xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision ce099b40997c43048fb78bd578195f81d2456523)
1 /*	$NetBSD: uipc_usrreq.c,v 1.114 2008/04/28 20:24:05 martin Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.114 2008/04/28 20:24:05 martin Exp $");
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 
120 /*
121  * Unix communications domain.
122  *
123  * TODO:
124  *	SEQPACKET, RDM
125  *	rethink name space problems
126  *	need a proper out-of-band
127  *
128  * Notes on locking:
129  *
130  * The generic rules noted in uipc_socket2.c apply.  In addition:
131  *
132  * o We have a global lock, uipc_lock.
133  *
134  * o All datagram sockets are locked by uipc_lock.
135  *
136  * o For stream socketpairs, the two endpoints are created sharing the same
137  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
138  *   matching locks.
139  *
140  * o Stream sockets created via socket() start life with their own
141  *   independent lock.
142  *
143  * o Stream connections to a named endpoint are slightly more complicated.
144  *   Sockets that have called listen() have their lock pointer mutated to
145  *   the global uipc_lock.  When establishing a connection, the connecting
146  *   socket also has its lock mutated to uipc_lock, which matches the head
147  *   (listening socket).  We create a new socket for accept() to return, and
148  *   that also shares the head's lock.  Until the connection is completely
149  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
150  *   connection is complete, the association with the head's lock is broken.
151  *   The connecting socket and the socket returned from accept() have their
152  *   lock pointers mutated away from uipc_lock, and back to the connecting
153  *   socket's original, independent lock.  The head continues to be locked
154  *   by uipc_lock.
155  *
156  * o If uipc_lock is determined to be a significant source of contention,
157  *   it could easily be hashed out.  It is difficult to simply make it an
158  *   independent lock because of visibility / garbage collection issues:
159  *   if a socket has been associated with a lock at any point, that lock
160  *   must remain valid until the socket is no longer visible in the system.
161  *   The lock must not be freed or otherwise destroyed until any sockets
162  *   that had referenced it have also been destroyed.
163  */
164 const struct sockaddr_un sun_noname = {
165 	.sun_len = sizeof(sun_noname),
166 	.sun_family = AF_LOCAL,
167 };
168 ino_t	unp_ino;			/* prototype for fake inode numbers */
169 
170 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
171 static kmutex_t *uipc_lock;
172 
173 /*
174  * Initialize Unix protocols.
175  */
176 void
177 uipc_init(void)
178 {
179 
180 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
181 }
182 
183 /*
184  * A connection succeeded: disassociate both endpoints from the head's
185  * lock, and make them share their own lock.  There is a race here: for
186  * a very brief time one endpoint will be locked by a different lock
187  * than the other end.  However, since the current thread holds the old
188  * lock (the listening socket's lock, the head) access can still only be
189  * made to one side of the connection.
190  */
191 static void
192 unp_setpeerlocks(struct socket *so, struct socket *so2)
193 {
194 	struct unpcb *unp;
195 	kmutex_t *lock;
196 
197 	KASSERT(solocked2(so, so2));
198 
199 	/*
200 	 * Bail out if either end of the socket is not yet fully
201 	 * connected or accepted.  We only break the lock association
202 	 * with the head when the pair of sockets stand completely
203 	 * on their own.
204 	 */
205 	if (so->so_head != NULL || so2->so_head != NULL)
206 		return;
207 
208 	/*
209 	 * Drop references to old lock.  A third reference (from the
210 	 * queue head) must be held as we still hold its lock.  Bonus:
211 	 * we don't need to worry about garbage collecting the lock.
212 	 */
213 	lock = so->so_lock;
214 	KASSERT(lock == uipc_lock);
215 	mutex_obj_free(lock);
216 	mutex_obj_free(lock);
217 
218 	/*
219 	 * Grab stream lock from the initiator and share between the two
220 	 * endpoints.  Issue memory barrier to ensure all modifications
221 	 * become globally visible before the lock change.  so2 is
222 	 * assumed not to have a stream lock, because it was created
223 	 * purely for the server side to accept this connection and
224 	 * started out life using the domain-wide lock.
225 	 */
226 	unp = sotounpcb(so);
227 	KASSERT(unp->unp_streamlock != NULL);
228 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
229 	lock = unp->unp_streamlock;
230 	unp->unp_streamlock = NULL;
231 	mutex_obj_hold(lock);
232 	membar_exit();
233 	so->so_lock = lock;
234 	so2->so_lock = lock;
235 }
236 
237 /*
238  * Reset a socket's lock back to the domain-wide lock.
