xref: /netbsd-src/sys/kern/vfs_bio.c (revision 10ad5ffa714ce1a679dcc9dd8159648df2d67b5a)
1 /*	$NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*-
33  * Copyright (c) 1982, 1986, 1989, 1993
34  *	The Regents of the University of California.  All rights reserved.
35  * (c) UNIX System Laboratories, Inc.
36  * All or some portions of this file are derived from material licensed
37  * to the University of California by American Telephone and Telegraph
38  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
39  * the permission of UNIX System Laboratories, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
66  */
67 
68 /*-
69  * Copyright (c) 1994 Christopher G. Demetriou
70  *
71  * Redistribution and use in source and binary forms, with or without
72  * modification, are permitted provided that the following conditions
73  * are met:
74  * 1. Redistributions of source code must retain the above copyright
75  *    notice, this list of conditions and the following disclaimer.
76  * 2. Redistributions in binary form must reproduce the above copyright
77  *    notice, this list of conditions and the following disclaimer in the
78  *    documentation and/or other materials provided with the distribution.
79  * 3. All advertising materials mentioning features or use of this software
80  *    must display the following acknowledgement:
81  *	This product includes software developed by the University of
82  *	California, Berkeley and its contributors.
83  * 4. Neither the name of the University nor the names of its contributors
84  *    may be used to endorse or promote products derived from this software
85  *    without specific prior written permission.
86  *
87  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
88  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
89  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
90  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
91  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
92  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
93  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
94  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
95  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
96  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
97  * SUCH DAMAGE.
98  *
99  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
100  */
101 
102 /*
103  * Some references:
104  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
105  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
106  *		UNIX Operating System (Addison Welley, 1989)
107  */
108 
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.218 2009/03/11 05:55:22 mrg Exp $");
111 
112 #include "fs_ffs.h"
113 #include "opt_bufcache.h"
114 
115 #include <sys/param.h>
116 #include <sys/systm.h>
117 #include <sys/kernel.h>
118 #include <sys/proc.h>
119 #include <sys/buf.h>
120 #include <sys/vnode.h>
121 #include <sys/mount.h>
122 #include <sys/resourcevar.h>
123 #include <sys/sysctl.h>
124 #include <sys/conf.h>
125 #include <sys/kauth.h>
126 #include <sys/fstrans.h>
127 #include <sys/intr.h>
128 #include <sys/cpu.h>
129 #include <sys/wapbl.h>
130 
131 #include <uvm/uvm.h>
132 
133 #include <miscfs/specfs/specdev.h>
134 
135 #ifndef	BUFPAGES
136 # define BUFPAGES 0
137 #endif
138 
139 #ifdef BUFCACHE
140 # if (BUFCACHE < 5) || (BUFCACHE > 95)
141 #  error BUFCACHE is not between 5 and 95
142 # endif
143 #else
144 # define BUFCACHE 15
145 #endif
146 
147 u_int	nbuf;			/* desired number of buffer headers */
148 u_int	bufpages = BUFPAGES;	/* optional hardwired count */
149 u_int	bufcache = BUFCACHE;	/* max % of RAM to use for buffer cache */
150 
151 /* Function prototypes */
152 struct bqueue;
153 
154 static void buf_setwm(void);
155 static int buf_trim(void);
156 static void *bufpool_page_alloc(struct pool *, int);
157 static void bufpool_page_free(struct pool *, void *);
158 static buf_t *bio_doread(struct vnode *, daddr_t, int,
159     kauth_cred_t, int);
160 static buf_t *getnewbuf(int, int, int);
161 static int buf_lotsfree(void);
162 static int buf_canrelease(void);
163 static u_long buf_mempoolidx(u_long);
164 static u_long buf_roundsize(u_long);
165 static void *buf_malloc(size_t);
166 static void buf_mrelease(void *, size_t);
167 static void binsheadfree(buf_t *, struct bqueue *);
168 static void binstailfree(buf_t *, struct bqueue *);
169 int count_lock_queue(void); /* XXX */
170 #ifdef DEBUG
171 static int checkfreelist(buf_t *, struct bqueue *, int);
172 #endif
173 static void biointr(void *);
174 static void biodone2(buf_t *);
175 static void bref(buf_t *);
176 static void brele(buf_t *);
177 static void sysctl_kern_buf_setup(void);
178 static void sysctl_vm_buf_setup(void);
179 
180 /*
181  * Definitions for the buffer hash lists.
182  */
183 #define	BUFHASH(dvp, lbn)	\
184 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
185 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
186 u_long	bufhash;
187 struct bqueue bufqueues[BQUEUES];
188 
189 static kcondvar_t needbuffer_cv;
190 
191 /*
192  * Buffer queue lock.
193  */
194 kmutex_t bufcache_lock;
195 kmutex_t buffer_lock;
196 
197 /* Software ISR for completed transfers. */
198 static void *biodone_sih;
199 
200 /* Buffer pool for I/O buffers. */
201 static pool_cache_t buf_cache;
202 static pool_cache_t bufio_cache;
203 
204 /* XXX - somewhat gross.. */
205 #if MAXBSIZE == 0x2000
206 #define NMEMPOOLS 5
207 #elif MAXBSIZE == 0x4000
208 #define NMEMPOOLS 6
209 #elif MAXBSIZE == 0x8000
210 #define NMEMPOOLS 7
211 #else
212 #define NMEMPOOLS 8
213 #endif
214 
215 #define MEMPOOL_INDEX_OFFSET 9	/* smallest pool is 512 bytes */
216 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE
217 #error update vfs_bio buffer memory parameters
218 #endif
219 
220 /* Buffer memory pools */
221 static struct pool bmempools[NMEMPOOLS];
222 
223 static struct vm_map *buf_map;
224 
225 /*
226  * Buffer memory pool allocator.
227  */
228 static void *
229 bufpool_page_alloc(struct pool *pp, int flags)
230 {
231 
232 	return (void *)uvm_km_alloc(buf_map,
233 	    MAXBSIZE, MAXBSIZE,
234 	    ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)
235 	    | UVM_KMF_WIRED);
236 }
237 
238 static void
239 bufpool_page_free(struct pool *pp, void *v)
240 {
241 
242 	uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED);
243 }
244 
245 static struct pool_allocator bufmempool_allocator = {
246 	.pa_alloc = bufpool_page_alloc,
247 	.pa_free = bufpool_page_free,
248 	.pa_pagesz = MAXBSIZE,
249 };
250 
251 /* Buffer memory management variables */
252 u_long bufmem_valimit;
253 u_long bufmem_hiwater;
254 u_long bufmem_lowater;
255 u_long bufmem;
256 
257 /*
258  * MD code can call this to set a hard limit on the amount
259  * of virtual memory used by the buffer cache.
260  */
261 int
262 buf_setvalimit(vsize_t sz)
263 {
264 
265 	/* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */
266 	if (sz < NMEMPOOLS * MAXBSIZE)
267 		return EINVAL;
268 
269 	bufmem_valimit = sz;
270 	return 0;
271 }
272 
273 static void
274 buf_setwm(void)
275 {
276 
277 	bufmem_hiwater = buf_memcalc();
278 	/* lowater is approx. 2% of memory (with bufcache = 15) */
279 #define	BUFMEM_WMSHIFT	3
280 #define	BUFMEM_HIWMMIN	(64 * 1024 << BUFMEM_WMSHIFT)
281 	if (bufmem_hiwater < BUFMEM_HIWMMIN)
282 		/* Ensure a reasonable minimum value */
283 		bufmem_hiwater = BUFMEM_HIWMMIN;
284 	bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT;
285 }
286 
287 #ifdef DEBUG
288 int debug_verify_freelist = 0;
289 static int
290 checkfreelist(buf_t *bp, struct bqueue *dp, int ison)
291 {
292 	buf_t *b;
293 
294 	if (!debug_verify_freelist)
295 		return 1;
296 
297 	TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) {
298 		if (b == bp)
299 			return ison ? 1 : 0;
300 	}
301 
302 	return ison ? 0 : 1;
303 }
304 #endif
305 
306 /*
307  * Insq/Remq for the buffer hash lists.
308  * Call with buffer queue locked.
