buf_drain(t / (2 * 1024)); 1804 if (rv <= 0) 1805 break; 1806 } 1807 mutex_exit(&bufcache_lock); 1808 sysctl_relock(); 1809 1810 return 0; 1811 } 1812 1813 static struct sysctllog *vfsbio_sysctllog; 1814 1815 static void 1816 sysctl_kern_buf_setup(void) 1817 { 1818 1819 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1820 CTLFLAG_PERMANENT, 1821 CTLTYPE_NODE, "kern", NULL, 1822 NULL, 0, NULL, 0, 1823 CTL_KERN, CTL_EOL); 1824 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1825 CTLFLAG_PERMANENT, 1826 CTLTYPE_NODE, "buf", 1827 SYSCTL_DESCR("Kernel buffer cache information"), 1828 sysctl_dobuf, 0, NULL, 0, 1829 CTL_KERN, KERN_BUF, CTL_EOL); 1830 } 1831 1832 static void 1833 sysctl_vm_buf_setup(void) 1834 { 1835 1836 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1837 CTLFLAG_PERMANENT, 1838 CTLTYPE_NODE, "vm", NULL, 1839 NULL, 0, NULL, 0, 1840 CTL_VM, CTL_EOL); 1841 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1842 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1843 CTLTYPE_INT, "bufcache", 1844 SYSCTL_DESCR("Percentage of physical memory to use for " 1845 "buffer cache"), 1846 sysctl_bufvm_update, 0, &bufcache, 0, 1847 CTL_VM, CTL_CREATE, CTL_EOL); 1848 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1849 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1850 CTLTYPE_INT, "bufmem", 1851 SYSCTL_DESCR("Amount of kernel memory used by buffer " 1852 "cache"), 1853 NULL, 0, &bufmem, 0, 1854 CTL_VM, CTL_CREATE, CTL_EOL); 1855 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1856 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1857 CTLTYPE_INT, "bufmem_lowater", 1858 SYSCTL_DESCR("Minimum amount of kernel memory to " 1859 "reserve for buffer cache"), 1860 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1861 CTL_VM, CTL_CREATE, CTL_EOL); 1862 sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL, 1863 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1864 CTLTYPE_INT, "bufmem_hiwater", 1865 SYSCTL_DESCR("Maximum amount of kernel memory to use " 1866 "for buffer cache"), 1867 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1868 CTL_VM, CTL_CREATE, CTL_EOL); 1869 } 1870 1871 #ifdef DEBUG 1872 /* 1873 * Print out statistics on the current allocation of the buffer pool. 1874 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1875 * in vfs_syscalls.c using sysctl. 1876 */ 1877 void 1878 vfs_bufstats(void) 1879 { 1880 int i, j, count; 1881 buf_t *bp; 1882 struct bqueue *dp; 1883 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1884 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1885 1886 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1887 count = 0; 1888 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1889 counts[j] = 0; 1890 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) { 1891 counts[bp->b_bufsize/PAGE_SIZE]++; 1892 count++; 1893 } 1894 printf("%s: total-%d", bname[i], count); 1895 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1896 if (counts[j] != 0) 1897 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1898 printf("\n"); 1899 } 1900 } 1901 #endif /* DEBUG */ 1902 1903 /* ------------------------------ */ 1904 1905 buf_t * 1906 getiobuf(struct vnode *vp, bool waitok) 1907 { 1908 buf_t *bp; 1909 1910 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT)); 1911 if (bp == NULL) 1912 return bp; 1913 1914 buf_init(bp); 1915 1916 if ((bp->b_vp = vp) == NULL) 1917 bp->b_objlock = &buffer_lock; 1918 else 1919 bp->b_objlock = &vp->v_interlock; 1920 1921 return bp; 1922 } 1923 1924 void 1925 putiobuf(buf_t *bp) 1926 { 1927 1928 buf_destroy(bp); 1929 pool_cache_put(bufio_cache, bp); 1930 } 1931 1932 /* 1933 * nestiobuf_iodone: b_iodone callback for nested buffers. 