xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: uipc_usrreq.c,v 1.73 2003/12/29 22:08:02 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1982, 1986, 1989, 1991, 1993
42  *	The Regents of the University of California.  All rights reserved.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
69  */
70 
71 /*
72  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
73  *
74  * Redistribution and use in source and binary forms, with or without
75  * modification, are permitted provided that the following conditions
76  * are met:
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  * 2. Redistributions in binary form must reproduce the above copyright
80  *    notice, this list of conditions and the following disclaimer in the
81  *    documentation and/or other materials provided with the distribution.
82  * 3. All advertising materials mentioning features or use of this software
83  *    must display the following acknowledgement:
84  *	This product includes software developed by the University of
85  *	California, Berkeley and its contributors.
86  * 4. Neither the name of the University nor the names of its contributors
87  *    may be used to endorse or promote products derived from this software
88  *    without specific prior written permission.
89  *
90  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
91  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
92  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
93  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
94  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
95  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
96  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
97  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
98  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
99  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
100  * SUCH DAMAGE.
101  *
102  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
103  */
104 
105 #include <sys/cdefs.h>
106 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.73 2003/12/29 22:08:02 martin Exp $");
107 
108 #include <sys/param.h>
109 #include <sys/systm.h>
110 #include <sys/proc.h>
111 #include <sys/filedesc.h>
112 #include <sys/domain.h>
113 #include <sys/protosw.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/unpcb.h>
117 #include <sys/un.h>
118 #include <sys/namei.h>
119 #include <sys/vnode.h>
120 #include <sys/file.h>
121 #include <sys/stat.h>
122 #include <sys/mbuf.h>
123 
124 /*
125  * Unix communications domain.
126  *
127  * TODO:
128  *	SEQPACKET, RDM
129  *	rethink name space problems
130  *	need a proper out-of-band
131  */
132 struct	sockaddr_un sun_noname = { sizeof(sun_noname), AF_LOCAL };
133 ino_t	unp_ino;			/* prototype for fake inode numbers */
134 
135 struct mbuf *unp_addsockcred __P((struct proc *, struct mbuf *));
136 
137 int
138 unp_output(m, control, unp, p)
139 	struct mbuf *m, *control;
140 	struct unpcb *unp;
141 	struct proc *p;
142 {
143 	struct socket *so2;
144 	struct sockaddr_un *sun;
145 
146 	so2 = unp->unp_conn->unp_socket;
147 	if (unp->unp_addr)
148 		sun = unp->unp_addr;
149 	else
150 		sun = &sun_noname;
151 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
152 		control = unp_addsockcred(p, control);
153 	if (sbappendaddr(&so2->so_rcv, (struct sockaddr *)sun, m,
154 	    control) == 0) {
155 		m_freem(control);
156 		m_freem(m);
157 		return (ENOBUFS);
158 	} else {
159 		sorwakeup(so2);
160 		return (0);
161 	}
162 }
163 
164 void
165 unp_setsockaddr(unp, nam)
166 	struct unpcb *unp;
167 	struct mbuf *nam;
168 {
169 	struct sockaddr_un *sun;
170 
171 	if (unp->unp_addr)
172 		sun = unp->unp_addr;
173 	else
174 		sun = &sun_noname;
175 	nam->m_len = sun->sun_len;
176 	if (nam->m_len > MLEN)
177 		MEXTMALLOC(nam, nam->m_len, M_WAITOK);
178 	memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
179 }
180 
181 void
182 unp_setpeeraddr(unp, nam)
183 	struct unpcb *unp;
184 	struct mbuf *nam;
185 {
186 	struct sockaddr_un *sun;
187 
188 	if (unp->unp_conn && unp->unp_conn->unp_addr)
189 		sun = unp->unp_conn->unp_addr;
190 	else
191 		sun = &sun_noname;
192 	nam->m_len = sun->sun_len;
193 	if (nam->m_len > MLEN)
194 		MEXTMALLOC(nam, nam->m_len, M_WAITOK);
195 	memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
196 }
197 
198 /*ARGSUSED*/
199 int
200 uipc_usrreq(so, req, m, nam, control, p)
201 	struct socket *so;
202 	int req;
203 	struct mbuf *m, *nam, *control;
204 	struct proc *p;
205 {
206 	struct unpcb *unp = sotounpcb(so);
207 	struct socket *so2;
208 	int error = 0;
209 
210 	if (req == PRU_CONTROL)
211 		return (EOPNOTSUPP);
212 
213 #ifdef DIAGNOSTIC
214 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
215 		panic("uipc_usrreq: unexpected control mbuf");
216 #endif
217 	if (unp == 0 && req != PRU_ATTACH) {
218 		error = EINVAL;
219 		goto release;
220 	}
221 
222 	switch (req) {
223 
224 	case PRU_ATTACH:
225 		if (unp != 0) {
226 			error = EISCONN;
227 			break;
228 		}
229 		error = unp_attach(so);
230 		break;
231 
232 	case PRU_DETACH:
233 		unp_detach(unp);
234 		break;
235 
236 	case PRU_BIND:
237 		error = unp_bind(unp, nam, p);
238 		break;
239 
240 	case PRU_LISTEN:
241 		if (unp->unp_vnode == 0)
242 			error = EINVAL;
243 		break;
244 
245 	case PRU_CONNECT:
246 		error = unp_connect(so, nam, p);
247 		break;
248 
249 	case PRU_CONNECT2:
250 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
251 		break;
252 
253 	case PRU_DISCONNECT:
254 		unp_disconnect(unp);
255 		break;
256 
257 	case PRU_ACCEPT:
258 		unp_setpeeraddr(unp, nam);
259 		/*
260 		 * Mark the initiating STREAM socket as connected *ONLY*
261 		 * after it's been accepted.  This prevents a client from
262 		 * overrunning a server and receiving ECONNREFUSED.