239  */
240 static void
241 unp_resetlock(struct socket *so)
242 {
243 	kmutex_t *olock, *nlock;
244 	struct unpcb *unp;
245 
246 	KASSERT(solocked(so));
247 
248 	olock = so->so_lock;
249 	nlock = uipc_lock;
250 	if (olock == nlock)
251 		return;
252 	unp = sotounpcb(so);
253 	KASSERT(unp->unp_streamlock == NULL);
254 	unp->unp_streamlock = olock;
255 	mutex_obj_hold(nlock);
256 	mutex_enter(nlock);
257 	so->so_lock = nlock;
258 	mutex_exit(olock);
259 }
260 
261 static void
262 unp_free(struct unpcb *unp)
263 {
264 
265 	if (unp->unp_addr)
266 		free(unp->unp_addr, M_SONAME);
267 	if (unp->unp_streamlock != NULL)
268 		mutex_obj_free(unp->unp_streamlock);
269 	free(unp, M_PCB);
270 }
271 
272 int
273 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
274 	struct lwp *l)
275 {
276 	struct socket *so2;
277 	const struct sockaddr_un *sun;
278 
279 	so2 = unp->unp_conn->unp_socket;
280 
281 	KASSERT(solocked(so2));
282 
283 	if (unp->unp_addr)
284 		sun = unp->unp_addr;
285 	else
286 		sun = &sun_noname;
287 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
288 		control = unp_addsockcred(l, control);
289 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
290 	    control) == 0) {
291 		so2->so_rcv.sb_overflowed++;
292 	    	sounlock(so2);
293 		unp_dispose(control);
294 		m_freem(control);
295 		m_freem(m);
296 	    	solock(so2);
297 		return (ENOBUFS);
298 	} else {
299 		sorwakeup(so2);
300 		return (0);
301 	}
302 }
303 
304 void
305 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
306 {
307 	const struct sockaddr_un *sun;
308 	struct unpcb *unp;
309 	bool ext;
310 
311 	unp = sotounpcb(so);
312 	ext = false;
313 
314 	for (;;) {
315 		sun = NULL;
316 		if (peeraddr) {
317 			if (unp->unp_conn && unp->unp_conn->unp_addr)
318 				sun = unp->unp_conn->unp_addr;
319 		} else {
320 			if (unp->unp_addr)
321 				sun = unp->unp_addr;
322 		}
323 		if (sun == NULL)
324 			sun = &sun_noname;
325 		nam->m_len = sun->sun_len;
326 		if (nam->m_len > MLEN && !ext) {
327 			sounlock(so);
328 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
329 			solock(so);
330 			ext = true;
331 		} else {
332 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
333 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
334 			break;
335 		}
336 	}
337 }
338 
339 /*ARGSUSED*/
340 int
341 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
342 	struct mbuf *control, struct lwp *l)
343 {
344 	struct unpcb *unp = sotounpcb(so);
345 	struct socket *so2;
346 	struct proc *p;
347 	u_int newhiwat;
348 	int error = 0;
349 
350 	if (req == PRU_CONTROL)
351 		return (EOPNOTSUPP);
352 
353 #ifdef DIAGNOSTIC
354 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
355 		panic("uipc_usrreq: unexpected control mbuf");
356 #endif
357 	p = l ? l->l_proc : NULL;
358 	if (req != PRU_ATTACH) {
359 		if (unp == 0) {
360 			error = EINVAL;
361 			goto release;
362 		}
363 		KASSERT(solocked(so));
364 	}
365 
366 	switch (req) {
367 
368 	case PRU_ATTACH:
369 		if (unp != 0) {
370 			error = EISCONN;
371 			break;
372 		}
373 		error = unp_attach(so);
374 		break;
375 
376 	case PRU_DETACH:
377 		unp_detach(unp);
378 		break;
379 
380 	case PRU_BIND:
381 		KASSERT(l != NULL);
382 		error = unp_bind(so, nam, l);
383 		break;
384 
385 	case PRU_LISTEN:
386 		/*
387 		 * If the socket can accept a connection, it must be
388 		 * locked by uipc_lock.
389 		 */
390 		unp_resetlock(so);
391 		if (unp->unp_vnode == 0)
392 			error = EINVAL;
393 		break;
394 
395 	case PRU_CONNECT:
396 		KASSERT(l != NULL);
397 		error = unp_connect(so, nam, l);
398 		break;
399 
400 	case PRU_CONNECT2:
401 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
402 		break;
403 
404 	case PRU_DISCONNECT:
405 		unp_disconnect(unp);
406 		break;
407 
408 	case PRU_ACCEPT:
409 		KASSERT(so->so_lock == uipc_lock);
410 		/*
411 		 * Mark the initiating STREAM socket as connected *ONLY*
412 		 * after it's been accepted.  This prevents a client from
413 		 * overrunning a server and receiving ECONNREFUSED.
414 		 */
415 		if (unp->unp_conn == NULL)
416 			break;
417 		so2 = unp->unp_conn->unp_socket;
418 		if (so2->so_state & SS_ISCONNECTING) {
419 			KASSERT(solocked2(so, so->so_head));
420 			KASSERT(solocked2(so2, so->so_head));
421 			soisconnected(so2);
422 		}
423 		/*
424 		 * If the connection is fully established, break the
425 		 * association with uipc_lock and give the connected
426 		 * pair a seperate lock to share.
427 		 */
428 		unp_setpeerlocks(so2, so);
429 		/*
430 		 * Only now return peer's address, as we may need to
431 		 * block in order to allocate memory.
432 		 *
433 		 * XXX Minor race: connection can be broken while
434 		 * lock is dropped in unp_setaddr().  We will return
435 		 * error == 0 and sun_noname as the peer address.
436 		 */
437 		unp_setaddr(so, nam, true);
438 		break;
439 
440 	case PRU_SHUTDOWN:
441 		socantsendmore(so);
442 		unp_shutdown(unp);
443 		break;
444 
445 	case PRU_RCVD:
446 		switch (so->so_type) {
447 
448 		case SOCK_DGRAM:
449 			panic("uipc 1");
450 			/*NOTREACHED*/
451 
452 		case SOCK_STREAM:
453 #define	rcv (&so->so_rcv)
454 #define snd (&so2->so_snd)
455 			if (unp->unp_conn == 0)
456 				break;
457 			so2 = unp->unp_conn->unp_socket;
458 			KASSERT(solocked2(so, so2));
459 			/*
460 			 * Adjust backpressure on sender
461 			 * and wakeup any waiting to write.
462 			 */
463 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
464 			unp->unp_mbcnt = rcv->sb_mbcnt;
465 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
466 			(void)chgsbsize(so2->so_uidinfo,
467 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
468 			unp->unp_cc = rcv->sb_cc;
469 			sowwakeup(so2);
470 #undef snd
471 #undef rcv
472 			break;
473 
474 		default:
475 			panic("uipc 2");
476 		}
477 		break;
478 
479 	case PRU_SEND:
480 		/*
481 		 * Note: unp_internalize() rejects any control message
482 		 * other than SCM_RIGHTS, and only allows one.  This
483 		 * has the side-effect of preventing a caller from
484 		 * forging SCM_CREDS.
485 		 */
486 		if (control) {
487 			sounlock(so);
488 			error = unp_internalize(&control);
489 			solock(so);
490 			if (error != 0) {
491 				m_freem(control);
492 				m_freem(m);
493 				break;
494 			}
495 		}
496 		switch (so->so_type) {
497 
498 		case SOCK_DGRAM: {
499 			KASSERT(so->so_lock == uipc_lock);
500 			if (nam) {
501 				if ((so->so_state & SS_ISCONNECTED) != 0)
502 					error = EISCONN;
503 				else {
504 					/*
505 					 * Note: once connected, the
506 					 * socket's lock must not be
507 					 * dropped until we have sent
508 					 * the message and disconnected.
509 					 * This is necessary to prevent
510 					 * intervening control ops, like
511 					 * another connection.
