xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision fc4f42693f9b1c31f39f9cf50af1bf2010325808)
1 /*	$NetBSD: uipc_usrreq.c,v 1.184 2018/03/19 16:26:26 roy Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.184 2018/03/19 16:26:26 roy Exp $");
100 
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/proc.h>
108 #include <sys/filedesc.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/unpcb.h>
114 #include <sys/un.h>
115 #include <sys/namei.h>
116 #include <sys/vnode.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include <sys/mbuf.h>
120 #include <sys/kauth.h>
121 #include <sys/kmem.h>
122 #include <sys/atomic.h>
123 #include <sys/uidinfo.h>
124 #include <sys/kernel.h>
125 #include <sys/kthread.h>
126 
127 #ifdef COMPAT_70
128 #include <compat/sys/socket.h>
129 #endif
130 
131 /*
132  * Unix communications domain.
133  *
134  * TODO:
135  *	RDM
136  *	rethink name space problems
137  *	need a proper out-of-band
138  *
139  * Notes on locking:
140  *
141  * The generic rules noted in uipc_socket2.c apply.  In addition:
142  *
143  * o We have a global lock, uipc_lock.
144  *
145  * o All datagram sockets are locked by uipc_lock.
146  *
147  * o For stream socketpairs, the two endpoints are created sharing the same
148  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
149  *   matching locks.
150  *
151  * o Stream sockets created via socket() start life with their own
152  *   independent lock.
153  *
154  * o Stream connections to a named endpoint are slightly more complicated.
155  *   Sockets that have called listen() have their lock pointer mutated to
156  *   the global uipc_lock.  When establishing a connection, the connecting
157  *   socket also has its lock mutated to uipc_lock, which matches the head
158  *   (listening socket).  We create a new socket for accept() to return, and
159  *   that also shares the head's lock.  Until the connection is completely
160  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
161  *   connection is complete, the association with the head's lock is broken.
162  *   The connecting socket and the socket returned from accept() have their
163  *   lock pointers mutated away from uipc_lock, and back to the connecting
164  *   socket's original, independent lock.  The head continues to be locked
165  *   by uipc_lock.
166  *
167  * o If uipc_lock is determined to be a significant source of contention,
168  *   it could easily be hashed out.  It is difficult to simply make it an
169  *   independent lock because of visibility / garbage collection issues:
170  *   if a socket has been associated with a lock at any point, that lock
171  *   must remain valid until the socket is no longer visible in the system.
172  *   The lock must not be freed or otherwise destroyed until any sockets
173  *   that had referenced it have also been destroyed.
174  */
175 const struct sockaddr_un sun_noname = {
176 	.sun_len = offsetof(struct sockaddr_un, sun_path),
177 	.sun_family = AF_LOCAL,
178 };
179 ino_t	unp_ino;			/* prototype for fake inode numbers */
180 
181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
182 static void   unp_discard_later(file_t *);
183 static void   unp_discard_now(file_t *);
184 static void   unp_disconnect1(struct unpcb *);
185 static bool   unp_drop(struct unpcb *, int);
186 static int    unp_internalize(struct mbuf **);
187 static void   unp_mark(file_t *);
188 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
189 static void   unp_shutdown1(struct unpcb *);
190 static void   unp_thread(void *);
191 static void   unp_thread_kick(void);
192 
193 static kmutex_t *uipc_lock;
194 
195 static kcondvar_t unp_thread_cv;
196 static lwp_t *unp_thread_lwp;
197 static SLIST_HEAD(,file) unp_thread_discard;
198 static int unp_defer;
199 
200 /*
201  * Initialize Unix protocols.
202  */
203 void
204 uipc_init(void)
205 {
206 	int error;
207 
208 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
209 	cv_init(&unp_thread_cv, "unpgc");
210 
211 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
212 	    NULL, &unp_thread_lwp, "unpgc");
213 	if (error != 0)
214 		panic("uipc_init %d", error);
215 }
216 
217 static void
218 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
219 {
220 	unp->unp_connid.unp_pid = l->l_proc->p_pid;
221 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
222 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
223 	unp->unp_flags |= flags;
224 }
225 
226 /*
227  * A connection succeeded: disassociate both endpoints from the head's
228  * lock, and make them share their own lock.  There is a race here: for
229  * a very brief time one endpoint will be locked by a different lock
230  * than the other end.  However, since the current thread holds the old
231  * lock (the listening socket's lock, the head) access can still only be
232  * made to one side of the connection.
233  */
234 static void
235 unp_setpeerlocks(struct socket *so, struct socket *so2)
236 {
237 	struct unpcb *unp;
238 	kmutex_t *lock;
239 
240 	KASSERT(solocked2(so, so2));
241 
242 	/*
243 	 * Bail out if either end of the socket is not yet fully
244 	 * connected or accepted.  We only break the lock association
245 	 * with the head when the pair of sockets stand completely
246 	 * on their own.
247 	 */
248 	KASSERT(so->so_head == NULL);
249 	if (so2->so_head != NULL)
250 		return;
251 
252 	/*
253 	 * Drop references to old lock.  A third reference (from the
254 	 * queue head) must be held as we still hold its lock.  Bonus:
255 	 * we don't need to worry about garbage collecting the lock.
256 	 */
257 	lock = so->so_lock;
258 	KASSERT(lock == uipc_lock);
259 	mutex_obj_free(lock);
260 	mutex_obj_free(lock);
261 
262 	/*
263 	 * Grab stream lock from the initiator and share between the two
264 	 * endpoints.  Issue memory barrier to ensure all modifications
265 	 * become globally visible before the lock change.  so2 is
266 	 * assumed not to have a stream lock, because it was created
267 	 * purely for the server side to accept this connection and
268 	 * started out life using the domain-wide lock.
269 	 */
270 	unp = sotounpcb(so);
271 	KASSERT(unp->unp_streamlock != NULL);
272 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
273 	lock = unp->unp_streamlock;
274 	unp->unp_streamlock = NULL;
275 	mutex_obj_hold(lock);
276 	membar_exit();
277 	/*
278 	 * possible race if lock is not held - see comment in
279 	 * uipc_usrreq(PRU_ACCEPT).
280 	 */
281 	KASSERT(mutex_owned(lock));
282 	solockreset(so, lock);
283 	solockreset(so2, lock);
284 }
285 
286 /*
287  * Reset a socket's lock back to the domain-wide lock.
