1 /* $NetBSD: vfs_bio.c,v 1.207 2008/07/14 16:22:42 hannken Exp $ */ 2 3 /*- 4 * Copyright (c) 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /*- 33 * Copyright (c) 1982, 1986, 1989, 1993 34 * The Regents of the University of California. All rights reserved. 35 * (c) UNIX System Laboratories, Inc. 36 * All or some portions of this file are derived from material licensed 37 * to the University of California by American Telephone and Telegraph 38 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 39 * the permission of UNIX System Laboratories, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 66 */ 67 68 /*- 69 * Copyright (c) 1994 Christopher G. Demetriou 70 * 71 * Redistribution and use in source and binary forms, with or without 72 * modification, are permitted provided that the following conditions 73 * are met: 74 * 1. Redistributions of source code must retain the above copyright 75 * notice, this list of conditions and the following disclaimer. 76 * 2. Redistributions in binary form must reproduce the above copyright 77 * notice, this list of conditions and the following disclaimer in the 78 * documentation and/or other materials provided with the distribution. 79 * 3. All advertising materials mentioning features or use of this software 80 * must display the following acknowledgement: 81 * This product includes software developed by the University of 82 * California, Berkeley and its contributors. 83 * 4. Neither the name of the University nor the names of its contributors 84 * may be used to endorse or promote products derived from this software 85 * without specific prior written permission. 86 * 87 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 88 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 89 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 90 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 91 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 92 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 93 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 94 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 95 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 96 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 97 * SUCH DAMAGE. 98 * 99 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94 100 */ 101 102 /* 103 * Some references: 104 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986) 105 * Leffler, et al.: The Design and Implementation of the 4.3BSD 106 * UNIX Operating System (Addison Welley, 1989) 107 */ 108 109 #include <sys/cdefs.h> 110 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.207 2008/07/14 16:22:42 hannken Exp $"); 111 112 #include "fs_ffs.h" 113 #include "opt_bufcache.h" 114 115 #include <sys/param.h> 116 #include <sys/systm.h> 117 #include <sys/kernel.h> 118 #include <sys/proc.h> 119 #include <sys/buf.h> 120 #include <sys/vnode.h> 121 #include <sys/mount.h> 122 #include <sys/resourcevar.h> 123 #include <sys/sysctl.h> 124 #include <sys/conf.h> 125 #include <sys/kauth.h> 126 #include <sys/fstrans.h> 127 #include <sys/intr.h> 128 #include <sys/cpu.h> 129 130 #include <uvm/uvm.h> 131 132 #include <miscfs/specfs/specdev.h> 133 134 #ifndef BUFPAGES 135 # define BUFPAGES 0 136 #endif 137 138 #ifdef BUFCACHE 139 # if (BUFCACHE < 5) || (BUFCACHE > 95) 140 # error BUFCACHE is not between 5 and 95 141 # endif 142 #else 143 # define BUFCACHE 15 144 #endif 145 146 u_int nbuf; /* XXX - for softdep_lockedbufs */ 147 u_int bufpages = BUFPAGES; /* optional hardwired count */ 148 u_int bufcache = BUFCACHE; /* max % of RAM to use for buffer cache */ 149 150 /* Function prototypes */ 151 struct bqueue; 152 153 static void buf_setwm(void); 154 static int buf_trim(void); 155 static void *bufpool_page_alloc(struct pool *, int); 156 static void bufpool_page_free(struct pool *, void *); 157 static buf_t *bio_doread(struct vnode *, daddr_t, int, 158 kauth_cred_t, int); 159 static buf_t *getnewbuf(int, int, int); 160 static int buf_lotsfree(void); 161 static int buf_canrelease(void); 162 static u_long buf_mempoolidx(u_long); 163 static u_long buf_roundsize(u_long); 164 static void *buf_malloc(size_t); 165 static void buf_mrelease(void *, size_t); 166 static void binsheadfree(buf_t *, struct bqueue *); 167 static void binstailfree(buf_t *, struct bqueue *); 168 int count_lock_queue(void); /* XXX */ 169 #ifdef DEBUG 170 static int checkfreelist(buf_t *, struct bqueue *, int); 171 #endif 172 static void biointr(void *); 173 static void biodone2(buf_t *); 174 static void bref(buf_t *); 175 static void brele(buf_t *); 176 177 /* 178 * Definitions for the buffer hash lists. 179 */ 180 #define BUFHASH(dvp, lbn) \ 181 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash]) 182 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash; 183 u_long bufhash; 184 struct bqueue bufqueues[BQUEUES]; 185 const struct bio_ops *bioopsp; /* I/O operation notification */ 186 187 static kcondvar_t needbuffer_cv; 188 189 /* 190 * Buffer queue lock. 191 */ 192 kmutex_t bufcache_lock; 193 kmutex_t buffer_lock; 194 195 /* Software ISR for completed transfers. */ 196 static void *biodone_sih; 197 198 /* Buffer pool for I/O buffers. */ 199 static pool_cache_t buf_cache; 200 static pool_cache_t bufio_cache; 201 202 /* XXX - somewhat gross.. */ 203 #if MAXBSIZE == 0x2000 204 #define NMEMPOOLS 5 205 #elif MAXBSIZE == 0x4000 206 #define NMEMPOOLS 6 207 #elif MAXBSIZE == 0x8000 208 #define NMEMPOOLS 7 209 #else 210 #define NMEMPOOLS 8 211 #endif 212 213 #define MEMPOOL_INDEX_OFFSET 9 /* smallest pool is 512 bytes */ 214 #if (1 << (NMEMPOOLS + MEMPOOL_INDEX_OFFSET - 1)) != MAXBSIZE 215 #error update vfs_bio buffer memory parameters 216 #endif 217 218 /* Buffer memory pools */ 219 static struct pool bmempools[NMEMPOOLS]; 220 221 static struct vm_map *buf_map; 222 223 /* 224 * Buffer memory pool allocator. 225 */ 226 static void * 227 bufpool_page_alloc(struct pool *pp, int flags) 228 { 229 230 return (void *)uvm_km_alloc(buf_map, 231 MAXBSIZE, MAXBSIZE, 232 ((flags & PR_WAITOK) ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) 233 | UVM_KMF_WIRED); 234 } 235 236 static void 237 bufpool_page_free(struct pool *pp, void *v) 238 { 239 240 uvm_km_free(buf_map, (vaddr_t)v, MAXBSIZE, UVM_KMF_WIRED); 241 } 242 243 static struct pool_allocator bufmempool_allocator = { 244 .pa_alloc = bufpool_page_alloc, 245 .pa_free = bufpool_page_free, 246 .pa_pagesz = MAXBSIZE, 247 }; 248 249 /* Buffer memory management variables */ 250 u_long bufmem_valimit; 251 u_long bufmem_hiwater; 252 u_long bufmem_lowater; 253 u_long bufmem; 254 255 /* 256 * MD code can call this to set a hard limit on the amount 257 * of virtual memory used by the buffer cache. 