309  */
310 static void
311 binsheadfree(buf_t *bp, struct bqueue *dp)
312 {
313 
314 	KASSERT(mutex_owned(&bufcache_lock));
315 	KASSERT(bp->b_freelistindex == -1);
316 	TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist);
317 	dp->bq_bytes += bp->b_bufsize;
318 	bp->b_freelistindex = dp - bufqueues;
319 }
320 
321 static void
322 binstailfree(buf_t *bp, struct bqueue *dp)
323 {
324 
325 	KASSERT(mutex_owned(&bufcache_lock));
326 	KASSERT(bp->b_freelistindex == -1);
327 	TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist);
328 	dp->bq_bytes += bp->b_bufsize;
329 	bp->b_freelistindex = dp - bufqueues;
330 }
331 
332 void
333 bremfree(buf_t *bp)
334 {
335 	struct bqueue *dp;
336 	int bqidx = bp->b_freelistindex;
337 
338 	KASSERT(mutex_owned(&bufcache_lock));
339 
340 	KASSERT(bqidx != -1);
341 	dp = &bufqueues[bqidx];
342 	KDASSERT(checkfreelist(bp, dp, 1));
343 	KASSERT(dp->bq_bytes >= bp->b_bufsize);
344 	TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist);
345 	dp->bq_bytes -= bp->b_bufsize;
346 
347 	/* For the sysctl helper. */
348 	if (bp == dp->bq_marker)
349 		dp->bq_marker = NULL;
350 
351 #if defined(DIAGNOSTIC)
352 	bp->b_freelistindex = -1;
353 #endif /* defined(DIAGNOSTIC) */
354 }
355 
356 /*
357  * Add a reference to an buffer structure that came from buf_cache.
358  */
359 static inline void
360 bref(buf_t *bp)
361 {
362 
363 	KASSERT(mutex_owned(&bufcache_lock));
364 	KASSERT(bp->b_refcnt > 0);
365 
366 	bp->b_refcnt++;
367 }
368 
369 /*
370  * Free an unused buffer structure that came from buf_cache.
371  */
372 static inline void
373 brele(buf_t *bp)
374 {
375 
376 	KASSERT(mutex_owned(&bufcache_lock));
377 	KASSERT(bp->b_refcnt > 0);
378 
379 	if (bp->b_refcnt-- == 1) {
380 		buf_destroy(bp);
381 #ifdef DEBUG
382 		memset((char *)bp, 0, sizeof(*bp));
383 #endif
384 		pool_cache_put(buf_cache, bp);
385 	}
386 }
387 
388 /*
389  * note that for some ports this is used by pmap bootstrap code to
390  * determine kva size.
391  */
392 u_long
393 buf_memcalc(void)
394 {
395 	u_long n;
396 
397 	/*
398 	 * Determine the upper bound of memory to use for buffers.
399 	 *
400 	 *	- If bufpages is specified, use that as the number
401 	 *	  pages.
402 	 *
403 	 *	- Otherwise, use bufcache as the percentage of
404 	 *	  physical memory.
405 	 */
406 	if (bufpages != 0) {
407 		n = bufpages;
408 	} else {
409 		if (bufcache < 5) {
410 			printf("forcing bufcache %d -> 5", bufcache);
411 			bufcache = 5;
412 		}
413 		if (bufcache > 95) {
414 			printf("forcing bufcache %d -> 95", bufcache);
415 			bufcache = 95;
416 		}
417 		n = calc_cache_size(buf_map, bufcache,
418 		    (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT)
419 		    / PAGE_SIZE;
420 	}
421 
422 	n <<= PAGE_SHIFT;
423 	if (bufmem_valimit != 0 && n > bufmem_valimit)
424 		n = bufmem_valimit;
425 
426 	return (n);
427 }
428 
429 /*
430  * Initialize buffers and hash links for buffers.
431  */
432 void
433 bufinit(void)
434 {
435 	struct bqueue *dp;
436 	int use_std;
437 	u_int i;
438 
439 	mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE);
440 	mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE);
441 	cv_init(&needbuffer_cv, "needbuf");
442 
443 	if (bufmem_valimit != 0) {
444 		vaddr_t minaddr = 0, maxaddr;
445 		buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
446 					  bufmem_valimit, 0, false, 0);
447 		if (buf_map == NULL)
448 			panic("bufinit: cannot allocate submap");
449 	} else
450 		buf_map = kernel_map;
451 
452 	/*
453 	 * Initialize buffer cache memory parameters.
454 	 */
455 	bufmem = 0;
456 	buf_setwm();
457 
458 	/* On "small" machines use small pool page sizes where possible */
459 	use_std = (physmem < atop(16*1024*1024));
460 
461 	/*
462 	 * Also use them on systems that can map the pool pages using
463 	 * a direct-mapped segment.
464 	 */
465 #ifdef PMAP_MAP_POOLPAGE
466 	use_std = 1;
467 #endif
468 
469 	buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
470 	    "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL);
471 	bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0,
472 	    "biopl", NULL, IPL_BIO, NULL, NULL, NULL);
473 
474 	bufmempool_allocator.pa_backingmap = buf_map;
475 	for (i = 0; i < NMEMPOOLS; i++) {
476 		struct pool_allocator *pa;
477 		struct pool *pp = &bmempools[i];
478 		u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET);
479 		char *name = kmem_alloc(8, KM_SLEEP);
480 		if (__predict_true(size >= 1024))
481 			(void)snprintf(name, 8, "buf%dk", size / 1024);
482 		else
483 			(void)snprintf(name, 8, "buf%db", size);
484 		pa = (size <= PAGE_SIZE && use_std)
485 			? &pool_allocator_nointr
486 			: &bufmempool_allocator;
487 		pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE);
488 		pool_setlowat(pp, 1);
489 		pool_sethiwat(pp, 1);
490 	}
491 
492 	/* Initialize the buffer queues */
493 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) {
494 		TAILQ_INIT(&dp->bq_queue);
495 		dp->bq_bytes = 0;
496 	}
497 
498 	/*
499 	 * Estimate hash table size based on the amount of memory we
500 	 * intend to use for the buffer cache. The average buffer
501 	 * size is dependent on our clients (i.e. filesystems).
502 	 *
503 	 * For now, use an empirical 3K per buffer.
504 	 */
505 	nbuf = (bufmem_hiwater / 1024) / 3;
506 	bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash);
507 
508 	sysctl_kern_buf_setup();
509 	sysctl_vm_buf_setup();
510 }
511 
512 void
513 bufinit2(void)
514 {
515 
516 	biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr,
517 	    NULL);
518 	if (biodone_sih == NULL)
519 		panic("bufinit2: can't establish soft interrupt");
520 }
521 
522 static int
523 buf_lotsfree(void)
524 {
525 	int try, thresh;
526 
527 	/* Always allocate if less than the low water mark. */
528 	if (bufmem < bufmem_lowater)
529 		return 1;
530 
531 	/* Never allocate if greater than the high water mark. */
532 	if (bufmem > bufmem_hiwater)
533 		return 0;
534 
535 	/* If there's anything on the AGE list, it should be eaten. */
536 	if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL)
537 		return 0;
538 
539 	/*
540 	 * The probabily of getting a new allocation is inversely
541 	 * proportional to the current size of the cache, using
542 	 * a granularity of 16 steps.
543 	 */
544 	try = random() & 0x0000000fL;
545 
546 	/* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */
547 	thresh = (bufmem - bufmem_lowater) /
548 	    ((bufmem_hiwater - bufmem_lowater) / 16);
549 
550 	if (try >= thresh)
551 		return 1;
552 
553 	/* Otherwise don't allocate. */
554 	return 0;
555 }
556 
557 /*
558  * Return estimate of bytes we think need to be
559  * released to help resolve low memory conditions.
560  *
561  * => called with bufcache_lock held.