288  */
289 static void
290 unp_resetlock(struct socket *so)
291 {
292 	kmutex_t *olock, *nlock;
293 	struct unpcb *unp;
294 
295 	KASSERT(solocked(so));
296 
297 	olock = so->so_lock;
298 	nlock = uipc_lock;
299 	if (olock == nlock)
300 		return;
301 	unp = sotounpcb(so);
302 	KASSERT(unp->unp_streamlock == NULL);
303 	unp->unp_streamlock = olock;
304 	mutex_obj_hold(nlock);
305 	mutex_enter(nlock);
306 	solockreset(so, nlock);
307 	mutex_exit(olock);
308 }
309 
310 static void
311 unp_free(struct unpcb *unp)
312 {
313 	if (unp->unp_addr)
314 		free(unp->unp_addr, M_SONAME);
315 	if (unp->unp_streamlock != NULL)
316 		mutex_obj_free(unp->unp_streamlock);
317 	kmem_free(unp, sizeof(*unp));
318 }
319 
320 static int
321 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
322 {
323 	struct socket *so2;
324 	const struct sockaddr_un *sun;
325 
326 	/* XXX: server side closed the socket */
327 	if (unp->unp_conn == NULL)
328 		return ECONNREFUSED;
329 	so2 = unp->unp_conn->unp_socket;
330 
331 	KASSERT(solocked(so2));
332 
333 	if (unp->unp_addr)
334 		sun = unp->unp_addr;
335 	else
336 		sun = &sun_noname;
337 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
338 		control = unp_addsockcred(curlwp, control);
339 #ifdef COMPAT_SOCKCRED70
340 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
341 		control = compat_70_unp_addsockcred(curlwp, control);
342 #endif
343 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
344 	    control) == 0) {
345 		unp_dispose(control);
346 		m_freem(control);
347 		m_freem(m);
348 		soroverflow(so2);
349 		return (ENOBUFS);
350 	} else {
351 		sorwakeup(so2);
352 		return (0);
353 	}
354 }
355 
356 static void
357 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
358 {
359 	const struct sockaddr_un *sun = NULL;
360 	struct unpcb *unp;
361 
362 	KASSERT(solocked(so));
363 	unp = sotounpcb(so);
364 
365 	if (peeraddr) {
366 		if (unp->unp_conn && unp->unp_conn->unp_addr)
367 			sun = unp->unp_conn->unp_addr;
368 	} else {
369 		if (unp->unp_addr)
370 			sun = unp->unp_addr;
371 	}
372 	if (sun == NULL)
373 		sun = &sun_noname;
374 
375 	memcpy(nam, sun, sun->sun_len);
376 }
377 
378 static int
379 unp_rcvd(struct socket *so, int flags, struct lwp *l)
380 {
381 	struct unpcb *unp = sotounpcb(so);
382 	struct socket *so2;
383 	u_int newhiwat;
384 
385 	KASSERT(solocked(so));
386 	KASSERT(unp != NULL);
387 
388 	switch (so->so_type) {
389 
390 	case SOCK_DGRAM:
391 		panic("uipc 1");
392 		/*NOTREACHED*/
393 
394 	case SOCK_SEQPACKET: /* FALLTHROUGH */
395 	case SOCK_STREAM:
396 #define	rcv (&so->so_rcv)
397 #define snd (&so2->so_snd)
398 		if (unp->unp_conn == 0)
399 			break;
400 		so2 = unp->unp_conn->unp_socket;
401 		KASSERT(solocked2(so, so2));
402 		/*
403 		 * Adjust backpressure on sender
404 		 * and wakeup any waiting to write.
405 		 */
406 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
407 		unp->unp_mbcnt = rcv->sb_mbcnt;
408 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
409 		(void)chgsbsize(so2->so_uidinfo,
410 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
411 		unp->unp_cc = rcv->sb_cc;
412 		sowwakeup(so2);
413 #undef snd
414 #undef rcv
415 		break;
416 
417 	default:
418 		panic("uipc 2");
419 	}
420 
421 	return 0;
422 }
423 
424 static int
425 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
426 {
427 	KASSERT(solocked(so));
428 
429 	return EOPNOTSUPP;
430 }
431 
432 static int
433 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
434     struct mbuf *control, struct lwp *l)
435 {
436 	struct unpcb *unp = sotounpcb(so);
437 	int error = 0;
438 	u_int newhiwat;
439 	struct socket *so2;
440 
441 	KASSERT(solocked(so));
442 	KASSERT(unp != NULL);
443 	KASSERT(m != NULL);
444 
445 	/*
446 	 * Note: unp_internalize() rejects any control message
447 	 * other than SCM_RIGHTS, and only allows one.  This
448 	 * has the side-effect of preventing a caller from
449 	 * forging SCM_CREDS.
450 	 */
451 	if (control) {
452 		sounlock(so);
453 		error = unp_internalize(&control);
454 		solock(so);
455 		if (error != 0) {
456 			m_freem(control);
457 			m_freem(m);
458 			return error;
459 		}
460 	}
461 
462 	switch (so->so_type) {
463 
464 	case SOCK_DGRAM: {
465 		KASSERT(so->so_lock == uipc_lock);
466 		if (nam) {
467 			if ((so->so_state & SS_ISCONNECTED) != 0)
468 				error = EISCONN;
469 			else {
470 				/*
471 				 * Note: once connected, the
472 				 * socket's lock must not be
473 				 * dropped until we have sent
474 				 * the message and disconnected.
475 				 * This is necessary to prevent
476 				 * intervening control ops, like
477 				 * another connection.
478 				 */
479 				error = unp_connect(so, nam, l);
480 			}
481 		} else {
482 			if ((so->so_state & SS_ISCONNECTED) == 0)
483 				error = ENOTCONN;
484 		}
485 		if (error) {
486 			unp_dispose(control);
487 			m_freem(control);
488 			m_freem(m);
489 			return error;
490 		}
491 		error = unp_output(m, control, unp);
492 		if (nam)
493 			unp_disconnect1(unp);
494 		break;
495 	}
496 
497 	case SOCK_SEQPACKET: /* FALLTHROUGH */
498 	case SOCK_STREAM:
499 #define	rcv (&so2->so_rcv)
500 #define	snd (&so->so_snd)
501 		if (unp->unp_conn == NULL) {
502 			error = ENOTCONN;
503 			break;
504 		}
505 		so2 = unp->unp_conn->unp_socket;
506 		KASSERT(solocked2(so, so2));
507 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
508 			/*
509 			 * Credentials are passed only once on
510 			 * SOCK_STREAM and SOCK_SEQPACKET.
511 			 */
512 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
513 			control = unp_addsockcred(l, control);
514 		}
515 #ifdef COMPAT_SOCKCRED70
516 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
517 			/*
518 			 * Credentials are passed only once on
519 			 * SOCK_STREAM and SOCK_SEQPACKET.
520 			 */
521 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
522 			control = compat_70_unp_addsockcred(l, control);
523 		}
524 #endif
525 		/*
526 		 * Send to paired receive port, and then reduce
527 		 * send buffer hiwater marks to maintain backpressure.
528 		 * Wake up readers.
529 		 */
530 		if (control) {
531 			if (sbappendcontrol(rcv, m, control) != 0)
532 				control = NULL;
533 		} else {
534 			switch(so->so_type) {
535 			case SOCK_SEQPACKET:
536 				sbappendrecord(rcv, m);
537 				break;
538 			case SOCK_STREAM:
539 				sbappend(rcv, m);
540 				break;
541 			default:
542 				panic("uipc_usrreq");
543 				break;
544 			}
545 		}
546 		snd->sb_mbmax -=
547 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
548 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
549 		newhiwat = snd->sb_hiwat -
550 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
551 		(void)chgsbsize(so->so_uidinfo,
552 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
553 		unp->unp_conn->unp_cc = rcv->sb_cc;
554 		sorwakeup(so2);
555 #undef snd
556 #undef rcv
557 		if (control != NULL) {
558 			unp_dispose(control);
559 			m_freem(control);
560 		}
561 		break;
562 
563 	default:
564 		panic("uipc 4");
565 	}
566 
567 	return error;
568 }
569 
570 static int
571 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
572 {
573 	KASSERT(solocked(so));
574 
575 	m_freem(m);
576 	m_freem(control);
577 
578 	return EOPNOTSUPP;
579 }
580 
581 /*
582  * Unix domain socket option processing.