258 */ 259 int 260 buf_setvalimit(vsize_t sz) 261 { 262 263 /* We need to accommodate at least NMEMPOOLS of MAXBSIZE each */ 264 if (sz < NMEMPOOLS * MAXBSIZE) 265 return EINVAL; 266 267 bufmem_valimit = sz; 268 return 0; 269 } 270 271 static void 272 buf_setwm(void) 273 { 274 275 bufmem_hiwater = buf_memcalc(); 276 /* lowater is approx. 2% of memory (with bufcache = 15) */ 277 #define BUFMEM_WMSHIFT 3 278 #define BUFMEM_HIWMMIN (64 * 1024 << BUFMEM_WMSHIFT) 279 if (bufmem_hiwater < BUFMEM_HIWMMIN) 280 /* Ensure a reasonable minimum value */ 281 bufmem_hiwater = BUFMEM_HIWMMIN; 282 bufmem_lowater = bufmem_hiwater >> BUFMEM_WMSHIFT; 283 } 284 285 #ifdef DEBUG 286 int debug_verify_freelist = 0; 287 static int 288 checkfreelist(buf_t *bp, struct bqueue *dp, int ison) 289 { 290 buf_t *b; 291 292 if (!debug_verify_freelist) 293 return 1; 294 295 TAILQ_FOREACH(b, &dp->bq_queue, b_freelist) { 296 if (b == bp) 297 return ison ? 1 : 0; 298 } 299 300 return ison ? 0 : 1; 301 } 302 #endif 303 304 /* 305 * Insq/Remq for the buffer hash lists. 306 * Call with buffer queue locked. 307 */ 308 static void 309 binsheadfree(buf_t *bp, struct bqueue *dp) 310 { 311 312 KASSERT(mutex_owned(&bufcache_lock)); 313 KASSERT(bp->b_freelistindex == -1); 314 TAILQ_INSERT_HEAD(&dp->bq_queue, bp, b_freelist); 315 dp->bq_bytes += bp->b_bufsize; 316 bp->b_freelistindex = dp - bufqueues; 317 } 318 319 static void 320 binstailfree(buf_t *bp, struct bqueue *dp) 321 { 322 323 KASSERT(mutex_owned(&bufcache_lock)); 324 KASSERT(bp->b_freelistindex == -1); 325 TAILQ_INSERT_TAIL(&dp->bq_queue, bp, b_freelist); 326 dp->bq_bytes += bp->b_bufsize; 327 bp->b_freelistindex = dp - bufqueues; 328 } 329 330 void 331 bremfree(buf_t *bp) 332 { 333 struct bqueue *dp; 334 int bqidx = bp->b_freelistindex; 335 336 KASSERT(mutex_owned(&bufcache_lock)); 337 338 KASSERT(bqidx != -1); 339 dp = &bufqueues[bqidx]; 340 KDASSERT(checkfreelist(bp, dp, 1)); 341 KASSERT(dp->bq_bytes >= bp->b_bufsize); 342 TAILQ_REMOVE(&dp->bq_queue, bp, b_freelist); 343 dp->bq_bytes -= bp->b_bufsize; 344 345 /* For the sysctl helper. */ 346 if (bp == dp->bq_marker) 347 dp->bq_marker = NULL; 348 349 #if defined(DIAGNOSTIC) 350 bp->b_freelistindex = -1; 351 #endif /* defined(DIAGNOSTIC) */ 352 } 353 354 /* 355 * Add a reference to an buffer structure that came from buf_cache. 356 */ 357 static inline void 358 bref(buf_t *bp) 359 { 360 361 KASSERT(mutex_owned(&bufcache_lock)); 362 KASSERT(bp->b_refcnt > 0); 363 364 bp->b_refcnt++; 365 } 366 367 /* 368 * Free an unused buffer structure that came from buf_cache. 369 */ 370 static inline void 371 brele(buf_t *bp) 372 { 373 374 KASSERT(mutex_owned(&bufcache_lock)); 375 KASSERT(bp->b_refcnt > 0); 376 377 if (bp->b_refcnt-- == 1) { 378 buf_destroy(bp); 379 #ifdef DEBUG 380 memset((char *)bp, 0, sizeof(*bp)); 381 #endif 382 pool_cache_put(buf_cache, bp); 383 } 384 } 385 386 /* 387 * note that for some ports this is used by pmap bootstrap code to 388 * determine kva size. 389 */ 390 u_long 391 buf_memcalc(void) 392 { 393 u_long n; 394 395 /* 396 * Determine the upper bound of memory to use for buffers. 397 * 398 * - If bufpages is specified, use that as the number 399 * pages. 400 * 401 * - Otherwise, use bufcache as the percentage of 402 * physical memory. 403 */ 404 if (bufpages != 0) { 405 n = bufpages; 406 } else { 407 if (bufcache < 5) { 408 printf("forcing bufcache %d -> 5", bufcache); 409 bufcache = 5; 410 } 411 if (bufcache > 95) { 412 printf("forcing bufcache %d -> 95", bufcache); 413 bufcache = 95; 414 } 415 n = calc_cache_size(buf_map, bufcache, 416 (buf_map != kernel_map) ? 100 : BUFCACHE_VA_MAXPCT) 417 / PAGE_SIZE; 418 } 419 420 n <<= PAGE_SHIFT; 421 if (bufmem_valimit != 0 && n > bufmem_valimit) 422 n = bufmem_valimit; 423 424 return (n); 425 } 426 427 /* 428 * Initialize buffers and hash links for buffers. 429 */ 430 void 431 bufinit(void) 432 { 433 struct bqueue *dp; 434 int use_std; 435 u_int i; 436 437 mutex_init(&bufcache_lock, MUTEX_DEFAULT, IPL_NONE); 438 mutex_init(&buffer_lock, MUTEX_DEFAULT, IPL_NONE); 439 cv_init(&needbuffer_cv, "needbuf"); 440 441 if (bufmem_valimit != 0) { 442 vaddr_t minaddr = 0, maxaddr; 443 buf_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr, 444 bufmem_valimit, 0, false, 0); 445 if (buf_map == NULL) 446 panic("bufinit: cannot allocate submap"); 447 } else 448 buf_map = kernel_map; 449 450 /* 451 * Initialize buffer cache memory parameters. 452 */ 453 bufmem = 0; 454 buf_setwm(); 455 456 /* On "small" machines use small pool page sizes where possible */ 457 use_std = (physmem < atop(16*1024*1024)); 458 459 /* 460 * Also use them on systems that can map the pool pages using 461 * a direct-mapped segment. 462 */ 463 #ifdef PMAP_MAP_POOLPAGE 464 use_std = 1; 465 #endif 466 467 buf_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0, 468 "bufpl", NULL, IPL_SOFTBIO, NULL, NULL, NULL); 469 bufio_cache = pool_cache_init(sizeof(buf_t), 0, 0, 0, 470 "biopl", NULL, IPL_BIO, NULL, NULL, NULL); 471 472 bufmempool_allocator.pa_backingmap = buf_map; 473 for (i = 0; i < NMEMPOOLS; i++) { 474 struct pool_allocator *pa; 475 struct pool *pp = &bmempools[i]; 476 u_int size = 1 << (i + MEMPOOL_INDEX_OFFSET); 477 char *name = kmem_alloc(8, KM_SLEEP); 478 if (__predict_true(size >= 1024)) 479 (void)snprintf(name, 8, "buf%dk", size / 1024); 480 else 481 (void)snprintf(name, 8, "buf%db", size); 482 pa = (size <= PAGE_SIZE && use_std) 483 ? &pool_allocator_nointr 484 : &bufmempool_allocator; 485 pool_init(pp, size, 0, 0, 0, name, pa, IPL_NONE); 486 pool_setlowat(pp, 1); 487 pool_sethiwat(pp, 1); 488 } 489 490 /* Initialize the buffer queues */ 491 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++) { 492 TAILQ_INIT(&dp->bq_queue); 493 dp->bq_bytes = 0; 494 } 495 496 /* 497 * Estimate hash table size based on the amount of memory we 498 * intend to use for the buffer cache. The average buffer 499 * size is dependent on our clients (i.e. filesystems). 500 * 501 * For now, use an empirical 3K per buffer. 502 */ 503 nbuf = (bufmem_hiwater / 1024) / 3; 504 bufhashtbl = hashinit(nbuf, HASH_LIST, true, &bufhash); 505 } 506 507 void 508 bufinit2(void) 509 { 510 511 biodone_sih = softint_establish(SOFTINT_BIO | SOFTINT_MPSAFE, biointr, 512 NULL); 513 if (biodone_sih == NULL) 514 panic("bufinit2: can't establish soft interrupt"); 515 } 516 517 static int 518 buf_lotsfree(void) 519 { 520 int try, thresh; 521 522 /* Always allocate if less than the low water mark. */ 523 if (bufmem < bufmem_lowater) 524 return 1; 525 526 /* Never allocate if greater than the high water mark. */ 527 if (bufmem > bufmem_hiwater) 528 return 0; 529 530 /* If there's anything on the AGE list, it should be eaten. */ 531 if (TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue) != NULL) 532 return 0; 533 534 /* 535 * The probabily of getting a new allocation is inversely 536 * proportional to the current size of the cache, using 537 * a granularity of 16 steps. 