263 		 */
264 		if (unp->unp_conn != NULL &&
265 		    (unp->unp_conn->unp_socket->so_state & SS_ISCONNECTING))
266 			soisconnected(unp->unp_conn->unp_socket);
267 		break;
268 
269 	case PRU_SHUTDOWN:
270 		socantsendmore(so);
271 		unp_shutdown(unp);
272 		break;
273 
274 	case PRU_RCVD:
275 		switch (so->so_type) {
276 
277 		case SOCK_DGRAM:
278 			panic("uipc 1");
279 			/*NOTREACHED*/
280 
281 		case SOCK_STREAM:
282 #define	rcv (&so->so_rcv)
283 #define snd (&so2->so_snd)
284 			if (unp->unp_conn == 0)
285 				break;
286 			so2 = unp->unp_conn->unp_socket;
287 			/*
288 			 * Adjust backpressure on sender
289 			 * and wakeup any waiting to write.
290 			 */
291 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
292 			unp->unp_mbcnt = rcv->sb_mbcnt;
293 			snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
294 			unp->unp_cc = rcv->sb_cc;
295 			sowwakeup(so2);
296 #undef snd
297 #undef rcv
298 			break;
299 
300 		default:
301 			panic("uipc 2");
302 		}
303 		break;
304 
305 	case PRU_SEND:
306 		/*
307 		 * Note: unp_internalize() rejects any control message
308 		 * other than SCM_RIGHTS, and only allows one.  This
309 		 * has the side-effect of preventing a caller from
310 		 * forging SCM_CREDS.
311 		 */
312 		if (control && (error = unp_internalize(control, p)))
313 			break;
314 		switch (so->so_type) {
315 
316 		case SOCK_DGRAM: {
317 			if (nam) {
318 				if ((so->so_state & SS_ISCONNECTED) != 0) {
319 					error = EISCONN;
320 					goto die;
321 				}
322 				error = unp_connect(so, nam, p);
323 				if (error) {
324 				die:
325 					m_freem(control);
326 					m_freem(m);
327 					break;
328 				}
329 			} else {
330 				if ((so->so_state & SS_ISCONNECTED) == 0) {
331 					error = ENOTCONN;
332 					goto die;
333 				}
334 			}
335 			error = unp_output(m, control, unp, p);
336 			if (nam)
337 				unp_disconnect(unp);
338 			break;
339 		}
340 
341 		case SOCK_STREAM:
342 #define	rcv (&so2->so_rcv)
343 #define	snd (&so->so_snd)
344 			if (unp->unp_conn == 0)
345 				panic("uipc 3");
346 			so2 = unp->unp_conn->unp_socket;
347 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
348 				/*
349 				 * Credentials are passed only once on
350 				 * SOCK_STREAM.
351 				 */
352 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
353 				control = unp_addsockcred(p, control);
354 			}
355 			/*
356 			 * Send to paired receive port, and then reduce
357 			 * send buffer hiwater marks to maintain backpressure.
358 			 * Wake up readers.
359 			 */
360 			if (control) {
361 				if (sbappendcontrol(rcv, m, control) == 0)
362 					m_freem(control);
363 			} else
364 				sbappend(rcv, m);
365 			snd->sb_mbmax -=
366 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
367 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
368 			snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
369 			unp->unp_conn->unp_cc = rcv->sb_cc;
370 			sorwakeup(so2);
371 #undef snd
372 #undef rcv
373 			break;
374 
375 		default:
376 			panic("uipc 4");
377 		}
378 		break;
379 
380 	case PRU_ABORT:
381 		unp_drop(unp, ECONNABORTED);
382 
383 #ifdef DIAGNOSTIC
384 		if (so->so_pcb == 0)
385 			panic("uipc 5: drop killed pcb");
386 #endif
387 		unp_detach(unp);
388 		break;
389 
390 	case PRU_SENSE:
391 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
392 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
393 			so2 = unp->unp_conn->unp_socket;
394 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
395 		}
396 		((struct stat *) m)->st_dev = NODEV;
397 		if (unp->unp_ino == 0)
398 			unp->unp_ino = unp_ino++;
399 		((struct stat *) m)->st_atimespec =
400 		    ((struct stat *) m)->st_mtimespec =
401 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
402 		((struct stat *) m)->st_ino = unp->unp_ino;
403 		return (0);
404 
405 	case PRU_RCVOOB:
406 		error = EOPNOTSUPP;
407 		break;
408 
409 	case PRU_SENDOOB:
410 		m_freem(control);
411 		m_freem(m);
412 		error = EOPNOTSUPP;
413 		break;
414 
415 	case PRU_SOCKADDR:
416 		unp_setsockaddr(unp, nam);
417 		break;
418 
419 	case PRU_PEERADDR:
420 		unp_setpeeraddr(unp, nam);
421 		break;
422 
423 	default:
424 		panic("piusrreq");
425 	}
426 
427 release:
428 	return (error);
429 }
430 
431 /*
432  * Unix domain socket option processing.