583  */
584 int
585 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
586 {
587 	struct unpcb *unp = sotounpcb(so);
588 	int optval = 0, error = 0;
589 
590 	KASSERT(solocked(so));
591 
592 	if (sopt->sopt_level != 0) {
593 		error = ENOPROTOOPT;
594 	} else switch (op) {
595 
596 	case PRCO_SETOPT:
597 		switch (sopt->sopt_name) {
598 		case LOCAL_CREDS:
599 		case LOCAL_CONNWAIT:
600 #ifdef COMPAT_SOCKCRED70
601 		case LOCAL_OCREDS:
602 #endif
603 			error = sockopt_getint(sopt, &optval);
604 			if (error)
605 				break;
606 			switch (sopt->sopt_name) {
607 #define	OPTSET(bit) \
608 	if (optval) \
609 		unp->unp_flags |= (bit); \
610 	else \
611 		unp->unp_flags &= ~(bit);
612 
613 			case LOCAL_CREDS:
614 				OPTSET(UNP_WANTCRED);
615 				break;
616 			case LOCAL_CONNWAIT:
617 				OPTSET(UNP_CONNWAIT);
618 				break;
619 #ifdef COMPAT_SOCKCRED70
620 			case LOCAL_OCREDS:
621 				OPTSET(UNP_OWANTCRED);
622 				break;
623 #endif
624 			}
625 			break;
626 #undef OPTSET
627 
628 		default:
629 			error = ENOPROTOOPT;
630 			break;
631 		}
632 		break;
633 
634 	case PRCO_GETOPT:
635 		sounlock(so);
636 		switch (sopt->sopt_name) {
637 		case LOCAL_PEEREID:
638 			if (unp->unp_flags & UNP_EIDSVALID) {
639 				error = sockopt_set(sopt, &unp->unp_connid,
640 				    sizeof(unp->unp_connid));
641 			} else {
642 				error = EINVAL;
643 			}
644 			break;
645 		case LOCAL_CREDS:
646 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
647 
648 			optval = OPTBIT(UNP_WANTCRED);
649 			error = sockopt_setint(sopt, optval);
650 			break;
651 #ifdef COMPAT_SOCKCRED70
652 		case LOCAL_OCREDS:
653 			optval = OPTBIT(UNP_OWANTCRED);
654 			error = sockopt_setint(sopt, optval);
655 			break;
656 #endif
657 #undef OPTBIT
658 
659 		default:
660 			error = ENOPROTOOPT;
661 			break;
662 		}
663 		solock(so);
664 		break;
665 	}
666 	return (error);
667 }
668 
669 /*
670  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
671  * for stream sockets, although the total for sender and receiver is
672  * actually only PIPSIZ.
673  * Datagram sockets really use the sendspace as the maximum datagram size,
674  * and don't really want to reserve the sendspace.  Their recvspace should
675  * be large enough for at least one max-size datagram plus address.
676  */
677 #define	PIPSIZ	4096
678 u_long	unpst_sendspace = PIPSIZ;
679 u_long	unpst_recvspace = PIPSIZ;
680 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
681 u_long	unpdg_recvspace = 4*1024;
682 
683 u_int	unp_rights;			/* files in flight */
684 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
685 
686 static int
687 unp_attach(struct socket *so, int proto)
688 {
689 	struct unpcb *unp = sotounpcb(so);
690 	u_long sndspc, rcvspc;
691 	int error;
692 
693 	KASSERT(unp == NULL);
694 
695 	switch (so->so_type) {
696 	case SOCK_SEQPACKET:
697 		/* FALLTHROUGH */
698 	case SOCK_STREAM:
699 		if (so->so_lock == NULL) {
700 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
701 			solock(so);
702 		}
703 		sndspc = unpst_sendspace;
704 		rcvspc = unpst_recvspace;
705 		break;
706 
707 	case SOCK_DGRAM:
708 		if (so->so_lock == NULL) {
709 			mutex_obj_hold(uipc_lock);
710 			so->so_lock = uipc_lock;
711 			solock(so);
712 		}
713 		sndspc = unpdg_sendspace;
714 		rcvspc = unpdg_recvspace;
715 		break;
716 
717 	default:
718 		panic("unp_attach");
719 	}
720 
721 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
722 		error = soreserve(so, sndspc, rcvspc);
723 		if (error) {
724 			return error;
725 		}
726 	}
727 
728 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
729 	nanotime(&unp->unp_ctime);
730 	unp->unp_socket = so;
731 	so->so_pcb = unp;
732 
733 	KASSERT(solocked(so));
734 	return 0;
735 }
736 
737 static void
738 unp_detach(struct socket *so)
739 {
740 	struct unpcb *unp;
741 	vnode_t *vp;
742 
743 	unp = sotounpcb(so);
744 	KASSERT(unp != NULL);
745 	KASSERT(solocked(so));
746  retry:
747 	if ((vp = unp->unp_vnode) != NULL) {
748 		sounlock(so);
749 		/* Acquire v_interlock to protect against unp_connect(). */
750 		/* XXXAD racy */
751 		mutex_enter(vp->v_interlock);
752 		vp->v_socket = NULL;
753 		mutex_exit(vp->v_interlock);
754 		vrele(vp);
755 		solock(so);
756 		unp->unp_vnode = NULL;
757 	}
758 	if (unp->unp_conn)
759 		unp_disconnect1(unp);
760 	while (unp->unp_refs) {
761 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
762 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
763 			solock(so);
764 			goto retry;
765 		}
766 	}
767 	soisdisconnected(so);
768 	so->so_pcb = NULL;
769 	if (unp_rights) {
770 		/*
771 		 * Normally the receive buffer is flushed later, in sofree,
772 		 * but if our receive buffer holds references to files that
773 		 * are now garbage, we will enqueue those file references to
774 		 * the garbage collector and kick it into action.
775 		 */
776 		sorflush(so);
777 		unp_free(unp);
778 		unp_thread_kick();
779 	} else
780 		unp_free(unp);
781 }
782 
783 static int
784 unp_accept(struct socket *so, struct sockaddr *nam)
785 {
786 	struct unpcb *unp = sotounpcb(so);
787 	struct socket *so2;
788 
789 	KASSERT(solocked(so));
790 	KASSERT(nam != NULL);
791 
792 	/* XXX code review required to determine if unp can ever be NULL */
793 	if (unp == NULL)
794 		return EINVAL;
795 
796 	KASSERT(so->so_lock == uipc_lock);
797 	/*
798 	 * Mark the initiating STREAM socket as connected *ONLY*
799 	 * after it's been accepted.  This prevents a client from
800 	 * overrunning a server and receiving ECONNREFUSED.
801 	 */
802 	if (unp->unp_conn == NULL) {
803 		/*
804 		 * This will use the empty socket and will not
805 		 * allocate.
806 		 */
807 		unp_setaddr(so, nam, true);
808 		return 0;
809 	}
810 	so2 = unp->unp_conn->unp_socket;
811 	if (so2->so_state & SS_ISCONNECTING) {
812 		KASSERT(solocked2(so, so->so_head));
813 		KASSERT(solocked2(so2, so->so_head));
814 		soisconnected(so2);
815 	}
816 	/*
817 	 * If the connection is fully established, break the
818 	 * association with uipc_lock and give the connected
819 	 * pair a separate lock to share.
820 	 * There is a race here: sotounpcb(so2)->unp_streamlock
821 	 * is not locked, so when changing so2->so_lock
822 	 * another thread can grab it while so->so_lock is still
823 	 * pointing to the (locked) uipc_lock.
824 	 * this should be harmless, except that this makes
825 	 * solocked2() and solocked() unreliable.
826 	 * Another problem is that unp_setaddr() expects the
827 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
828 	 * fixes both issues.