538 */ 539 try = random() & 0x0000000fL; 540 541 /* Don't use "16 * bufmem" here to avoid a 32-bit overflow. */ 542 thresh = (bufmem - bufmem_lowater) / 543 ((bufmem_hiwater - bufmem_lowater) / 16); 544 545 if (try >= thresh) 546 return 1; 547 548 /* Otherwise don't allocate. */ 549 return 0; 550 } 551 552 /* 553 * Return estimate of bytes we think need to be 554 * released to help resolve low memory conditions. 555 * 556 * => called with bufcache_lock held. 557 */ 558 static int 559 buf_canrelease(void) 560 { 561 int pagedemand, ninvalid = 0; 562 563 KASSERT(mutex_owned(&bufcache_lock)); 564 565 if (bufmem < bufmem_lowater) 566 return 0; 567 568 if (bufmem > bufmem_hiwater) 569 return bufmem - bufmem_hiwater; 570 571 ninvalid += bufqueues[BQ_AGE].bq_bytes; 572 573 pagedemand = uvmexp.freetarg - uvmexp.free; 574 if (pagedemand < 0) 575 return ninvalid; 576 return MAX(ninvalid, MIN(2 * MAXBSIZE, 577 MIN((bufmem - bufmem_lowater) / 16, pagedemand * PAGE_SIZE))); 578 } 579 580 /* 581 * Buffer memory allocation helper functions 582 */ 583 static u_long 584 buf_mempoolidx(u_long size) 585 { 586 u_int n = 0; 587 588 size -= 1; 589 size >>= MEMPOOL_INDEX_OFFSET; 590 while (size) { 591 size >>= 1; 592 n += 1; 593 } 594 if (n >= NMEMPOOLS) 595 panic("buf mem pool index %d", n); 596 return n; 597 } 598 599 static u_long 600 buf_roundsize(u_long size) 601 { 602 /* Round up to nearest power of 2 */ 603 return (1 << (buf_mempoolidx(size) + MEMPOOL_INDEX_OFFSET)); 604 } 605 606 static void * 607 buf_malloc(size_t size) 608 { 609 u_int n = buf_mempoolidx(size); 610 void *addr; 611 612 while (1) { 613 addr = pool_get(&bmempools[n], PR_NOWAIT); 614 if (addr != NULL) 615 break; 616 617 /* No memory, see if we can free some. If so, try again */ 618 mutex_enter(&bufcache_lock); 619 if (buf_drain(1) > 0) { 620 mutex_exit(&bufcache_lock); 621 continue; 622 } 623 624 if (curlwp == uvm.pagedaemon_lwp) { 625 mutex_exit(&bufcache_lock); 626 return NULL; 627 } 628 629 /* Wait for buffers to arrive on the LRU queue */ 630 cv_timedwait(&needbuffer_cv, &bufcache_lock, hz / 4); 631 mutex_exit(&bufcache_lock); 632 } 633 634 return addr; 635 } 636 637 static void 638 buf_mrelease(void *addr, size_t size) 639 { 640 641 pool_put(&bmempools[buf_mempoolidx(size)], addr); 642 } 643 644 /* 645 * bread()/breadn() helper. 646 */ 647 static buf_t * 648 bio_doread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred, 649 int async) 650 { 651 buf_t *bp; 652 struct mount *mp; 653 654 bp = getblk(vp, blkno, size, 0, 0); 655 656 #ifdef DIAGNOSTIC 657 if (bp == NULL) { 658 panic("bio_doread: no such buf"); 659 } 660 #endif 661 662 /* 663 * If buffer does not have data valid, start a read. 664 * Note that if buffer is BC_INVAL, getblk() won't return it. 665 * Therefore, it's valid if its I/O has completed or been delayed. 666 */ 667 if (!ISSET(bp->b_oflags, (BO_DONE | BO_DELWRI))) { 668 /* Start I/O for the buffer. */ 669 SET(bp->b_flags, B_READ | async); 670 if (async) 671 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 672 else 673 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 674 VOP_STRATEGY(vp, bp); 675 676 /* Pay for the read. */ 677 curlwp->l_ru.ru_inblock++; 678 } else if (async) 679 brelse(bp, 0); 680 681 if (vp->v_type == VBLK) 682 mp = vp->v_specmountpoint; 683 else 684 mp = vp->v_mount; 685 686 /* 687 * Collect statistics on synchronous and asynchronous reads. 688 * Reads from block devices are charged to their associated 689 * filesystem (if any). 690 */ 691 if (mp != NULL) { 692 if (async == 0) 693 mp->mnt_stat.f_syncreads++; 694 else 695 mp->mnt_stat.f_asyncreads++; 696 } 697 698 return (bp); 699 } 700 701 /* 702 * Read a disk block. 703 * This algorithm described in Bach (p.54). 704 */ 705 int 706 bread(struct vnode *vp, daddr_t blkno, int size, kauth_cred_t cred, 707 int flags, buf_t **bpp) 708 { 709 buf_t *bp; 710 int error; 711 712 /* Get buffer for block. */ 713 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 714 715 /* Wait for the read to complete, and return result. */ 716 error = biowait(bp); 717 if (error == 0 && (flags & B_MODIFY) != 0) 718 error = fscow_run(bp, true); 719 return error; 720 } 721 722 /* 723 * Read-ahead multiple disk blocks. The first is sync, the rest async. 724 * Trivial modification to the breada algorithm presented in Bach (p.55). 725 */ 726 int 727 breadn(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablks, 728 int *rasizes, int nrablks, kauth_cred_t cred, int flags, buf_t **bpp) 729 { 730 buf_t *bp; 731 int error, i; 732 733 bp = *bpp = bio_doread(vp, blkno, size, cred, 0); 734 735 /* 736 * For each of the read-ahead blocks, start a read, if necessary. 737 */ 738 mutex_enter(&bufcache_lock); 739 for (i = 0; i < nrablks; i++) { 740 /* If it's in the cache, just go on to next one. */ 741 if (incore(vp, rablks[i])) 742 continue; 743 744 /* Get a buffer for the read-ahead block */ 745 mutex_exit(&bufcache_lock); 746 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC); 747 mutex_enter(&bufcache_lock); 748 } 749 mutex_exit(&bufcache_lock); 750 751 /* Otherwise, we had to start a read for it; wait until it's valid. */ 752 error = biowait(bp); 753 if (error == 0 && (flags & B_MODIFY) != 0) 754 error = fscow_run(bp, true); 755 return error; 756 } 757 758 /* 759 * Read with single-block read-ahead. Defined in Bach (p.55), but 760 * implemented as a call to breadn(). 761 * XXX for compatibility with old file systems. 762 */ 763 int 764 breada(struct vnode *vp, daddr_t blkno, int size, daddr_t rablkno, 765 int rabsize, kauth_cred_t cred, int flags, buf_t **bpp) 766 { 767 768 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, 769 cred, flags, bpp)); 770 } 771 772 /* 773 * Block write. Described in Bach (p.56) 774 */ 775 int 776 bwrite(buf_t *bp) 777 { 778 int rv, sync, wasdelayed; 779 struct vnode *vp; 780 struct mount *mp; 781 782 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 783 KASSERT(!cv_has_waiters(&bp->b_done)); 784 785 vp = bp->b_vp; 786 if (vp != NULL) { 787 KASSERT(bp->b_objlock == &vp->v_interlock); 788 if (vp->v_type == VBLK) 789 mp = vp->v_specmountpoint; 790 else 791 mp = vp->v_mount; 792 } else { 793 mp = NULL; 794 } 795 796 /* 797 * Remember buffer type, to switch on it later. If the write was 798 * synchronous, but the file system was mounted with MNT_ASYNC, 799 * convert it to a delayed write. 800 * XXX note that this relies on delayed tape writes being converted 801 * to async, not sync writes (which is safe, but ugly). 