512 					 */
513 					error = unp_connect(so, nam, l);
514 				}
515 			} else {
516 				if ((so->so_state & SS_ISCONNECTED) == 0)
517 					error = ENOTCONN;
518 			}
519 			if (error) {
520 				sounlock(so);
521 				unp_dispose(control);
522 				m_freem(control);
523 				m_freem(m);
524 				solock(so);
525 				break;
526 			}
527 			KASSERT(p != NULL);
528 			error = unp_output(m, control, unp, l);
529 			if (nam)
530 				unp_disconnect(unp);
531 			break;
532 		}
533 
534 		case SOCK_STREAM:
535 #define	rcv (&so2->so_rcv)
536 #define	snd (&so->so_snd)
537 			if (unp->unp_conn == NULL) {
538 				error = ENOTCONN;
539 				break;
540 			}
541 			so2 = unp->unp_conn->unp_socket;
542 			KASSERT(solocked2(so, so2));
543 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
544 				/*
545 				 * Credentials are passed only once on
546 				 * SOCK_STREAM.
547 				 */
548 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
549 				control = unp_addsockcred(l, control);
550 			}
551 			/*
552 			 * Send to paired receive port, and then reduce
553 			 * send buffer hiwater marks to maintain backpressure.
554 			 * Wake up readers.
555 			 */
556 			if (control) {
557 				if (sbappendcontrol(rcv, m, control) != 0)
558 					control = NULL;
559 			} else
560 				sbappend(rcv, m);
561 			snd->sb_mbmax -=
562 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
563 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
564 			newhiwat = snd->sb_hiwat -
565 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
566 			(void)chgsbsize(so->so_uidinfo,
567 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
568 			unp->unp_conn->unp_cc = rcv->sb_cc;
569 			sorwakeup(so2);
570 #undef snd
571 #undef rcv
572 			if (control != NULL) {
573 				sounlock(so);
574 				unp_dispose(control);
575 				m_freem(control);
576 				solock(so);
577 			}
578 			break;
579 
580 		default:
581 			panic("uipc 4");
582 		}
583 		break;
584 
585 	case PRU_ABORT:
586 		(void)unp_drop(unp, ECONNABORTED);
587 
588 		KASSERT(so->so_head == NULL);
589 #ifdef DIAGNOSTIC
590 		if (so->so_pcb == 0)
591 			panic("uipc 5: drop killed pcb");
592 #endif
593 		unp_detach(unp);
594 		break;
595 
596 	case PRU_SENSE:
597 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
598 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
599 			so2 = unp->unp_conn->unp_socket;
600 			KASSERT(solocked2(so, so2));
601 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
602 		}
603 		((struct stat *) m)->st_dev = NODEV;
604 		if (unp->unp_ino == 0)
605 			unp->unp_ino = unp_ino++;
606 		((struct stat *) m)->st_atimespec =
607 		    ((struct stat *) m)->st_mtimespec =
608 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
609 		((struct stat *) m)->st_ino = unp->unp_ino;
610 		return (0);
611 
612 	case PRU_RCVOOB:
613 		error = EOPNOTSUPP;
614 		break;
615 
616 	case PRU_SENDOOB:
617 		m_freem(control);
618 		m_freem(m);
619 		error = EOPNOTSUPP;
620 		break;
621 
622 	case PRU_SOCKADDR:
623 		unp_setaddr(so, nam, false);
624 		break;
625 
626 	case PRU_PEERADDR:
627 		unp_setaddr(so, nam, true);
628 		break;
629 
630 	default:
631 		panic("piusrreq");
632 	}
633 
634 release:
635 	return (error);
636 }
637 
638 /*
639  * Unix domain socket option processing.
640  */
641 int
642 uipc_ctloutput(int op, struct socket *so, int level, int optname,
643 	struct mbuf **mp)
644 {
645 	struct unpcb *unp = sotounpcb(so);
646 	struct mbuf *m = *mp;
647 	int optval = 0, error = 0;
648 
649 	KASSERT(solocked(so));
650 
651 	if (level != 0) {
652 		error = ENOPROTOOPT;
653 		if (op == PRCO_SETOPT && m)
654 			(void) m_free(m);
655 	} else switch (op) {
656 
657 	case PRCO_SETOPT:
658 		switch (optname) {
659 		case LOCAL_CREDS:
660 		case LOCAL_CONNWAIT:
661 			if (m == NULL || m->m_len != sizeof(int))
662 				error = EINVAL;
663 			else {
664 				optval = *mtod(m, int *);
665 				switch (optname) {
666 #define	OPTSET(bit) \
667 	if (optval) \
668 		unp->unp_flags |= (bit); \
669 	else \
670 		unp->unp_flags &= ~(bit);
671 
672 				case LOCAL_CREDS:
673 					OPTSET(UNP_WANTCRED);
674 					break;
675 				case LOCAL_CONNWAIT:
676 					OPTSET(UNP_CONNWAIT);
677 					break;
678 				}
679 			}
680 			break;
681 #undef OPTSET
682 
683 		default:
684 			error = ENOPROTOOPT;
685 			break;
686 		}
687 		if (m)
688 			(void) m_free(m);
689 		break;
690 
691 	case PRCO_GETOPT:
692 		sounlock(so);
693 		switch (optname) {
694 		case LOCAL_PEEREID:
695 			if (unp->unp_flags & UNP_EIDSVALID) {
696 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
697 				m->m_len = sizeof(struct unpcbid);
698 				*mtod(m, struct unpcbid *) = unp->unp_connid;
699 			} else {
700 				error = EINVAL;
701 			}
702 			break;
703 		case LOCAL_CREDS:
704 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
705 			m->m_len = sizeof(int);
706 
707 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
708 
709 			optval = OPTBIT(UNP_WANTCRED);
710 			*mtod(m, int *) = optval;
711 			break;
712 #undef OPTBIT
713 
714 		default:
715 			error = ENOPROTOOPT;
716 			break;
717 		}
718 		solock(so);
719 		break;
720 	}
721 	return (error);
722 }
723 
724 /*
725  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
726  * for stream sockets, although the total for sender and receiver is
727  * actually only PIPSIZ.
728  * Datagram sockets really use the sendspace as the maximum datagram size,
729  * and don't really want to reserve the sendspace.  Their recvspace should
730  * be large enough for at least one max-size datagram plus address.