829 	 */
830 	mutex_enter(sotounpcb(so2)->unp_streamlock);
831 	unp_setpeerlocks(so2, so);
832 	/*
833 	 * Only now return peer's address, as we may need to
834 	 * block in order to allocate memory.
835 	 *
836 	 * XXX Minor race: connection can be broken while
837 	 * lock is dropped in unp_setaddr().  We will return
838 	 * error == 0 and sun_noname as the peer address.
839 	 */
840 	unp_setaddr(so, nam, true);
841 	/* so_lock now points to unp_streamlock */
842 	mutex_exit(so2->so_lock);
843 	return 0;
844 }
845 
846 static int
847 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
848 {
849 	return EOPNOTSUPP;
850 }
851 
852 static int
853 unp_stat(struct socket *so, struct stat *ub)
854 {
855 	struct unpcb *unp;
856 	struct socket *so2;
857 
858 	KASSERT(solocked(so));
859 
860 	unp = sotounpcb(so);
861 	if (unp == NULL)
862 		return EINVAL;
863 
864 	ub->st_blksize = so->so_snd.sb_hiwat;
865 	switch (so->so_type) {
866 	case SOCK_SEQPACKET: /* FALLTHROUGH */
867 	case SOCK_STREAM:
868 		if (unp->unp_conn == 0)
869 			break;
870 
871 		so2 = unp->unp_conn->unp_socket;
872 		KASSERT(solocked2(so, so2));
873 		ub->st_blksize += so2->so_rcv.sb_cc;
874 		break;
875 	default:
876 		break;
877 	}
878 	ub->st_dev = NODEV;
879 	if (unp->unp_ino == 0)
880 		unp->unp_ino = unp_ino++;
881 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
882 	ub->st_ino = unp->unp_ino;
883 	return (0);
884 }
885 
886 static int
887 unp_peeraddr(struct socket *so, struct sockaddr *nam)
888 {
889 	KASSERT(solocked(so));
890 	KASSERT(sotounpcb(so) != NULL);
891 	KASSERT(nam != NULL);
892 
893 	unp_setaddr(so, nam, true);
894 	return 0;
895 }
896 
897 static int
898 unp_sockaddr(struct socket *so, struct sockaddr *nam)
899 {
900 	KASSERT(solocked(so));
901 	KASSERT(sotounpcb(so) != NULL);
902 	KASSERT(nam != NULL);
903 
904 	unp_setaddr(so, nam, false);
905 	return 0;
906 }
907 
908 /*
909  * we only need to perform this allocation until syscalls other than
910  * bind are adjusted to use sockaddr_big.
911  */
912 static struct sockaddr_un *
913 makeun_sb(struct sockaddr *nam, size_t *addrlen)
914 {
915 	struct sockaddr_un *sun;
916 
917 	*addrlen = nam->sa_len + 1;
918 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
919 	memcpy(sun, nam, nam->sa_len);
920 	*(((char *)sun) + nam->sa_len) = '\0';
921 	return sun;
922 }
923 
924 static int
925 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
926 {
927 	struct sockaddr_un *sun;
928 	struct unpcb *unp;
929 	vnode_t *vp;
930 	struct vattr vattr;
931 	size_t addrlen;
932 	int error;
933 	struct pathbuf *pb;
934 	struct nameidata nd;
935 	proc_t *p;
936 
937 	unp = sotounpcb(so);
938 
939 	KASSERT(solocked(so));
940 	KASSERT(unp != NULL);
941 	KASSERT(nam != NULL);
942 
943 	if (unp->unp_vnode != NULL)
944 		return (EINVAL);
945 	if ((unp->unp_flags & UNP_BUSY) != 0) {
946 		/*
947 		 * EALREADY may not be strictly accurate, but since this
948 		 * is a major application error it's hardly a big deal.
949 		 */
950 		return (EALREADY);
951 	}
952 	unp->unp_flags |= UNP_BUSY;
953 	sounlock(so);
954 
955 	p = l->l_proc;
956 	sun = makeun_sb(nam, &addrlen);
957 
958 	pb = pathbuf_create(sun->sun_path);
959 	if (pb == NULL) {
960 		error = ENOMEM;
961 		goto bad;
962 	}
963 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
964 
965 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
966 	if ((error = namei(&nd)) != 0) {
967 		pathbuf_destroy(pb);
968 		goto bad;
969 	}
970 	vp = nd.ni_vp;
971 	if (vp != NULL) {
972 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
973 		if (nd.ni_dvp == vp)
974 			vrele(nd.ni_dvp);
975 		else
976 			vput(nd.ni_dvp);
977 		vrele(vp);
978 		pathbuf_destroy(pb);
979 		error = EADDRINUSE;
980 		goto bad;
981 	}
982 	vattr_null(&vattr);
983 	vattr.va_type = VSOCK;
984 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
985 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
986 	if (error) {
987 		vput(nd.ni_dvp);
988 		pathbuf_destroy(pb);
989 		goto bad;
990 	}
991 	vp = nd.ni_vp;
992 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
993 	solock(so);
994 	vp->v_socket = unp->unp_socket;
995 	unp->unp_vnode = vp;
996 	unp->unp_addrlen = addrlen;
997 	unp->unp_addr = sun;
998 	VOP_UNLOCK(vp);
999 	vput(nd.ni_dvp);
1000 	unp->unp_flags &= ~UNP_BUSY;
1001 	pathbuf_destroy(pb);
1002 	return (0);
1003 
1004  bad:
1005 	free(sun, M_SONAME);
1006 	solock(so);
1007 	unp->unp_flags &= ~UNP_BUSY;
1008 	return (error);
1009 }
1010 
1011 static int
1012 unp_listen(struct socket *so, struct lwp *l)
1013 {
1014 	struct unpcb *unp = sotounpcb(so);
1015 
1016 	KASSERT(solocked(so));
1017 	KASSERT(unp != NULL);
1018 
1019 	/*
1020 	 * If the socket can accept a connection, it must be
1021 	 * locked by uipc_lock.
1022 	 */
1023 	unp_resetlock(so);
1024 	if (unp->unp_vnode == NULL)
1025 		return EINVAL;
1026 
1027 	unp_connid(l, unp, UNP_EIDSBIND);
1028 	return 0;
1029 }
1030 
1031 static int
1032 unp_disconnect(struct socket *so)
1033 {
1034 	KASSERT(solocked(so));
1035 	KASSERT(sotounpcb(so) != NULL);
1036 
1037 	unp_disconnect1(sotounpcb(so));
1038 	return 0;
1039 }
1040 
1041 static int
1042 unp_shutdown(struct socket *so)
1043 {
1044 	KASSERT(solocked(so));
1045 	KASSERT(sotounpcb(so) != NULL);
1046 
1047 	socantsendmore(so);
1048 	unp_shutdown1(sotounpcb(so));
1049 	return 0;
1050 }
1051 
1052 static int
1053 unp_abort(struct socket *so)
1054 {
1055 	KASSERT(solocked(so));
1056 	KASSERT(sotounpcb(so) != NULL);
1057 
1058 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
1059 	KASSERT(so->so_head == NULL);
1060 	KASSERT(so->so_pcb != NULL);
1061 	unp_detach(so);
1062 	return 0;
1063 }
1064 
1065 static int
1066 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1067 {
1068 	struct unpcb *unp = sotounpcb(so);
1069 	struct unpcb *unp2;
1070 
1071 	if (so2->so_type != so->so_type)
1072 		return EPROTOTYPE;
1073 
1074 	/*
1075 	 * All three sockets involved must be locked by same lock:
1076 	 *
1077 	 * local endpoint (so)
1078 	 * remote endpoint (so2)
1079 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1080 	 */
1081 	KASSERT(solocked2(so, so2));
1082 	KASSERT(so->so_head == NULL);
1083 	if (so2->so_head != NULL) {
1084 		KASSERT(so2->so_lock == uipc_lock);
1085 		KASSERT(solocked2(so2, so2->so_head));
1086 	}
1087 
1088 	unp2 = sotounpcb(so2);
1089 	unp->unp_conn = unp2;
1090 
1091 	switch (so->so_type) {
1092 
1093 	case SOCK_DGRAM:
1094 		unp->unp_nextref = unp2->unp_refs;
1095 		unp2->unp_refs = unp;
1096 		soisconnected(so);
1097 		break;
1098 
1099 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1100 	case SOCK_STREAM:
1101 
1102 		/*
1103 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1104 		 * which are unp_connect() or unp_connect2().
