xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision f89f6560d453f5e37386cc7938c072d2f528b9fa)
1 /*	$NetBSD: uipc_usrreq.c,v 1.176 2015/04/03 20:01:07 rtr Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.176 2015/04/03 20:01:07 rtr Exp $");
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 #include <sys/kernel.h>
121 #include <sys/kthread.h>
122 
123 /*
124  * Unix communications domain.
125  *
126  * TODO:
127  *	RDM
128  *	rethink name space problems
129  *	need a proper out-of-band
130  *
131  * Notes on locking:
132  *
133  * The generic rules noted in uipc_socket2.c apply.  In addition:
134  *
135  * o We have a global lock, uipc_lock.
136  *
137  * o All datagram sockets are locked by uipc_lock.
138  *
139  * o For stream socketpairs, the two endpoints are created sharing the same
140  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
141  *   matching locks.
142  *
143  * o Stream sockets created via socket() start life with their own
144  *   independent lock.
145  *
146  * o Stream connections to a named endpoint are slightly more complicated.
147  *   Sockets that have called listen() have their lock pointer mutated to
148  *   the global uipc_lock.  When establishing a connection, the connecting
149  *   socket also has its lock mutated to uipc_lock, which matches the head
150  *   (listening socket).  We create a new socket for accept() to return, and
151  *   that also shares the head's lock.  Until the connection is completely
152  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
153  *   connection is complete, the association with the head's lock is broken.
154  *   The connecting socket and the socket returned from accept() have their
155  *   lock pointers mutated away from uipc_lock, and back to the connecting
156  *   socket's original, independent lock.  The head continues to be locked
157  *   by uipc_lock.
158  *
159  * o If uipc_lock is determined to be a significant source of contention,
160  *   it could easily be hashed out.  It is difficult to simply make it an
161  *   independent lock because of visibility / garbage collection issues:
162  *   if a socket has been associated with a lock at any point, that lock
163  *   must remain valid until the socket is no longer visible in the system.
164  *   The lock must not be freed or otherwise destroyed until any sockets
165  *   that had referenced it have also been destroyed.
166  */
167 const struct sockaddr_un sun_noname = {
168 	.sun_len = offsetof(struct sockaddr_un, sun_path),
169 	.sun_family = AF_LOCAL,
170 };
171 ino_t	unp_ino;			/* prototype for fake inode numbers */
172 
173 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
174 static void   unp_discard_later(file_t *);
175 static void   unp_discard_now(file_t *);
176 static void   unp_disconnect1(struct unpcb *);
177 static bool   unp_drop(struct unpcb *, int);
178 static int    unp_internalize(struct mbuf **);
179 static void   unp_mark(file_t *);
180 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
181 static void   unp_shutdown1(struct unpcb *);
182 static void   unp_thread(void *);
183 static void   unp_thread_kick(void);
184 
185 static kmutex_t *uipc_lock;
186 
187 static kcondvar_t unp_thread_cv;
188 static lwp_t *unp_thread_lwp;
189 static SLIST_HEAD(,file) unp_thread_discard;
190 static int unp_defer;
191 
192 /*
193  * Initialize Unix protocols.
194  */
195 void
196 uipc_init(void)
197 {
198 	int error;
199 
200 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
201 	cv_init(&unp_thread_cv, "unpgc");
202 
203 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
204 	    NULL, &unp_thread_lwp, "unpgc");
205 	if (error != 0)
206 		panic("uipc_init %d", error);
207 }
208 
209 /*
210  * A connection succeeded: disassociate both endpoints from the head's
211  * lock, and make them share their own lock.  There is a race here: for
212  * a very brief time one endpoint will be locked by a different lock
213  * than the other end.  However, since the current thread holds the old
214  * lock (the listening socket's lock, the head) access can still only be
215  * made to one side of the connection.
216  */
217 static void
218 unp_setpeerlocks(struct socket *so, struct socket *so2)
219 {
220 	struct unpcb *unp;
221 	kmutex_t *lock;
222 
223 	KASSERT(solocked2(so, so2));
224 
225 	/*
226 	 * Bail out if either end of the socket is not yet fully
227 	 * connected or accepted.  We only break the lock association
228 	 * with the head when the pair of sockets stand completely
229 	 * on their own.
230 	 */
231 	KASSERT(so->so_head == NULL);
232 	if (so2->so_head != NULL)
233 		return;
234 
235 	/*
236 	 * Drop references to old lock.  A third reference (from the
237 	 * queue head) must be held as we still hold its lock.  Bonus:
238 	 * we don't need to worry about garbage collecting the lock.
239 	 */
240 	lock = so->so_lock;
241 	KASSERT(lock == uipc_lock);
242 	mutex_obj_free(lock);
243 	mutex_obj_free(lock);
244 
245 	/*
246 	 * Grab stream lock from the initiator and share between the two
247 	 * endpoints.  Issue memory barrier to ensure all modifications
248 	 * become globally visible before the lock change.  so2 is
249 	 * assumed not to have a stream lock, because it was created
250 	 * purely for the server side to accept this connection and
251 	 * started out life using the domain-wide lock.
252 	 */
253 	unp = sotounpcb(so);
254 	KASSERT(unp->unp_streamlock != NULL);
255 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
256 	lock = unp->unp_streamlock;
257 	unp->unp_streamlock = NULL;
258 	mutex_obj_hold(lock);
259 	membar_exit();
260 	/*
261 	 * possible race if lock is not held - see comment in
262 	 * uipc_usrreq(PRU_ACCEPT).
263 	 */
264 	KASSERT(mutex_owned(lock));
265 	solockreset(so, lock);
266 	solockreset(so2, lock);
267 }
268 
269 /*
270  * Reset a socket's lock back to the domain-wide lock.
271  */
272 static void
273 unp_resetlock(struct socket *so)
274 {
275 	kmutex_t *olock, *nlock;
276 	struct unpcb *unp;
277 
278 	KASSERT(solocked(so));
279 
280 	olock = so->so_lock;
281 	nlock = uipc_lock;
282 	if (olock == nlock)
283 		return;
284 	unp = sotounpcb(so);
285 	KASSERT(unp->unp_streamlock == NULL);
286 	unp->unp_streamlock = olock;
287 	mutex_obj_hold(nlock);
288 	mutex_enter(nlock);
289 	solockreset(so, nlock);
290 	mutex_exit(olock);
291 }
292 
293 static void
294 unp_free(struct unpcb *unp)
295 {
296 	if (unp->unp_addr)
297 		free(unp->unp_addr, M_SONAME);
298 	if (unp->unp_streamlock != NULL)
299 		mutex_obj_free(unp->unp_streamlock);
300 	kmem_free(unp, sizeof(*unp));
301 }
302 
303 static int
304 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
305 {
306 	struct socket *so2;
307 	const struct sockaddr_un *sun;
308 
309 	/* XXX: server side closed the socket */
310 	if (unp->unp_conn == NULL)
311 		return ECONNREFUSED;
312 	so2 = unp->unp_conn->unp_socket;
313 
314 	KASSERT(solocked(so2));
315 
316 	if (unp->unp_addr)
317 		sun = unp->unp_addr;
318 	else
319 		sun = &sun_noname;
320 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
321 		control = unp_addsockcred(curlwp, control);
322 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
323 	    control) == 0) {
324 		so2->so_rcv.sb_overflowed++;
325 		unp_dispose(control);
326 		m_freem(control);
327 		m_freem(m);
328 		return (ENOBUFS);
329 	} else {
330 		sorwakeup(so2);
331 		return (0);
332 	}
333 }
334 
335 static void
336 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
337 {
338 	const struct sockaddr_un *sun;
339 	struct unpcb *unp;
340 	bool ext;
341 
342 	KASSERT(solocked(so));
343 	unp = sotounpcb(so);
344 	ext = false;
345 
346 	for (;;) {
347 		sun = NULL;
348 		if (peeraddr) {
349 			if (unp->unp_conn && unp->unp_conn->unp_addr)
350 				sun = unp->unp_conn->unp_addr;
351 		} else {
352 			if (unp->unp_addr)
353 				sun = unp->unp_addr;
354 		}
355 		if (sun == NULL)
356 			sun = &sun_noname;
357 		nam->m_len = sun->sun_len;
358 		if (nam->m_len > MLEN && !ext) {
359 			sounlock(so);
360 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
361 			solock(so);
362 			ext = true;
363 		} else {
364 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
365 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
366 			break;
367 		}
368 	}
369 }
370 
371 static int
372 unp_rcvd(struct socket *so, int flags, struct lwp *l)
373 {
374 	struct unpcb *unp = sotounpcb(so);
375 	struct socket *so2;
376 	u_int newhiwat;
377 
378 	KASSERT(solocked(so));
379 	KASSERT(unp != NULL);
380 
381 	switch (so->so_type) {
382 
383 	case SOCK_DGRAM:
384 		panic("uipc 1");
385 		/*NOTREACHED*/
386 
387 	case SOCK_SEQPACKET: /* FALLTHROUGH */
388 	case SOCK_STREAM:
389 #define	rcv (&so->so_rcv)
390 #define snd (&so2->so_snd)
391 		if (unp->unp_conn == 0)
392 			break;
393 		so2 = unp->unp_conn->unp_socket;
394 		KASSERT(solocked2(so, so2));
395 		/*
396 		 * Adjust backpressure on sender
397 		 * and wakeup any waiting to write.