562  */
563 static int
564 buf_canrelease(void)
565 {
566 	int pagedemand, ninvalid = 0;
567 
568 	KASSERT(mutex_owned(&bufcache_lock));
569 
570 	if (bufmem < bufmem_lowater)
571 		return 0;
572 
573 	if (bufmem > bufmem_hiwater)
574 		return bufmem - bufmem_hiwater;
575 
576 	ninvalid += bufqueues[BQ_AGE].bq_bytes;
577 
578 	pagedemand = uvmexp.freetarg - uvmexp.free;
579 	if (pagedemand < 0)
580 		return ninvalid;
581 	return MAX(ninvalid, MIN(2 * MAXBSIZE,
582 	    MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE)));
583 }
584 
585 /*
586  * Buffer memory allocation helper functions
587  */
588 static u_long
589 buf_mempoolidx(u_long size)
590 {
591 	u_int n = 0;
592 
593 	size -= 1;
594 	size >>= MEMPOOL_INDEX_OFFSET;
595 	while (size) {
596 		size >>= 1;
597 		n += 1;
598 	}
599 	if (n >= NMEMPOOLS)
600 		panic("buf mem pool index %d", n);
601 	return n;
602 }
603 
604 static u_long
605 buf_roundsize(u_long size)
606 {
607 	/* Round up to nearest power of 2 */
608 	return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET));
609 }
610 
611 static void *
612 buf_malloc(size_t size)
613 {
614 	u_int n = buf_mempoolidx(size);
615 	void *addr;
616 
617 	while (1) {
618 		addr = pool_get(&bmempools[n], PR_NOWAIT);
619 		if (addr != NULL)
620 			break;
621 
622 		/* No memory, see if we can free some. If so, try again */
623 		mutex_enter(&bufcache_lock);
624 		if (buf_drain(1) > 0) {
625 			mutex_exit(&bufcache_lock);
626 			continue;
627 		}
628 
629 		if (curlwp == uvm.pagedaemon_lwp) {
630 			mutex_exit(&bufcache_lock);
631 			return NULL;
632 		}
633 
634 		/* Wait for buffers to arrive on the LRU queue */
635 		cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4);
636 		mutex_exit(&bufcache_lock);
637 	}
638 
639 	return addr;
640 }
641 
642 static void
643 buf_mrelease(void *addr, size_t size)
644 {
645 
646 	pool_put(&bmempools[buf_mempoolidx(size)], addr);
647 }
648 
649 /*
650  * bread()/breadn() helper.
651  */
652 static buf_t *
653 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
654     int async)
655 {
656 	buf_t *bp;
657 	struct mount *mp;
658 
659 	bp = getblk(vp, blkno, size, 0, 0);
660 
661 #ifdef DIAGNOSTIC
662 	if (bp == NULL) {
663 		panic("bio_doread: no such buf");
664 	}
665 #endif
666 
667 	/*
668 	 * If buffer does not have data valid, start a read.
669 	 * Note that if buffer is BC_INVAL, getblk() won't return it.
670 	 * Therefore, it's valid if its I/O has completed or been delayed.
671 	 */
672 	if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) {
673 		/* Start I/O for the buffer. */
674 		SET(bp->b_flags, B_READ | async);
675 		if (async)
676 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
677 		else
678 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
679 		VOP_STRATEGY(vp, bp);
680 
681 		/* Pay for the read. */
682 		curlwp->l_ru.ru_inblock++;
683 	} else if (async)
684 		brelse(bp, 0);
685 
686 	if (vp->v_type == VBLK)
687 		mp = vp->v_specmountpoint;
688 	else
689 		mp = vp->v_mount;
690 
691 	/*
692 	 * Collect statistics on synchronous and asynchronous reads.
693 	 * Reads from block devices are charged to their associated
694 	 * filesystem (if any).
695 	 */
696 	if (mp != NULL) {
697 		if (async == 0)
698 			mp->mnt_stat.f_syncreads++;
699 		else
700 			mp->mnt_stat.f_asyncreads++;
701 	}
702 
703 	return (bp);
704 }
705 
706 /*
707  * Read a disk block.
708  * This algorithm described in Bach (p.54).
709  */
710 int
711 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred,
712     int flags, buf_t **bpp)
713 {
714 	buf_t *bp;
715 	int error;
716 
717 	/* Get buffer for block. */
718 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
719 
720 	/* Wait for the read to complete, and return result. */
721 	error = biowait(bp);
722 	if (error == 0 && (flags & B_MODIFY) != 0)	/* XXXX before the next code block or after? */
723 		error = fscow_run(bp, true);
724 
725 	return error;
726 }
727 
728 /*
729  * Read-ahead multiple disk blocks. The first is sync, the rest async.
730  * Trivial modification to the breada algorithm presented in Bach (p.55).
731  */
732 int
733 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks,
734     int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp)
735 {
736 	buf_t *bp;
737 	int error, i;
738 
739 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
740 
741 	/*
742 	 * For each of the read-ahead blocks, start a read, if necessary.
743 	 */
744 	mutex_enter(&bufcache_lock);
745 	for (i = 0; i < nrablks; i++) {
746 		/* If it's in the cache, just go on to next one. */
747 		if (incore(vp, rablks[i]))
748 			continue;
749 
750 		/* Get a buffer for the read-ahead block */
751 		mutex_exit(&bufcache_lock);
752 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
753 		mutex_enter(&bufcache_lock);
754 	}
755 	mutex_exit(&bufcache_lock);
756 
757 	/* Otherwise, we had to start a read for it; wait until it's valid. */
758 	error = biowait(bp);
759 	if (error == 0 && (flags & B_MODIFY) != 0)
760 		error = fscow_run(bp, true);
761 	return error;
762 }
763 
764 /*
765  * Read with single-block read-ahead.  Defined in Bach (p.55), but
766  * implemented as a call to breadn().
767  * XXX for compatibility with old file systems.
768  */
769 int
770 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno,
771     int rabsize, kauth_cred_t cred, int flags, buf_t **bpp)
772 {
773 
774 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1,
775 	    cred, flags, bpp));
776 }
777 
778 /*
779  * Block write.  Described in Bach (p.56)
780  */
781 int
782 bwrite(buf_t *bp)
783 {
784 	int rv, sync, wasdelayed;
785 	struct vnode *vp;
786 	struct mount *mp;
787 
788 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
789 	KASSERT(!cv_has_waiters(&bp->b_done));
790 
791 	vp = bp->b_vp;
792 	if (vp != NULL) {
793 		KASSERT(bp->b_objlock == &vp->v_interlock);
794 		if (vp->v_type == VBLK)
795 			mp = vp->v_specmountpoint;
796 		else
797 			mp = vp->v_mount;
798 	} else {
799 		mp = NULL;
800 	}
801 
802 	if (mp && mp->mnt_wapbl) {
803 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
804 			bdwrite(bp);
805 			return 0;
806 		}
807 	}
808 
809 	/*
810 	 * Remember buffer type, to switch on it later.  If the write was
811 	 * synchronous, but the file system was mounted with MNT_ASYNC,
812 	 * convert it to a delayed write.
813 	 * XXX note that this relies on delayed tape writes being converted
814 	 * to async, not sync writes (which is safe, but ugly).
815 	 */
816 	sync = !ISSET(bp->b_flags, B_ASYNC);
817 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
818 		bdwrite(bp);
819 		return (0);
820 	}
821 
822 	/*
823 	 * Collect statistics on synchronous and asynchronous writes.
824 	 * Writes to block devices are charged to their associated
825 	 * filesystem (if any).
826 	 */
827 	if (mp != NULL) {
828 		if (sync)
829 			mp->mnt_stat.f_syncwrites++;
830 		else
831 			mp->mnt_stat.f_asyncwrites++;
832 	}
833 
834 	/*
835 	 * Pay for the I/O operation and make sure the buf is on the correct
836 	 * vnode queue.
837 	 */
838 	bp->b_error = 0;
839 	wasdelayed = ISSET(bp->b_oflags, BO_DELWRI);
840 	CLR(bp->b_flags, B_READ);
841 	if (wasdelayed) {
842 		mutex_enter(&bufcache_lock);
843 		mutex_enter(bp->b_objlock);
844 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
845 		reassignbuf(bp, bp->b_vp);
846 		mutex_exit(&bufcache_lock);
847 	} else {
848 		curlwp->l_ru.ru_oublock++;
849 		mutex_enter(bp->b_objlock);
850 		CLR(bp->b_oflags, BO_DONE | BO_DELWRI);
851 	}
852 	if (vp != NULL)
853 		vp->v_numoutput++;
854 	mutex_exit(bp->b_objlock);
855 
856 	/* Initiate disk write. */
857 	if (sync)
858 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
859 	else
860 		BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
861 
862 	VOP_STRATEGY(vp, bp);
863 
864 	if (sync) {
865 		/* If I/O was synchronous, wait for it to complete. */
866 		rv = biowait(bp);
867 
868 		/* Release the buffer. */
869 		brelse(bp, 0);
870 
871 		return (rv);
872 	} else {
873 		return (0);
874 	}
875 }
876 
877 int
878 vn_bwrite(void *v)
879 {
880 	struct vop_bwrite_args *ap = v;
881 
882 	return (bwrite(ap->a_bp));
883 }
884 
885 /*
886  * Delayed write.