1105 		 */
1106 
1107 		break;
1108 
1109 	default:
1110 		panic("unp_connect1");
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 int
1117 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1118 {
1119 	struct sockaddr_un *sun;
1120 	vnode_t *vp;
1121 	struct socket *so2, *so3;
1122 	struct unpcb *unp, *unp2, *unp3;
1123 	size_t addrlen;
1124 	int error;
1125 	struct pathbuf *pb;
1126 	struct nameidata nd;
1127 
1128 	unp = sotounpcb(so);
1129 	if ((unp->unp_flags & UNP_BUSY) != 0) {
1130 		/*
1131 		 * EALREADY may not be strictly accurate, but since this
1132 		 * is a major application error it's hardly a big deal.
1133 		 */
1134 		return (EALREADY);
1135 	}
1136 	unp->unp_flags |= UNP_BUSY;
1137 	sounlock(so);
1138 
1139 	sun = makeun_sb(nam, &addrlen);
1140 	pb = pathbuf_create(sun->sun_path);
1141 	if (pb == NULL) {
1142 		error = ENOMEM;
1143 		goto bad2;
1144 	}
1145 
1146 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1147 
1148 	if ((error = namei(&nd)) != 0) {
1149 		pathbuf_destroy(pb);
1150 		goto bad2;
1151 	}
1152 	vp = nd.ni_vp;
1153 	pathbuf_destroy(pb);
1154 	if (vp->v_type != VSOCK) {
1155 		error = ENOTSOCK;
1156 		goto bad;
1157 	}
1158 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1159 		goto bad;
1160 	/* Acquire v_interlock to protect against unp_detach(). */
1161 	mutex_enter(vp->v_interlock);
1162 	so2 = vp->v_socket;
1163 	if (so2 == NULL) {
1164 		mutex_exit(vp->v_interlock);
1165 		error = ECONNREFUSED;
1166 		goto bad;
1167 	}
1168 	if (so->so_type != so2->so_type) {
1169 		mutex_exit(vp->v_interlock);
1170 		error = EPROTOTYPE;
1171 		goto bad;
1172 	}
1173 	solock(so);
1174 	unp_resetlock(so);
1175 	mutex_exit(vp->v_interlock);
1176 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1177 		/*
1178 		 * This may seem somewhat fragile but is OK: if we can
1179 		 * see SO_ACCEPTCONN set on the endpoint, then it must
1180 		 * be locked by the domain-wide uipc_lock.
1181 		 */
1182 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1183 		    so2->so_lock == uipc_lock);
1184 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1185 		    (so3 = sonewconn(so2, false)) == NULL) {
1186 			error = ECONNREFUSED;
1187 			sounlock(so);
1188 			goto bad;
1189 		}
1190 		unp2 = sotounpcb(so2);
1191 		unp3 = sotounpcb(so3);
1192 		if (unp2->unp_addr) {
1193 			unp3->unp_addr = malloc(unp2->unp_addrlen,
1194 			    M_SONAME, M_WAITOK);
1195 			memcpy(unp3->unp_addr, unp2->unp_addr,
1196 			    unp2->unp_addrlen);
1197 			unp3->unp_addrlen = unp2->unp_addrlen;
1198 		}
1199 		unp3->unp_flags = unp2->unp_flags;
1200 		so2 = so3;
1201 		/*
1202 		 * The connector's (client's) credentials are copied from its
1203 		 * process structure at the time of connect() (which is now).
1204 		 */
1205 		unp_connid(l, unp3, UNP_EIDSVALID);
1206 		 /*
1207 		  * The receiver's (server's) credentials are copied from the
1208 		  * unp_peercred member of socket on which the former called
1209 		  * listen(); unp_listen() cached that process's credentials
1210 		  * at that time so we can use them now.
1211 		  */
1212 		if (unp2->unp_flags & UNP_EIDSBIND) {
1213 			memcpy(&unp->unp_connid, &unp2->unp_connid,
1214 			    sizeof(unp->unp_connid));
1215 			unp->unp_flags |= UNP_EIDSVALID;
1216 		}
1217 	}
1218 	error = unp_connect1(so, so2, l);
1219 	if (error) {
1220 		sounlock(so);
1221 		goto bad;
1222 	}
1223 	unp2 = sotounpcb(so2);
1224 	switch (so->so_type) {
1225 
1226 	/*
1227 	 * SOCK_DGRAM and default cases are handled in prior call to
1228 	 * unp_connect1(), do not add a default case without fixing
1229 	 * unp_connect1().
1230 	 */
1231 
1232 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1233 	case SOCK_STREAM:
1234 		unp2->unp_conn = unp;
1235 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1236 			soisconnecting(so);
1237 		else
1238 			soisconnected(so);
1239 		soisconnected(so2);
1240 		/*
1241 		 * If the connection is fully established, break the
1242 		 * association with uipc_lock and give the connected
1243 		 * pair a seperate lock to share.
1244 		 */
1245 		KASSERT(so2->so_head != NULL);
1246 		unp_setpeerlocks(so, so2);
1247 		break;
1248 
1249 	}
1250 	sounlock(so);
1251  bad:
1252 	vput(vp);
1253  bad2:
1254 	free(sun, M_SONAME);
1255 	solock(so);
1256 	unp->unp_flags &= ~UNP_BUSY;
1257 	return (error);
1258 }
1259 
1260 int
1261 unp_connect2(struct socket *so, struct socket *so2)
1262 {
1263 	struct unpcb *unp = sotounpcb(so);
1264 	struct unpcb *unp2;
1265 	int error = 0;
1266 
1267 	KASSERT(solocked2(so, so2));
1268 
1269 	error = unp_connect1(so, so2, curlwp);
1270 	if (error)
1271 		return error;
1272 
1273 	unp2 = sotounpcb(so2);
1274 	switch (so->so_type) {
1275 
1276 	/*
1277 	 * SOCK_DGRAM and default cases are handled in prior call to
1278 	 * unp_connect1(), do not add a default case without fixing
1279 	 * unp_connect1().