731  */
732 #define	PIPSIZ	4096
733 u_long	unpst_sendspace = PIPSIZ;
734 u_long	unpst_recvspace = PIPSIZ;
735 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
736 u_long	unpdg_recvspace = 4*1024;
737 
738 u_int	unp_rights;			/* file descriptors in flight */
739 
740 int
741 unp_attach(struct socket *so)
742 {
743 	struct unpcb *unp;
744 	int error;
745 
746 	switch (so->so_type) {
747 	case SOCK_STREAM:
748 		if (so->so_lock == NULL) {
749 			/*
750 			 * XXX Assuming that no socket locks are held,
751 			 * as this call may sleep.
752 			 */
753 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
754 			solock(so);
755 		}
756 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
757 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
758 			if (error != 0)
759 				return (error);
760 		}
761 		break;
762 
763 	case SOCK_DGRAM:
764 		if (so->so_lock == NULL) {
765 			mutex_obj_hold(uipc_lock);
766 			so->so_lock = uipc_lock;
767 			solock(so);
768 		}
769 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
770 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
771 			if (error != 0)
772 				return (error);
773 		}
774 		break;
775 
776 	default:
777 		panic("unp_attach");
778 	}
779 	KASSERT(solocked(so));
780 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
781 	if (unp == NULL)
782 		return (ENOBUFS);
783 	memset((void *)unp, 0, sizeof(*unp));
784 	unp->unp_socket = so;
785 	so->so_pcb = unp;
786 	nanotime(&unp->unp_ctime);
787 	return (0);
788 }
789 
790 void
791 unp_detach(struct unpcb *unp)
792 {
793 	struct socket *so;
794 	vnode_t *vp;
795 
796 	so = unp->unp_socket;
797 
798  retry:
799 	if ((vp = unp->unp_vnode) != NULL) {
800 		sounlock(so);
801 		/* Acquire v_interlock to protect against unp_connect(). */
802 		/* XXXAD racy */
803 		mutex_enter(&vp->v_interlock);
804 		vp->v_socket = NULL;
805 		vrelel(vp, 0);
806 		solock(so);
807 		unp->unp_vnode = NULL;
808 	}
809 	if (unp->unp_conn)
810 		unp_disconnect(unp);
811 	while (unp->unp_refs) {
812 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
813 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
814 			solock(so);
815 			goto retry;
816 		}
817 	}
818 	soisdisconnected(so);
819 	so->so_pcb = NULL;
820 	if (unp_rights) {
821 		/*
822 		 * Normally the receive buffer is flushed later,
823 		 * in sofree, but if our receive buffer holds references
824 		 * to descriptors that are now garbage, we will dispose
825 		 * of those descriptor references after the garbage collector
826 		 * gets them (resulting in a "panic: closef: count < 0").
827 		 */
828 		sorflush(so);
829 		unp_free(unp);
830 		sounlock(so);
831 		unp_gc();
832 		solock(so);
833 	} else
834 		unp_free(unp);
835 }
836 
837 int
838 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
839 {
840 	struct sockaddr_un *sun;
841 	struct unpcb *unp;
842 	vnode_t *vp;
843 	struct vattr vattr;
844 	size_t addrlen;
845 	int error;
846 	struct nameidata nd;
847 	proc_t *p;
848 
849 	unp = sotounpcb(so);
850 	if (unp->unp_vnode != NULL)
851 		return (EINVAL);
852 	if ((unp->unp_flags & UNP_BUSY) != 0) {
853 		/*
854 		 * EALREADY may not be strictly accurate, but since this
855 		 * is a major application error it's hardly a big deal.
856 		 */
857 		return (EALREADY);
858 	}
859 	unp->unp_flags |= UNP_BUSY;
860 	sounlock(so);
861 
862 	/*
863 	 * Allocate the new sockaddr.  We have to allocate one
864 	 * extra byte so that we can ensure that the pathname
865 	 * is nul-terminated.
866 	 */
867 	p = l->l_proc;
868 	addrlen = nam->m_len + 1;
869 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
870 	m_copydata(nam, 0, nam->m_len, (void *)sun);
871 	*(((char *)sun) + nam->m_len) = '\0';
872 
873 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
874 	    sun->sun_path);
875 
876 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
877 	if ((error = namei(&nd)) != 0)
878 		goto bad;
879 	vp = nd.ni_vp;
880 	if (vp != NULL) {
881 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
882 		if (nd.ni_dvp == vp)
883 			vrele(nd.ni_dvp);
884 		else
885 			vput(nd.ni_dvp);
886 		vrele(vp);
887 		error = EADDRINUSE;
888 		goto bad;
889 	}
890 	VATTR_NULL(&vattr);
891 	vattr.va_type = VSOCK;
892 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
893 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
894 	if (error)
895 		goto bad;
896 	vp = nd.ni_vp;
897 	solock(so);
898 	vp->v_socket = unp->unp_socket;
899 	unp->unp_vnode = vp;
900 	unp->unp_addrlen = addrlen;
901 	unp->unp_addr = sun;
902 	unp->unp_connid.unp_pid = p->p_pid;
903 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
904 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
905 	unp->unp_flags |= UNP_EIDSBIND;
906 	VOP_UNLOCK(vp, 0);
907 	unp->unp_flags &= ~UNP_BUSY;
908 	return (0);
909 
910  bad:
911 	free(sun, M_SONAME);
912 	solock(so);
913 	unp->unp_flags &= ~UNP_BUSY;
914 	return (error);
915 }
916 
917 int
918 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
919 {
920 	struct sockaddr_un *sun;
921 	vnode_t *vp;
922 	struct socket *so2, *so3;
923 	struct unpcb *unp, *unp2, *unp3;
924 	size_t addrlen;
925 	int error;
926 	struct nameidata nd;
927 
928 	unp = sotounpcb(so);
929 	if ((unp->unp_flags & UNP_BUSY) != 0) {
930 		/*
931 		 * EALREADY may not be strictly accurate, but since this
932 		 * is a major application error it's hardly a big deal.
933 		 */
934 		return (EALREADY);
935 	}
936 	unp->unp_flags |= UNP_BUSY;
937 	sounlock(so);
938 
939 	/*
940 	 * Allocate a temporary sockaddr.  We have to allocate one extra
941 	 * byte so that we can ensure that the pathname is nul-terminated.
942 	 * When we establish the connection, we copy the other PCB's
943 	 * sockaddr to our own.