887  *
888  * The buffer is marked dirty, but is not queued for I/O.
889  * This routine should be used when the buffer is expected
890  * to be modified again soon, typically a small write that
891  * partially fills a buffer.
892  *
893  * NB: magnetic tapes cannot be delayed; they must be
894  * written in the order that the writes are requested.
895  *
896  * Described in Leffler, et al. (pp. 208-213).
897  */
898 void
899 bdwrite(buf_t *bp)
900 {
901 
902 	KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS ||
903 	    bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE));
904 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
905 	KASSERT(!cv_has_waiters(&bp->b_done));
906 
907 	/* If this is a tape block, write the block now. */
908 	if (bdev_type(bp->b_dev) == D_TAPE) {
909 		bawrite(bp);
910 		return;
911 	}
912 
913 	if (wapbl_vphaswapbl(bp->b_vp)) {
914 		struct mount *mp = wapbl_vptomp(bp->b_vp);
915 
916 		if (bp->b_iodone != mp->mnt_wapbl_op->wo_wapbl_biodone) {
917 			WAPBL_ADD_BUF(mp, bp);
918 		}
919 	}
920 
921 	/*
922 	 * If the block hasn't been seen before:
923 	 *	(1) Mark it as having been seen,
924 	 *	(2) Charge for the write,
925 	 *	(3) Make sure it's on its vnode's correct block list.
926 	 */
927 	KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock);
928 
929 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
930 		mutex_enter(&bufcache_lock);
931 		mutex_enter(bp->b_objlock);
932 		SET(bp->b_oflags, BO_DELWRI);
933 		curlwp->l_ru.ru_oublock++;
934 		reassignbuf(bp, bp->b_vp);
935 		mutex_exit(&bufcache_lock);
936 	} else {
937 		mutex_enter(bp->b_objlock);
938 	}
939 	/* Otherwise, the "write" is done, so mark and release the buffer. */
940 	CLR(bp->b_oflags, BO_DONE);
941 	mutex_exit(bp->b_objlock);
942 
943 	brelse(bp, 0);
944 }
945 
946 /*
947  * Asynchronous block write; just an asynchronous bwrite().
948  */
949 void
950 bawrite(buf_t *bp)
951 {
952 
953 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
954 
955 	SET(bp->b_flags, B_ASYNC);
956 	VOP_BWRITE(bp);
957 }
958 
959 /*
960  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
961  * Call with the buffer interlock held.
962  */
963 void
964 bdirty(buf_t *bp)
965 {
966 
967 	KASSERT(mutex_owned(&bufcache_lock));
968 	KASSERT(bp->b_objlock == &bp->b_vp->v_interlock);
969 	KASSERT(mutex_owned(bp->b_objlock));
970 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
971 
972 	CLR(bp->b_cflags, BC_AGE);
973 
974 	if (!ISSET(bp->b_oflags, BO_DELWRI)) {
975 		SET(bp->b_oflags, BO_DELWRI);
976 		curlwp->l_ru.ru_oublock++;
977 		reassignbuf(bp, bp->b_vp);
978 	}
979 }
980 
981 /*
982  * Release a buffer on to the free lists.
983  * Described in Bach (p. 46).
984  */
985 void
986 brelsel(buf_t *bp, int set)
987 {
988 	struct bqueue *bufq;
989 	struct vnode *vp;
990 
991 	KASSERT(mutex_owned(&bufcache_lock));
992 	KASSERT(!cv_has_waiters(&bp->b_done));
993 	KASSERT(bp->b_refcnt > 0);
994 
995 	SET(bp->b_cflags, set);
996 
997 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
998 	KASSERT(bp->b_iodone == NULL);
999 
1000 	/* Wake up any processes waiting for any buffer to become free. */
1001 	cv_signal(&needbuffer_cv);
1002 
1003 	/* Wake up any proceeses waiting for _this_ buffer to become */
1004 	if (ISSET(bp->b_cflags, BC_WANTED))
1005 		CLR(bp->b_cflags, BC_WANTED|BC_AGE);
1006 
1007 	/*
1008 	 * Determine which queue the buffer should be on, then put it there.
1009 	 */
1010 
1011 	/* If it's locked, don't report an error; try again later. */
1012 	if (ISSET(bp->b_flags, B_LOCKED))
1013 		bp->b_error = 0;
1014 
1015 	/* If it's not cacheable, or an error, mark it invalid. */
1016 	if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0)
1017 		SET(bp->b_cflags, BC_INVAL);
1018 
1019 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1020 		/*
1021 		 * This is a delayed write buffer that was just flushed to
1022 		 * disk.  It is still on the LRU queue.  If it's become
1023 		 * invalid, then we need to move it to a different queue;
1024 		 * otherwise leave it in its current position.
1025 		 */
1026 		CLR(bp->b_cflags, BC_VFLUSH);
1027 		if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) &&
1028 		    !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) {
1029 			KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1));
1030 			goto already_queued;
1031 		} else {
1032 			bremfree(bp);
1033 		}
1034 	}
1035 
1036 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0));
1037 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0));
1038 	KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0));
1039 
1040 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) {
1041 		/*
1042 		 * If it's invalid or empty, dissociate it from its vnode
1043 		 * and put on the head of the appropriate queue.
1044 		 */
1045 		if (ISSET(bp->b_flags, B_LOCKED)) {
1046 			if (wapbl_vphaswapbl(vp = bp->b_vp)) {
1047 				struct mount *mp = wapbl_vptomp(vp);
1048 
1049 				KASSERT(bp->b_iodone
1050 				    != mp->mnt_wapbl_op->wo_wapbl_biodone);
1051 				WAPBL_REMOVE_BUF(mp, bp);
1052 			}
1053 		}
1054 
1055 		mutex_enter(bp->b_objlock);
1056 		CLR(bp->b_oflags, BO_DONE|BO_DELWRI);
1057 		if ((vp = bp->b_vp) != NULL) {
1058 			KASSERT(bp->b_objlock == &vp->v_interlock);
1059 			reassignbuf(bp, bp->b_vp);
1060 			brelvp(bp);
1061 			mutex_exit(&vp->v_interlock);
1062 		} else {
1063 			KASSERT(bp->b_objlock == &buffer_lock);
1064 			mutex_exit(bp->b_objlock);
1065 		}
1066 
1067 		if (bp->b_bufsize <= 0)
1068 			/* no data */
1069 			goto already_queued;
1070 		else
1071 			/* invalid data */
1072 			bufq = &bufqueues[BQ_AGE];
1073 		binsheadfree(bp, bufq);
1074 	} else  {
1075 		/*
1076 		 * It has valid data.  Put it on the end of the appropriate
1077 		 * queue, so that it'll stick around for as long as possible.
1078 		 * If buf is AGE, but has dependencies, must put it on last
1079 		 * bufqueue to be scanned, ie LRU. This protects against the
1080 		 * livelock where BQ_AGE only has buffers with dependencies,
1081 		 * and we thus never get to the dependent buffers in BQ_LRU.
1082 		 */
1083 		if (ISSET(bp->b_flags, B_LOCKED)) {
1084 			/* locked in core */
1085 			bufq = &bufqueues[BQ_LOCKED];
1086 		} else if (!ISSET(bp->b_cflags, BC_AGE)) {
1087 			/* valid data */
1088 			bufq = &bufqueues[BQ_LRU];
1089 		} else {
1090 			/* stale but valid data */
1091 			bufq = &bufqueues[BQ_AGE];
1092 		}
1093 		binstailfree(bp, bufq);
1094 	}
1095 already_queued:
1096 	/* Unlock the buffer. */
1097 	CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE);
1098 	CLR(bp->b_flags, B_ASYNC);
1099 	cv_broadcast(&bp->b_busy);
1100 
1101 	if (bp->b_bufsize <= 0)
1102 		brele(bp);
1103 }
1104 
1105 void
1106 brelse(buf_t *bp, int set)
1107 {
1108 
1109 	mutex_enter(&bufcache_lock);
1110 	brelsel(bp, set);
1111 	mutex_exit(&bufcache_lock);
1112 }
1113 
1114 /*
1115  * Determine if a block is in the cache.
1116  * Just look on what would be its hash chain.  If it's there, return
1117  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
1118  * we normally don't return the buffer, unless the caller explicitly
1119  * wants us to.