1280 	 */
1281 
1282 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1283 	case SOCK_STREAM:
1284 		unp2->unp_conn = unp;
1285 		soisconnected(so);
1286 		soisconnected(so2);
1287 		break;
1288 
1289 	}
1290 	return error;
1291 }
1292 
1293 static void
1294 unp_disconnect1(struct unpcb *unp)
1295 {
1296 	struct unpcb *unp2 = unp->unp_conn;
1297 	struct socket *so;
1298 
1299 	if (unp2 == 0)
1300 		return;
1301 	unp->unp_conn = 0;
1302 	so = unp->unp_socket;
1303 	switch (so->so_type) {
1304 	case SOCK_DGRAM:
1305 		if (unp2->unp_refs == unp)
1306 			unp2->unp_refs = unp->unp_nextref;
1307 		else {
1308 			unp2 = unp2->unp_refs;
1309 			for (;;) {
1310 				KASSERT(solocked2(so, unp2->unp_socket));
1311 				if (unp2 == 0)
1312 					panic("unp_disconnect1");
1313 				if (unp2->unp_nextref == unp)
1314 					break;
1315 				unp2 = unp2->unp_nextref;
1316 			}
1317 			unp2->unp_nextref = unp->unp_nextref;
1318 		}
1319 		unp->unp_nextref = 0;
1320 		so->so_state &= ~SS_ISCONNECTED;
1321 		break;
1322 
1323 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1324 	case SOCK_STREAM:
1325 		KASSERT(solocked2(so, unp2->unp_socket));
1326 		soisdisconnected(so);
1327 		unp2->unp_conn = 0;
1328 		soisdisconnected(unp2->unp_socket);
1329 		break;
1330 	}
1331 }
1332 
1333 static void
1334 unp_shutdown1(struct unpcb *unp)
1335 {
1336 	struct socket *so;
1337 
1338 	switch(unp->unp_socket->so_type) {
1339 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1340 	case SOCK_STREAM:
1341 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1342 			socantrcvmore(so);
1343 		break;
1344 	default:
1345 		break;
1346 	}
1347 }
1348 
1349 static bool
1350 unp_drop(struct unpcb *unp, int errno)
1351 {
1352 	struct socket *so = unp->unp_socket;
1353 
1354 	KASSERT(solocked(so));
1355 
1356 	so->so_error = errno;
1357 	unp_disconnect1(unp);
1358 	if (so->so_head) {
1359 		so->so_pcb = NULL;
1360 		/* sofree() drops the socket lock */
1361 		sofree(so);
1362 		unp_free(unp);
1363 		return true;
1364 	}
1365 	return false;
1366 }
1367 
1368 #ifdef notdef
1369 unp_drain(void)
1370 {
1371 
1372 }
1373 #endif
1374 
1375 int
1376 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1377 {
1378 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1379 	struct proc * const p = l->l_proc;
1380 	file_t **rp;
1381 	int error = 0;
1382 
1383 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1384 	    sizeof(file_t *);
1385 	if (nfds == 0)
1386 		goto noop;
1387 
1388 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1389 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1390 
1391 	/* Make sure the recipient should be able to see the files.. */
1392 	rp = (file_t **)CMSG_DATA(cm);
1393 	for (size_t i = 0; i < nfds; i++) {
1394 		file_t * const fp = *rp++;
1395 		if (fp == NULL) {
1396 			error = EINVAL;
1397 			goto out;
1398 		}
1399 		/*
1400 		 * If we are in a chroot'ed directory, and
1401 		 * someone wants to pass us a directory, make
1402 		 * sure it's inside the subtree we're allowed
1403 		 * to access.
1404 		 */
1405 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1406 			vnode_t *vp = fp->f_vnode;
1407 			if ((vp->v_type == VDIR) &&
1408 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1409 				error = EPERM;
1410 				goto out;
1411 			}
1412 		}
1413 	}
1414 
1415  restart:
1416 	/*
1417 	 * First loop -- allocate file descriptor table slots for the
1418 	 * new files.
1419 	 */
1420 	for (size_t i = 0; i < nfds; i++) {
1421 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1422 			/*
1423 			 * Back out what we've done so far.
1424 			 */
1425 			while (i-- > 0) {
1426 				fd_abort(p, NULL, fdp[i]);
1427 			}
1428 			if (error == ENOSPC) {
1429 				fd_tryexpand(p);
1430 				error = 0;
1431 				goto restart;
1432 			}
1433 			/*
1434 			 * This is the error that has historically
1435 			 * been returned, and some callers may
1436 			 * expect it.
1437 			 */
1438 			error = EMSGSIZE;
1439 			goto out;
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * Now that adding them has succeeded, update all of the
1445 	 * file passing state and affix the descriptors.
1446 	 */
1447 	rp = (file_t **)CMSG_DATA(cm);
1448 	int *ofdp = (int *)CMSG_DATA(cm);
1449 	for (size_t i = 0; i < nfds; i++) {
1450 		file_t * const fp = *rp++;
1451 		const int fd = fdp[i];
1452 		atomic_dec_uint(&unp_rights);
1453 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1454 		fd_affix(p, fp, fd);
1455 		/*
1456 		 * Done with this file pointer, replace it with a fd;
1457 		 */
1458 		*ofdp++ = fd;
1459 		mutex_enter(&fp->f_lock);
1460 		fp->f_msgcount--;
1461 		mutex_exit(&fp->f_lock);
1462 		/*
1463 		 * Note that fd_affix() adds a reference to the file.
1464 		 * The file may already have been closed by another
1465 		 * LWP in the process, so we must drop the reference
1466 		 * added by unp_internalize() with closef().
1467 		 */
1468 		closef(fp);
1469 	}
1470 
1471 	/*
1472 	 * Adjust length, in case of transition from large file_t
1473 	 * pointers to ints.
1474 	 */
1475 	if (sizeof(file_t *) != sizeof(int)) {
1476 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1477 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1478 	}
1479  out:
1480 	if (__predict_false(error != 0)) {
1481 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
1482 		for (size_t i = 0; i < nfds; i++)
1483 			unp_discard_now(fpp[i]);
1484 		/*
1485 		 * Truncate the array so that nobody will try to interpret
1486 		 * what is now garbage in it.
1487 		 */
1488 		cm->cmsg_len = CMSG_LEN(0);
1489 		rights->m_len = CMSG_SPACE(0);
1490 	}
1491 	rw_exit(&p->p_cwdi->cwdi_lock);
1492 	kmem_free(fdp, nfds * sizeof(int));
1493 
1494  noop:
1495 	/*
1496 	 * Don't disclose kernel memory in the alignment space.
1497 	 */
1498 	KASSERT(cm->cmsg_len <= rights->m_len);
1499 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1500 	    cm->cmsg_len);
1501 	return error;
1502 }
1503 
1504 static int
1505 unp_internalize(struct mbuf **controlp)
1506 {
1507 	filedesc_t *fdescp = curlwp->l_fd;
1508 	struct mbuf *control = *controlp;
1509 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1510 	file_t **rp, **files;
1511 	file_t *fp;
1512 	int i, fd, *fdp;
1513 	int nfds, error;
1514 	u_int maxmsg;
1515 
1516 	error = 0;
1517 	newcm = NULL;
1518 
1519 	/* Sanity check the control message header. */
1520 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1521 	    cm->cmsg_len > control->m_len ||
1522 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1523 		return (EINVAL);
1524 
1525 	/*
1526 	 * Verify that the file descriptors are valid, and acquire
1527 	 * a reference to each.