802 */ 803 sync = !ISSET(bp->b_flags, B_ASYNC); 804 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) { 805 bdwrite(bp); 806 return (0); 807 } 808 809 /* 810 * Collect statistics on synchronous and asynchronous writes. 811 * Writes to block devices are charged to their associated 812 * filesystem (if any). 813 */ 814 if (mp != NULL) { 815 if (sync) 816 mp->mnt_stat.f_syncwrites++; 817 else 818 mp->mnt_stat.f_asyncwrites++; 819 } 820 821 /* 822 * Pay for the I/O operation and make sure the buf is on the correct 823 * vnode queue. 824 */ 825 bp->b_error = 0; 826 wasdelayed = ISSET(bp->b_oflags, BO_DELWRI); 827 CLR(bp->b_flags, B_READ); 828 if (wasdelayed) { 829 mutex_enter(&bufcache_lock); 830 mutex_enter(bp->b_objlock); 831 CLR(bp->b_oflags, BO_DONE | BO_DELWRI); 832 reassignbuf(bp, bp->b_vp); 833 mutex_exit(&bufcache_lock); 834 } else { 835 curlwp->l_ru.ru_oublock++; 836 mutex_enter(bp->b_objlock); 837 CLR(bp->b_oflags, BO_DONE | BO_DELWRI); 838 } 839 if (vp != NULL) 840 vp->v_numoutput++; 841 mutex_exit(bp->b_objlock); 842 843 /* Initiate disk write. */ 844 if (sync) 845 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 846 else 847 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 848 849 VOP_STRATEGY(vp, bp); 850 851 if (sync) { 852 /* If I/O was synchronous, wait for it to complete. */ 853 rv = biowait(bp); 854 855 /* Release the buffer. */ 856 brelse(bp, 0); 857 858 return (rv); 859 } else { 860 return (0); 861 } 862 } 863 864 int 865 vn_bwrite(void *v) 866 { 867 struct vop_bwrite_args *ap = v; 868 869 return (bwrite(ap->a_bp)); 870 } 871 872 /* 873 * Delayed write. 874 * 875 * The buffer is marked dirty, but is not queued for I/O. 876 * This routine should be used when the buffer is expected 877 * to be modified again soon, typically a small write that 878 * partially fills a buffer. 879 * 880 * NB: magnetic tapes cannot be delayed; they must be 881 * written in the order that the writes are requested. 882 * 883 * Described in Leffler, et al. (pp. 208-213). 884 */ 885 void 886 bdwrite(buf_t *bp) 887 { 888 889 KASSERT(bp->b_vp == NULL || bp->b_vp->v_tag != VT_UFS || 890 bp->b_vp->v_type == VBLK || ISSET(bp->b_flags, B_COWDONE)); 891 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 892 KASSERT(!cv_has_waiters(&bp->b_done)); 893 894 /* If this is a tape block, write the block now. */ 895 if (bdev_type(bp->b_dev) == D_TAPE) { 896 bawrite(bp); 897 return; 898 } 899 900 /* 901 * If the block hasn't been seen before: 902 * (1) Mark it as having been seen, 903 * (2) Charge for the write, 904 * (3) Make sure it's on its vnode's correct block list. 905 */ 906 KASSERT(bp->b_vp == NULL || bp->b_objlock == &bp->b_vp->v_interlock); 907 908 if (!ISSET(bp->b_oflags, BO_DELWRI)) { 909 mutex_enter(&bufcache_lock); 910 mutex_enter(bp->b_objlock); 911 SET(bp->b_oflags, BO_DELWRI); 912 curlwp->l_ru.ru_oublock++; 913 reassignbuf(bp, bp->b_vp); 914 mutex_exit(&bufcache_lock); 915 } else { 916 mutex_enter(bp->b_objlock); 917 } 918 /* Otherwise, the "write" is done, so mark and release the buffer. */ 919 CLR(bp->b_oflags, BO_DONE); 920 mutex_exit(bp->b_objlock); 921 922 brelse(bp, 0); 923 } 924 925 /* 926 * Asynchronous block write; just an asynchronous bwrite(). 927 */ 928 void 929 bawrite(buf_t *bp) 930 { 931 932 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 933 934 SET(bp->b_flags, B_ASYNC); 935 VOP_BWRITE(bp); 936 } 937 938 /* 939 * Same as first half of bdwrite, mark buffer dirty, but do not release it. 940 * Call with the buffer interlock held. 941 * 942 * Note: called only from biodone() through ffs softdep's io_complete() 943 * Note2: smbfs also learned about bdirty(). 944 */ 945 void 946 bdirty(buf_t *bp) 947 { 948 949 KASSERT(mutex_owned(&bufcache_lock)); 950 KASSERT(bp->b_objlock == &bp->b_vp->v_interlock); 951 KASSERT(mutex_owned(bp->b_objlock)); 952 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 953 954 CLR(bp->b_cflags, BC_AGE); 955 956 if (!ISSET(bp->b_oflags, BO_DELWRI)) { 957 SET(bp->b_oflags, BO_DELWRI); 958 curlwp->l_ru.ru_oublock++; 959 reassignbuf(bp, bp->b_vp); 960 } 961 } 962 963 964 /* 965 * Release a buffer on to the free lists. 966 * Described in Bach (p. 46). 967 */ 968 void 969 brelsel(buf_t *bp, int set) 970 { 971 struct bqueue *bufq; 972 struct vnode *vp; 973 974 KASSERT(mutex_owned(&bufcache_lock)); 975 KASSERT(!cv_has_waiters(&bp->b_done)); 976 KASSERT(bp->b_refcnt > 0); 977 978 SET(bp->b_cflags, set); 979 980 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 981 KASSERT(bp->b_iodone == NULL); 982 983 /* Wake up any processes waiting for any buffer to become free. */ 984 cv_signal(&needbuffer_cv); 985 986 /* Wake up any proceeses waiting for _this_ buffer to become */ 987 if (ISSET(bp->b_cflags, BC_WANTED)) 988 CLR(bp->b_cflags, BC_WANTED|BC_AGE); 989 990 /* 991 * Determine which queue the buffer should be on, then put it there. 992 */ 993 994 /* If it's locked, don't report an error; try again later. */ 995 if (ISSET(bp->b_flags, B_LOCKED)) 996 bp->b_error = 0; 997 998 /* If it's not cacheable, or an error, mark it invalid. */ 999 if (ISSET(bp->b_cflags, BC_NOCACHE) || bp->b_error != 0) 1000 SET(bp->b_cflags, BC_INVAL); 1001 1002 if (ISSET(bp->b_cflags, BC_VFLUSH)) { 1003 /* 1004 * This is a delayed write buffer that was just flushed to 1005 * disk. It is still on the LRU queue. If it's become 1006 * invalid, then we need to move it to a different queue; 1007 * otherwise leave it in its current position. 1008 */ 1009 CLR(bp->b_cflags, BC_VFLUSH); 1010 if (!ISSET(bp->b_cflags, BC_INVAL|BC_AGE) && 1011 !ISSET(bp->b_flags, B_LOCKED) && bp->b_error == 0) { 1012 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 1)); 1013 goto already_queued; 1014 } else { 1015 bremfree(bp); 1016 } 1017 } 1018 1019 KDASSERT(checkfreelist(bp, &bufqueues[BQ_AGE], 0)); 1020 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LRU], 0)); 1021 KDASSERT(checkfreelist(bp, &bufqueues[BQ_LOCKED], 0)); 1022 1023 if ((bp->b_bufsize <= 0) || ISSET(bp->b_cflags, BC_INVAL)) { 1024 /* 1025 * If it's invalid or empty, dissociate it from its vnode 1026 * and put on the head of the appropriate queue. 1027 */ 1028 if (bioopsp != NULL) 1029 (*bioopsp->io_deallocate)(bp); 1030 1031 mutex_enter(bp->b_objlock); 1032 CLR(bp->b_oflags, BO_DONE|BO_DELWRI); 1033 if ((vp = bp->b_vp) != NULL) { 1034 KASSERT(bp->b_objlock == &vp->v_interlock); 1035 reassignbuf(bp, bp->b_vp); 1036 brelvp(bp); 1037 mutex_exit(&vp->v_interlock); 1038 } else { 1039 KASSERT(bp->b_objlock == &buffer_lock); 1040 mutex_exit(bp->b_objlock); 1041 } 1042 1043 if (bp->b_bufsize <= 0) 1044 /* no data */ 1045 goto already_queued; 1046 else 1047 /* invalid data */ 1048 bufq = &bufqueues[BQ_AGE]; 1049 binsheadfree(bp, bufq); 1050 } else { 1051 /* 1052 * It has valid data. Put it on the end of the appropriate 1053 * queue, so that it'll stick around for as long as possible. 