433  */
434 int
435 uipc_ctloutput(op, so, level, optname, mp)
436 	int op;
437 	struct socket *so;
438 	int level, optname;
439 	struct mbuf **mp;
440 {
441 	struct unpcb *unp = sotounpcb(so);
442 	struct mbuf *m = *mp;
443 	int optval = 0, error = 0;
444 
445 	if (level != 0) {
446 		error = EINVAL;
447 		if (op == PRCO_SETOPT && m)
448 			(void) m_free(m);
449 	} else switch (op) {
450 
451 	case PRCO_SETOPT:
452 		switch (optname) {
453 		case LOCAL_CREDS:
454 		case LOCAL_CONNWAIT:
455 			if (m == NULL || m->m_len != sizeof(int))
456 				error = EINVAL;
457 			else {
458 				optval = *mtod(m, int *);
459 				switch (optname) {
460 #define	OPTSET(bit) \
461 	if (optval) \
462 		unp->unp_flags |= (bit); \
463 	else \
464 		unp->unp_flags &= ~(bit);
465 
466 				case LOCAL_CREDS:
467 					OPTSET(UNP_WANTCRED);
468 					break;
469 				case LOCAL_CONNWAIT:
470 					OPTSET(UNP_CONNWAIT);
471 					break;
472 				}
473 			}
474 			break;
475 #undef OPTSET
476 
477 		default:
478 			error = ENOPROTOOPT;
479 			break;
480 		}
481 		if (m)
482 			(void) m_free(m);
483 		break;
484 
485 	case PRCO_GETOPT:
486 		switch (optname) {
487 		case LOCAL_CREDS:
488 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
489 			m->m_len = sizeof(int);
490 			switch (optname) {
491 
492 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
493 
494 			case LOCAL_CREDS:
495 				optval = OPTBIT(UNP_WANTCRED);
496 				break;
497 			}
498 			*mtod(m, int *) = optval;
499 			break;
500 #undef OPTBIT
501 
502 		default:
503 			error = ENOPROTOOPT;
504 			break;
505 		}
506 		break;
507 	}
508 	return (error);
509 }
510 
511 /*
512  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
513  * for stream sockets, although the total for sender and receiver is
514  * actually only PIPSIZ.
515  * Datagram sockets really use the sendspace as the maximum datagram size,
516  * and don't really want to reserve the sendspace.  Their recvspace should
517  * be large enough for at least one max-size datagram plus address.
518  */
519 #define	PIPSIZ	4096
520 u_long	unpst_sendspace = PIPSIZ;
521 u_long	unpst_recvspace = PIPSIZ;
522 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
523 u_long	unpdg_recvspace = 4*1024;
524 
525 int	unp_rights;			/* file descriptors in flight */
526 
527 int
528 unp_attach(so)
529 	struct socket *so;
530 {
531 	struct unpcb *unp;
532 	struct timeval tv;
533 	int error;
534 
535 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
536 		switch (so->so_type) {
537 
538 		case SOCK_STREAM:
539 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
540 			break;
541 
542 		case SOCK_DGRAM:
543 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
544 			break;
545 
546 		default:
547 			panic("unp_attach");
548 		}
549 		if (error)
550 			return (error);
551 	}
552 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
553 	if (unp == NULL)
554 		return (ENOBUFS);
555 	memset((caddr_t)unp, 0, sizeof(*unp));
556 	unp->unp_socket = so;
557 	so->so_pcb = unp;
558 	microtime(&tv);
559 	TIMEVAL_TO_TIMESPEC(&tv, &unp->unp_ctime);
560 	return (0);
561 }
562 
563 void
564 unp_detach(unp)
565 	struct unpcb *unp;
566 {
567 
568 	if (unp->unp_vnode) {
569 		unp->unp_vnode->v_socket = 0;
570 		vrele(unp->unp_vnode);
571 		unp->unp_vnode = 0;
572 	}
573 	if (unp->unp_conn)
574 		unp_disconnect(unp);
575 	while (unp->unp_refs)
576 		unp_drop(unp->unp_refs, ECONNRESET);
577 	soisdisconnected(unp->unp_socket);
578 	unp->unp_socket->so_pcb = 0;
579 	if (unp->unp_addr)
580 		free(unp->unp_addr, M_SONAME);
581 	if (unp_rights) {
582 		/*
583 		 * Normally the receive buffer is flushed later,
584 		 * in sofree, but if our receive buffer holds references
585 		 * to descriptors that are now garbage, we will dispose
586 		 * of those descriptor references after the garbage collector
587 		 * gets them (resulting in a "panic: closef: count < 0").