398 		 */
399 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
400 		unp->unp_mbcnt = rcv->sb_mbcnt;
401 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
402 		(void)chgsbsize(so2->so_uidinfo,
403 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
404 		unp->unp_cc = rcv->sb_cc;
405 		sowwakeup(so2);
406 #undef snd
407 #undef rcv
408 		break;
409 
410 	default:
411 		panic("uipc 2");
412 	}
413 
414 	return 0;
415 }
416 
417 static int
418 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
419 {
420 	KASSERT(solocked(so));
421 
422 	return EOPNOTSUPP;
423 }
424 
425 static int
426 unp_send(struct socket *so, struct mbuf *m, struct mbuf *nam,
427     struct mbuf *control, struct lwp *l)
428 {
429 	struct unpcb *unp = sotounpcb(so);
430 	int error = 0;
431 	u_int newhiwat;
432 	struct socket *so2;
433 
434 	KASSERT(solocked(so));
435 	KASSERT(unp != NULL);
436 	KASSERT(m != NULL);
437 
438 	/*
439 	 * Note: unp_internalize() rejects any control message
440 	 * other than SCM_RIGHTS, and only allows one.  This
441 	 * has the side-effect of preventing a caller from
442 	 * forging SCM_CREDS.
443 	 */
444 	if (control) {
445 		sounlock(so);
446 		error = unp_internalize(&control);
447 		solock(so);
448 		if (error != 0) {
449 			m_freem(control);
450 			m_freem(m);
451 			return error;
452 		}
453 	}
454 
455 	switch (so->so_type) {
456 
457 	case SOCK_DGRAM: {
458 		KASSERT(so->so_lock == uipc_lock);
459 		if (nam) {
460 			if ((so->so_state & SS_ISCONNECTED) != 0)
461 				error = EISCONN;
462 			else {
463 				/*
464 				 * Note: once connected, the
465 				 * socket's lock must not be
466 				 * dropped until we have sent
467 				 * the message and disconnected.
468 				 * This is necessary to prevent
469 				 * intervening control ops, like
470 				 * another connection.
471 				 */
472 				error = unp_connect(so, nam, l);
473 			}
474 		} else {
475 			if ((so->so_state & SS_ISCONNECTED) == 0)
476 				error = ENOTCONN;
477 		}
478 		if (error) {
479 			unp_dispose(control);
480 			m_freem(control);
481 			m_freem(m);
482 			return error;
483 		}
484 		error = unp_output(m, control, unp);
485 		if (nam)
486 			unp_disconnect1(unp);
487 		break;
488 	}
489 
490 	case SOCK_SEQPACKET: /* FALLTHROUGH */
491 	case SOCK_STREAM:
492 #define	rcv (&so2->so_rcv)
493 #define	snd (&so->so_snd)
494 		if (unp->unp_conn == NULL) {
495 			error = ENOTCONN;
496 			break;
497 		}
498 		so2 = unp->unp_conn->unp_socket;
499 		KASSERT(solocked2(so, so2));
500 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
501 			/*
502 			 * Credentials are passed only once on
503 			 * SOCK_STREAM and SOCK_SEQPACKET.
504 			 */
505 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
506 			control = unp_addsockcred(l, control);
507 		}
508 		/*
509 		 * Send to paired receive port, and then reduce
510 		 * send buffer hiwater marks to maintain backpressure.
511 		 * Wake up readers.
512 		 */
513 		if (control) {
514 			if (sbappendcontrol(rcv, m, control) != 0)
515 				control = NULL;
516 		} else {
517 			switch(so->so_type) {
518 			case SOCK_SEQPACKET:
519 				sbappendrecord(rcv, m);
520 				break;
521 			case SOCK_STREAM:
522 				sbappend(rcv, m);
523 				break;
524 			default:
525 				panic("uipc_usrreq");
526 				break;
527 			}
528 		}
529 		snd->sb_mbmax -=
530 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
531 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
532 		newhiwat = snd->sb_hiwat -
533 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
534 		(void)chgsbsize(so->so_uidinfo,
535 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
536 		unp->unp_conn->unp_cc = rcv->sb_cc;
537 		sorwakeup(so2);
538 #undef snd
539 #undef rcv
540 		if (control != NULL) {
541 			unp_dispose(control);
542 			m_freem(control);
543 		}
544 		break;
545 
546 	default:
547 		panic("uipc 4");
548 	}
549 
550 	return error;
551 }
552 
553 static int
554 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
555 {
556 	KASSERT(solocked(so));
557 
558 	m_freem(m);
559 	m_freem(control);
560 
561 	return EOPNOTSUPP;
562 }
563 
564 static int
565 unp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
566     struct mbuf *control, struct lwp *l)
567 {
568 
569 	KASSERT(req != PRU_ATTACH);
570 	KASSERT(req != PRU_DETACH);
571 	KASSERT(req != PRU_ACCEPT);
572 	KASSERT(req != PRU_BIND);
573 	KASSERT(req != PRU_LISTEN);
574 	KASSERT(req != PRU_CONNECT);
575 	KASSERT(req != PRU_CONNECT2);
576 	KASSERT(req != PRU_DISCONNECT);
577 	KASSERT(req != PRU_SHUTDOWN);
578 	KASSERT(req != PRU_ABORT);
579 	KASSERT(req != PRU_CONTROL);
580 	KASSERT(req != PRU_SENSE);
581 	KASSERT(req != PRU_PEERADDR);
582 	KASSERT(req != PRU_SOCKADDR);
583 	KASSERT(req != PRU_RCVD);
584 	KASSERT(req != PRU_RCVOOB);
585 	KASSERT(req != PRU_SEND);
586 	KASSERT(req != PRU_SENDOOB);
587 	KASSERT(req != PRU_PURGEIF);
588 
589 	KASSERT(solocked(so));
590 
591 	if (sotounpcb(so) == NULL)
592 		return EINVAL;
593 
594 	panic("piusrreq");
595 
596 	return 0;
597 }
598 
599 /*
600  * Unix domain socket option processing.