1054 * If buf is AGE, but has dependencies, must put it on last 1055 * bufqueue to be scanned, ie LRU. This protects against the 1056 * livelock where BQ_AGE only has buffers with dependencies, 1057 * and we thus never get to the dependent buffers in BQ_LRU. 1058 */ 1059 if (ISSET(bp->b_flags, B_LOCKED)) { 1060 /* locked in core */ 1061 bufq = &bufqueues[BQ_LOCKED]; 1062 } else if (!ISSET(bp->b_cflags, BC_AGE)) { 1063 /* valid data */ 1064 bufq = &bufqueues[BQ_LRU]; 1065 } else { 1066 /* stale but valid data */ 1067 int has_deps; 1068 1069 if (bioopsp != NULL) 1070 has_deps = (*bioopsp->io_countdeps)(bp, 0); 1071 else 1072 has_deps = 0; 1073 bufq = has_deps ? &bufqueues[BQ_LRU] : 1074 &bufqueues[BQ_AGE]; 1075 } 1076 binstailfree(bp, bufq); 1077 } 1078 already_queued: 1079 /* Unlock the buffer. */ 1080 CLR(bp->b_cflags, BC_AGE|BC_BUSY|BC_NOCACHE); 1081 CLR(bp->b_flags, B_ASYNC); 1082 cv_broadcast(&bp->b_busy); 1083 1084 if (bp->b_bufsize <= 0) 1085 brele(bp); 1086 } 1087 1088 void 1089 brelse(buf_t *bp, int set) 1090 { 1091 1092 mutex_enter(&bufcache_lock); 1093 brelsel(bp, set); 1094 mutex_exit(&bufcache_lock); 1095 } 1096 1097 /* 1098 * Determine if a block is in the cache. 1099 * Just look on what would be its hash chain. If it's there, return 1100 * a pointer to it, unless it's marked invalid. If it's marked invalid, 1101 * we normally don't return the buffer, unless the caller explicitly 1102 * wants us to. 1103 */ 1104 buf_t * 1105 incore(struct vnode *vp, daddr_t blkno) 1106 { 1107 buf_t *bp; 1108 1109 KASSERT(mutex_owned(&bufcache_lock)); 1110 1111 /* Search hash chain */ 1112 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) { 1113 if (bp->b_lblkno == blkno && bp->b_vp == vp && 1114 !ISSET(bp->b_cflags, BC_INVAL)) { 1115 KASSERT(bp->b_objlock == &vp->v_interlock); 1116 return (bp); 1117 } 1118 } 1119 1120 return (NULL); 1121 } 1122 1123 /* 1124 * Get a block of requested size that is associated with 1125 * a given vnode and block offset. If it is found in the 1126 * block cache, mark it as having been found, make it busy 1127 * and return it. Otherwise, return an empty block of the 1128 * correct size. It is up to the caller to insure that the 1129 * cached blocks be of the correct size. 1130 */ 1131 buf_t * 1132 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo) 1133 { 1134 int err, preserve; 1135 buf_t *bp; 1136 1137 mutex_enter(&bufcache_lock); 1138 loop: 1139 bp = incore(vp, blkno); 1140 if (bp != NULL) { 1141 err = bbusy(bp, ((slpflag & PCATCH) != 0), slptimeo, NULL); 1142 if (err != 0) { 1143 if (err == EPASSTHROUGH) 1144 goto loop; 1145 mutex_exit(&bufcache_lock); 1146 return (NULL); 1147 } 1148 KASSERT(!cv_has_waiters(&bp->b_done)); 1149 #ifdef DIAGNOSTIC 1150 if (ISSET(bp->b_oflags, BO_DONE|BO_DELWRI) && 1151 bp->b_bcount < size && vp->v_type != VBLK) 1152 panic("getblk: block size invariant failed"); 1153 #endif 1154 bremfree(bp); 1155 preserve = 1; 1156 } else { 1157 if ((bp = getnewbuf(slpflag, slptimeo, 0)) == NULL) 1158 goto loop; 1159 1160 if (incore(vp, blkno) != NULL) { 1161 /* The block has come into memory in the meantime. */ 1162 brelsel(bp, 0); 1163 goto loop; 1164 } 1165 1166 LIST_INSERT_HEAD(BUFHASH(vp, blkno), bp, b_hash); 1167 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno; 1168 mutex_enter(&vp->v_interlock); 1169 bgetvp(vp, bp); 1170 mutex_exit(&vp->v_interlock); 1171 preserve = 0; 1172 } 1173 mutex_exit(&bufcache_lock); 1174 1175 /* 1176 * LFS can't track total size of B_LOCKED buffer (locked_queue_bytes) 1177 * if we re-size buffers here. 1178 */ 1179 if (ISSET(bp->b_flags, B_LOCKED)) { 1180 KASSERT(bp->b_bufsize >= size); 1181 } else { 1182 if (allocbuf(bp, size, preserve)) { 1183 mutex_enter(&bufcache_lock); 1184 LIST_REMOVE(bp, b_hash); 1185 mutex_exit(&bufcache_lock); 1186 brelse(bp, BC_INVAL); 1187 return NULL; 1188 } 1189 } 1190 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1191 return (bp); 1192 } 1193 1194 /* 1195 * Get an empty, disassociated buffer of given size. 1196 */ 1197 buf_t * 1198 geteblk(int size) 1199 { 1200 buf_t *bp; 1201 int error; 1202 1203 mutex_enter(&bufcache_lock); 1204 while ((bp = getnewbuf(0, 0, 0)) == NULL) 1205 ; 1206 1207 SET(bp->b_cflags, BC_INVAL); 1208 LIST_INSERT_HEAD(&invalhash, bp, b_hash); 1209 mutex_exit(&bufcache_lock); 1210 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1211 error = allocbuf(bp, size, 0); 1212 KASSERT(error == 0); 1213 return (bp); 1214 } 1215 1216 /* 1217 * Expand or contract the actual memory allocated to a buffer. 1218 * 1219 * If the buffer shrinks, data is lost, so it's up to the 1220 * caller to have written it out *first*; this routine will not 1221 * start a write. If the buffer grows, it's the callers 1222 * responsibility to fill out the buffer's additional contents. 1223 */ 1224 int 1225 allocbuf(buf_t *bp, int size, int preserve) 1226 { 1227 vsize_t oldsize, desired_size; 1228 void *addr; 1229 int delta; 1230 1231 desired_size = buf_roundsize(size); 1232 if (desired_size > MAXBSIZE) 1233 printf("allocbuf: buffer larger than MAXBSIZE requested"); 1234 1235 bp->b_bcount = size; 1236 1237 oldsize = bp->b_bufsize; 1238 if (oldsize == desired_size) 1239 return 0; 1240 1241 /* 1242 * If we want a buffer of a different size, re-allocate the 1243 * buffer's memory; copy old content only if needed. 1244 */ 1245 addr = buf_malloc(desired_size); 1246 if (addr == NULL) 1247 return ENOMEM; 1248 if (preserve) 1249 memcpy(addr, bp->b_data, MIN(oldsize,desired_size)); 1250 if (bp->b_data != NULL) 1251 buf_mrelease(bp->b_data, oldsize); 1252 bp->b_data = addr; 1253 bp->b_bufsize = desired_size; 1254 1255 /* 1256 * Update overall buffer memory counter (protected by bufcache_lock) 1257 */ 1258 delta = (long)desired_size - (long)oldsize; 1259 1260 mutex_enter(&bufcache_lock); 1261 if ((bufmem += delta) > bufmem_hiwater) { 1262 /* 1263 * Need to trim overall memory usage. 1264 */ 1265 while (buf_canrelease()) { 1266 if (curcpu()->ci_schedstate.spc_flags & 1267 SPCF_SHOULDYIELD) { 1268 mutex_exit(&bufcache_lock); 1269 preempt(); 1270 mutex_enter(&bufcache_lock); 1271 } 1272 if (buf_trim() == 0) 1273 break; 1274 } 1275 } 1276 mutex_exit(&bufcache_lock); 1277 return 0; 1278 } 1279 1280 /* 1281 * Find a buffer which is available for use. 1282 * Select something from a free list. 1283 * Preference is to AGE list, then LRU list. 1284 * 1285 * Called with the buffer queues locked. 1286 * Return buffer locked. 