588 		 */
589 		sorflush(unp->unp_socket);
590 		free(unp, M_PCB);
591 		unp_gc();
592 	} else
593 		free(unp, M_PCB);
594 }
595 
596 int
597 unp_bind(unp, nam, p)
598 	struct unpcb *unp;
599 	struct mbuf *nam;
600 	struct proc *p;
601 {
602 	struct sockaddr_un *sun;
603 	struct vnode *vp;
604 	struct mount *mp;
605 	struct vattr vattr;
606 	size_t addrlen;
607 	int error;
608 	struct nameidata nd;
609 
610 	if (unp->unp_vnode != 0)
611 		return (EINVAL);
612 
613 	/*
614 	 * Allocate the new sockaddr.  We have to allocate one
615 	 * extra byte so that we can ensure that the pathname
616 	 * is nul-terminated.
617 	 */
618 	addrlen = nam->m_len + 1;
619 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
620 	m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
621 	*(((char *)sun) + nam->m_len) = '\0';
622 
623 restart:
624 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
625 	    sun->sun_path, p);
626 
627 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
628 	if ((error = namei(&nd)) != 0)
629 		goto bad;
630 	vp = nd.ni_vp;
631 	if (vp != NULL || vn_start_write(nd.ni_dvp, &mp, V_NOWAIT) != 0) {
632 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
633 		if (nd.ni_dvp == vp)
634 			vrele(nd.ni_dvp);
635 		else
636 			vput(nd.ni_dvp);
637 		vrele(vp);
638 		if (vp != NULL) {
639 			error = EADDRINUSE;
640 			goto bad;
641 		}
642 		error = vn_start_write(NULL, &mp,
643 		    V_WAIT | V_SLEEPONLY | V_PCATCH);
644 		if (error)
645 			goto bad;
646 		goto restart;
647 	}
648 	VATTR_NULL(&vattr);
649 	vattr.va_type = VSOCK;
650 	vattr.va_mode = ACCESSPERMS;
651 	VOP_LEASE(nd.ni_dvp, p, p->p_ucred, LEASE_WRITE);
652 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
653 	vn_finished_write(mp, 0);
654 	if (error)
655 		goto bad;
656 	vp = nd.ni_vp;
657 	vp->v_socket = unp->unp_socket;
658 	unp->unp_vnode = vp;
659 	unp->unp_addrlen = addrlen;
660 	unp->unp_addr = sun;
661 	VOP_UNLOCK(vp, 0);
662 	return (0);
663 
664  bad:
665 	free(sun, M_SONAME);
666 	return (error);
667 }
668 
669 int
670 unp_connect(so, nam, p)
671 	struct socket *so;
672 	struct mbuf *nam;
673 	struct proc *p;
674 {
675 	struct sockaddr_un *sun;
676 	struct vnode *vp;
677 	struct socket *so2, *so3;
678 	struct unpcb *unp2, *unp3;
679 	size_t addrlen;
680 	int error;
681 	struct nameidata nd;
682 
683 	/*
684 	 * Allocate a temporary sockaddr.  We have to allocate one extra
685 	 * byte so that we can ensure that the pathname is nul-terminated.
686 	 * When we establish the connection, we copy the other PCB's
687 	 * sockaddr to our own.
688 	 */
689 	addrlen = nam->m_len + 1;
690 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
691 	m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
692 	*(((char *)sun) + nam->m_len) = '\0';
693 
694 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, sun->sun_path, p);
695 
696 	if ((error = namei(&nd)) != 0)
697 		goto bad2;
698 	vp = nd.ni_vp;
699 	if (vp->v_type != VSOCK) {
700 		error = ENOTSOCK;
701 		goto bad;
702 	}
703 	if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0)
704 		goto bad;
705 	so2 = vp->v_socket;
706 	if (so2 == 0) {
707 		error = ECONNREFUSED;
708 		goto bad;
709 	}
710 	if (so->so_type != so2->so_type) {
711 		error = EPROTOTYPE;
712 		goto bad;
713 	}
714 	if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
715 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
716 		    (so3 = sonewconn(so2, 0)) == 0) {
717 			error = ECONNREFUSED;
718 			goto bad;
719 		}
720 		unp2 = sotounpcb(so2);
721 		unp3 = sotounpcb(so3);
722 		if (unp2->unp_addr) {
723 			unp3->unp_addr = malloc(unp2->unp_addrlen,
724 			    M_SONAME, M_WAITOK);
725 			memcpy(unp3->unp_addr, unp2->unp_addr,
726 			    unp2->unp_addrlen);
727 			unp3->unp_addrlen = unp2->unp_addrlen;
728 		}
729 		unp3->unp_flags = unp2->unp_flags;
730 		so2 = so3;
731 	}
732 	error = unp_connect2(so, so2, PRU_CONNECT);
733  bad:
734 	vput(vp);
735  bad2:
736 	free(sun, M_SONAME);
737 	return (error);
738 }
739 
740 int
741 unp_connect2(so, so2, req)
742 	struct socket *so;
743 	struct socket *so2;
744 	int req;
745 {
746 	struct unpcb *unp = sotounpcb(so);
747 	struct unpcb *unp2;
748 
749 	if (so2->so_type != so->so_type)
750 		return (EPROTOTYPE);
751 	unp2 = sotounpcb(so2);
752 	unp->unp_conn = unp2;
753 	switch (so->so_type) {
754 
755 	case SOCK_DGRAM:
756 		unp->unp_nextref = unp2->unp_refs;
757 		unp2->unp_refs = unp;