601  */
602 int
603 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
604 {
605 	struct unpcb *unp = sotounpcb(so);
606 	int optval = 0, error = 0;
607 
608 	KASSERT(solocked(so));
609 
610 	if (sopt->sopt_level != 0) {
611 		error = ENOPROTOOPT;
612 	} else switch (op) {
613 
614 	case PRCO_SETOPT:
615 		switch (sopt->sopt_name) {
616 		case LOCAL_CREDS:
617 		case LOCAL_CONNWAIT:
618 			error = sockopt_getint(sopt, &optval);
619 			if (error)
620 				break;
621 			switch (sopt->sopt_name) {
622 #define	OPTSET(bit) \
623 	if (optval) \
624 		unp->unp_flags |= (bit); \
625 	else \
626 		unp->unp_flags &= ~(bit);
627 
628 			case LOCAL_CREDS:
629 				OPTSET(UNP_WANTCRED);
630 				break;
631 			case LOCAL_CONNWAIT:
632 				OPTSET(UNP_CONNWAIT);
633 				break;
634 			}
635 			break;
636 #undef OPTSET
637 
638 		default:
639 			error = ENOPROTOOPT;
640 			break;
641 		}
642 		break;
643 
644 	case PRCO_GETOPT:
645 		sounlock(so);
646 		switch (sopt->sopt_name) {
647 		case LOCAL_PEEREID:
648 			if (unp->unp_flags & UNP_EIDSVALID) {
649 				error = sockopt_set(sopt,
650 				    &unp->unp_connid, sizeof(unp->unp_connid));
651 			} else {
652 				error = EINVAL;
653 			}
654 			break;
655 		case LOCAL_CREDS:
656 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
657 
658 			optval = OPTBIT(UNP_WANTCRED);
659 			error = sockopt_setint(sopt, optval);
660 			break;
661 #undef OPTBIT
662 
663 		default:
664 			error = ENOPROTOOPT;
665 			break;
666 		}
667 		solock(so);
668 		break;
669 	}
670 	return (error);
671 }
672 
673 /*
674  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
675  * for stream sockets, although the total for sender and receiver is
676  * actually only PIPSIZ.
677  * Datagram sockets really use the sendspace as the maximum datagram size,
678  * and don't really want to reserve the sendspace.  Their recvspace should
679  * be large enough for at least one max-size datagram plus address.
680  */
681 #define	PIPSIZ	4096
682 u_long	unpst_sendspace = PIPSIZ;
683 u_long	unpst_recvspace = PIPSIZ;
684 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
685 u_long	unpdg_recvspace = 4*1024;
686 
687 u_int	unp_rights;			/* files in flight */
688 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
689 
690 static int
691 unp_attach(struct socket *so, int proto)
692 {
693 	struct unpcb *unp = sotounpcb(so);
694 	u_long sndspc, rcvspc;
695 	int error;
696 
697 	KASSERT(unp == NULL);
698 
699 	switch (so->so_type) {
700 	case SOCK_SEQPACKET:
701 		/* FALLTHROUGH */
702 	case SOCK_STREAM:
703 		if (so->so_lock == NULL) {
704 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
705 			solock(so);
706 		}
707 		sndspc = unpst_sendspace;
708 		rcvspc = unpst_recvspace;
709 		break;
710 
711 	case SOCK_DGRAM:
712 		if (so->so_lock == NULL) {
713 			mutex_obj_hold(uipc_lock);
714 			so->so_lock = uipc_lock;
715 			solock(so);
716 		}
717 		sndspc = unpdg_sendspace;
718 		rcvspc = unpdg_recvspace;
719 		break;
720 
721 	default:
722 		panic("unp_attach");
723 	}
724 
725 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
726 		error = soreserve(so, sndspc, rcvspc);
727 		if (error) {
728 			return error;
729 		}
730 	}
731 
732 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
733 	nanotime(&unp->unp_ctime);
734 	unp->unp_socket = so;
735 	so->so_pcb = unp;
736 
737 	KASSERT(solocked(so));
738 	return 0;
739 }
740 
741 static void
742 unp_detach(struct socket *so)
743 {
744 	struct unpcb *unp;
745 	vnode_t *vp;
746 
747 	unp = sotounpcb(so);
748 	KASSERT(unp != NULL);
749 	KASSERT(solocked(so));
750  retry:
751 	if ((vp = unp->unp_vnode) != NULL) {
752 		sounlock(so);
753 		/* Acquire v_interlock to protect against unp_connect(). */
754 		/* XXXAD racy */
755 		mutex_enter(vp->v_interlock);
756 		vp->v_socket = NULL;
757 		mutex_exit(vp->v_interlock);
758 		vrele(vp);
759 		solock(so);
760 		unp->unp_vnode = NULL;
761 	}
762 	if (unp->unp_conn)
763 		unp_disconnect1(unp);
764 	while (unp->unp_refs) {
765 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
766 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
767 			solock(so);
768 			goto retry;
769 		}
770 	}
771 	soisdisconnected(so);
772 	so->so_pcb = NULL;
773 	if (unp_rights) {
774 		/*
775 		 * Normally the receive buffer is flushed later, in sofree,
776 		 * but if our receive buffer holds references to files that
777 		 * are now garbage, we will enqueue those file references to
778 		 * the garbage collector and kick it into action.
779 		 */
780 		sorflush(so);
781 		unp_free(unp);
782 		unp_thread_kick();
783 	} else
784 		unp_free(unp);
785 }
786 
787 static int
788 unp_accept(struct socket *so, struct mbuf *nam)
789 {
790 	struct unpcb *unp = sotounpcb(so);
791 	struct socket *so2;
792 
793 	KASSERT(solocked(so));
794 	KASSERT(nam != NULL);
795 
796 	/* XXX code review required to determine if unp can ever be NULL */
797 	if (unp == NULL)
798 		return EINVAL;
799 
800 	KASSERT(so->so_lock == uipc_lock);
801 	/*
802 	 * Mark the initiating STREAM socket as connected *ONLY*
803 	 * after it's been accepted.  This prevents a client from
804 	 * overrunning a server and receiving ECONNREFUSED.
805 	 */
806 	if (unp->unp_conn == NULL) {
807 		/*
808 		 * This will use the empty socket and will not
809 		 * allocate.
810 		 */
811 		unp_setaddr(so, nam, true);
812 		return 0;
813 	}
814 	so2 = unp->unp_conn->unp_socket;
815 	if (so2->so_state & SS_ISCONNECTING) {
816 		KASSERT(solocked2(so, so->so_head));
817 		KASSERT(solocked2(so2, so->so_head));
818 		soisconnected(so2);
819 	}
820 	/*
821 	 * If the connection is fully established, break the
822 	 * association with uipc_lock and give the connected
823 	 * pair a separate lock to share.
824 	 * There is a race here: sotounpcb(so2)->unp_streamlock
825 	 * is not locked, so when changing so2->so_lock
826 	 * another thread can grab it while so->so_lock is still
827 	 * pointing to the (locked) uipc_lock.
828 	 * this should be harmless, except that this makes
829 	 * solocked2() and solocked() unreliable.
830 	 * Another problem is that unp_setaddr() expects the
831 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
832 	 * fixes both issues.
833 	 */
834 	mutex_enter(sotounpcb(so2)->unp_streamlock);
835 	unp_setpeerlocks(so2, so);
836 	/*
837 	 * Only now return peer's address, as we may need to
838 	 * block in order to allocate memory.