1120  */
1121 buf_t *
1122 incore(struct vnode *vp, daddr_t blkno)
1123 {
1124 	buf_t *bp;
1125 
1126 	KASSERT(mutex_owned(&bufcache_lock));
1127 
1128 	/* Search hash chain */
1129 	LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
1130 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
1131 		    !ISSET(bp->b_cflags, BC_INVAL)) {
1132 		    	KASSERT(bp->b_objlock == &vp->v_interlock);
1133 		    	return (bp);
1134 		}
1135 	}
1136 
1137 	return (NULL);
1138 }
1139 
1140 /*
1141  * Get a block of requested size that is associated with
1142  * a given vnode and block offset. If it is found in the
1143  * block cache, mark it as having been found, make it busy
1144  * and return it. Otherwise, return an empty block of the
1145  * correct size. It is up to the caller to insure that the
1146  * cached blocks be of the correct size.
1147  */
1148 buf_t *
1149 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1150 {
1151 	int err, preserve;
1152 	buf_t *bp;
1153 
1154 	mutex_enter(&bufcache_lock);
1155  loop:
1156 	bp = incore(vp, blkno);
1157 	if (bp != NULL) {
1158 		err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL);
1159 		if (err != 0) {
1160 			if (err == EPASSTHROUGH)
1161 				goto loop;
1162 			mutex_exit(&bufcache_lock);
1163 			return (NULL);
1164 		}
1165 		KASSERT(!cv_has_waiters(&bp->b_done));
1166 #ifdef DIAGNOSTIC
1167 		if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) &&
1168 		    bp->b_bcount < size && vp->v_type != VBLK)
1169 			panic("getblk: block size invariant failed");
1170 #endif
1171 		bremfree(bp);
1172 		preserve = 1;
1173 	} else {
1174 		if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL)
1175 			goto loop;
1176 
1177 		if (incore(vp, blkno) != NULL) {
1178 			/* The block has come into memory in the meantime. */
1179 			brelsel(bp, 0);
1180 			goto loop;
1181 		}
1182 
1183 		LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash);
1184 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
1185 		mutex_enter(&vp->v_interlock);
1186 		bgetvp(vp, bp);
1187 		mutex_exit(&vp->v_interlock);
1188 		preserve = 0;
1189 	}
1190 	mutex_exit(&bufcache_lock);
1191 
1192 	/*
1193 	 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes)
1194 	 * if we re-size buffers here.
1195 	 */
1196 	if (ISSET(bp->b_flags, B_LOCKED)) {
1197 		KASSERT(bp->b_bufsize >= size);
1198 	} else {
1199 		if (allocbuf(bp, size, preserve)) {
1200 			mutex_enter(&bufcache_lock);
1201 			LIST_REMOVE(bp, b_hash);
1202 			mutex_exit(&bufcache_lock);
1203 			brelse(bp, BC_INVAL);
1204 			return NULL;
1205 		}
1206 	}
1207 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1208 	return (bp);
1209 }
1210 
1211 /*
1212  * Get an empty, disassociated buffer of given size.
1213  */
1214 buf_t *
1215 geteblk(int size)
1216 {
1217 	buf_t *bp;
1218 	int error;
1219 
1220 	mutex_enter(&bufcache_lock);
1221 	while ((bp = getnewbuf(0, 0, 0)) == NULL)
1222 		;
1223 
1224 	SET(bp->b_cflags, BC_INVAL);
1225 	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1226 	mutex_exit(&bufcache_lock);
1227 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1228 	error = allocbuf(bp, size, 0);
1229 	KASSERT(error == 0);
1230 	return (bp);
1231 }
1232 
1233 /*
1234  * Expand or contract the actual memory allocated to a buffer.
1235  *
1236  * If the buffer shrinks, data is lost, so it's up to the
1237  * caller to have written it out *first*; this routine will not
1238  * start a write.  If the buffer grows, it's the callers
1239  * responsibility to fill out the buffer's additional contents.
1240  */
1241 int
1242 allocbuf(buf_t *bp, int size, int preserve)
1243 {
1244 	void *addr;
1245 	vsize_t oldsize, desired_size;
1246 	int oldcount;
1247 	int delta;
1248 
1249 	desired_size = buf_roundsize(size);
1250 	if (desired_size > MAXBSIZE)
1251 		printf("allocbuf: buffer larger than MAXBSIZE requested");
1252 
1253 	oldcount = bp->b_bcount;
1254 
1255 	bp->b_bcount = size;
1256 
1257 	oldsize = bp->b_bufsize;
1258 	if (oldsize == desired_size) {
1259 		/*
1260 		 * Do not short cut the WAPBL resize, as the buffer length
1261 		 * could still have changed and this would corrupt the
1262 		 * tracking of the transaction length.
1263 		 */
1264 		goto out;
1265 	}
1266 
1267 	/*
1268 	 * If we want a buffer of a different size, re-allocate the
1269 	 * buffer's memory; copy old content only if needed.
1270 	 */
1271 	addr = buf_malloc(desired_size);
1272 	if (addr == NULL)
1273 		return ENOMEM;
1274 	if (preserve)
1275 		memcpy(addr, bp->b_data, MIN(oldsize,desired_size));
1276 	if (bp->b_data != NULL)
1277 		buf_mrelease(bp->b_data, oldsize);
1278 	bp->b_data = addr;
1279 	bp->b_bufsize = desired_size;
1280 
1281 	/*
1282 	 * Update overall buffer memory counter (protected by bufcache_lock)
1283 	 */
1284 	delta = (long)desired_size - (long)oldsize;
1285 
1286 	mutex_enter(&bufcache_lock);
1287 	if ((bufmem += delta) > bufmem_hiwater) {
1288 		/*
1289 		 * Need to trim overall memory usage.
1290 		 */
1291 		while (buf_canrelease()) {
1292 			if (curcpu()->ci_schedstate.spc_flags &
1293 			    SPCF_SHOULDYIELD) {
1294 				mutex_exit(&bufcache_lock);
1295 				preempt();
1296 				mutex_enter(&bufcache_lock);
1297 			}
1298 			if (buf_trim() == 0)
1299 				break;
1300 		}
1301 	}
1302 	mutex_exit(&bufcache_lock);
1303 
1304  out:
1305 	if (wapbl_vphaswapbl(bp->b_vp))
1306 		WAPBL_RESIZE_BUF(wapbl_vptomp(bp->b_vp), bp, oldsize, oldcount);
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Find a buffer which is available for use.
1313  * Select something from a free list.
1314  * Preference is to AGE list, then LRU list.
1315  *
1316  * Called with the buffer queues locked.
1317  * Return buffer locked.
1318  */
1319 buf_t *
1320 getnewbuf(int slpflag, int slptimeo, int from_bufq)
1321 {
1322 	buf_t *bp;
1323 	struct vnode *vp;
1324 
1325  start:
1326 	KASSERT(mutex_owned(&bufcache_lock));
1327 
1328 	/*
1329 	 * Get a new buffer from the pool.
1330 	 */
1331 	if (!from_bufq && buf_lotsfree()) {
1332 		mutex_exit(&bufcache_lock);
1333 		bp = pool_cache_get(buf_cache, PR_NOWAIT);
1334 		if (bp != NULL) {
1335 			memset((char *)bp, 0, sizeof(*bp));
1336 			buf_init(bp);
1337 			SET(bp->b_cflags, BC_BUSY);	/* mark buffer busy */
1338 			mutex_enter(&bufcache_lock);
1339 #if defined(DIAGNOSTIC)
1340 			bp->b_freelistindex = -1;
1341 #endif /* defined(DIAGNOSTIC) */
1342 			return (bp);
1343 		}
1344 		mutex_enter(&bufcache_lock);
1345 	}
1346 
1347 	KASSERT(mutex_owned(&bufcache_lock));
1348 	if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL ||
1349 	    (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) {
1350 	    	KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH));
1351 		bremfree(bp);
1352 
1353 		/* Buffer is no longer on free lists. */
1354 		SET(bp->b_cflags, BC_BUSY);
1355 	} else {
1356 		/*
1357 		 * XXX: !from_bufq should be removed.