1528 	 */
1529 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1530 	fdp = (int *)CMSG_DATA(cm);
1531 	maxmsg = maxfiles / unp_rights_ratio;
1532 	for (i = 0; i < nfds; i++) {
1533 		fd = *fdp++;
1534 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1535 			atomic_dec_uint(&unp_rights);
1536 			nfds = i;
1537 			error = EAGAIN;
1538 			goto out;
1539 		}
1540 		if ((fp = fd_getfile(fd)) == NULL
1541 		    || fp->f_type == DTYPE_KQUEUE) {
1542 		    	if (fp)
1543 		    		fd_putfile(fd);
1544 			atomic_dec_uint(&unp_rights);
1545 			nfds = i;
1546 			error = EBADF;
1547 			goto out;
1548 		}
1549 	}
1550 
1551 	/* Allocate new space and copy header into it. */
1552 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1553 	if (newcm == NULL) {
1554 		error = E2BIG;
1555 		goto out;
1556 	}
1557 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1558 	files = (file_t **)CMSG_DATA(newcm);
1559 
1560 	/*
1561 	 * Transform the file descriptors into file_t pointers, in
1562 	 * reverse order so that if pointers are bigger than ints, the
1563 	 * int won't get until we're done.  No need to lock, as we have
1564 	 * already validated the descriptors with fd_getfile().
1565 	 */
1566 	fdp = (int *)CMSG_DATA(cm) + nfds;
1567 	rp = files + nfds;
1568 	for (i = 0; i < nfds; i++) {
1569 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1570 		KASSERT(fp != NULL);
1571 		mutex_enter(&fp->f_lock);
1572 		*--rp = fp;
1573 		fp->f_count++;
1574 		fp->f_msgcount++;
1575 		mutex_exit(&fp->f_lock);
1576 	}
1577 
1578  out:
1579  	/* Release descriptor references. */
1580 	fdp = (int *)CMSG_DATA(cm);
1581 	for (i = 0; i < nfds; i++) {
1582 		fd_putfile(*fdp++);
1583 		if (error != 0) {
1584 			atomic_dec_uint(&unp_rights);
1585 		}
1586 	}
1587 
1588 	if (error == 0) {
1589 		if (control->m_flags & M_EXT) {
1590 			m_freem(control);
1591 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1592 		}
1593 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1594 		    M_MBUF, NULL, NULL);
1595 		cm = newcm;
1596 		/*
1597 		 * Adjust message & mbuf to note amount of space
1598 		 * actually used.
1599 		 */
1600 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1601 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1602 	}
1603 
1604 	return error;
1605 }
1606 
1607 struct mbuf *
1608 unp_addsockcred(struct lwp *l, struct mbuf *control)
1609 {
1610 	struct sockcred *sc;
1611 	struct mbuf *m;
1612 	void *p;
1613 
1614 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1615 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
1616 	if (m == NULL)
1617 		return control;
1618 
1619 	sc = p;
1620 	sc->sc_pid = l->l_proc->p_pid;
1621 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1622 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1623 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1624 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1625 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1626 
1627 	for (int i = 0; i < sc->sc_ngroups; i++)
1628 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1629 
1630 	return m_add(control, m);
1631 }
1632 
1633 /*
1634  * Do a mark-sweep GC of files in the system, to free up any which are
1635  * caught in flight to an about-to-be-closed socket.  Additionally,
1636  * process deferred file closures.
1637  */
1638 static void
1639 unp_gc(file_t *dp)
1640 {
1641 	extern	struct domain unixdomain;
1642 	file_t *fp, *np;
1643 	struct socket *so, *so1;
1644 	u_int i, oflags, rflags;
1645 	bool didwork;
1646 
1647 	KASSERT(curlwp == unp_thread_lwp);
1648 	KASSERT(mutex_owned(&filelist_lock));
1649 
1650 	/*
1651 	 * First, process deferred file closures.
1652 	 */
1653 	while (!SLIST_EMPTY(&unp_thread_discard)) {
1654 		fp = SLIST_FIRST(&unp_thread_discard);
1655 		KASSERT(fp->f_unpcount > 0);
1656 		KASSERT(fp->f_count > 0);
1657 		KASSERT(fp->f_msgcount > 0);
1658 		KASSERT(fp->f_count >= fp->f_unpcount);
1659 		KASSERT(fp->f_count >= fp->f_msgcount);
1660 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
1661 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1662 		i = fp->f_unpcount;
1663 		fp->f_unpcount = 0;
1664 		mutex_exit(&filelist_lock);
1665 		for (; i != 0; i--) {
1666 			unp_discard_now(fp);
1667 		}
1668 		mutex_enter(&filelist_lock);
1669 	}
1670 
1671 	/*
1672 	 * Clear mark bits.  Ensure that we don't consider new files
1673 	 * entering the file table during this loop (they will not have
1674 	 * FSCAN set).
1675 	 */
1676 	unp_defer = 0;
1677 	LIST_FOREACH(fp, &filehead, f_list) {
1678 		for (oflags = fp->f_flag;; oflags = rflags) {
1679 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
1680 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
1681 			if (__predict_true(oflags == rflags)) {
1682 				break;
1683 			}
1684 		}
1685 	}
1686 
1687 	/*
1688 	 * Iterate over the set of sockets, marking ones believed (based on
1689 	 * refcount) to be referenced from a process, and marking for rescan
1690 	 * sockets which are queued on a socket.  Recan continues descending
1691 	 * and searching for sockets referenced by sockets (FDEFER), until
1692 	 * there are no more socket->socket references to be discovered.
1693 	 */
1694 	do {
1695 		didwork = false;
1696 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1697 			KASSERT(mutex_owned(&filelist_lock));
1698 			np = LIST_NEXT(fp, f_list);
1699 			mutex_enter(&fp->f_lock);
1700 			if ((fp->f_flag & FDEFER) != 0) {
1701 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1702 				unp_defer--;
1703 				if (fp->f_count == 0) {
1704 					/*
1705 					 * XXX: closef() doesn't pay attention
1706 					 * to FDEFER
1707 					 */
1708 					mutex_exit(&fp->f_lock);
1709 					continue;
1710 				}
1711 			} else {
1712 				if (fp->f_count == 0 ||
1713 				    (fp->f_flag & FMARK) != 0 ||
1714 				    fp->f_count == fp->f_msgcount ||
1715 				    fp->f_unpcount != 0) {
1716 					mutex_exit(&fp->f_lock);
1717 					continue;
1718 				}
1719 			}
1720 			atomic_or_uint(&fp->f_flag, FMARK);
1721 
1722 			if (fp->f_type != DTYPE_SOCKET ||
1723 			    (so = fp->f_socket) == NULL ||
1724 			    so->so_proto->pr_domain != &unixdomain ||
1725 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1726 				mutex_exit(&fp->f_lock);
1727 				continue;
1728 			}
1729 
1730 			/* Gain file ref, mark our position, and unlock. */
1731 			didwork = true;
1732 			LIST_INSERT_AFTER(fp, dp, f_list);
1733 			fp->f_count++;
1734 			mutex_exit(&fp->f_lock);
1735 			mutex_exit(&filelist_lock);
1736 
1737 			/*
1738 			 * Mark files referenced from sockets queued on the
1739 			 * accept queue as well.
1740 			 */
1741 			solock(so);
1742 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1743 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
1744 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1745 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1746 				}
1747 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1748 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1749 				}
1750 			}
1751 			sounlock(so);
1752 
1753 			/* Re-lock and restart from where we left off. */
1754 			closef(fp);
1755 			mutex_enter(&filelist_lock);
1756 			np = LIST_NEXT(dp, f_list);
1757 			LIST_REMOVE(dp, f_list);
1758 		}
1759 		/*
1760 		 * Bail early if we did nothing in the loop above.  Could
1761 		 * happen because of concurrent activity causing unp_defer
1762 		 * to get out of sync.
1763 		 */
1764 	} while (unp_defer != 0 && didwork);
1765 
1766 	/*
1767 	 * Sweep pass.