839 	 *
840 	 * XXX Minor race: connection can be broken while
841 	 * lock is dropped in unp_setaddr().  We will return
842 	 * error == 0 and sun_noname as the peer address.
843 	 */
844 	unp_setaddr(so, nam, true);
845 	/* so_lock now points to unp_streamlock */
846 	mutex_exit(so2->so_lock);
847 	return 0;
848 }
849 
850 static int
851 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
852 {
853 	return EOPNOTSUPP;
854 }
855 
856 static int
857 unp_stat(struct socket *so, struct stat *ub)
858 {
859 	struct unpcb *unp;
860 	struct socket *so2;
861 
862 	KASSERT(solocked(so));
863 
864 	unp = sotounpcb(so);
865 	if (unp == NULL)
866 		return EINVAL;
867 
868 	ub->st_blksize = so->so_snd.sb_hiwat;
869 	switch (so->so_type) {
870 	case SOCK_SEQPACKET: /* FALLTHROUGH */
871 	case SOCK_STREAM:
872 		if (unp->unp_conn == 0)
873 			break;
874 
875 		so2 = unp->unp_conn->unp_socket;
876 		KASSERT(solocked2(so, so2));
877 		ub->st_blksize += so2->so_rcv.sb_cc;
878 		break;
879 	default:
880 		break;
881 	}
882 	ub->st_dev = NODEV;
883 	if (unp->unp_ino == 0)
884 		unp->unp_ino = unp_ino++;
885 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
886 	ub->st_ino = unp->unp_ino;
887 	return (0);
888 }
889 
890 static int
891 unp_peeraddr(struct socket *so, struct mbuf *nam)
892 {
893 	KASSERT(solocked(so));
894 	KASSERT(sotounpcb(so) != NULL);
895 	KASSERT(nam != NULL);
896 
897 	unp_setaddr(so, nam, true);
898 	return 0;
899 }
900 
901 static int
902 unp_sockaddr(struct socket *so, struct mbuf *nam)
903 {
904 	KASSERT(solocked(so));
905 	KASSERT(sotounpcb(so) != NULL);
906 	KASSERT(nam != NULL);
907 
908 	unp_setaddr(so, nam, false);
909 	return 0;
910 }
911 
912 /*
913  * Allocate the new sockaddr.  We have to allocate one
914  * extra byte so that we can ensure that the pathname
915  * is nul-terminated. Note that unlike linux, we don't
916  * include in the address length the NUL in the path
917  * component, because doing so, would exceed sizeof(sockaddr_un)
918  * for fully occupied pathnames. Linux is also inconsistent,
919  * because it does not include the NUL in the length of
920  * what it calls "abstract" unix sockets.
921  */
922 static struct sockaddr_un *
923 makeun(struct mbuf *nam, size_t *addrlen)
924 {
925 	struct sockaddr_un *sun;
926 
927 	*addrlen = nam->m_len + 1;
928 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
929 	m_copydata(nam, 0, nam->m_len, (void *)sun);
930 	*(((char *)sun) + nam->m_len) = '\0';
931 	return sun;
932 }
933 
934 /*
935  * we only need to perform this allocation until syscalls other than
936  * bind are adjusted to use sockaddr_big.
937  */
938 static struct sockaddr_un *
939 makeun_sb(struct sockaddr *nam, size_t *addrlen)
940 {
941 	struct sockaddr_un *sun;
942 
943 	*addrlen = nam->sa_len + 1;
944 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
945 	memcpy(sun, nam, nam->sa_len);
946 	*(((char *)sun) + nam->sa_len) = '\0';
947 	return sun;
948 }
949 
950 static int
951 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
952 {
953 	struct sockaddr_un *sun;
954 	struct unpcb *unp;
955 	vnode_t *vp;
956 	struct vattr vattr;
957 	size_t addrlen;
958 	int error;
959 	struct pathbuf *pb;
960 	struct nameidata nd;
961 	proc_t *p;
962 
963 	unp = sotounpcb(so);
964 
965 	KASSERT(solocked(so));
966 	KASSERT(unp != NULL);
967 	KASSERT(nam != NULL);
968 
969 	if (unp->unp_vnode != NULL)
970 		return (EINVAL);
971 	if ((unp->unp_flags & UNP_BUSY) != 0) {
972 		/*
973 		 * EALREADY may not be strictly accurate, but since this
974 		 * is a major application error it's hardly a big deal.
975 		 */
976 		return (EALREADY);
977 	}
978 	unp->unp_flags |= UNP_BUSY;
979 	sounlock(so);
980 
981 	p = l->l_proc;
982 	sun = makeun_sb(nam, &addrlen);
983 
984 	pb = pathbuf_create(sun->sun_path);
985 	if (pb == NULL) {
986 		error = ENOMEM;
987 		goto bad;
988 	}
989 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
990 
991 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
992 	if ((error = namei(&nd)) != 0) {
993 		pathbuf_destroy(pb);
994 		goto bad;
995 	}
996 	vp = nd.ni_vp;
997 	if (vp != NULL) {
998 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
999 		if (nd.ni_dvp == vp)
1000 			vrele(nd.ni_dvp);
1001 		else
1002 			vput(nd.ni_dvp);
1003 		vrele(vp);
1004 		pathbuf_destroy(pb);
1005 		error = EADDRINUSE;
1006 		goto bad;
1007 	}
1008 	vattr_null(&vattr);
1009 	vattr.va_type = VSOCK;
1010 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
1011 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
1012 	if (error) {
1013 		vput(nd.ni_dvp);
1014 		pathbuf_destroy(pb);
1015 		goto bad;
1016 	}
1017 	vp = nd.ni_vp;
1018 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1019 	solock(so);
1020 	vp->v_socket = unp->unp_socket;
1021 	unp->unp_vnode = vp;
1022 	unp->unp_addrlen = addrlen;
1023 	unp->unp_addr = sun;
1024 	unp->unp_connid.unp_pid = p->p_pid;
1025 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1026 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1027 	unp->unp_flags |= UNP_EIDSBIND;
1028 	VOP_UNLOCK(vp);
1029 	vput(nd.ni_dvp);
1030 	unp->unp_flags &= ~UNP_BUSY;
1031 	pathbuf_destroy(pb);
1032 	return (0);
1033 
1034  bad:
1035 	free(sun, M_SONAME);
1036 	solock(so);
1037 	unp->unp_flags &= ~UNP_BUSY;
1038 	return (error);
1039 }
1040 
1041 static int
1042 unp_listen(struct socket *so, struct lwp *l)
1043 {
1044 	struct unpcb *unp = sotounpcb(so);
1045 
1046 	KASSERT(solocked(so));
1047 	KASSERT(unp != NULL);
1048 
1049 	/*
1050 	 * If the socket can accept a connection, it must be
1051 	 * locked by uipc_lock.