944 	 */
945 	addrlen = nam->m_len + 1;
946 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
947 	m_copydata(nam, 0, nam->m_len, (void *)sun);
948 	*(((char *)sun) + nam->m_len) = '\0';
949 
950 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
951 	    sun->sun_path);
952 
953 	if ((error = namei(&nd)) != 0)
954 		goto bad2;
955 	vp = nd.ni_vp;
956 	if (vp->v_type != VSOCK) {
957 		error = ENOTSOCK;
958 		goto bad;
959 	}
960 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
961 		goto bad;
962 	/* Acquire v_interlock to protect against unp_detach(). */
963 	mutex_enter(&vp->v_interlock);
964 	so2 = vp->v_socket;
965 	if (so2 == NULL) {
966 		mutex_exit(&vp->v_interlock);
967 		error = ECONNREFUSED;
968 		goto bad;
969 	}
970 	if (so->so_type != so2->so_type) {
971 		mutex_exit(&vp->v_interlock);
972 		error = EPROTOTYPE;
973 		goto bad;
974 	}
975 	solock(so);
976 	unp_resetlock(so);
977 	mutex_exit(&vp->v_interlock);
978 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
979 		/*
980 		 * This may seem somewhat fragile but is OK: if we can
981 		 * see SO_ACCEPTCONN set on the endpoint, then it must
982 		 * be locked by the domain-wide uipc_lock.
983 		 */
984 		KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
985 		    so2->so_lock == uipc_lock);
986 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
987 		    (so3 = sonewconn(so2, 0)) == 0) {
988 			error = ECONNREFUSED;
989 			sounlock(so);
990 			goto bad;
991 		}
992 		unp2 = sotounpcb(so2);
993 		unp3 = sotounpcb(so3);
994 		if (unp2->unp_addr) {
995 			unp3->unp_addr = malloc(unp2->unp_addrlen,
996 			    M_SONAME, M_WAITOK);
997 			memcpy(unp3->unp_addr, unp2->unp_addr,
998 			    unp2->unp_addrlen);
999 			unp3->unp_addrlen = unp2->unp_addrlen;
1000 		}
1001 		unp3->unp_flags = unp2->unp_flags;
1002 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
1003 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
1004 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
1005 		unp3->unp_flags |= UNP_EIDSVALID;
1006 		if (unp2->unp_flags & UNP_EIDSBIND) {
1007 			unp->unp_connid = unp2->unp_connid;
1008 			unp->unp_flags |= UNP_EIDSVALID;
1009 		}
1010 		so2 = so3;
1011 	}
1012 	error = unp_connect2(so, so2, PRU_CONNECT);
1013 	sounlock(so);
1014  bad:
1015 	vput(vp);
1016  bad2:
1017 	free(sun, M_SONAME);
1018 	solock(so);
1019 	unp->unp_flags &= ~UNP_BUSY;
1020 	return (error);
1021 }
1022 
1023 int
1024 unp_connect2(struct socket *so, struct socket *so2, int req)
1025 {
1026 	struct unpcb *unp = sotounpcb(so);
1027 	struct unpcb *unp2;
1028 
1029 	if (so2->so_type != so->so_type)
1030 		return (EPROTOTYPE);
1031 
1032 	/*
1033 	 * All three sockets involved must be locked by same lock:
1034 	 *
1035 	 * local endpoint (so)
1036 	 * remote endpoint (so2)
1037 	 * queue head (so->so_head, only if PR_CONNREQUIRED)
1038 	 */
1039 	KASSERT(solocked2(so, so2));
1040 	if (so->so_head != NULL) {
1041 		KASSERT(so->so_lock == uipc_lock);
1042 		KASSERT(solocked2(so, so->so_head));
1043 	}
1044 
1045 	unp2 = sotounpcb(so2);
1046 	unp->unp_conn = unp2;
1047 	switch (so->so_type) {
1048 
1049 	case SOCK_DGRAM:
1050 		unp->unp_nextref = unp2->unp_refs;
1051 		unp2->unp_refs = unp;
1052 		soisconnected(so);
1053 		break;
1054 
1055 	case SOCK_STREAM:
1056 		unp2->unp_conn = unp;
1057 		if (req == PRU_CONNECT &&
1058 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1059 			soisconnecting(so);
1060 		else
1061 			soisconnected(so);
1062 		soisconnected(so2);
1063 		/*
1064 		 * If the connection is fully established, break the
1065 		 * association with uipc_lock and give the connected
1066 		 * pair a seperate lock to share.  For CONNECT2, we
1067 		 * require that the locks already match (the sockets
1068 		 * are created that way).
1069 		 */
1070 		if (req == PRU_CONNECT)
1071 			unp_setpeerlocks(so, so2);
1072 		break;
1073 
1074 	default:
1075 		panic("unp_connect2");
1076 	}
1077 	return (0);
1078 }
1079 
1080 void
1081 unp_disconnect(struct unpcb *unp)
1082 {
1083 	struct unpcb *unp2 = unp->unp_conn;
1084 	struct socket *so;
1085 
1086 	if (unp2 == 0)
1087 		return;
1088 	unp->unp_conn = 0;
1089 	so = unp->unp_socket;
1090 	switch (so->so_type) {
1091 	case SOCK_DGRAM:
1092 		if (unp2->unp_refs == unp)
1093 			unp2->unp_refs = unp->unp_nextref;
1094 		else {
1095 			unp2 = unp2->unp_refs;
1096 			for (;;) {
1097 				KASSERT(solocked2(so, unp2->unp_socket));
1098 				if (unp2 == 0)
1099 					panic("unp_disconnect");
1100 				if (unp2->unp_nextref == unp)
1101 					break;
1102 				unp2 = unp2->unp_nextref;
1103 			}
1104 			unp2->unp_nextref = unp->unp_nextref;
1105 		}
1106 		unp->unp_nextref = 0;
1107 		so->so_state &= ~SS_ISCONNECTED;
1108 		break;
1109 
1110 	case SOCK_STREAM:
1111 		KASSERT(solocked2(so, unp2->unp_socket));
1112 		soisdisconnected(so);
1113 		unp2->unp_conn = 0;
1114 		soisdisconnected(unp2->unp_socket);
1115 		break;
1116 	}
1117 }
1118 
1119 #ifdef notdef
1120 unp_abort(struct unpcb *unp)
1121 {
1122 	unp_detach(unp);
1123 }
1124 #endif
1125 
1126 void
1127 unp_shutdown(struct unpcb *unp)
1128 {
1129 	struct socket *so;
1130 
1131 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1132 	    (so = unp->unp_conn->unp_socket))
1133 		socantrcvmore(so);
1134 }
1135 
1136 bool
1137 unp_drop(struct unpcb *unp, int errno)
1138 {
1139 	struct socket *so = unp->unp_socket;
1140 
1141 	KASSERT(solocked(so));
1142 
1143 	so->so_error = errno;
1144 	unp_disconnect(unp);
1145 	if (so->so_head) {
1146 		so->so_pcb = NULL;
1147 		/* sofree() drops the socket lock */
1148 		sofree(so);
1149 		unp_free(unp);
1150 		return true;
1151 	}
1152 	return false;
1153 }
1154 
1155 #ifdef notdef
1156 unp_drain(void)
1157 {
1158 
1159 }
1160 #endif
1161 
1162 int
1163 unp_externalize(struct mbuf *rights, struct lwp *l)
1164 {
1165 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1166 	struct proc *p = l->l_proc;
1167 	int i, *fdp;
1168 	file_t **rp;
1169 	file_t *fp;
1170 	int nfds, error = 0;
1171 
1172 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1173 	    sizeof(file_t *);
1174 	rp = (file_t **)CMSG_DATA(cm);
1175 
1176 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1177 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1178 
1179 	/* Make sure the recipient should be able to see the descriptors.. */
1180 	if (p->p_cwdi->cwdi_rdir != NULL) {
1181 		rp = (file_t **)CMSG_DATA(cm);
1182 		for (i = 0; i < nfds; i++) {
1183 			fp = *rp++;
1184 			/*
1185 			 * If we are in a chroot'ed directory, and
1186 			 * someone wants to pass us a directory, make
1187 			 * sure it's inside the subtree we're allowed
1188 			 * to access.