758 		soisconnected(so);
759 		break;
760 
761 	case SOCK_STREAM:
762 		unp2->unp_conn = unp;
763 		if (req == PRU_CONNECT &&
764 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
765 			soisconnecting(so);
766 		else
767 			soisconnected(so);
768 		soisconnected(so2);
769 		break;
770 
771 	default:
772 		panic("unp_connect2");
773 	}
774 	return (0);
775 }
776 
777 void
778 unp_disconnect(unp)
779 	struct unpcb *unp;
780 {
781 	struct unpcb *unp2 = unp->unp_conn;
782 
783 	if (unp2 == 0)
784 		return;
785 	unp->unp_conn = 0;
786 	switch (unp->unp_socket->so_type) {
787 
788 	case SOCK_DGRAM:
789 		if (unp2->unp_refs == unp)
790 			unp2->unp_refs = unp->unp_nextref;
791 		else {
792 			unp2 = unp2->unp_refs;
793 			for (;;) {
794 				if (unp2 == 0)
795 					panic("unp_disconnect");
796 				if (unp2->unp_nextref == unp)
797 					break;
798 				unp2 = unp2->unp_nextref;
799 			}
800 			unp2->unp_nextref = unp->unp_nextref;
801 		}
802 		unp->unp_nextref = 0;
803 		unp->unp_socket->so_state &= ~SS_ISCONNECTED;
804 		break;
805 
806 	case SOCK_STREAM:
807 		soisdisconnected(unp->unp_socket);
808 		unp2->unp_conn = 0;
809 		soisdisconnected(unp2->unp_socket);
810 		break;
811 	}
812 }
813 
814 #ifdef notdef
815 unp_abort(unp)
816 	struct unpcb *unp;
817 {
818 
819 	unp_detach(unp);
820 }
821 #endif
822 
823 void
824 unp_shutdown(unp)
825 	struct unpcb *unp;
826 {
827 	struct socket *so;
828 
829 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
830 	    (so = unp->unp_conn->unp_socket))
831 		socantrcvmore(so);
832 }
833 
834 void
835 unp_drop(unp, errno)
836 	struct unpcb *unp;
837 	int errno;
838 {
839 	struct socket *so = unp->unp_socket;
840 
841 	so->so_error = errno;
842 	unp_disconnect(unp);
843 	if (so->so_head) {
844 		so->so_pcb = 0;
845 		sofree(so);
846 		if (unp->unp_addr)
847 			free(unp->unp_addr, M_SONAME);
848 		free(unp, M_PCB);
849 	}
850 }
851 
852 #ifdef notdef
853 unp_drain()
854 {
855 
856 }
857 #endif
858 
859 int
860 unp_externalize(rights)
861 	struct mbuf *rights;
862 {
863 	struct proc *p = curproc;		/* XXX */
864 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
865 	int i, *fdp;
866 	struct file **rp;
867 	struct file *fp;
868 	int nfds, error = 0;
869 
870 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
871 	    sizeof(struct file *);
872 	rp = (struct file **)CMSG_DATA(cm);
873 
874 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
875 
876 	/* Make sure the recipient should be able to see the descriptors.. */
877 	if (p->p_cwdi->cwdi_rdir != NULL) {
878 		rp = (struct file **)CMSG_DATA(cm);
879 		for (i = 0; i < nfds; i++) {
880 			fp = *rp++;
881 			/*
882 			 * If we are in a chroot'ed directory, and
883 			 * someone wants to pass us a directory, make
884 			 * sure it's inside the subtree we're allowed
885 			 * to access.
886 			 */
887 			if (fp->f_type == DTYPE_VNODE) {
888 				struct vnode *vp = (struct vnode *)fp->f_data;
889 				if ((vp->v_type == VDIR) &&
890 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, p)) {
891 					error = EPERM;
892 					break;
893 				}
894 			}
895 		}
896 	}
897 
898  restart:
899 	rp = (struct file **)CMSG_DATA(cm);
900 	if (error != 0) {
901 		for (i = 0; i < nfds; i++) {
902 			fp = *rp;
903 			/*
904 			 * zero the pointer before calling unp_discard,
905 			 * since it may end up in unp_gc()..
906 			 */
907 			*rp++ = 0;
908 			unp_discard(fp);
909 		}
910 		goto out;
911 	}
912 
913 	/*
914 	 * First loop -- allocate file descriptor table slots for the
915 	 * new descriptors.
916 	 */
917 	for (i = 0; i < nfds; i++) {
918 		fp = *rp++;
919 		if ((error = fdalloc(p, 0, &fdp[i])) != 0) {
920 			/*
921 			 * Back out what we've done so far.
922 			 */
923 			for (--i; i >= 0; i--)
924 				fdremove(p->p_fd, fdp[i]);
925 
926 			if (error == ENOSPC) {
927 				fdexpand(p);
928 				error = 0;
929 			} else {
930 				/*
931 				 * This is the error that has historically
932 				 * been returned, and some callers may
933 				 * expect it.
934 				 */
935 				error = EMSGSIZE;
936 			}
937 			goto restart;
938 		}
939 
940 		/*
941 		 * Make the slot reference the descriptor so that
942 		 * fdalloc() works properly.. We finalize it all
943 		 * in the loop below.
944 		 */
945 		p->p_fd->fd_ofiles[fdp[i]] = fp;
946 	}
947 
948 	/*
949 	 * Now that adding them has succeeded, update all of the
950 	 * descriptor passing state.