1052 	 */
1053 	unp_resetlock(so);
1054 	if (unp->unp_vnode == NULL)
1055 		return EINVAL;
1056 
1057 	return 0;
1058 }
1059 
1060 static int
1061 unp_disconnect(struct socket *so)
1062 {
1063 	KASSERT(solocked(so));
1064 	KASSERT(sotounpcb(so) != NULL);
1065 
1066 	unp_disconnect1(sotounpcb(so));
1067 	return 0;
1068 }
1069 
1070 static int
1071 unp_shutdown(struct socket *so)
1072 {
1073 	KASSERT(solocked(so));
1074 	KASSERT(sotounpcb(so) != NULL);
1075 
1076 	socantsendmore(so);
1077 	unp_shutdown1(sotounpcb(so));
1078 	return 0;
1079 }
1080 
1081 static int
1082 unp_abort(struct socket *so)
1083 {
1084 	KASSERT(solocked(so));
1085 	KASSERT(sotounpcb(so) != NULL);
1086 
1087 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
1088 	KASSERT(so->so_head == NULL);
1089 	KASSERT(so->so_pcb != NULL);
1090 	unp_detach(so);
1091 	return 0;
1092 }
1093 
1094 static int
1095 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1096 {
1097 	struct unpcb *unp = sotounpcb(so);
1098 	struct unpcb *unp2;
1099 
1100 	if (so2->so_type != so->so_type)
1101 		return EPROTOTYPE;
1102 
1103 	/*
1104 	 * All three sockets involved must be locked by same lock:
1105 	 *
1106 	 * local endpoint (so)
1107 	 * remote endpoint (so2)
1108 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1109 	 */
1110 	KASSERT(solocked2(so, so2));
1111 	KASSERT(so->so_head == NULL);
1112 	if (so2->so_head != NULL) {
1113 		KASSERT(so2->so_lock == uipc_lock);
1114 		KASSERT(solocked2(so2, so2->so_head));
1115 	}
1116 
1117 	unp2 = sotounpcb(so2);
1118 	unp->unp_conn = unp2;
1119 
1120 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1121 		unp2->unp_connid.unp_pid = l->l_proc->p_pid;
1122 		unp2->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1123 		unp2->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1124 		unp2->unp_flags |= UNP_EIDSVALID;
1125 		if (unp2->unp_flags & UNP_EIDSBIND) {
1126 			unp->unp_connid = unp2->unp_connid;
1127 			unp->unp_flags |= UNP_EIDSVALID;
1128 		}
1129 	}
1130 
1131 	switch (so->so_type) {
1132 
1133 	case SOCK_DGRAM:
1134 		unp->unp_nextref = unp2->unp_refs;
1135 		unp2->unp_refs = unp;
1136 		soisconnected(so);
1137 		break;
1138 
1139 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1140 	case SOCK_STREAM:
1141 
1142 		/*
1143 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1144 		 * which are unp_connect() or unp_connect2().
1145 		 */
1146 
1147 		break;
1148 
1149 	default:
1150 		panic("unp_connect1");
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 int
1157 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
1158 {
1159 	struct sockaddr_un *sun;
1160 	vnode_t *vp;
1161 	struct socket *so2, *so3;
1162 	struct unpcb *unp, *unp2, *unp3;
1163 	size_t addrlen;
1164 	int error;
1165 	struct pathbuf *pb;
1166 	struct nameidata nd;
1167 
1168 	unp = sotounpcb(so);
1169 	if ((unp->unp_flags & UNP_BUSY) != 0) {
1170 		/*
1171 		 * EALREADY may not be strictly accurate, but since this
1172 		 * is a major application error it's hardly a big deal.
1173 		 */
1174 		return (EALREADY);
1175 	}
1176 	unp->unp_flags |= UNP_BUSY;
1177 	sounlock(so);
1178 
1179 	sun = makeun(nam, &addrlen);
1180 	pb = pathbuf_create(sun->sun_path);
1181 	if (pb == NULL) {
1182 		error = ENOMEM;
1183 		goto bad2;
1184 	}
1185 
1186 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1187 
1188 	if ((error = namei(&nd)) != 0) {
1189 		pathbuf_destroy(pb);
1190 		goto bad2;
1191 	}
1192 	vp = nd.ni_vp;
1193 	if (vp->v_type != VSOCK) {
1194 		error = ENOTSOCK;
1195 		goto bad;
1196 	}
1197 	pathbuf_destroy(pb);
1198 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1199 		goto bad;
1200 	/* Acquire v_interlock to protect against unp_detach(). */
1201 	mutex_enter(vp->v_interlock);
1202 	so2 = vp->v_socket;
1203 	if (so2 == NULL) {
1204 		mutex_exit(vp->v_interlock);
1205 		error = ECONNREFUSED;
1206 		goto bad;
1207 	}
1208 	if (so->so_type != so2->so_type) {
1209 		mutex_exit(vp->v_interlock);
1210 		error = EPROTOTYPE;
1211 		goto bad;
1212 	}
1213 	solock(so);
1214 	unp_resetlock(so);
1215 	mutex_exit(vp->v_interlock);
1216 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1217 		/*
1218 		 * This may seem somewhat fragile but is OK: if we can
1219 		 * see SO_ACCEPTCONN set on the endpoint, then it must
1220 		 * be locked by the domain-wide uipc_lock.
1221 		 */
1222 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1223 		    so2->so_lock == uipc_lock);
1224 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1225 		    (so3 = sonewconn(so2, false)) == NULL) {
1226 			error = ECONNREFUSED;
1227 			sounlock(so);
1228 			goto bad;
1229 		}
1230 		unp2 = sotounpcb(so2);
1231 		unp3 = sotounpcb(so3);
1232 		if (unp2->unp_addr) {
1233 			unp3->unp_addr = malloc(unp2->unp_addrlen,
1234 			    M_SONAME, M_WAITOK);
1235 			memcpy(unp3->unp_addr, unp2->unp_addr,
1236 			    unp2->unp_addrlen);
1237 			unp3->unp_addrlen = unp2->unp_addrlen;
1238 		}
1239 		unp3->unp_flags = unp2->unp_flags;
1240 		so2 = so3;
1241 	}
1242 	error = unp_connect1(so, so2, l);
1243 	if (error) {
1244 		sounlock(so);
1245 		goto bad;
1246 	}
1247 	unp2 = sotounpcb(so2);
1248 	switch (so->so_type) {
1249 
1250 	/*
1251 	 * SOCK_DGRAM and default cases are handled in prior call to
1252 	 * unp_connect1(), do not add a default case without fixing
1253 	 * unp_connect1().
1254 	 */
1255 
1256 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1257 	case SOCK_STREAM:
1258 		unp2->unp_conn = unp;
1259 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1260 			soisconnecting(so);
1261 		else
1262 			soisconnected(so);
1263 		soisconnected(so2);
1264 		/*
1265 		 * If the connection is fully established, break the
1266 		 * association with uipc_lock and give the connected
1267 		 * pair a seperate lock to share.
1268 		 */
1269 		KASSERT(so2->so_head != NULL);
1270 		unp_setpeerlocks(so, so2);
1271 		break;
1272 
1273 	}
1274 	sounlock(so);
1275  bad:
1276 	vput(vp);
1277  bad2:
1278 	free(sun, M_SONAME);
1279 	solock(so);
1280 	unp->unp_flags &= ~UNP_BUSY;
1281 	return (error);
1282 }
1283 
1284 int
1285 unp_connect2(struct socket *so, struct socket *so2)
1286 {
1287 	struct unpcb *unp = sotounpcb(so);
1288 	struct unpcb *unp2;
1289 	int error = 0;
1290 
1291 	KASSERT(solocked2(so, so2));
1292 
1293 	error = unp_connect1(so, so2, curlwp);
1294 	if (error)
1295 		return error;
1296 
1297 	unp2 = sotounpcb(so2);
1298 	switch (so->so_type) {
1299 
1300 	/*
1301 	 * SOCK_DGRAM and default cases are handled in prior call to
1302 	 * unp_connect1(), do not add a default case without fixing
1303 	 * unp_connect1().