1358 		 */
1359 		if (!from_bufq || curlwp != uvm.pagedaemon_lwp) {
1360 			/* wait for a free buffer of any kind */
1361 			if ((slpflag & PCATCH) != 0)
1362 				(void)cv_timedwait_sig(&needbuffer_cv,
1363 				    &bufcache_lock, slptimeo);
1364 			else
1365 				(void)cv_timedwait(&needbuffer_cv,
1366 				    &bufcache_lock, slptimeo);
1367 		}
1368 		return (NULL);
1369 	}
1370 
1371 #ifdef DIAGNOSTIC
1372 	if (bp->b_bufsize <= 0)
1373 		panic("buffer %p: on queue but empty", bp);
1374 #endif
1375 
1376 	if (ISSET(bp->b_cflags, BC_VFLUSH)) {
1377 		/*
1378 		 * This is a delayed write buffer being flushed to disk.  Make
1379 		 * sure it gets aged out of the queue when it's finished, and
1380 		 * leave it off the LRU queue.
1381 		 */
1382 		CLR(bp->b_cflags, BC_VFLUSH);
1383 		SET(bp->b_cflags, BC_AGE);
1384 		goto start;
1385 	}
1386 
1387 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1388 	KASSERT(bp->b_refcnt > 0);
1389     	KASSERT(!cv_has_waiters(&bp->b_done));
1390 
1391 	/*
1392 	 * If buffer was a delayed write, start it and return NULL
1393 	 * (since we might sleep while starting the write).
1394 	 */
1395 	if (ISSET(bp->b_oflags, BO_DELWRI)) {
1396 		/*
1397 		 * This buffer has gone through the LRU, so make sure it gets
1398 		 * reused ASAP.
1399 		 */
1400 		SET(bp->b_cflags, BC_AGE);
1401 		mutex_exit(&bufcache_lock);
1402 		bawrite(bp);
1403 		mutex_enter(&bufcache_lock);
1404 		return (NULL);
1405 	}
1406 
1407 	vp = bp->b_vp;
1408 
1409 	/* clear out various other fields */
1410 	bp->b_cflags = BC_BUSY;
1411 	bp->b_oflags = 0;
1412 	bp->b_flags = 0;
1413 	bp->b_dev = NODEV;
1414 	bp->b_blkno = 0;
1415 	bp->b_lblkno = 0;
1416 	bp->b_rawblkno = 0;
1417 	bp->b_iodone = 0;
1418 	bp->b_error = 0;
1419 	bp->b_resid = 0;
1420 	bp->b_bcount = 0;
1421 
1422 	LIST_REMOVE(bp, b_hash);
1423 
1424 	/* Disassociate us from our vnode, if we had one... */
1425 	if (vp != NULL) {
1426 		mutex_enter(&vp->v_interlock);
1427 		brelvp(bp);
1428 		mutex_exit(&vp->v_interlock);
1429 	}
1430 
1431 	return (bp);
1432 }
1433 
1434 /*
1435  * Attempt to free an aged buffer off the queues.
1436  * Called with queue lock held.
1437  * Returns the amount of buffer memory freed.
1438  */
1439 static int
1440 buf_trim(void)
1441 {
1442 	buf_t *bp;
1443 	long size = 0;
1444 
1445 	KASSERT(mutex_owned(&bufcache_lock));
1446 
1447 	/* Instruct getnewbuf() to get buffers off the queues */
1448 	if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL)
1449 		return 0;
1450 
1451 	KASSERT((bp->b_cflags & BC_WANTED) == 0);
1452 	size = bp->b_bufsize;
1453 	bufmem -= size;
1454 	if (size > 0) {
1455 		buf_mrelease(bp->b_data, size);
1456 		bp->b_bcount = bp->b_bufsize = 0;
1457 	}
1458 	/* brelse() will return the buffer to the global buffer pool */
1459 	brelsel(bp, 0);
1460 	return size;
1461 }
1462 
1463 int
1464 buf_drain(int n)
1465 {
1466 	int size = 0, sz;
1467 
1468 	KASSERT(mutex_owned(&bufcache_lock));
1469 
1470 	while (size < n && bufmem > bufmem_lowater) {
1471 		sz = buf_trim();
1472 		if (sz <= 0)
1473 			break;
1474 		size += sz;
1475 	}
1476 
1477 	return size;
1478 }
1479 
1480 /*
1481  * Wait for operations on the buffer to complete.
1482  * When they do, extract and return the I/O's error value.
1483  */
1484 int
1485 biowait(buf_t *bp)
1486 {
1487 
1488 	KASSERT(ISSET(bp->b_cflags, BC_BUSY));
1489 	KASSERT(bp->b_refcnt > 0);
1490 
1491 	mutex_enter(bp->b_objlock);
1492 	while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI))
1493 		cv_wait(&bp->b_done, bp->b_objlock);
1494 	mutex_exit(bp->b_objlock);
1495 
1496 	return bp->b_error;
1497 }
1498 
1499 /*
1500  * Mark I/O complete on a buffer.
1501  *
1502  * If a callback has been requested, e.g. the pageout
1503  * daemon, do so. Otherwise, awaken waiting processes.
1504  *
1505  * [ Leffler, et al., says on p.247:
1506  *	"This routine wakes up the blocked process, frees the buffer
1507  *	for an asynchronous write, or, for a request by the pagedaemon
1508  *	process, invokes a procedure specified in the buffer structure" ]
1509  *
1510  * In real life, the pagedaemon (or other system processes) wants
1511  * to do async stuff to, and doesn't want the buffer brelse()'d.
1512  * (for swap pager, that puts swap buffers on the free lists (!!!),
1513  * for the vn device, that puts malloc'd buffers on the free lists!)
1514  */
1515 void
1516 biodone(buf_t *bp)
1517 {
1518 	int s;
1519 
1520 	KASSERT(!ISSET(bp->b_oflags, BO_DONE));
1521 
1522 	if (cpu_intr_p()) {
1523 		/* From interrupt mode: defer to a soft interrupt. */
1524 		s = splvm();
1525 		TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq);
1526 		softint_schedule(biodone_sih);
1527 		splx(s);
1528 	} else {
1529 		/* Process now - the buffer may be freed soon. */
1530 		biodone2(bp);
1531 	}
1532 }
1533 
1534 static void
1535 biodone2(buf_t *bp)
1536 {
1537 	void (*callout)(buf_t *);
1538 
1539 	mutex_enter(bp->b_objlock);
1540 	/* Note that the transfer is done. */
1541 	if (ISSET(bp->b_oflags, BO_DONE))
1542 		panic("biodone2 already");
1543 	CLR(bp->b_flags, B_COWDONE);
1544 	SET(bp->b_oflags, BO_DONE);
1545 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
1546 
1547 	/* Wake up waiting writers. */
1548 	if (!ISSET(bp->b_flags, B_READ))
1549 		vwakeup(bp);
1550 
1551 	if ((callout = bp->b_iodone) != NULL) {
1552 		/* Note callout done, then call out. */
1553 		KASSERT(!cv_has_waiters(&bp->b_done));
1554 		KERNEL_LOCK(1, NULL);		/* XXXSMP */
1555 		bp->b_iodone = NULL;
1556 		mutex_exit(bp->b_objlock);
1557 		(*callout)(bp);
1558 		KERNEL_UNLOCK_ONE(NULL);	/* XXXSMP */
1559 	} else if (ISSET(bp->b_flags, B_ASYNC)) {
1560 		/* If async, release. */
1561 		KASSERT(!cv_has_waiters(&bp->b_done));
1562 		mutex_exit(bp->b_objlock);
1563 		brelse(bp, 0);
1564 	} else {
1565 		/* Otherwise just wake up waiters in biowait(). */
1566 		cv_broadcast(&bp->b_done);
1567 		mutex_exit(bp->b_objlock);
1568 	}
1569 }
1570 
1571 static void
1572 biointr(void *cookie)
1573 {
1574 	struct cpu_info *ci;
1575 	buf_t *bp;
1576 	int s;
1577 
1578 	ci = curcpu();
1579 
1580 	while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) {
1581 		KASSERT(curcpu() == ci);
1582 
1583 		s = splvm();
1584 		bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone);
1585 		TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq);
1586 		splx(s);
1587 
1588 		biodone2(bp);
1589 	}
1590 }
1591 
1592 /*
1593  * Return a count of buffers on the "locked" queue.
1594  */
1595 int
1596 count_lock_queue(void)
1597 {
1598 	buf_t *bp;
1599 	int n = 0;
1600 
1601 	mutex_enter(&bufcache_lock);
1602 	TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist)
1603 		n++;
1604 	mutex_exit(&bufcache_lock);
1605 	return (n);
1606 }
1607 
1608 /*
1609  * Wait for all buffers to complete I/O
1610  * Return the number of "stuck" buffers.