1189 			 */
1190 			if (fp->f_type == DTYPE_VNODE) {
1191 				vnode_t *vp = (vnode_t *)fp->f_data;
1192 				if ((vp->v_type == VDIR) &&
1193 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1194 					error = EPERM;
1195 					break;
1196 				}
1197 			}
1198 		}
1199 	}
1200 
1201  restart:
1202 	rp = (file_t **)CMSG_DATA(cm);
1203 	if (error != 0) {
1204 		for (i = 0; i < nfds; i++) {
1205 			fp = *rp;
1206 			/*
1207 			 * zero the pointer before calling unp_discard,
1208 			 * since it may end up in unp_gc()..
1209 			 */
1210 			*rp++ = 0;
1211 			unp_discard(fp);
1212 		}
1213 		goto out;
1214 	}
1215 
1216 	/*
1217 	 * First loop -- allocate file descriptor table slots for the
1218 	 * new descriptors.
1219 	 */
1220 	for (i = 0; i < nfds; i++) {
1221 		fp = *rp++;
1222 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1223 			/*
1224 			 * Back out what we've done so far.
1225 			 */
1226 			for (--i; i >= 0; i--) {
1227 				fd_abort(p, NULL, fdp[i]);
1228 			}
1229 			if (error == ENOSPC) {
1230 				fd_tryexpand(p);
1231 				error = 0;
1232 			} else {
1233 				/*
1234 				 * This is the error that has historically
1235 				 * been returned, and some callers may
1236 				 * expect it.
1237 				 */
1238 				error = EMSGSIZE;
1239 			}
1240 			goto restart;
1241 		}
1242 	}
1243 
1244 	/*
1245 	 * Now that adding them has succeeded, update all of the
1246 	 * descriptor passing state.
1247 	 */
1248 	rp = (file_t **)CMSG_DATA(cm);
1249 	for (i = 0; i < nfds; i++) {
1250 		fp = *rp++;
1251 		atomic_dec_uint(&unp_rights);
1252 		fd_affix(p, fp, fdp[i]);
1253 		mutex_enter(&fp->f_lock);
1254 		fp->f_msgcount--;
1255 		mutex_exit(&fp->f_lock);
1256 		/*
1257 		 * Note that fd_affix() adds a reference to the file.
1258 		 * The file may already have been closed by another
1259 		 * LWP in the process, so we must drop the reference
1260 		 * added by unp_internalize() with closef().
1261 		 */
1262 		closef(fp);
1263 	}
1264 
1265 	/*
1266 	 * Copy temporary array to message and adjust length, in case of
1267 	 * transition from large file_t pointers to ints.
1268 	 */
1269 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1270 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1271 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1272  out:
1273 	rw_exit(&p->p_cwdi->cwdi_lock);
1274 	free(fdp, M_TEMP);
1275 	return (error);
1276 }
1277 
1278 int
1279 unp_internalize(struct mbuf **controlp)
1280 {
1281 	struct filedesc *fdescp = curlwp->l_fd;
1282 	struct mbuf *control = *controlp;
1283 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1284 	file_t **rp, **files;
1285 	file_t *fp;
1286 	int i, fd, *fdp;
1287 	int nfds, error;
1288 
1289 	error = 0;
1290 	newcm = NULL;
1291 
1292 	/* Sanity check the control message header. */
1293 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1294 	    cm->cmsg_len != control->m_len)
1295 		return (EINVAL);
1296 
1297 	/*
1298 	 * Verify that the file descriptors are valid, and acquire
1299 	 * a reference to each.
1300 	 */
1301 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1302 	fdp = (int *)CMSG_DATA(cm);
1303 	for (i = 0; i < nfds; i++) {
1304 		fd = *fdp++;
1305 		if ((fp = fd_getfile(fd)) == NULL) {
1306 			nfds = i + 1;
1307 			error = EBADF;
1308 			goto out;
1309 		}
1310 	}
1311 
1312 	/* Allocate new space and copy header into it. */
1313 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1314 	if (newcm == NULL) {
1315 		error = E2BIG;
1316 		goto out;
1317 	}
1318 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1319 	files = (file_t **)CMSG_DATA(newcm);
1320 
1321 	/*
1322 	 * Transform the file descriptors into file_t pointers, in
1323 	 * reverse order so that if pointers are bigger than ints, the
1324 	 * int won't get until we're done.  No need to lock, as we have
1325 	 * already validated the descriptors with fd_getfile().