1304 	 */
1305 
1306 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1307 	case SOCK_STREAM:
1308 		unp2->unp_conn = unp;
1309 		if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1310 			unp->unp_connid = unp2->unp_connid;
1311 			unp->unp_flags |= UNP_EIDSVALID;
1312 		}
1313 		soisconnected(so);
1314 		soisconnected(so2);
1315 		break;
1316 
1317 	}
1318 	return error;
1319 }
1320 
1321 static void
1322 unp_disconnect1(struct unpcb *unp)
1323 {
1324 	struct unpcb *unp2 = unp->unp_conn;
1325 	struct socket *so;
1326 
1327 	if (unp2 == 0)
1328 		return;
1329 	unp->unp_conn = 0;
1330 	so = unp->unp_socket;
1331 	switch (so->so_type) {
1332 	case SOCK_DGRAM:
1333 		if (unp2->unp_refs == unp)
1334 			unp2->unp_refs = unp->unp_nextref;
1335 		else {
1336 			unp2 = unp2->unp_refs;
1337 			for (;;) {
1338 				KASSERT(solocked2(so, unp2->unp_socket));
1339 				if (unp2 == 0)
1340 					panic("unp_disconnect1");
1341 				if (unp2->unp_nextref == unp)
1342 					break;
1343 				unp2 = unp2->unp_nextref;
1344 			}
1345 			unp2->unp_nextref = unp->unp_nextref;
1346 		}
1347 		unp->unp_nextref = 0;
1348 		so->so_state &= ~SS_ISCONNECTED;
1349 		break;
1350 
1351 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1352 	case SOCK_STREAM:
1353 		KASSERT(solocked2(so, unp2->unp_socket));
1354 		soisdisconnected(so);
1355 		unp2->unp_conn = 0;
1356 		soisdisconnected(unp2->unp_socket);
1357 		break;
1358 	}
1359 }
1360 
1361 static void
1362 unp_shutdown1(struct unpcb *unp)
1363 {
1364 	struct socket *so;
1365 
1366 	switch(unp->unp_socket->so_type) {
1367 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1368 	case SOCK_STREAM:
1369 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1370 			socantrcvmore(so);
1371 		break;
1372 	default:
1373 		break;
1374 	}
1375 }
1376 
1377 static bool
1378 unp_drop(struct unpcb *unp, int errno)
1379 {
1380 	struct socket *so = unp->unp_socket;
1381 
1382 	KASSERT(solocked(so));
1383 
1384 	so->so_error = errno;
1385 	unp_disconnect1(unp);
1386 	if (so->so_head) {
1387 		so->so_pcb = NULL;
1388 		/* sofree() drops the socket lock */
1389 		sofree(so);
1390 		unp_free(unp);
1391 		return true;
1392 	}
1393 	return false;
1394 }
1395 
1396 #ifdef notdef
1397 unp_drain(void)
1398 {
1399 
1400 }
1401 #endif
1402 
1403 int
1404 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1405 {
1406 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1407 	struct proc * const p = l->l_proc;
1408 	file_t **rp;
1409 	int error = 0;
1410 
1411 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1412 	    sizeof(file_t *);
1413 	if (nfds == 0)
1414 		goto noop;
1415 
1416 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1417 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1418 
1419 	/* Make sure the recipient should be able to see the files.. */
1420 	rp = (file_t **)CMSG_DATA(cm);
1421 	for (size_t i = 0; i < nfds; i++) {
1422 		file_t * const fp = *rp++;
1423 		if (fp == NULL) {
1424 			error = EINVAL;
1425 			goto out;
1426 		}
1427 		/*
1428 		 * If we are in a chroot'ed directory, and
1429 		 * someone wants to pass us a directory, make
1430 		 * sure it's inside the subtree we're allowed
1431 		 * to access.
1432 		 */
1433 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1434 			vnode_t *vp = fp->f_vnode;
1435 			if ((vp->v_type == VDIR) &&
1436 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1437 				error = EPERM;
1438 				goto out;
1439 			}
1440 		}
1441 	}
1442 
1443  restart:
1444 	/*
1445 	 * First loop -- allocate file descriptor table slots for the
1446 	 * new files.
1447 	 */
1448 	for (size_t i = 0; i < nfds; i++) {
1449 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1450 			/*
1451 			 * Back out what we've done so far.
1452 			 */
1453 			while (i-- > 0) {
1454 				fd_abort(p, NULL, fdp[i]);
1455 			}
1456 			if (error == ENOSPC) {
1457 				fd_tryexpand(p);
1458 				error = 0;
1459 				goto restart;
1460 			}
1461 			/*
1462 			 * This is the error that has historically
1463 			 * been returned, and some callers may
1464 			 * expect it.
1465 			 */
1466 			error = EMSGSIZE;
1467 			goto out;
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * Now that adding them has succeeded, update all of the
1473 	 * file passing state and affix the descriptors.
1474 	 */
1475 	rp = (file_t **)CMSG_DATA(cm);
1476 	int *ofdp = (int *)CMSG_DATA(cm);
1477 	for (size_t i = 0; i < nfds; i++) {
1478 		file_t * const fp = *rp++;
1479 		const int fd = fdp[i];
1480 		atomic_dec_uint(&unp_rights);
1481 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1482 		fd_affix(p, fp, fd);
1483 		/*
1484 		 * Done with this file pointer, replace it with a fd;
1485 		 */
1486 		*ofdp++ = fd;
1487 		mutex_enter(&fp->f_lock);
1488 		fp->f_msgcount--;
1489 		mutex_exit(&fp->f_lock);
1490 		/*
1491 		 * Note that fd_affix() adds a reference to the file.
1492 		 * The file may already have been closed by another
1493 		 * LWP in the process, so we must drop the reference
1494 		 * added by unp_internalize() with closef().
1495 		 */
1496 		closef(fp);
1497 	}
1498 
1499 	/*
1500 	 * Adjust length, in case of transition from large file_t
1501 	 * pointers to ints.
1502 	 */
1503 	if (sizeof(file_t *) != sizeof(int)) {
1504 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1505 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1506 	}
1507  out:
1508 	if (__predict_false(error != 0)) {
1509 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
1510 		for (size_t i = 0; i < nfds; i++)
1511 			unp_discard_now(fpp[i]);
1512 		/*
1513 		 * Truncate the array so that nobody will try to interpret
1514 		 * what is now garbage in it.
1515 		 */
1516 		cm->cmsg_len = CMSG_LEN(0);
1517 		rights->m_len = CMSG_SPACE(0);
1518 	}
1519 	rw_exit(&p->p_cwdi->cwdi_lock);
1520 	kmem_free(fdp, nfds * sizeof(int));
1521 
1522  noop:
1523 	/*
1524 	 * Don't disclose kernel memory in the alignment space.
1525 	 */
1526 	KASSERT(cm->cmsg_len <= rights->m_len);
1527 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1528 	    cm->cmsg_len);
1529 	return error;
1530 }
1531 
1532 static int
1533 unp_internalize(struct mbuf **controlp)
1534 {
1535 	filedesc_t *fdescp = curlwp->l_fd;
1536 	struct mbuf *control = *controlp;
1537 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1538 	file_t **rp, **files;
1539 	file_t *fp;
1540 	int i, fd, *fdp;
1541 	int nfds, error;
1542 	u_int maxmsg;
1543 
1544 	error = 0;
1545 	newcm = NULL;
1546 
1547 	/* Sanity check the control message header. */
1548 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1549 	    cm->cmsg_len > control->m_len ||
1550 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1551 		return (EINVAL);
1552 
1553 	/*
1554 	 * Verify that the file descriptors are valid, and acquire
1555 	 * a reference to each.