1287 */ 1288 buf_t * 1289 getnewbuf(int slpflag, int slptimeo, int from_bufq) 1290 { 1291 buf_t *bp; 1292 struct vnode *vp; 1293 1294 start: 1295 KASSERT(mutex_owned(&bufcache_lock)); 1296 1297 /* 1298 * Get a new buffer from the pool. 1299 */ 1300 if (!from_bufq && buf_lotsfree()) { 1301 mutex_exit(&bufcache_lock); 1302 bp = pool_cache_get(buf_cache, PR_NOWAIT); 1303 if (bp != NULL) { 1304 memset((char *)bp, 0, sizeof(*bp)); 1305 buf_init(bp); 1306 SET(bp->b_cflags, BC_BUSY); /* mark buffer busy */ 1307 mutex_enter(&bufcache_lock); 1308 #if defined(DIAGNOSTIC) 1309 bp->b_freelistindex = -1; 1310 #endif /* defined(DIAGNOSTIC) */ 1311 return (bp); 1312 } 1313 mutex_enter(&bufcache_lock); 1314 } 1315 1316 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE].bq_queue)) != NULL || 1317 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU].bq_queue)) != NULL) { 1318 KASSERT(!ISSET(bp->b_cflags, BC_BUSY) || ISSET(bp->b_cflags, BC_VFLUSH)); 1319 bremfree(bp); 1320 1321 /* Buffer is no longer on free lists. */ 1322 SET(bp->b_cflags, BC_BUSY); 1323 } else { 1324 /* 1325 * XXX: !from_bufq should be removed. 1326 */ 1327 if (!from_bufq || curlwp != uvm.pagedaemon_lwp) { 1328 /* wait for a free buffer of any kind */ 1329 if ((slpflag & PCATCH) != 0) 1330 (void)cv_timedwait_sig(&needbuffer_cv, 1331 &bufcache_lock, slptimeo); 1332 else 1333 (void)cv_timedwait(&needbuffer_cv, 1334 &bufcache_lock, slptimeo); 1335 } 1336 return (NULL); 1337 } 1338 1339 #ifdef DIAGNOSTIC 1340 if (bp->b_bufsize <= 0) 1341 panic("buffer %p: on queue but empty", bp); 1342 #endif 1343 1344 if (ISSET(bp->b_cflags, BC_VFLUSH)) { 1345 /* 1346 * This is a delayed write buffer being flushed to disk. Make 1347 * sure it gets aged out of the queue when it's finished, and 1348 * leave it off the LRU queue. 1349 */ 1350 CLR(bp->b_cflags, BC_VFLUSH); 1351 SET(bp->b_cflags, BC_AGE); 1352 goto start; 1353 } 1354 1355 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 1356 KASSERT(bp->b_refcnt > 0); 1357 KASSERT(!cv_has_waiters(&bp->b_done)); 1358 1359 /* 1360 * If buffer was a delayed write, start it and return NULL 1361 * (since we might sleep while starting the write). 1362 */ 1363 if (ISSET(bp->b_oflags, BO_DELWRI)) { 1364 /* 1365 * This buffer has gone through the LRU, so make sure it gets 1366 * reused ASAP. 1367 */ 1368 SET(bp->b_cflags, BC_AGE); 1369 mutex_exit(&bufcache_lock); 1370 bawrite(bp); 1371 mutex_enter(&bufcache_lock); 1372 return (NULL); 1373 } 1374 1375 vp = bp->b_vp; 1376 if (bioopsp != NULL) 1377 (*bioopsp->io_deallocate)(bp); 1378 1379 /* clear out various other fields */ 1380 bp->b_cflags = BC_BUSY; 1381 bp->b_oflags = 0; 1382 bp->b_flags = 0; 1383 bp->b_dev = NODEV; 1384 bp->b_blkno = 0; 1385 bp->b_lblkno = 0; 1386 bp->b_rawblkno = 0; 1387 bp->b_iodone = 0; 1388 bp->b_error = 0; 1389 bp->b_resid = 0; 1390 bp->b_bcount = 0; 1391 1392 LIST_REMOVE(bp, b_hash); 1393 1394 /* Disassociate us from our vnode, if we had one... */ 1395 if (vp != NULL) { 1396 mutex_enter(&vp->v_interlock); 1397 brelvp(bp); 1398 mutex_exit(&vp->v_interlock); 1399 } 1400 1401 return (bp); 1402 } 1403 1404 /* 1405 * Attempt to free an aged buffer off the queues. 1406 * Called with queue lock held. 1407 * Returns the amount of buffer memory freed. 1408 */ 1409 static int 1410 buf_trim(void) 1411 { 1412 buf_t *bp; 1413 long size = 0; 1414 1415 KASSERT(mutex_owned(&bufcache_lock)); 1416 1417 /* Instruct getnewbuf() to get buffers off the queues */ 1418 if ((bp = getnewbuf(PCATCH, 1, 1)) == NULL) 1419 return 0; 1420 1421 KASSERT((bp->b_cflags & BC_WANTED) == 0); 1422 size = bp->b_bufsize; 1423 bufmem -= size; 1424 if (size > 0) { 1425 buf_mrelease(bp->b_data, size); 1426 bp->b_bcount = bp->b_bufsize = 0; 1427 } 1428 /* brelse() will return the buffer to the global buffer pool */ 1429 brelsel(bp, 0); 1430 return size; 1431 } 1432 1433 int 1434 buf_drain(int n) 1435 { 1436 int size = 0, sz; 1437 1438 KASSERT(mutex_owned(&bufcache_lock)); 1439 1440 while (size < n && bufmem > bufmem_lowater) { 1441 sz = buf_trim(); 1442 if (sz <= 0) 1443 break; 1444 size += sz; 1445 } 1446 1447 return size; 1448 } 1449 1450 /* 1451 * Wait for operations on the buffer to complete. 1452 * When they do, extract and return the I/O's error value. 1453 */ 1454 int 1455 biowait(buf_t *bp) 1456 { 1457 1458 KASSERT(ISSET(bp->b_cflags, BC_BUSY)); 1459 KASSERT(bp->b_refcnt > 0); 1460 1461 mutex_enter(bp->b_objlock); 1462 while (!ISSET(bp->b_oflags, BO_DONE | BO_DELWRI)) 1463 cv_wait(&bp->b_done, bp->b_objlock); 1464 mutex_exit(bp->b_objlock); 1465 1466 return bp->b_error; 1467 } 1468 1469 /* 1470 * Mark I/O complete on a buffer. 1471 * 1472 * If a callback has been requested, e.g. the pageout 1473 * daemon, do so. Otherwise, awaken waiting processes. 1474 * 1475 * [ Leffler, et al., says on p.247: 1476 * "This routine wakes up the blocked process, frees the buffer 1477 * for an asynchronous write, or, for a request by the pagedaemon 1478 * process, invokes a procedure specified in the buffer structure" ] 1479 * 1480 * In real life, the pagedaemon (or other system processes) wants 1481 * to do async stuff to, and doesn't want the buffer brelse()'d. 1482 * (for swap pager, that puts swap buffers on the free lists (!!!), 1483 * for the vn device, that puts malloc'd buffers on the free lists!) 1484 */ 1485 void 1486 biodone(buf_t *bp) 1487 { 1488 int s; 1489 1490 KASSERT(!ISSET(bp->b_oflags, BO_DONE)); 1491 1492 if (cpu_intr_p()) { 1493 /* From interrupt mode: defer to a soft interrupt. */ 1494 s = splvm(); 1495 TAILQ_INSERT_TAIL(&curcpu()->ci_data.cpu_biodone, bp, b_actq); 1496 softint_schedule(biodone_sih); 1497 splx(s); 1498 } else { 1499 /* Process now - the buffer may be freed soon. */ 1500 biodone2(bp); 1501 } 1502 } 1503 1504 static void 1505 biodone2(buf_t *bp) 1506 { 1507 void (*callout)(buf_t *); 1508 1509 if (bioopsp != NULL) 1510 (*bioopsp->io_complete)(bp); 1511 1512 mutex_enter(bp->b_objlock); 1513 /* Note that the transfer is done. */ 1514 if (ISSET(bp->b_oflags, BO_DONE)) 1515 panic("biodone2 already"); 1516 CLR(bp->b_flags, B_COWDONE); 1517 SET(bp->b_oflags, BO_DONE); 1518 BIO_SETPRIO(bp, BPRIO_DEFAULT); 1519 1520 /* Wake up waiting writers. */ 1521 if (!ISSET(bp->b_flags, B_READ)) 1522 vwakeup(bp); 1523 1524 if ((callout = bp->b_iodone) != NULL) { 1525 /* Note callout done, then call out. */ 1526 KASSERT(!cv_has_waiters(&bp->b_done)); 1527 KERNEL_LOCK(1, NULL); /* XXXSMP */ 1528 bp->b_iodone = NULL; 1529 mutex_exit(bp->b_objlock); 1530 (*callout)(bp); 1531 KERNEL_UNLOCK_ONE(NULL); /* XXXSMP */ 1532 } else if (ISSET(bp->b_flags, B_ASYNC)) { 1533 /* If async, release. */ 1534 KASSERT(!cv_has_waiters(&bp->b_done)); 1535 mutex_exit(bp->b_objlock); 1536 brelse(bp, 0); 1537 } else { 1538 /* Otherwise just wake up waiters in biowait(). */ 1539 cv_broadcast(&bp->b_done); 1540 mutex_exit(bp->b_objlock); 1541 } 1542 } 1543 1544 static void 1545 biointr(void *cookie) 1546 { 1547 struct cpu_info *ci; 1548 buf_t *bp; 1549 int s; 1550 1551 ci = curcpu(); 1552 1553 while (!TAILQ_EMPTY(&ci->ci_data.cpu_biodone)) { 1554 KASSERT(curcpu() == ci); 1555 1556 s = splvm(); 1557 bp = TAILQ_FIRST(&ci->ci_data.cpu_biodone); 1558 TAILQ_REMOVE(&ci->ci_data.cpu_biodone, bp, b_actq); 1559 splx(s); 1560 1561 biodone2(bp); 1562 } 1563 } 1564 1565 /* 1566 * Return a count of buffers on the "locked" queue. 