951 	 */
952 	rp = (struct file **)CMSG_DATA(cm);
953 	for (i = 0; i < nfds; i++) {
954 		fp = *rp++;
955 		fp->f_msgcount--;
956 		unp_rights--;
957 	}
958 
959 	/*
960 	 * Copy temporary array to message and adjust length, in case of
961 	 * transition from large struct file pointers to ints.
962 	 */
963 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
964 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
965 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
966  out:
967 	free(fdp, M_TEMP);
968 	return (error);
969 }
970 
971 int
972 unp_internalize(control, p)
973 	struct mbuf *control;
974 	struct proc *p;
975 {
976 	struct filedesc *fdescp = p->p_fd;
977 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
978 	struct file **rp, **files;
979 	struct file *fp;
980 	int i, fd, *fdp;
981 	int nfds;
982 	u_int neededspace;
983 
984 	/* Sanity check the control message header */
985 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
986 	    cm->cmsg_len != control->m_len)
987 		return (EINVAL);
988 
989 	/* Verify that the file descriptors are valid */
990 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
991 	fdp = (int *)CMSG_DATA(cm);
992 	for (i = 0; i < nfds; i++) {
993 		fd = *fdp++;
994 		if ((fp = fd_getfile(fdescp, fd)) == NULL)
995 			return (EBADF);
996 		simple_unlock(&fp->f_slock);
997 	}
998 
999 	/* Make sure we have room for the struct file pointers */
1000 	neededspace = CMSG_SPACE(nfds * sizeof(struct file *)) -
1001 	    control->m_len;
1002 	if (neededspace > M_TRAILINGSPACE(control)) {
1003 
1004 		/* allocate new space and copy header into it */
1005 		newcm = malloc(
1006 		    CMSG_SPACE(nfds * sizeof(struct file *)),
1007 		    M_MBUF, M_WAITOK);
1008 		if (newcm == NULL)
1009 			return (E2BIG);
1010 		memcpy(newcm, cm, sizeof(struct cmsghdr));
1011 		files = (struct file **)CMSG_DATA(newcm);
1012 	} else {
1013 		/* we can convert in-place */
1014 		newcm = NULL;
1015 		files = (struct file **)CMSG_DATA(cm);
1016 	}
1017 
1018 	/*
1019 	 * Transform the file descriptors into struct file pointers, in
1020 	 * reverse order so that if pointers are bigger than ints, the
1021 	 * int won't get until we're done.
1022 	 */
1023 	fdp = (int *)CMSG_DATA(cm) + nfds - 1;
1024 	rp = files + nfds - 1;
1025 	for (i = 0; i < nfds; i++) {
1026 		fp = fdescp->fd_ofiles[*fdp--];
1027 		simple_lock(&fp->f_slock);
1028 #ifdef DIAGNOSTIC
1029 		if (fp->f_iflags & FIF_WANTCLOSE)
1030 			panic("unp_internalize: file already closed");
1031 #endif
1032 		*rp-- = fp;
1033 		fp->f_count++;
1034 		fp->f_msgcount++;
1035 		simple_unlock(&fp->f_slock);
1036 		unp_rights++;
1037 	}
1038 
1039 	if (newcm) {
1040 		if (control->m_flags & M_EXT)
1041 			MEXTREMOVE(control);
1042 		MEXTADD(control, newcm,
1043 		    CMSG_SPACE(nfds * sizeof(struct file *)),
1044 		    M_MBUF, NULL, NULL);
1045 		cm = newcm;
1046 	}
1047 
1048 	/* adjust message & mbuf to note amount of space actually used. */
1049 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct file *));
1050 	control->m_len = CMSG_SPACE(nfds * sizeof(struct file *));
1051 
1052 	return (0);
1053 }
1054 
1055 struct mbuf *
1056 unp_addsockcred(p, control)
1057 	struct proc *p;
1058 	struct mbuf *control;
1059 {
1060 	struct cmsghdr *cmp;
1061 	struct sockcred *sc;
1062 	struct mbuf *m, *n;
1063 	int len, space, i;
1064 
1065 	len = CMSG_LEN(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
1066 	space = CMSG_SPACE(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
1067 
1068 	m = m_get(M_WAIT, MT_CONTROL);
1069 	if (space > MLEN) {
1070 		if (space > MCLBYTES)
1071 			MEXTMALLOC(m, space, M_WAITOK);
1072 		else
1073 			m_clget(m, M_WAIT);
1074 		if ((m->m_flags & M_EXT) == 0) {
1075 			m_free(m);
1076 			return (control);
1077 		}
1078 	}
1079 
1080 	m->m_len = space;
1081 	m->m_next = NULL;
1082 	cmp = mtod(m, struct cmsghdr *);
1083 	sc = (struct sockcred *)CMSG_DATA(cmp);
1084 	cmp->cmsg_len = len;
1085 	cmp->cmsg_level = SOL_SOCKET;
1086 	cmp->cmsg_type = SCM_CREDS;
1087 	sc->sc_uid = p->p_cred->p_ruid;
1088 	sc->sc_euid = p->p_ucred->cr_uid;
1089 	sc->sc_gid = p->p_cred->p_rgid;
1090 	sc->sc_egid = p->p_ucred->cr_gid;
1091 	sc->sc_ngroups = p->p_ucred->cr_ngroups;
1092 	for (i = 0; i < sc->sc_ngroups; i++)
1093 		sc->sc_groups[i] = p->p_ucred->cr_groups[i];
1094 
1095 	/*
1096 	 * If a control message already exists, append us to the end.