1768 	 *
1769 	 * We grab an extra reference to each of the files that are
1770 	 * not otherwise accessible and then free the rights that are
1771 	 * stored in messages on them.
1772 	 */
1773 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1774 		KASSERT(mutex_owned(&filelist_lock));
1775 		np = LIST_NEXT(fp, f_list);
1776 		mutex_enter(&fp->f_lock);
1777 
1778 		/*
1779 		 * Ignore non-sockets.
1780 		 * Ignore dead sockets, or sockets with pending close.
1781 		 * Ignore sockets obviously referenced elsewhere.
1782 		 * Ignore sockets marked as referenced by our scan.
1783 		 * Ignore new sockets that did not exist during the scan.
1784 		 */
1785 		if (fp->f_type != DTYPE_SOCKET ||
1786 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
1787 		    fp->f_count != fp->f_msgcount ||
1788 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1789 			mutex_exit(&fp->f_lock);
1790 			continue;
1791 		}
1792 
1793 		/* Gain file ref, mark our position, and unlock. */
1794 		LIST_INSERT_AFTER(fp, dp, f_list);
1795 		fp->f_count++;
1796 		mutex_exit(&fp->f_lock);
1797 		mutex_exit(&filelist_lock);
1798 
1799 		/*
1800 		 * Flush all data from the socket's receive buffer.
1801 		 * This will cause files referenced only by the
1802 		 * socket to be queued for close.
1803 		 */
1804 		so = fp->f_socket;
1805 		solock(so);
1806 		sorflush(so);
1807 		sounlock(so);
1808 
1809 		/* Re-lock and restart from where we left off. */
1810 		closef(fp);
1811 		mutex_enter(&filelist_lock);
1812 		np = LIST_NEXT(dp, f_list);
1813 		LIST_REMOVE(dp, f_list);
1814 	}
1815 }
1816 
1817 /*
1818  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
1819  * wake once per second to garbage collect.  Run continually while we
1820  * have deferred closes to process.
1821  */
1822 static void
1823 unp_thread(void *cookie)
1824 {
1825 	file_t *dp;
1826 
1827 	/* Allocate a dummy file for our scans. */
1828 	if ((dp = fgetdummy()) == NULL) {
1829 		panic("unp_thread");
1830 	}
1831 
1832 	mutex_enter(&filelist_lock);
1833 	for (;;) {
1834 		KASSERT(mutex_owned(&filelist_lock));
1835 		if (SLIST_EMPTY(&unp_thread_discard)) {
1836 			if (unp_rights != 0) {
1837 				(void)cv_timedwait(&unp_thread_cv,
1838 				    &filelist_lock, hz);
1839 			} else {
1840 				cv_wait(&unp_thread_cv, &filelist_lock);
1841 			}
1842 		}
1843 		unp_gc(dp);
1844 	}
1845 	/* NOTREACHED */
1846 }
1847 
1848 /*
1849  * Kick the garbage collector into action if there is something for
1850  * it to process.
1851  */
1852 static void
1853 unp_thread_kick(void)
1854 {
1855 
1856 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1857 		mutex_enter(&filelist_lock);
1858 		cv_signal(&unp_thread_cv);
1859 		mutex_exit(&filelist_lock);
1860 	}
1861 }
1862 
1863 void
1864 unp_dispose(struct mbuf *m)
1865 {
1866 
1867 	if (m)
1868 		unp_scan(m, unp_discard_later, 1);
1869 }
1870 
1871 void
1872 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1873 {
1874 	struct mbuf *m;
1875 	file_t **rp, *fp;
1876 	struct cmsghdr *cm;
1877 	int i, qfds;
1878 
1879 	while (m0) {
1880 		for (m = m0; m; m = m->m_next) {
1881 			if (m->m_type != MT_CONTROL ||
1882 			    m->m_len < sizeof(*cm)) {
1883 			    	continue;
1884 			}
1885 			cm = mtod(m, struct cmsghdr *);
1886 			if (cm->cmsg_level != SOL_SOCKET ||
1887 			    cm->cmsg_type != SCM_RIGHTS)
1888 				continue;
1889 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1890 			    / sizeof(file_t *);
1891 			rp = (file_t **)CMSG_DATA(cm);
1892 			for (i = 0; i < qfds; i++) {
1893 				fp = *rp;
1894 				if (discard) {
1895 					*rp = 0;
1896 				}
1897 				(*op)(fp);
1898 				rp++;
1899 			}
1900 		}
1901 		m0 = m0->m_nextpkt;
1902 	}
1903 }
1904 
1905 void
1906 unp_mark(file_t *fp)
1907 {
1908 
1909 	if (fp == NULL)
1910 		return;
1911 
1912 	/* If we're already deferred, don't screw up the defer count */
1913 	mutex_enter(&fp->f_lock);
1914 	if (fp->f_flag & (FMARK | FDEFER)) {
1915 		mutex_exit(&fp->f_lock);
1916 		return;
1917 	}
1918 
1919 	/*
1920 	 * Minimize the number of deferrals...  Sockets are the only type of
1921 	 * file which can hold references to another file, so just mark
1922 	 * other files, and defer unmarked sockets for the next pass.
1923 	 */
1924 	if (fp->f_type == DTYPE_SOCKET) {
1925 		unp_defer++;
1926 		KASSERT(fp->f_count != 0);
1927 		atomic_or_uint(&fp->f_flag, FDEFER);
1928 	} else {
1929 		atomic_or_uint(&fp->f_flag, FMARK);
1930 	}
1931 	mutex_exit(&fp->f_lock);
1932 }
1933 
1934 static void
1935 unp_discard_now(file_t *fp)
1936 {
1937 
1938 	if (fp == NULL)
1939 		return;
1940 
1941 	KASSERT(fp->f_count > 0);
1942 	KASSERT(fp->f_msgcount > 0);
1943 
1944 	mutex_enter(&fp->f_lock);
1945 	fp->f_msgcount--;
1946 	mutex_exit(&fp->f_lock);
1947 	atomic_dec_uint(&unp_rights);
1948 	(void)closef(fp);
1949 }
1950 
1951 static void
1952 unp_discard_later(file_t *fp)
1953 {
1954 
1955 	if (fp == NULL)
1956 		return;
1957 
1958 	KASSERT(fp->f_count > 0);
1959 	KASSERT(fp->f_msgcount > 0);
1960 
1961 	mutex_enter(&filelist_lock);
1962 	if (fp->f_unpcount++ == 0) {
1963 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1964 	}
1965 	mutex_exit(&filelist_lock);
1966 }
1967 
1968 const struct pr_usrreqs unp_usrreqs = {
1969 	.pr_attach	= unp_attach,
1970 	.pr_detach	= unp_detach,
1971 	.pr_accept	= unp_accept,
1972 	.pr_bind	= unp_bind,
1973 	.pr_listen	= unp_listen,
1974 	.pr_connect	= unp_connect,
1975 	.pr_connect2	= unp_connect2,
1976 	.pr_disconnect	= unp_disconnect,
1977 	.pr_shutdown	= unp_shutdown,
1978 	.pr_abort	= unp_abort,
1979 	.pr_ioctl	= unp_ioctl,
1980 	.pr_stat	= unp_stat,
1981 	.pr_peeraddr	= unp_peeraddr,
1982 	.pr_sockaddr	= unp_sockaddr,
1983 	.pr_rcvd	= unp_rcvd,
1984 	.pr_recvoob	= unp_recvoob,
1985 	.pr_send	= unp_send,
1986 	.pr_sendoob	= unp_sendoob,
1987 };
1988