1326 	 */
1327 	fdp = (int *)CMSG_DATA(cm) + nfds;
1328 	rp = files + nfds;
1329 	for (i = 0; i < nfds; i++) {
1330 		fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1331 		KASSERT(fp != NULL);
1332 		mutex_enter(&fp->f_lock);
1333 		*--rp = fp;
1334 		fp->f_count++;
1335 		fp->f_msgcount++;
1336 		mutex_exit(&fp->f_lock);
1337 		atomic_inc_uint(&unp_rights);
1338 	}
1339 
1340  out:
1341  	/* Release descriptor references. */
1342 	fdp = (int *)CMSG_DATA(cm);
1343 	for (i = 0; i < nfds; i++) {
1344 		fd_putfile(*fdp++);
1345 	}
1346 
1347 	if (error == 0) {
1348 		if (control->m_flags & M_EXT) {
1349 			m_freem(control);
1350 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1351 		}
1352 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1353 		    M_MBUF, NULL, NULL);
1354 		cm = newcm;
1355 		/*
1356 		 * Adjust message & mbuf to note amount of space
1357 		 * actually used.
1358 		 */
1359 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1360 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1361 	}
1362 
1363 	return error;
1364 }
1365 
1366 struct mbuf *
1367 unp_addsockcred(struct lwp *l, struct mbuf *control)
1368 {
1369 	struct cmsghdr *cmp;
1370 	struct sockcred *sc;
1371 	struct mbuf *m, *n;
1372 	int len, space, i;
1373 
1374 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1375 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1376 
1377 	m = m_get(M_WAIT, MT_CONTROL);
1378 	if (space > MLEN) {
1379 		if (space > MCLBYTES)
1380 			MEXTMALLOC(m, space, M_WAITOK);
1381 		else
1382 			m_clget(m, M_WAIT);
1383 		if ((m->m_flags & M_EXT) == 0) {
1384 			m_free(m);
1385 			return (control);
1386 		}
1387 	}
1388 
1389 	m->m_len = space;
1390 	m->m_next = NULL;
1391 	cmp = mtod(m, struct cmsghdr *);
1392 	sc = (struct sockcred *)CMSG_DATA(cmp);
1393 	cmp->cmsg_len = len;
1394 	cmp->cmsg_level = SOL_SOCKET;
1395 	cmp->cmsg_type = SCM_CREDS;
1396 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1397 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1398 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1399 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1400 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1401 	for (i = 0; i < sc->sc_ngroups; i++)
1402 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1403 
1404 	/*
1405 	 * If a control message already exists, append us to the end.
1406 	 */
1407 	if (control != NULL) {
1408 		for (n = control; n->m_next != NULL; n = n->m_next)
1409 			;
1410 		n->m_next = m;
1411 	} else
1412 		control = m;
1413 
1414 	return (control);
1415 }
1416 
1417 int	unp_defer, unp_gcing;
1418 extern	struct domain unixdomain;
1419 
1420 /*
1421  * Comment added long after the fact explaining what's going on here.
1422  * Do a mark-sweep GC of file descriptors on the system, to free up
1423  * any which are caught in flight to an about-to-be-closed socket.
1424  *
1425  * Traditional mark-sweep gc's start at the "root", and mark
1426  * everything reachable from the root (which, in our case would be the
1427  * process table).  The mark bits are cleared during the sweep.
1428  *
1429  * XXX For some inexplicable reason (perhaps because the file
1430  * descriptor tables used to live in the u area which could be swapped
1431  * out and thus hard to reach), we do multiple scans over the set of
1432  * descriptors, using use *two* mark bits per object (DEFER and MARK).
1433  * Whenever we find a descriptor which references other descriptors,
1434  * the ones it references are marked with both bits, and we iterate
1435  * over the whole file table until there are no more DEFER bits set.
1436  * We also make an extra pass *before* the GC to clear the mark bits,
1437  * which could have been cleared at almost no cost during the previous
1438  * sweep.
1439  */
1440 void
1441 unp_gc(void)
1442 {
1443 	file_t *fp, *nextfp;
1444 	struct socket *so, *so1;
1445 	file_t **extra_ref, **fpp;
1446 	int nunref, nslots, i;
1447 
1448 	if (atomic_swap_uint(&unp_gcing, 1) == 1)
1449 		return;
1450 
1451  restart:
1452  	nslots = nfiles * 2;
1453  	extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1454 
1455 	mutex_enter(&filelist_lock);
1456 	unp_defer = 0;
1457 
1458 	/* Clear mark bits */
1459 	LIST_FOREACH(fp, &filehead, f_list) {
1460 		atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1461 	}
1462 
1463 	/*
1464 	 * Iterate over the set of descriptors, marking ones believed
1465 	 * (based on refcount) to be referenced from a process, and
1466 	 * marking for rescan descriptors which are queued on a socket.
1467 	 */
1468 	do {
1469 		LIST_FOREACH(fp, &filehead, f_list) {
1470 			mutex_enter(&fp->f_lock);
1471 			if (fp->f_flag & FDEFER) {
1472 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1473 				unp_defer--;
1474 				KASSERT(fp->f_count != 0);
1475 			} else {
1476 				if (fp->f_count == 0 ||
1477 				    (fp->f_flag & FMARK) ||
1478 				    fp->f_count == fp->f_msgcount) {
1479 					mutex_exit(&fp->f_lock);
1480 					continue;
1481 				}
1482 			}
1483 			atomic_or_uint(&fp->f_flag, FMARK);
1484 
1485 			if (fp->f_type != DTYPE_SOCKET ||
1486 			    (so = fp->f_data) == NULL ||
1487 			    so->so_proto->pr_domain != &unixdomain ||
1488 			    (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1489 				mutex_exit(&fp->f_lock);
1490 				continue;
1491 			}
1492 #ifdef notdef
1493 			if (so->so_rcv.sb_flags & SB_LOCK) {
1494 				mutex_exit(&fp->f_lock);
1495 				mutex_exit(&filelist_lock);
1496 				kmem_free(extra_ref, nslots * sizeof(file_t *));
1497 				/*
1498 				 * This is problematical; it's not clear
1499 				 * we need to wait for the sockbuf to be
1500 				 * unlocked (on a uniprocessor, at least),
1501 				 * and it's also not clear what to do
1502 				 * if sbwait returns an error due to receipt
1503 				 * of a signal.  If sbwait does return
1504 				 * an error, we'll go into an infinite
1505 				 * loop.  Delete all of this for now.
1506 				 */
1507 				(void) sbwait(&so->so_rcv);
1508 				goto restart;
1509 			}
1510 #endif
1511 			mutex_exit(&fp->f_lock);
1512 
1513 			/*
1514 			 * XXX Locking a socket with filelist_lock held
1515 			 * is ugly.  filelist_lock can be taken by the
1516 			 * pagedaemon when reclaiming items from file_cache.