1567 */ 1568 int 1569 count_lock_queue(void) 1570 { 1571 buf_t *bp; 1572 int n = 0; 1573 1574 mutex_enter(&bufcache_lock); 1575 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED].bq_queue, b_freelist) 1576 n++; 1577 mutex_exit(&bufcache_lock); 1578 return (n); 1579 } 1580 1581 /* 1582 * Wait for all buffers to complete I/O 1583 * Return the number of "stuck" buffers. 1584 */ 1585 int 1586 buf_syncwait(void) 1587 { 1588 buf_t *bp; 1589 int iter, nbusy, nbusy_prev = 0, dcount, ihash; 1590 1591 dcount = 10000; 1592 for (iter = 0; iter < 20;) { 1593 mutex_enter(&bufcache_lock); 1594 nbusy = 0; 1595 for (ihash = 0; ihash < bufhash+1; ihash++) { 1596 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1597 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY) 1598 nbusy += ((bp->b_flags & B_READ) == 0); 1599 /* 1600 * With soft updates, some buffers that are 1601 * written will be remarked as dirty until other 1602 * buffers are written. 1603 */ 1604 if (bp->b_vp && bp->b_vp->v_mount 1605 && (bp->b_vp->v_mount->mnt_flag & MNT_SOFTDEP) 1606 && (bp->b_oflags & BO_DELWRI)) { 1607 bremfree(bp); 1608 bp->b_cflags |= BC_BUSY; 1609 nbusy++; 1610 mutex_exit(&bufcache_lock); 1611 bawrite(bp); 1612 if (dcount-- <= 0) { 1613 printf("softdep "); 1614 goto fail; 1615 } 1616 mutex_enter(&bufcache_lock); 1617 } 1618 } 1619 } 1620 mutex_exit(&bufcache_lock); 1621 1622 if (nbusy == 0) 1623 break; 1624 if (nbusy_prev == 0) 1625 nbusy_prev = nbusy; 1626 printf("%d ", nbusy); 1627 kpause("bflush", false, (iter == 0) ? 1 : hz / 25 * iter, NULL); 1628 if (nbusy >= nbusy_prev) /* we didn't flush anything */ 1629 iter++; 1630 else 1631 nbusy_prev = nbusy; 1632 } 1633 1634 if (nbusy) { 1635 fail:; 1636 #if defined(DEBUG) || defined(DEBUG_HALT_BUSY) 1637 printf("giving up\nPrinting vnodes for busy buffers\n"); 1638 for (ihash = 0; ihash < bufhash+1; ihash++) { 1639 LIST_FOREACH(bp, &bufhashtbl[ihash], b_hash) { 1640 if ((bp->b_cflags & (BC_BUSY|BC_INVAL)) == BC_BUSY && 1641 (bp->b_flags & B_READ) == 0) 1642 vprint(NULL, bp->b_vp); 1643 } 1644 } 1645 #endif 1646 } 1647 1648 return nbusy; 1649 } 1650 1651 static void 1652 sysctl_fillbuf(buf_t *i, struct buf_sysctl *o) 1653 { 1654 1655 o->b_flags = i->b_flags | i->b_cflags | i->b_oflags; 1656 o->b_error = i->b_error; 1657 o->b_prio = i->b_prio; 1658 o->b_dev = i->b_dev; 1659 o->b_bufsize = i->b_bufsize; 1660 o->b_bcount = i->b_bcount; 1661 o->b_resid = i->b_resid; 1662 o->b_addr = PTRTOUINT64(i->b_data); 1663 o->b_blkno = i->b_blkno; 1664 o->b_rawblkno = i->b_rawblkno; 1665 o->b_iodone = PTRTOUINT64(i->b_iodone); 1666 o->b_proc = PTRTOUINT64(i->b_proc); 1667 o->b_vp = PTRTOUINT64(i->b_vp); 1668 o->b_saveaddr = PTRTOUINT64(i->b_saveaddr); 1669 o->b_lblkno = i->b_lblkno; 1670 } 1671 1672 #define KERN_BUFSLOP 20 1673 static int 1674 sysctl_dobuf(SYSCTLFN_ARGS) 1675 { 1676 buf_t *bp; 1677 struct buf_sysctl bs; 1678 struct bqueue *bq; 1679 char *dp; 1680 u_int i, op, arg; 1681 size_t len, needed, elem_size, out_size; 1682 int error, elem_count, retries; 1683 1684 if (namelen == 1 && name[0] == CTL_QUERY) 1685 return (sysctl_query(SYSCTLFN_CALL(rnode))); 1686 1687 if (namelen != 4) 1688 return (EINVAL); 1689 1690 retries = 100; 1691 retry: 1692 dp = oldp; 1693 len = (oldp != NULL) ? *oldlenp : 0; 1694 op = name[0]; 1695 arg = name[1]; 1696 elem_size = name[2]; 1697 elem_count = name[3]; 1698 out_size = MIN(sizeof(bs), elem_size); 1699 1700 /* 1701 * at the moment, these are just "placeholders" to make the 1702 * API for retrieving kern.buf data more extensible in the 1703 * future. 1704 * 1705 * XXX kern.buf currently has "netbsd32" issues. hopefully 1706 * these will be resolved at a later point. 1707 */ 1708 if (op != KERN_BUF_ALL || arg != KERN_BUF_ALL || 1709 elem_size < 1 || elem_count < 0) 1710 return (EINVAL); 1711 1712 error = 0; 1713 needed = 0; 1714 sysctl_unlock(); 1715 mutex_enter(&bufcache_lock); 1716 for (i = 0; i < BQUEUES; i++) { 1717 bq = &bufqueues[i]; 1718 TAILQ_FOREACH(bp, &bq->bq_queue, b_freelist) { 1719 bq->bq_marker = bp; 1720 if (len >= elem_size && elem_count > 0) { 1721 sysctl_fillbuf(bp, &bs); 1722 mutex_exit(&bufcache_lock); 1723 error = copyout(&bs, dp, out_size); 1724 mutex_enter(&bufcache_lock); 1725 if (error) 1726 break; 1727 if (bq->bq_marker != bp) { 1728 /* 1729 * This sysctl node is only for 1730 * statistics. Retry; if the 1731 * queue keeps changing, then 1732 * bail out. 1733 */ 1734 if (retries-- == 0) { 1735 error = EAGAIN; 1736 break; 1737 } 1738 mutex_exit(&bufcache_lock); 1739 goto retry; 1740 } 1741 dp += elem_size; 1742 len -= elem_size; 1743 } 1744 if (elem_count > 0) { 1745 needed += elem_size; 1746 if (elem_count != INT_MAX) 1747 elem_count--; 1748 } 1749 } 1750 if (error != 0) 1751 break; 1752 } 1753 mutex_exit(&bufcache_lock); 1754 sysctl_relock(); 1755 1756 *oldlenp = needed; 1757 if (oldp == NULL) 1758 *oldlenp += KERN_BUFSLOP * sizeof(buf_t); 1759 1760 return (error); 1761 } 1762 1763 static int 1764 sysctl_bufvm_update(SYSCTLFN_ARGS) 1765 { 1766 int t, error, rv; 1767 struct sysctlnode node; 1768 1769 node = *rnode; 1770 node.sysctl_data = &t; 1771 t = *(int *)rnode->sysctl_data; 1772 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1773 if (error || newp == NULL) 1774 return (error); 1775 1776 if (t < 0) 1777 return EINVAL; 1778 if (rnode->sysctl_data == &bufcache) { 1779 if (t > 100) 1780 return (EINVAL); 1781 bufcache = t; 1782 buf_setwm(); 1783 } else if (rnode->sysctl_data == &bufmem_lowater) { 1784 if (bufmem_hiwater - t < 16) 1785 return (EINVAL); 1786 bufmem_lowater = t; 1787 } else if (rnode->sysctl_data == &bufmem_hiwater) { 1788 if (t - bufmem_lowater < 16) 1789 return (EINVAL); 1790 bufmem_hiwater = t; 1791 } else 1792 return (EINVAL); 1793 1794 /* Drain until below new high water mark */ 1795 sysctl_unlock(); 1796 mutex_enter(&bufcache_lock); 1797 while ((t = bufmem - bufmem_hiwater) >= 0) { 1798 rv = buf_drain(t / (2 * 1024)); 1799 if (rv <= 0) 1800 break; 1801 } 1802 mutex_exit(&bufcache_lock); 1803 sysctl_relock(); 1804 1805 return 0; 1806 } 1807 1808 SYSCTL_SETUP(sysctl_kern_buf_setup, "sysctl kern.buf subtree setup") 1809 { 1810 1811 sysctl_createv(clog, 0, NULL, NULL, 1812 CTLFLAG_PERMANENT, 1813 CTLTYPE_NODE, "kern", NULL, 1814 NULL, 0, NULL, 0, 1815 CTL_KERN, CTL_EOL); 1816 sysctl_createv(clog, 0, NULL, NULL, 1817 CTLFLAG_PERMANENT, 1818 