1556 	 */
1557 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1558 	fdp = (int *)CMSG_DATA(cm);
1559 	maxmsg = maxfiles / unp_rights_ratio;
1560 	for (i = 0; i < nfds; i++) {
1561 		fd = *fdp++;
1562 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1563 			atomic_dec_uint(&unp_rights);
1564 			nfds = i;
1565 			error = EAGAIN;
1566 			goto out;
1567 		}
1568 		if ((fp = fd_getfile(fd)) == NULL
1569 		    || fp->f_type == DTYPE_KQUEUE) {
1570 		    	if (fp)
1571 		    		fd_putfile(fd);
1572 			atomic_dec_uint(&unp_rights);
1573 			nfds = i;
1574 			error = EBADF;
1575 			goto out;
1576 		}
1577 	}
1578 
1579 	/* Allocate new space and copy header into it. */
1580 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1581 	if (newcm == NULL) {
1582 		error = E2BIG;
1583 		goto out;
1584 	}
1585 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1586 	files = (file_t **)CMSG_DATA(newcm);
1587 
1588 	/*
1589 	 * Transform the file descriptors into file_t pointers, in
1590 	 * reverse order so that if pointers are bigger than ints, the
1591 	 * int won't get until we're done.  No need to lock, as we have
1592 	 * already validated the descriptors with fd_getfile().
1593 	 */
1594 	fdp = (int *)CMSG_DATA(cm) + nfds;
1595 	rp = files + nfds;
1596 	for (i = 0; i < nfds; i++) {
1597 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1598 		KASSERT(fp != NULL);
1599 		mutex_enter(&fp->f_lock);
1600 		*--rp = fp;
1601 		fp->f_count++;
1602 		fp->f_msgcount++;
1603 		mutex_exit(&fp->f_lock);
1604 	}
1605 
1606  out:
1607  	/* Release descriptor references. */
1608 	fdp = (int *)CMSG_DATA(cm);
1609 	for (i = 0; i < nfds; i++) {
1610 		fd_putfile(*fdp++);
1611 		if (error != 0) {
1612 			atomic_dec_uint(&unp_rights);
1613 		}
1614 	}
1615 
1616 	if (error == 0) {
1617 		if (control->m_flags & M_EXT) {
1618 			m_freem(control);
1619 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1620 		}
1621 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1622 		    M_MBUF, NULL, NULL);
1623 		cm = newcm;
1624 		/*
1625 		 * Adjust message & mbuf to note amount of space
1626 		 * actually used.
1627 		 */
1628 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1629 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1630 	}
1631 
1632 	return error;
1633 }
1634 
1635 struct mbuf *
1636 unp_addsockcred(struct lwp *l, struct mbuf *control)
1637 {
1638 	struct sockcred *sc;
1639 	struct mbuf *m;
1640 	void *p;
1641 
1642 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1643 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
1644 	if (m == NULL)
1645 		return control;
1646 
1647 	sc = p;
1648 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1649 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1650 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1651 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1652 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1653 
1654 	for (int i = 0; i < sc->sc_ngroups; i++)
1655 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1656 
1657 	return m_add(control, m);
1658 }
1659 
1660 /*
1661  * Do a mark-sweep GC of files in the system, to free up any which are
1662  * caught in flight to an about-to-be-closed socket.  Additionally,
1663  * process deferred file closures.
1664  */
1665 static void
1666 unp_gc(file_t *dp)
1667 {
1668 	extern	struct domain unixdomain;
1669 	file_t *fp, *np;
1670 	struct socket *so, *so1;
1671 	u_int i, oflags, rflags;
1672 	bool didwork;
1673 
1674 	KASSERT(curlwp == unp_thread_lwp);
1675 	KASSERT(mutex_owned(&filelist_lock));
1676 
1677 	/*
1678 	 * First, process deferred file closures.
1679 	 */
1680 	while (!SLIST_EMPTY(&unp_thread_discard)) {
1681 		fp = SLIST_FIRST(&unp_thread_discard);
1682 		KASSERT(fp->f_unpcount > 0);
1683 		KASSERT(fp->f_count > 0);
1684 		KASSERT(fp->f_msgcount > 0);
1685 		KASSERT(fp->f_count >= fp->f_unpcount);
1686 		KASSERT(fp->f_count >= fp->f_msgcount);
1687 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
1688 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1689 		i = fp->f_unpcount;
1690 		fp->f_unpcount = 0;
1691 		mutex_exit(&filelist_lock);
1692 		for (; i != 0; i--) {
1693 			unp_discard_now(fp);
1694 		}
1695 		mutex_enter(&filelist_lock);
1696 	}
1697 
1698 	/*
1699 	 * Clear mark bits.  Ensure that we don't consider new files
1700 	 * entering the file table during this loop (they will not have
1701 	 * FSCAN set).
1702 	 */
1703 	unp_defer = 0;
1704 	LIST_FOREACH(fp, &filehead, f_list) {
1705 		for (oflags = fp->f_flag;; oflags = rflags) {
1706 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
1707 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
1708 			if (__predict_true(oflags == rflags)) {
1709 				break;
1710 			}
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * Iterate over the set of sockets, marking ones believed (based on
1716 	 * refcount) to be referenced from a process, and marking for rescan
1717 	 * sockets which are queued on a socket.  Recan continues descending
1718 	 * and searching for sockets referenced by sockets (FDEFER), until
1719 	 * there are no more socket->socket references to be discovered.
1720 	 */
1721 	do {
1722 		didwork = false;
1723 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1724 			KASSERT(mutex_owned(&filelist_lock));
1725 			np = LIST_NEXT(fp, f_list);
1726 			mutex_enter(&fp->f_lock);
1727 			if ((fp->f_flag & FDEFER) != 0) {
1728 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1729 				unp_defer--;
1730 				if (fp->f_count == 0) {
1731 					/*
1732 					 * XXX: closef() doesn't pay attention
1733 					 * to FDEFER
1734 					 */
1735 					mutex_exit(&fp->f_lock);
1736 					continue;
1737 				}
1738 			} else {
1739 				if (fp->f_count == 0 ||
1740 				    (fp->f_flag & FMARK) != 0 ||
1741 				    fp->f_count == fp->f_msgcount ||
1742 				    fp->f_unpcount != 0) {
1743 					mutex_exit(&fp->f_lock);
1744 					continue;
1745 				}
1746 			}
1747 			atomic_or_uint(&fp->f_flag, FMARK);
1748 
1749 			if (fp->f_type != DTYPE_SOCKET ||
1750 			    (so = fp->f_socket) == NULL ||
1751 			    so->so_proto->pr_domain != &unixdomain ||
1752 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1753 				mutex_exit(&fp->f_lock);
1754 				continue;
1755 			}
1756 
1757 			/* Gain file ref, mark our position, and unlock. */
1758 			didwork = true;
1759 			LIST_INSERT_AFTER(fp, dp, f_list);
1760 			fp->f_count++;
1761 			mutex_exit(&fp->f_lock);
1762 			mutex_exit(&filelist_lock);
1763 
1764 			/*
1765 			 * Mark files referenced from sockets queued on the
1766 			 * accept queue as well.
1767 			 */
1768 			solock(so);
1769 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1770 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
1771 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1772 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1773 				}
1774 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1775 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1776 				}
1777 			}
1778 			sounlock(so);
1779 
1780 			/* Re-lock and restart from where we left off. */
1781 			closef(fp);
1782 			mutex_enter(&filelist_lock);
1783 			np = LIST_NEXT(dp, f_list);
1784 			LIST_REMOVE(dp, f_list);
1785 		}
1786 		/*
1787 		 * Bail early if we did nothing in the loop above.  Could
1788 		 * happen because of concurrent activity causing unp_defer
1789 		 * to get out of sync.
1790 		 */
1791 	} while (unp_defer != 0 && didwork);
1792 
1793 	/*
1794 	 * Sweep pass.