1097 	 */
1098 	if (control != NULL) {
1099 		for (n = control; n->m_next != NULL; n = n->m_next)
1100 			;
1101 		n->m_next = m;
1102 	} else
1103 		control = m;
1104 
1105 	return (control);
1106 }
1107 
1108 int	unp_defer, unp_gcing;
1109 extern	struct domain unixdomain;
1110 
1111 /*
1112  * Comment added long after the fact explaining what's going on here.
1113  * Do a mark-sweep GC of file descriptors on the system, to free up
1114  * any which are caught in flight to an about-to-be-closed socket.
1115  *
1116  * Traditional mark-sweep gc's start at the "root", and mark
1117  * everything reachable from the root (which, in our case would be the
1118  * process table).  The mark bits are cleared during the sweep.
1119  *
1120  * XXX For some inexplicable reason (perhaps because the file
1121  * descriptor tables used to live in the u area which could be swapped
1122  * out and thus hard to reach), we do multiple scans over the set of
1123  * descriptors, using use *two* mark bits per object (DEFER and MARK).
1124  * Whenever we find a descriptor which references other descriptors,
1125  * the ones it references are marked with both bits, and we iterate
1126  * over the whole file table until there are no more DEFER bits set.
1127  * We also make an extra pass *before* the GC to clear the mark bits,
1128  * which could have been cleared at almost no cost during the previous
1129  * sweep.
1130  *
1131  * XXX MP: this needs to run with locks such that no other thread of
1132  * control can create or destroy references to file descriptors. it
1133  * may be necessary to defer the GC until later (when the locking
1134  * situation is more hospitable); it may be necessary to push this
1135  * into a separate thread.
1136  */
1137 void
1138 unp_gc()
1139 {
1140 	struct file *fp, *nextfp;
1141 	struct socket *so, *so1;
1142 	struct file **extra_ref, **fpp;
1143 	int nunref, i;
1144 
1145 	if (unp_gcing)
1146 		return;
1147 	unp_gcing = 1;
1148 	unp_defer = 0;
1149 
1150 	/* Clear mark bits */
1151 	LIST_FOREACH(fp, &filehead, f_list)
1152 		fp->f_flag &= ~(FMARK|FDEFER);
1153 
1154 	/*
1155 	 * Iterate over the set of descriptors, marking ones believed
1156 	 * (based on refcount) to be referenced from a process, and
1157 	 * marking for rescan descriptors which are queued on a socket.
1158 	 */
1159 	do {
1160 		LIST_FOREACH(fp, &filehead, f_list) {
1161 			if (fp->f_flag & FDEFER) {
1162 				fp->f_flag &= ~FDEFER;
1163 				unp_defer--;
1164 #ifdef DIAGNOSTIC
1165 				if (fp->f_count == 0)
1166 					panic("unp_gc: deferred unreferenced socket");
1167 #endif
1168 			} else {
1169 				if (fp->f_count == 0)
1170 					continue;
1171 				if (fp->f_flag & FMARK)
1172 					continue;
1173 				if (fp->f_count == fp->f_msgcount)
1174 					continue;
1175 			}
1176 			fp->f_flag |= FMARK;
1177 
1178 			if (fp->f_type != DTYPE_SOCKET ||
1179 			    (so = (struct socket *)fp->f_data) == 0)
1180 				continue;
1181 			if (so->so_proto->pr_domain != &unixdomain ||
1182 			    (so->so_proto->pr_flags&PR_RIGHTS) == 0)
1183 				continue;
1184 #ifdef notdef
1185 			if (so->so_rcv.sb_flags & SB_LOCK) {
1186 				/*
1187 				 * This is problematical; it's not clear
1188 				 * we need to wait for the sockbuf to be
1189 				 * unlocked (on a uniprocessor, at least),
1190 				 * and it's also not clear what to do
1191 				 * if sbwait returns an error due to receipt
1192 				 * of a signal.  If sbwait does return
1193 				 * an error, we'll go into an infinite
1194 				 * loop.  Delete all of this for now.
1195 				 */
1196 				(void) sbwait(&so->so_rcv);
1197 				goto restart;
1198 			}
1199 #endif
1200 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1201 			/*
1202 			 * mark descriptors referenced from sockets queued on the accept queue as well.
1203 			 */
1204 			if (so->so_options & SO_ACCEPTCONN) {
1205 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1206 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1207 				}
1208 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1209 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1210 				}
1211 			}
1212 
1213 		}
1214 	} while (unp_defer);
1215 	/*
1216 	 * Sweep pass.  Find unmarked descriptors, and free them.
1217 	 *
1218 	 * We grab an extra reference to each of the file table entries
1219 	 * that are not otherwise accessible and then free the rights
1220 	 * that are stored in messages on them.
1221 	 *
1222 	 * The bug in the original code is a little tricky, so I'll describe
1223 	 * what's wrong with it here.