CTLTYPE_NODE, "buf", 1819 SYSCTL_DESCR("Kernel buffer cache information"), 1820 sysctl_dobuf, 0, NULL, 0, 1821 CTL_KERN, KERN_BUF, CTL_EOL); 1822 } 1823 1824 SYSCTL_SETUP(sysctl_vm_buf_setup, "sysctl vm.buf* subtree setup") 1825 { 1826 1827 sysctl_createv(clog, 0, NULL, NULL, 1828 CTLFLAG_PERMANENT, 1829 CTLTYPE_NODE, "vm", NULL, 1830 NULL, 0, NULL, 0, 1831 CTL_VM, CTL_EOL); 1832 1833 sysctl_createv(clog, 0, NULL, NULL, 1834 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1835 CTLTYPE_INT, "bufcache", 1836 SYSCTL_DESCR("Percentage of physical memory to use for " 1837 "buffer cache"), 1838 sysctl_bufvm_update, 0, &bufcache, 0, 1839 CTL_VM, CTL_CREATE, CTL_EOL); 1840 sysctl_createv(clog, 0, NULL, NULL, 1841 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 1842 CTLTYPE_INT, "bufmem", 1843 SYSCTL_DESCR("Amount of kernel memory used by buffer " 1844 "cache"), 1845 NULL, 0, &bufmem, 0, 1846 CTL_VM, CTL_CREATE, CTL_EOL); 1847 sysctl_createv(clog, 0, NULL, NULL, 1848 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1849 CTLTYPE_INT, "bufmem_lowater", 1850 SYSCTL_DESCR("Minimum amount of kernel memory to " 1851 "reserve for buffer cache"), 1852 sysctl_bufvm_update, 0, &bufmem_lowater, 0, 1853 CTL_VM, CTL_CREATE, CTL_EOL); 1854 sysctl_createv(clog, 0, NULL, NULL, 1855 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1856 CTLTYPE_INT, "bufmem_hiwater", 1857 SYSCTL_DESCR("Maximum amount of kernel memory to use " 1858 "for buffer cache"), 1859 sysctl_bufvm_update, 0, &bufmem_hiwater, 0, 1860 CTL_VM, CTL_CREATE, CTL_EOL); 1861 } 1862 1863 #ifdef DEBUG 1864 /* 1865 * Print out statistics on the current allocation of the buffer pool. 1866 * Can be enabled to print out on every ``sync'' by setting "syncprt" 1867 * in vfs_syscalls.c using sysctl. 1868 */ 1869 void 1870 vfs_bufstats(void) 1871 { 1872 int i, j, count; 1873 buf_t *bp; 1874 struct bqueue *dp; 1875 int counts[(MAXBSIZE / PAGE_SIZE) + 1]; 1876 static const char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE" }; 1877 1878 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) { 1879 count = 0; 1880 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1881 counts[j] = 0; 1882 TAILQ_FOREACH(bp, &dp->bq_queue, b_freelist) { 1883 counts[bp->b_bufsize/PAGE_SIZE]++; 1884 count++; 1885 } 1886 printf("%s: total-%d", bname[i], count); 1887 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++) 1888 if (counts[j] != 0) 1889 printf(", %d-%d", j * PAGE_SIZE, counts[j]); 1890 printf("\n"); 1891 } 1892 } 1893 #endif /* DEBUG */ 1894 1895 /* ------------------------------ */ 1896 1897 buf_t * 1898 getiobuf(struct vnode *vp, bool waitok) 1899 { 1900 buf_t *bp; 1901 1902 bp = pool_cache_get(bufio_cache, (waitok ? PR_WAITOK : PR_NOWAIT)); 1903 if (bp == NULL) 1904 return bp; 1905 1906 buf_init(bp); 1907 1908 if ((bp->b_vp = vp) == NULL) 1909 bp->b_objlock = &buffer_lock; 1910 else 1911 bp->b_objlock = &vp->v_interlock; 1912 1913 return bp; 1914 } 1915 1916 void 1917 putiobuf(buf_t *bp) 1918 { 1919 1920 buf_destroy(bp); 1921 pool_cache_put(bufio_cache, bp); 1922 } 1923 1924 /* 1925 * nestiobuf_iodone: b_iodone callback for nested buffers. 1926 */ 1927 1928 void 1929 nestiobuf_iodone(buf_t *bp) 1930 { 1931 buf_t *mbp = bp->b_private; 1932 int error; 1933 int donebytes; 1934 1935 KASSERT(bp->b_bcount <= bp->b_bufsize); 1936 KASSERT(mbp != bp); 1937 1938 error = bp->b_error; 1939 if (bp->b_error == 0 && 1940 (bp->b_bcount < bp->b_bufsize || bp->b_resid > 0)) { 1941 /* 1942 * Not all got transfered, raise an error. We have no way to 1943 * propagate these conditions to mbp. 1944 */ 1945 error = EIO; 1946 } 1947 1948 donebytes = bp->b_bufsize; 1949 1950 putiobuf(bp); 1951 nestiobuf_done(mbp, donebytes, error); 1952 } 1953 1954 /* 1955 * nestiobuf_setup: setup a "nested" buffer. 1956 * 1957 * => 'mbp' is a "master" buffer which is being divided into sub pieces. 1958 * => 'bp' should be a buffer allocated by getiobuf. 1959 * => 'offset' is a byte offset in the master buffer. 1960 * => 'size' is a size in bytes of this nested buffer. 1961 */ 1962 1963 void 1964 nestiobuf_setup(buf_t *mbp, buf_t *bp, int offset, size_t size) 1965 { 1966 const int b_read = mbp->b_flags & B_READ; 1967 struct vnode *vp = mbp->b_vp; 1968 1969 KASSERT(mbp->b_bcount >= offset + size); 1970 bp->b_vp = vp; 1971 bp->b_objlock = mbp->b_objlock; 1972 bp->b_cflags = BC_BUSY; 1973 bp->b_flags = B_ASYNC | b_read; 1974 bp->b_iodone = nestiobuf_iodone; 1975 bp->b_data = (char *)mbp->b_data + offset; 1976 bp->b_resid = bp->b_bcount = size; 1977 bp->b_bufsize = bp->b_bcount; 1978 bp->b_private = mbp; 1979 BIO_COPYPRIO(bp, mbp); 1980 if (!b_read && vp != NULL) { 1981 mutex_enter(&vp->v_interlock); 1982 vp->v_numoutput++; 1983 mutex_exit(&vp->v_interlock); 1984 } 1985 } 1986 1987 /* 1988 * nestiobuf_done: propagate completion to the master buffer. 1989 * 1990 * => 'donebytes' specifies how many bytes in the 'mbp' is completed. 1991 * => 'error' is an errno(2) that 'donebytes' has been completed with. 1992 */ 1993 1994 void 1995 nestiobuf_done(buf_t *mbp, int donebytes, int error) 1996 { 1997 1998 if (donebytes == 0) { 1999 return; 2000 } 2001 mutex_enter(mbp->b_objlock); 2002 KASSERT(mbp->b_resid >= donebytes); 2003 mbp->b_resid -= donebytes; 2004 if (error) 2005 mbp->b_error = error; 2006 if (mbp->b_resid == 0) { 2007 mutex_exit(mbp->b_objlock); 2008 biodone(mbp); 2009 } else 2010 mutex_exit(mbp->b_objlock); 2011 } 2012 2013 void 2014 buf_init(buf_t *bp) 2015 { 2016 2017 LIST_INIT(&bp->b_dep); 2018 cv_init(&bp->b_busy, "biolock"); 2019 cv_init(&bp->b_done, "biowait"); 2020 bp->b_dev = NODEV; 2021 bp->b_error = 0; 2022 bp->b_flags = 0; 2023 bp->b_cflags = 0; 2024 bp->b_oflags = 0; 2025 bp->b_objlock = &buffer_lock; 2026 bp->b_iodone = NULL; 2027 bp->b_refcnt = 1; 2028 bp->b_dev = NODEV; 2029 bp->b_vnbufs.le_next = NOLIST; 2030 BIO_SETPRIO(bp, BPRIO_DEFAULT); 2031 } 2032 2033 void 2034 buf_destroy(buf_t *bp) 2035 { 2036 2037 cv_destroy(&bp->b_done); 2038 cv_destroy(&bp->b_busy); 2039 } 2040 2041 int 2042 bbusy(buf_t *bp, bool intr, int timo, kmutex_t *interlock) 2043 { 2044 int error; 2045 2046 KASSERT(mutex_owned(&bufcache_lock)); 2047 2048 if ((bp->b_cflags & BC_BUSY) != 0) { 2049 if (curlwp == uvm.pagedaemon_lwp) 2050 return EDEADLK; 2051 bp->b_cflags |= BC_WANTED; 2052 bref(bp); 2053 if (interlock != NULL) 2054 mutex_exit(interlock); 2055 if (intr) { 2056 error = cv_timedwait_sig(&bp->b_busy, &bufcache_lock, 2057 timo); 2058 } else { 2059 error = cv_timedwait(&bp->b_busy, &bufcache_lock, 2060 timo); 2061 } 2062 brele(bp); 2063 if (interlock != NULL) 2064 mutex_enter(interlock); 2065 if (error != 0) 2066 return error; 2067 return EPASSTHROUGH; 2068 } 2069 bp->b_cflags |= BC_BUSY; 2070 2071 return 0; 2072 } 2073