1795 	 *
1796 	 * We grab an extra reference to each of the files that are
1797 	 * not otherwise accessible and then free the rights that are
1798 	 * stored in messages on them.
1799 	 */
1800 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1801 		KASSERT(mutex_owned(&filelist_lock));
1802 		np = LIST_NEXT(fp, f_list);
1803 		mutex_enter(&fp->f_lock);
1804 
1805 		/*
1806 		 * Ignore non-sockets.
1807 		 * Ignore dead sockets, or sockets with pending close.
1808 		 * Ignore sockets obviously referenced elsewhere.
1809 		 * Ignore sockets marked as referenced by our scan.
1810 		 * Ignore new sockets that did not exist during the scan.
1811 		 */
1812 		if (fp->f_type != DTYPE_SOCKET ||
1813 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
1814 		    fp->f_count != fp->f_msgcount ||
1815 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1816 			mutex_exit(&fp->f_lock);
1817 			continue;
1818 		}
1819 
1820 		/* Gain file ref, mark our position, and unlock. */
1821 		LIST_INSERT_AFTER(fp, dp, f_list);
1822 		fp->f_count++;
1823 		mutex_exit(&fp->f_lock);
1824 		mutex_exit(&filelist_lock);
1825 
1826 		/*
1827 		 * Flush all data from the socket's receive buffer.
1828 		 * This will cause files referenced only by the
1829 		 * socket to be queued for close.
1830 		 */
1831 		so = fp->f_socket;
1832 		solock(so);
1833 		sorflush(so);
1834 		sounlock(so);
1835 
1836 		/* Re-lock and restart from where we left off. */
1837 		closef(fp);
1838 		mutex_enter(&filelist_lock);
1839 		np = LIST_NEXT(dp, f_list);
1840 		LIST_REMOVE(dp, f_list);
1841 	}
1842 }
1843 
1844 /*
1845  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
1846  * wake once per second to garbage collect.  Run continually while we
1847  * have deferred closes to process.
1848  */
1849 static void
1850 unp_thread(void *cookie)
1851 {
1852 	file_t *dp;
1853 
1854 	/* Allocate a dummy file for our scans. */
1855 	if ((dp = fgetdummy()) == NULL) {
1856 		panic("unp_thread");
1857 	}
1858 
1859 	mutex_enter(&filelist_lock);
1860 	for (;;) {
1861 		KASSERT(mutex_owned(&filelist_lock));
1862 		if (SLIST_EMPTY(&unp_thread_discard)) {
1863 			if (unp_rights != 0) {
1864 				(void)cv_timedwait(&unp_thread_cv,
1865 				    &filelist_lock, hz);
1866 			} else {
1867 				cv_wait(&unp_thread_cv, &filelist_lock);
1868 			}
1869 		}
1870 		unp_gc(dp);
1871 	}
1872 	/* NOTREACHED */
1873 }
1874 
1875 /*
1876  * Kick the garbage collector into action if there is something for
1877  * it to process.
1878  */
1879 static void
1880 unp_thread_kick(void)
1881 {
1882 
1883 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1884 		mutex_enter(&filelist_lock);
1885 		cv_signal(&unp_thread_cv);
1886 		mutex_exit(&filelist_lock);
1887 	}
1888 }
1889 
1890 void
1891 unp_dispose(struct mbuf *m)
1892 {
1893 
1894 	if (m)
1895 		unp_scan(m, unp_discard_later, 1);
1896 }
1897 
1898 void
1899 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1900 {
1901 	struct mbuf *m;
1902 	file_t **rp, *fp;
1903 	struct cmsghdr *cm;
1904 	int i, qfds;
1905 
1906 	while (m0) {
1907 		for (m = m0; m; m = m->m_next) {
1908 			if (m->m_type != MT_CONTROL ||
1909 			    m->m_len < sizeof(*cm)) {
1910 			    	continue;
1911 			}
1912 			cm = mtod(m, struct cmsghdr *);
1913 			if (cm->cmsg_level != SOL_SOCKET ||
1914 			    cm->cmsg_type != SCM_RIGHTS)
1915 				continue;
1916 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1917 			    / sizeof(file_t *);
1918 			rp = (file_t **)CMSG_DATA(cm);
1919 			for (i = 0; i < qfds; i++) {
1920 				fp = *rp;
1921 				if (discard) {
1922 					*rp = 0;
1923 				}
1924 				(*op)(fp);
1925 				rp++;
1926 			}
1927 		}
1928 		m0 = m0->m_nextpkt;
1929 	}
1930 }
1931 
1932 void
1933 unp_mark(file_t *fp)
1934 {
1935 
1936 	if (fp == NULL)
1937 		return;
1938 
1939 	/* If we're already deferred, don't screw up the defer count */
1940 	mutex_enter(&fp->f_lock);
1941 	if (fp->f_flag & (FMARK | FDEFER)) {
1942 		mutex_exit(&fp->f_lock);
1943 		return;
1944 	}
1945 
1946 	/*
1947 	 * Minimize the number of deferrals...  Sockets are the only type of
1948 	 * file which can hold references to another file, so just mark
1949 	 * other files, and defer unmarked sockets for the next pass.
1950 	 */
1951 	if (fp->f_type == DTYPE_SOCKET) {
1952 		unp_defer++;
1953 		KASSERT(fp->f_count != 0);
1954 		atomic_or_uint(&fp->f_flag, FDEFER);
1955 	} else {
1956 		atomic_or_uint(&fp->f_flag, FMARK);
1957 	}
1958 	mutex_exit(&fp->f_lock);
1959 }
1960 
1961 static void
1962 unp_discard_now(file_t *fp)
1963 {
1964 
1965 	if (fp == NULL)
1966 		return;
1967 
1968 	KASSERT(fp->f_count > 0);
1969 	KASSERT(fp->f_msgcount > 0);
1970 
1971 	mutex_enter(&fp->f_lock);
1972 	fp->f_msgcount--;
1973 	mutex_exit(&fp->f_lock);
1974 	atomic_dec_uint(&unp_rights);
1975 	(void)closef(fp);
1976 }
1977 
1978 static void
1979 unp_discard_later(file_t *fp)
1980 {
1981 
1982 	if (fp == NULL)
1983 		return;
1984 
1985 	KASSERT(fp->f_count > 0);
1986 	KASSERT(fp->f_msgcount > 0);
1987 
1988 	mutex_enter(&filelist_lock);
1989 	if (fp->f_unpcount++ == 0) {
1990 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1991 	}
1992 	mutex_exit(&filelist_lock);
1993 }
1994 
1995 const struct pr_usrreqs unp_usrreqs = {
1996 	.pr_attach	= unp_attach,
1997 	.pr_detach	= unp_detach,
1998 	.pr_accept	= unp_accept,
1999 	.pr_bind	= unp_bind,
2000 	.pr_listen	= unp_listen,
2001 	.pr_connect	= unp_connect,
2002 	.pr_connect2	= unp_connect2,
2003 	.pr_disconnect	= unp_disconnect,
2004 	.pr_shutdown	= unp_shutdown,
2005 	.pr_abort	= unp_abort,
2006 	.pr_ioctl	= unp_ioctl,
2007 	.pr_stat	= unp_stat,
2008 	.pr_peeraddr	= unp_peeraddr,
2009 	.pr_sockaddr	= unp_sockaddr,
2010 	.pr_rcvd	= unp_rcvd,
2011 	.pr_recvoob	= unp_recvoob,
2012 	.pr_send	= unp_send,
2013 	.pr_sendoob	= unp_sendoob,
2014 	.pr_generic	= unp_usrreq,
2015 };
2016