1224 	 *
1225 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1226 	 * times -- consider the case of sockets A and B that contain
1227 	 * references to each other.  On a last close of some other socket,
1228 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1229 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1230 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1231 	 * results in the following chain.  Closef calls soo_close, which
1232 	 * calls soclose.   Soclose calls first (through the switch
1233 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1234 	 * returns because the previous instance had set unp_gcing, and
1235 	 * we return all the way back to soclose, which marks the socket
1236 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1237 	 * to free up the rights that are queued in messages on the socket A,
1238 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1239 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1240 	 * instance of unp_discard just calls closef on B.
1241 	 *
1242 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1243 	 * which results in another closef on A.  Unfortunately, A is already
1244 	 * being closed, and the descriptor has already been marked with
1245 	 * SS_NOFDREF, and soclose panics at this point.
1246 	 *
1247 	 * Here, we first take an extra reference to each inaccessible
1248 	 * descriptor.  Then, if the inaccessible descriptor is a
1249 	 * socket, we call sorflush in case it is a Unix domain
1250 	 * socket.  After we destroy all the rights carried in
1251 	 * messages, we do a last closef to get rid of our extra
1252 	 * reference.  This is the last close, and the unp_detach etc
1253 	 * will shut down the socket.
1254 	 *
1255 	 * 91/09/19, bsy@cs.cmu.edu
1256 	 */
1257 	extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
1258 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1259 	    fp = nextfp) {
1260 		nextfp = LIST_NEXT(fp, f_list);
1261 		simple_lock(&fp->f_slock);
1262 		if (fp->f_count != 0 &&
1263 		    fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1264 			*fpp++ = fp;
1265 			nunref++;
1266 			fp->f_count++;
1267 		}
1268 		simple_unlock(&fp->f_slock);
1269 	}
1270 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1271 		fp = *fpp;
1272 		simple_lock(&fp->f_slock);
1273 		FILE_USE(fp);
1274 		if (fp->f_type == DTYPE_SOCKET)
1275 			sorflush((struct socket *)fp->f_data);
1276 		FILE_UNUSE(fp, NULL);
1277 	}
1278 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1279 		fp = *fpp;
1280 		simple_lock(&fp->f_slock);
1281 		FILE_USE(fp);
1282 		(void) closef(fp, (struct proc *)0);
1283 	}
1284 	free((caddr_t)extra_ref, M_FILE);
1285 	unp_gcing = 0;
1286 }
1287 
1288 void
1289 unp_dispose(m)
1290 	struct mbuf *m;
1291 {
1292 
1293 	if (m)
1294 		unp_scan(m, unp_discard, 1);
1295 }
1296 
1297 void
1298 unp_scan(m0, op, discard)
1299 	struct mbuf *m0;
1300 	void (*op) __P((struct file *));
1301 	int discard;
1302 {
1303 	struct mbuf *m;
1304 	struct file **rp;
1305 	struct cmsghdr *cm;
1306 	int i;
1307 	int qfds;
1308 
1309 	while (m0) {
1310 		for (m = m0; m; m = m->m_next) {
1311 			if (m->m_type == MT_CONTROL &&
1312 			    m->m_len >= sizeof(*cm)) {
1313 				cm = mtod(m, struct cmsghdr *);
1314 				if (cm->cmsg_level != SOL_SOCKET ||
1315 				    cm->cmsg_type != SCM_RIGHTS)
1316 					continue;
1317 				qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1318 				    / sizeof(struct file *);
1319 				rp = (struct file **)CMSG_DATA(cm);
1320 				for (i = 0; i < qfds; i++) {
1321 					struct file *fp = *rp;
1322 					if (discard)
1323 						*rp = 0;
1324 					(*op)(fp);
1325 					rp++;
1326 				}
1327 				break;		/* XXX, but saves time */
1328 			}
1329 		}
1330 		m0 = m0->m_nextpkt;
1331 	}
1332 }
1333 
1334 void
1335 unp_mark(fp)
1336 	struct file *fp;
1337 {
1338 	if (fp == NULL)
1339 		return;
1340 
1341 	if (fp->f_flag & FMARK)
1342 		return;
1343 
1344 	/* If we're already deferred, don't screw up the defer count */
1345 	if (fp->f_flag & FDEFER)
1346 		return;
1347 
1348 	/*
1349 	 * Minimize the number of deferrals...  Sockets are the only
1350 	 * type of descriptor which can hold references to another
1351 	 * descriptor, so just mark other descriptors, and defer
1352 	 * unmarked sockets for the next pass.
1353 	 */
1354 	if (fp->f_type == DTYPE_SOCKET) {
1355 		unp_defer++;
1356 		if (fp->f_count == 0)
1357 			panic("unp_mark: queued unref");
1358 		fp->f_flag |= FDEFER;
1359 	} else {
1360 		fp->f_flag |= FMARK;
1361 	}
1362 	return;
1363 }
1364 
1365 void
1366 unp_discard(fp)
1367 	struct file *fp;
1368 {
1369 	if (fp == NULL)
1370 		return;
1371 	simple_lock(&fp->f_slock);
1372 	fp->f_usecount++;	/* i.e. FILE_USE(fp) sans locking */
1373 	fp->f_msgcount--;
1374 	simple_unlock(&fp->f_slock);
1375 	unp_rights--;
1376 	(void) closef(fp, (struct proc *)0);
1377 }
1378