1934 */ 1935 1936 void 1937 nestiobuf_iodone(buf_t *bp) 1938 { 1939 buf_t *mbp = bp->b_private; 1940 int error; 1941 int donebytes; 1942 1943 KASSERT(bp->b_bcount <= bp->b_bufsize); 1944 KASSERT(mbp != bp); 1945 1946 error = bp->b_error; 1947 if (bp->b_error == 0 && 1948 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 1949 /* 1950 * Not all got transfered, raise an error. We have no way to 1951 * propagate these conditions to mbp. 1952 */ 1953 error = EIO; 1954 } 1955 1956 donebytes = bp->b_bufsize; 1957 1958 putiobuf(bp); 1959 nestiobuf_done(mbp, donebytes, error); 1960 } 1961 1962 /* 1963 * nestiobuf_setup: setup a "nested" buffer. 1964 * 1965 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 1966 * => 'bp' should be a buffer allocated by getiobuf. 1967 * => 'offset' is a byte offset in the master buffer. 1968 * => 'size' is a size in bytes of this nested buffer. 1969 */ 1970 1971 void 1972 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size) 1973 { 1974 const int b_read = mbp->b_flags & B_READ; 1975 struct vnode *vp = mbp->b_vp; 1976 1977 KASSERT(mbp->b_bcount >= offset + size); 1978 bp->b_vp = vp; 1979 bp->b_dev = mbp->b_dev; 1980 bp->b_objlock = mbp->b_objlock; 1981 bp->b_cflags = BC_BUSY; 1982 bp->b_flags = B_ASYNC | b_read; 1983 bp->b_iodone = nestiobuf_iodone; 1984 bp->b_data = (char *)mbp->b_data + offset; 1985 bp->b_resid = bp->b_bcount = size; 1986 bp->b_bufsize = bp->b_bcount; 1987 bp->b_private = mbp; 1988 BIO_COPYPRIO(bp, mbp); 1989 if (!b_read && vp != NULL) { 1990 mutex_enter(&vp->v_interlock); 1991 vp->v_numoutput++; 1992 mutex_exit(&vp->v_interlock); 1993 } 1994 } 1995 1996 /* 1997 * nestiobuf_done: propagate completion to the master buffer. 1998 * 1999 * => 'donebytes' specifies how many bytes in the 'mbp' is completed. 2000 * => 'error' is an errno(2) that 'donebytes' has been completed with. 2001 */ 2002 2003 void 2004 nestiobuf_done(buf_t *mbp, int donebytes, int error) 2005 { 2006 2007 if (donebytes == 0) { 2008 return; 2009 } 2010 mutex_enter(mbp->b_objlock); 2011 KASSERT(mbp->b_resid >= donebytes); 2012 mbp->b_resid -= donebytes; 2013 if (error) 2014 mbp->b_error = error; 2015 if (mbp->b_resid == 0) { 2016 mutex_exit(mbp->b_objlock); 2017 biodone(mbp); 2018 } else 2019 mutex_exit(mbp->b_objlock); 2020 } 2021 2022 void 2023 buf_init(buf_t *bp) 2024 { 2025 2026 cv_init(&bp->b_busy, "biolock"); 2027 cv_init(&bp->b_done, "biowait"); 2028 bp->b_dev = NODEV; 2029 bp->b_error = 0; 2030 bp->b_flags = 0; 2031 bp->b_cflags = 0; 2032 bp->b_oflags = 0; 2033 bp->b_objlock = &buffer_lock; 2034 bp->b_iodone = NULL; 2035 bp->b_refcnt = 1; 2036 bp->b_dev = NODEV; 2037 bp->b_vnbufs.le_next = NOLIST; 2038 BIO_SETPRIO(bp, BPRIO_DEFAULT); 2039 } 2040 2041 void 2042 buf_destroy(buf_t *bp) 2043 { 2044 2045 cv_destroy(&bp->b_done); 2046 cv_destroy(&bp->b_busy); 2047 } 2048 2049 int 2050 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock) 2051 { 2052 int error; 2053 2054 KASSERT(mutex_owned(&bufcache_lock)); 2055 2056 if ((bp->b_cflags & BC_BUSY) != 0) { 2057 if (curlwp == uvm.pagedaemon_lwp) 2058 return EDEADLK; 2059 bp->b_cflags |= BC_WANTED; 2060 bref(bp); 2061 if (interlock != NULL) 2062 mutex_exit(interlock); 2063 if (intr) { 2064 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock, 2065 timo); 2066 } else { 2067 error = cv_timedwait(&bp->b_busy, &bufcache_lock, 2068 timo); 2069 } 2070 brele(bp); 2071 if (interlock != NULL) 2072 mutex_enter(interlock); 2073 if (error != 0) 2074 return error; 2075 return EPASSTHROUGH; 2076 } 2077 bp->b_cflags |= BC_BUSY; 2078 2079 return 0; 2080 } 2081