1517 			 * Socket activity could delay the pagedaemon.
1518 			 */
1519 			solock(so);
1520 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1521 			/*
1522 			 * Mark descriptors referenced from sockets queued
1523 			 * on the accept queue as well.
1524 			 */
1525 			if (so->so_options & SO_ACCEPTCONN) {
1526 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1527 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1528 				}
1529 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1530 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1531 				}
1532 			}
1533 			sounlock(so);
1534 		}
1535 	} while (unp_defer);
1536 
1537 	/*
1538 	 * Sweep pass.  Find unmarked descriptors, and free them.
1539 	 *
1540 	 * We grab an extra reference to each of the file table entries
1541 	 * that are not otherwise accessible and then free the rights
1542 	 * that are stored in messages on them.
1543 	 *
1544 	 * The bug in the original code is a little tricky, so I'll describe
1545 	 * what's wrong with it here.
1546 	 *
1547 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1548 	 * times -- consider the case of sockets A and B that contain
1549 	 * references to each other.  On a last close of some other socket,
1550 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1551 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1552 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1553 	 * results in the following chain.  Closef calls soo_close, which
1554 	 * calls soclose.   Soclose calls first (through the switch
1555 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1556 	 * returns because the previous instance had set unp_gcing, and
1557 	 * we return all the way back to soclose, which marks the socket
1558 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1559 	 * to free up the rights that are queued in messages on the socket A,
1560 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1561 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1562 	 * instance of unp_discard just calls closef on B.
1563 	 *
1564 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1565 	 * which results in another closef on A.  Unfortunately, A is already
1566 	 * being closed, and the descriptor has already been marked with
1567 	 * SS_NOFDREF, and soclose panics at this point.
1568 	 *
1569 	 * Here, we first take an extra reference to each inaccessible
1570 	 * descriptor.  Then, if the inaccessible descriptor is a
1571 	 * socket, we call sorflush in case it is a Unix domain
1572 	 * socket.  After we destroy all the rights carried in
1573 	 * messages, we do a last closef to get rid of our extra
1574 	 * reference.  This is the last close, and the unp_detach etc
1575 	 * will shut down the socket.
1576 	 *
1577 	 * 91/09/19, bsy@cs.cmu.edu
1578 	 */
1579 	if (nslots < nfiles) {
1580 		mutex_exit(&filelist_lock);
1581 		kmem_free(extra_ref, nslots * sizeof(file_t *));
1582 		goto restart;
1583 	}
1584 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1585 	    fp = nextfp) {
1586 		nextfp = LIST_NEXT(fp, f_list);
1587 		mutex_enter(&fp->f_lock);
1588 		if (fp->f_count != 0 &&
1589 		    fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1590 			*fpp++ = fp;
1591 			nunref++;
1592 			fp->f_count++;
1593 		}
1594 		mutex_exit(&fp->f_lock);
1595 	}
1596 	mutex_exit(&filelist_lock);
1597 
1598 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1599 		fp = *fpp;
1600 		if (fp->f_type == DTYPE_SOCKET) {
1601 			so = fp->f_data;
1602 			solock(so);
1603 			sorflush(fp->f_data);
1604 			sounlock(so);
1605 		}
1606 	}
1607 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1608 		closef(*fpp);
1609 	}
1610 	kmem_free(extra_ref, nslots * sizeof(file_t *));
1611 	atomic_swap_uint(&unp_gcing, 0);
1612 }
1613 
1614 void
1615 unp_dispose(struct mbuf *m)
1616 {
1617 
1618 	if (m)
1619 		unp_scan(m, unp_discard, 1);
1620 }
1621 
1622 void
1623 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1624 {
1625 	struct mbuf *m;
1626 	file_t **rp;
1627 	struct cmsghdr *cm;
1628 	int i;
1629 	int qfds;
1630 
1631 	while (m0) {
1632 		for (m = m0; m; m = m->m_next) {
1633 			if (m->m_type == MT_CONTROL &&
1634 			    m->m_len >= sizeof(*cm)) {
1635 				cm = mtod(m, struct cmsghdr *);
1636 				if (cm->cmsg_level != SOL_SOCKET ||
1637 				    cm->cmsg_type != SCM_RIGHTS)
1638 					continue;
1639 				qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1640 				    / sizeof(file_t *);
1641 				rp = (file_t **)CMSG_DATA(cm);
1642 				for (i = 0; i < qfds; i++) {
1643 					file_t *fp = *rp;
1644 					if (discard)
1645 						*rp = 0;
1646 					(*op)(fp);
1647 					rp++;
1648 				}
1649 				break;		/* XXX, but saves time */
1650 			}
1651 		}
1652 		m0 = m0->m_nextpkt;
1653 	}
1654 }
1655 
1656 void
1657 unp_mark(file_t *fp)
1658 {
1659 
1660 	if (fp == NULL)
1661 		return;
1662 
1663 	/* If we're already deferred, don't screw up the defer count */
1664 	mutex_enter(&fp->f_lock);
1665 	if (fp->f_flag & (FMARK | FDEFER)) {
1666 		mutex_exit(&fp->f_lock);
1667 		return;
1668 	}
1669 
1670 	/*
1671 	 * Minimize the number of deferrals...  Sockets are the only
1672 	 * type of descriptor which can hold references to another
1673 	 * descriptor, so just mark other descriptors, and defer
1674 	 * unmarked sockets for the next pass.
1675 	 */
1676 	if (fp->f_type == DTYPE_SOCKET) {
1677 		unp_defer++;
1678 		KASSERT(fp->f_count != 0);
1679 		atomic_or_uint(&fp->f_flag, FDEFER);
1680 	} else {
1681 		atomic_or_uint(&fp->f_flag, FMARK);
1682 	}
1683 	mutex_exit(&fp->f_lock);
1684 	return;
1685 }
1686 
1687 void
1688 unp_discard(file_t *fp)
1689 {
1690 
1691 	if (fp == NULL)
1692 		return;
1693 
1694 	mutex_enter(&fp->f_lock);
1695 	KASSERT(fp->f_count > 0);
1696 	fp->f_msgcount--;
1697 	mutex_exit(&fp->f_lock);
1698 	atomic_dec_uint(&unp_rights);
1699 	(void)closef(fp);
1700 }
1701