1611  */
1612 int
1613 buf_syncwait(void)
1614 {
1615 	buf_t *bp;
1616 	int iter, nbusy, nbusy_prev = 0, dcount, ihash;
1617 
1618 	dcount = 10000;
1619 	for (iter = 0; iter < 20;) {
1620 		mutex_enter(&bufcache_lock);
1621 		nbusy = 0;
1622 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1623 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1624 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY)
1625 				nbusy += ((bp->b_flags & B_READ) == 0);
1626 		    }
1627 		}
1628 		mutex_exit(&bufcache_lock);
1629 
1630 		if (nbusy == 0)
1631 			break;
1632 		if (nbusy_prev == 0)
1633 			nbusy_prev = nbusy;
1634 		printf("%d ", nbusy);
1635 		kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL);
1636 		if (nbusy >= nbusy_prev) /* we didn't flush anything */
1637 			iter++;
1638 		else
1639 			nbusy_prev = nbusy;
1640 	}
1641 
1642 	if (nbusy) {
1643 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY)
1644 		printf("giving up\nPrinting vnodes for busy buffers\n");
1645 		for (ihash = 0; ihash < bufhash+1; ihash++) {
1646 		    LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) {
1647 			if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY &&
1648 			    (bp->b_flags & B_READ) == 0)
1649 				vprint(NULL, bp->b_vp);
1650 		    }
1651 		}
1652 #endif
1653 	}
1654 
1655 	return nbusy;
1656 }
1657 
1658 static void
1659 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o)
1660 {
1661 
1662 	o->b_flags = i->b_flags | i->b_cflags | i->b_oflags;
1663 	o->b_error = i->b_error;
1664 	o->b_prio = i->b_prio;
1665 	o->b_dev = i->b_dev;
1666 	o->b_bufsize = i->b_bufsize;
1667 	o->b_bcount = i->b_bcount;
1668 	o->b_resid = i->b_resid;
1669 	o->b_addr = PTRTOUINT64(i->b_data);
1670 	o->b_blkno = i->b_blkno;
1671 	o->b_rawblkno = i->b_rawblkno;
1672 	o->b_iodone = PTRTOUINT64(i->b_iodone);
1673 	o->b_proc = PTRTOUINT64(i->b_proc);
1674 	o->b_vp = PTRTOUINT64(i->b_vp);
1675 	o->b_saveaddr = PTRTOUINT64(i->b_saveaddr);
1676 	o->b_lblkno = i->b_lblkno;
1677 }
1678 
1679 #define KERN_BUFSLOP 20
1680 static int
1681 sysctl_dobuf(SYSCTLFN_ARGS)
1682 {
1683 	buf_t *bp;
1684 	struct buf_sysctl bs;
1685 	struct bqueue *bq;
1686 	char *dp;
1687 	u_int i, op, arg;
1688 	size_t len, needed, elem_size, out_size;
1689 	int error, elem_count, retries;
1690 
1691 	if (namelen == 1 && name[0] == CTL_QUERY)
1692 		return (sysctl_query(SYSCTLFN_CALL(rnode)));
1693 
1694 	if (namelen != 4)
1695 		return (EINVAL);
1696 
1697 	retries = 100;
1698  retry:
1699 	dp = oldp;
1700 	len = (oldp != NULL) ? *oldlenp : 0;
1701 	op = name[0];
1702 	arg = name[1];
1703 	elem_size = name[2];
1704 	elem_count = name[3];
1705 	out_size = MIN(sizeof(bs), elem_size);
1706 
1707 	/*
1708 	 * at the moment, these are just "placeholders" to make the
1709 	 * API for retrieving kern.buf data more extensible in the
1710 	 * future.
1711 	 *
1712 	 * XXX kern.buf currently has "netbsd32" issues.  hopefully
1713 	 * these will be resolved at a later point.
1714 	 */
1715 	if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL ||
1716 	    elem_size < 1 || elem_count < 0)
1717 		return (EINVAL);
1718 
1719 	error = 0;
1720 	needed = 0;
1721 	sysctl_unlock();
1722 	mutex_enter(&bufcache_lock);
1723 	for (i = 0; i < BQUEUES; i++) {
1724 		bq = &bufqueues[i];
1725 		TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) {
1726 			bq->bq_marker = bp;
1727 			if (len >= elem_size && elem_count > 0) {
1728 				sysctl_fillbuf(bp, &bs);
1729 				mutex_exit(&bufcache_lock);
1730 				error = copyout(&bs, dp, out_size);
1731 				mutex_enter(&bufcache_lock);
1732 				if (error)
1733 					break;
1734 				if (bq->bq_marker != bp) {
1735 					/*
1736 					 * This sysctl node is only for
1737 					 * statistics.  Retry; if the
1738 					 * queue keeps changing, then
1739 					 * bail out.
1740 					 */
1741 					if (retries-- == 0) {
1742 						error = EAGAIN;
1743 						break;
1744 					}
1745 					mutex_exit(&bufcache_lock);
1746 					goto retry;
1747 				}
1748 				dp += elem_size;
1749 				len -= elem_size;
1750 			}
1751 			needed += elem_size;
1752 			if (elem_count > 0 && elem_count != INT_MAX)
1753 				elem_count--;
1754 		}
1755 		if (error != 0)
1756 			break;
1757 	}
1758 	mutex_exit(&bufcache_lock);
1759 	sysctl_relock();
1760 
1761 	*oldlenp = needed;
1762 	if (oldp == NULL)
1763 		*oldlenp += KERN_BUFSLOP * sizeof(buf_t);
1764 
1765 	return (error);
1766 }
1767 
1768 static int
1769 sysctl_bufvm_update(SYSCTLFN_ARGS)
1770 {
1771 	int t, error, rv;
1772 	struct sysctlnode node;
1773 
1774 	node = *rnode;
1775 	node.sysctl_data = &t;
1776 	t = *(int *)rnode->sysctl_data;
1777 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1778 	if (error || newp == NULL)
1779 		return (error);
1780 
1781 	if (t < 0)
1782 		return EINVAL;
1783 	if (rnode->sysctl_data == &bufcache) {
1784 		if (t > 100)
1785 			return (EINVAL);
1786 		bufcache = t;
1787 		buf_setwm();
1788 	} else if (rnode->sysctl_data == &bufmem_lowater) {
1789 		if (bufmem_hiwater - t < 16)
1790 			return (EINVAL);
1791 		bufmem_lowater = t;
1792 	} else if (rnode->sysctl_data == &bufmem_hiwater) {
1793 		if (t - bufmem_lowater < 16)
1794 			return (EINVAL);
1795 		bufmem_hiwater = t;
1796 	} else
1797 		return (EINVAL);
1798 
1799 	/* Drain until below new high water mark */
1800 	sysctl_unlock();
1801 	mutex_enter(&bufcache_lock);
1802 	while ((t = bufmem - bufmem_hiwater) >= 0) {
1803 		rv = buf_drain(t / (2 * 1024));
1804 		if (rv <= 0)
1805 			break;
1806 	}
1807 	mutex_exit(&bufcache_lock);
1808 	sysctl_relock();
1809 
1810 	return 0;
1811 }
1812 
1813 static struct sysctllog *vfsbio_sysctllog;
1814 
1815 static void
1816 sysctl_kern_buf_setup(void)
1817 {
1818 
1819 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1820 		       CTLFLAG_PERMANENT,
1821 		       CTLTYPE_NODE, "kern", NULL,
1822 		       NULL, 0, NULL, 0,
1823 		       CTL_KERN, CTL_EOL);
1824 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1825 		       CTLFLAG_PERMANENT,
1826 		       CTLTYPE_NODE, "buf",
1827 		       SYSCTL_DESCR("Kernel buffer cache information"),
1828 		       sysctl_dobuf, 0, NULL, 0,
1829 		       CTL_KERN, KERN_BUF, CTL_EOL);
1830 }
1831 
1832 static void
1833 sysctl_vm_buf_setup(void)
1834 {
1835 
1836 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1837 		       CTLFLAG_PERMANENT,
1838 		       CTLTYPE_NODE, "vm", NULL,
1839 		       NULL, 0, NULL, 0,
1840 		       CTL_VM, CTL_EOL);
1841 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1842 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1843 		       CTLTYPE_INT, "bufcache",
1844 		       SYSCTL_DESCR("Percentage of physical memory to use for "
1845 				    "buffer cache"),
1846 		       sysctl_bufvm_update, 0, &bufcache, 0,
1847 		       CTL_VM, CTL_CREATE, CTL_EOL);
1848 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1849 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1850 		       CTLTYPE_INT, "bufmem",
1851 		       SYSCTL_DESCR("Amount of kernel memory used by buffer "
1852 				    "cache"),
1853 		       NULL, 0, &bufmem, 0,
1854 		       CTL_VM, CTL_CREATE, CTL_EOL);
1855 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1856 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1857 		       CTLTYPE_INT, "bufmem_lowater",
1858 		       SYSCTL_DESCR("Minimum amount of kernel memory to "
1859 				    "reserve for buffer cache"),
1860 		       sysctl_bufvm_update, 0, &bufmem_lowater, 0,
1861 		       CTL_VM, CTL_CREATE, CTL_EOL);
1862 	sysctl_createv(&vfsbio_sysctllog, 0, NULL, NULL,
1863 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1864 		       CTLTYPE_INT, "bufmem_hiwater",
1865 		       SYSCTL_DESCR("Maximum amount of kernel memory to use "
1866 				    "for buffer cache"),
1867 		       sysctl_bufvm_update, 0, &bufmem_hiwater, 0,
1868 		       CTL_VM, CTL_CREATE, CTL_EOL);
1869 }
1870 
1871 #ifdef DEBUG
1872 /*
1873  * Print out statistics on the current allocation of the buffer pool.
1874  * Can be enabled to print out on every ``sync'' by setting "syncprt"
1875  * in vfs_syscalls.c using sysctl.
1876  */
1877 void
1878 vfs_bufstats(void)
1879 {
1880 	int i, j, count;
1881 	buf_t *bp;
1882 	struct bqueue *dp;
1883 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1884 	static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" };
1885 
1886 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1887 		count = 0;
1888 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1889 			counts[j] = 0;
1890 		TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) {
1891 			counts[bp->b_bufsize/PAGE_SIZE]++;
1892 			count++;
1893 		}
1894 		printf("%s: total-%d", bname[i], count);
1895 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1896 			if (counts[j] != 0)
1897 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1898 		printf("\n");
1899 	}
1900 }
1901 #endif /* DEBUG */
1902 
1903 /* ------------------------------ */
1904 
1905 buf_t *
1906 getiobuf(struct vnode *vp, bool waitok)
1907 {
1908 	buf_t *bp;
1909 
1910 	bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
1911 	if (bp == NULL)
1912 		return bp;
1913 
1914 	buf_init(bp);
1915 
1916 	if ((bp->b_vp = vp) == NULL)
1917 		bp->b_objlock = &buffer_lock;
1918 	else
1919 		bp->b_objlock = &vp->v_interlock;
1920 
1921 	return bp;
1922 }
1923 
1924 void
1925 putiobuf(buf_t *bp)
1926 {
1927 
1928 	buf_destroy(bp);
1929 	pool_cache_put(bufio_cache, bp);
1930 }
1931 
1932 /*
1933  * nestiobuf_iodone: b_iodone callback for nested buffers.
1934  */
1935 
1936 void
1937 nestiobuf_iodone(buf_t *bp)
1938 {
1939 	buf_t *mbp = bp->b_private;
1940 	int error;
1941 	int donebytes;
1942 
1943 	KASSERT(bp->b_bcount <= bp->b_bufsize);
1944 	KASSERT(mbp != bp);
1945 
1946 	error = bp->b_error;
1947 	if (bp->b_error == 0 &&
1948 	    (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) {
1949 		/*
1950 		 * Not all got transfered, raise an error. We have no way to
1951 		 * propagate these conditions to mbp.
1952 		 */
1953 		error = EIO;
1954 	}
1955 
1956 	donebytes = bp->b_bufsize;
1957 
1958 	putiobuf(bp);
1959 	nestiobuf_done(mbp, donebytes, error);
1960 }
1961 
1962 /*
1963  * nestiobuf_setup: setup a "nested" buffer.
1964  *
1965  * => 'mbp' is a "master" buffer which is being divided into sub pieces.
1966  * => 'bp' should be a buffer allocated by getiobuf.
1967  * => 'offset' is a byte offset in the master buffer.
1968  * => 'size' is a size in bytes of this nested buffer.
1969  */
1970 
1971 void
1972 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size)
1973 {
1974 	const int b_read = mbp->b_flags & B_READ;
1975 	struct vnode *vp = mbp->b_vp;
1976 
1977 	KASSERT(mbp->b_bcount >= offset + size);
1978 	bp->b_vp = vp;
1979 	bp->b_dev = mbp->b_dev;
1980 	bp->b_objlock = mbp->b_objlock;
1981 	bp->b_cflags = BC_BUSY;
1982 	bp->b_flags = B_ASYNC | b_read;
1983 	bp->b_iodone = nestiobuf_iodone;
1984 	bp->b_data = (char *)mbp->b_data + offset;
1985 	bp->b_resid = bp->b_bcount = size;
1986 	bp->b_bufsize = bp->b_bcount;
1987 	bp->b_private = mbp;
1988 	BIO_COPYPRIO(bp, mbp);
1989 	if (!b_read && vp != NULL) {
1990 		mutex_enter(&vp->v_interlock);
1991 		vp->v_numoutput++;
1992 		mutex_exit(&vp->v_interlock);
1993 	}
1994 }
1995 
1996 /*
1997  * nestiobuf_done: propagate completion to the master buffer.
1998  *
1999  * => 'donebytes' specifies how many bytes in the 'mbp' is completed.
2000  * => 'error' is an errno(2) that 'donebytes' has been completed with.
2001  */
2002 
2003 void
2004 nestiobuf_done(buf_t *mbp, int donebytes, int error)
2005 {
2006 
2007 	if (donebytes == 0) {
2008 		return;
2009 	}
2010 	mutex_enter(mbp->b_objlock);
2011 	KASSERT(mbp->b_resid >= donebytes);
2012 	mbp->b_resid -= donebytes;
2013 	if (error)
2014 		mbp->b_error = error;
2015 	if (mbp->b_resid == 0) {
2016 		mutex_exit(mbp->b_objlock);
2017 		biodone(mbp);
2018 	} else
2019 		mutex_exit(mbp->b_objlock);
2020 }
2021 
2022 void
2023 buf_init(buf_t *bp)
2024 {
2025 
2026 	cv_init(&bp->b_busy, "biolock");
2027 	cv_init(&bp->b_done, "biowait");
2028 	bp->b_dev = NODEV;
2029 	bp->b_error = 0;
2030 	bp->b_flags = 0;
2031 	bp->b_cflags = 0;
2032 	bp->b_oflags = 0;
2033 	bp->b_objlock = &buffer_lock;
2034 	bp->b_iodone = NULL;
2035 	bp->b_refcnt = 1;
2036 	bp->b_dev = NODEV;
2037 	bp->b_vnbufs.le_next = NOLIST;
2038 	BIO_SETPRIO(bp, BPRIO_DEFAULT);
2039 }
2040 
2041 void
2042 buf_destroy(buf_t *bp)
2043 {
2044 
2045 	cv_destroy(&bp->b_done);
2046 	cv_destroy(&bp->b_busy);
2047 }
2048 
2049 int
2050 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock)
2051 {
2052 	int error;
2053 
2054 	KASSERT(mutex_owned(&bufcache_lock));
2055 
2056 	if ((bp->b_cflags & BC_BUSY) != 0) {
2057 		if (curlwp == uvm.pagedaemon_lwp)
2058 			return EDEADLK;
2059 		bp->b_cflags |= BC_WANTED;
2060 		bref(bp);
2061 		if (interlock != NULL)
2062 			mutex_exit(interlock);
2063 		if (intr) {
2064 			error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock,
2065 			    timo);
2066 		} else {
2067 			error = cv_timedwait(&bp->b_busy, &bufcache_lock,
2068 			    timo);
2069 		}
2070 		brele(bp);
2071 		if (interlock != NULL)
2072 			mutex_enter(interlock);
2073 		if (error != 0)
2074 			return error;
2075 		return EPASSTHROUGH;
2076 	}
2077 	bp->b_cflags |= BC_BUSY;
2078 
2079 	return 0;
2080 }
2081