xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: uipc_usrreq.c,v 1.186 2018/05/11 09:43:59 roy Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.186 2018/05/11 09:43:59 roy Exp $");
100 
101 #ifdef _KERNEL_OPT
102 #include "opt_compat_netbsd.h"
103 #endif
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/proc.h>
108 #include <sys/filedesc.h>
109 #include <sys/domain.h>
110 #include <sys/protosw.h>
111 #include <sys/socket.h>
112 #include <sys/socketvar.h>
113 #include <sys/unpcb.h>
114 #include <sys/un.h>
115 #include <sys/namei.h>
116 #include <sys/vnode.h>
117 #include <sys/file.h>
118 #include <sys/stat.h>
119 #include <sys/mbuf.h>
120 #include <sys/kauth.h>
121 #include <sys/kmem.h>
122 #include <sys/atomic.h>
123 #include <sys/uidinfo.h>
124 #include <sys/kernel.h>
125 #include <sys/kthread.h>
126 
127 #ifdef COMPAT_70
128 #include <compat/sys/socket.h>
129 #endif
130 
131 /*
132  * Unix communications domain.
133  *
134  * TODO:
135  *	RDM
136  *	rethink name space problems
137  *	need a proper out-of-band
138  *
139  * Notes on locking:
140  *
141  * The generic rules noted in uipc_socket2.c apply.  In addition:
142  *
143  * o We have a global lock, uipc_lock.
144  *
145  * o All datagram sockets are locked by uipc_lock.
146  *
147  * o For stream socketpairs, the two endpoints are created sharing the same
148  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
149  *   matching locks.
150  *
151  * o Stream sockets created via socket() start life with their own
152  *   independent lock.
153  *
154  * o Stream connections to a named endpoint are slightly more complicated.
155  *   Sockets that have called listen() have their lock pointer mutated to
156  *   the global uipc_lock.  When establishing a connection, the connecting
157  *   socket also has its lock mutated to uipc_lock, which matches the head
158  *   (listening socket).  We create a new socket for accept() to return, and
159  *   that also shares the head's lock.  Until the connection is completely
160  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
161  *   connection is complete, the association with the head's lock is broken.
162  *   The connecting socket and the socket returned from accept() have their
163  *   lock pointers mutated away from uipc_lock, and back to the connecting
164  *   socket's original, independent lock.  The head continues to be locked
165  *   by uipc_lock.
166  *
167  * o If uipc_lock is determined to be a significant source of contention,
168  *   it could easily be hashed out.  It is difficult to simply make it an
169  *   independent lock because of visibility / garbage collection issues:
170  *   if a socket has been associated with a lock at any point, that lock
171  *   must remain valid until the socket is no longer visible in the system.
172  *   The lock must not be freed or otherwise destroyed until any sockets
173  *   that had referenced it have also been destroyed.
174  */
175 const struct sockaddr_un sun_noname = {
176 	.sun_len = offsetof(struct sockaddr_un, sun_path),
177 	.sun_family = AF_LOCAL,
178 };
179 ino_t	unp_ino;			/* prototype for fake inode numbers */
180 
181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *);
182 static void   unp_discard_later(file_t *);
183 static void   unp_discard_now(file_t *);
184 static void   unp_disconnect1(struct unpcb *);
185 static bool   unp_drop(struct unpcb *, int);
186 static int    unp_internalize(struct mbuf **);
187 static void   unp_mark(file_t *);
188 static void   unp_scan(struct mbuf *, void (*)(file_t *), int);
189 static void   unp_shutdown1(struct unpcb *);
190 static void   unp_thread(void *);
191 static void   unp_thread_kick(void);
192 
193 static kmutex_t *uipc_lock;
194 
195 static kcondvar_t unp_thread_cv;
196 static lwp_t *unp_thread_lwp;
197 static SLIST_HEAD(,file) unp_thread_discard;
198 static int unp_defer;
199 
200 /*
201  * Initialize Unix protocols.
202  */
203 void
204 uipc_init(void)
205 {
206 	int error;
207 
208 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
209 	cv_init(&unp_thread_cv, "unpgc");
210 
211 	error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
212 	    NULL, &unp_thread_lwp, "unpgc");
213 	if (error != 0)
214 		panic("uipc_init %d", error);
215 }
216 
217 static void
218 unp_connid(struct lwp *l, struct unpcb *unp, int flags)
219 {
220 	unp->unp_connid.unp_pid = l->l_proc->p_pid;
221 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
222 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
223 	unp->unp_flags |= flags;
224 }
225 
226 /*
227  * A connection succeeded: disassociate both endpoints from the head's
228  * lock, and make them share their own lock.  There is a race here: for
229  * a very brief time one endpoint will be locked by a different lock
230  * than the other end.  However, since the current thread holds the old
231  * lock (the listening socket's lock, the head) access can still only be
232  * made to one side of the connection.
233  */
234 static void
235 unp_setpeerlocks(struct socket *so, struct socket *so2)
236 {
237 	struct unpcb *unp;
238 	kmutex_t *lock;
239 
240 	KASSERT(solocked2(so, so2));
241 
242 	/*
243 	 * Bail out if either end of the socket is not yet fully
244 	 * connected or accepted.  We only break the lock association
245 	 * with the head when the pair of sockets stand completely
246 	 * on their own.
247 	 */
248 	KASSERT(so->so_head == NULL);
249 	if (so2->so_head != NULL)
250 		return;
251 
252 	/*
253 	 * Drop references to old lock.  A third reference (from the
254 	 * queue head) must be held as we still hold its lock.  Bonus:
255 	 * we don't need to worry about garbage collecting the lock.
256 	 */
257 	lock = so->so_lock;
258 	KASSERT(lock == uipc_lock);
259 	mutex_obj_free(lock);
260 	mutex_obj_free(lock);
261 
262 	/*
263 	 * Grab stream lock from the initiator and share between the two
264 	 * endpoints.  Issue memory barrier to ensure all modifications
265 	 * become globally visible before the lock change.  so2 is
266 	 * assumed not to have a stream lock, because it was created
267 	 * purely for the server side to accept this connection and
268 	 * started out life using the domain-wide lock.
269 	 */
270 	unp = sotounpcb(so);
271 	KASSERT(unp->unp_streamlock != NULL);
272 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
273 	lock = unp->unp_streamlock;
274 	unp->unp_streamlock = NULL;
275 	mutex_obj_hold(lock);
276 	membar_exit();
277 	/*
278 	 * possible race if lock is not held - see comment in
279 	 * uipc_usrreq(PRU_ACCEPT).
280 	 */
281 	KASSERT(mutex_owned(lock));
282 	solockreset(so, lock);
283 	solockreset(so2, lock);
284 }
285 
286 /*
287  * Reset a socket's lock back to the domain-wide lock.
288  */
289 static void
290 unp_resetlock(struct socket *so)
291 {
292 	kmutex_t *olock, *nlock;
293 	struct unpcb *unp;
294 
295 	KASSERT(solocked(so));
296 
297 	olock = so->so_lock;
298 	nlock = uipc_lock;
299 	if (olock == nlock)
300 		return;
301 	unp = sotounpcb(so);
302 	KASSERT(unp->unp_streamlock == NULL);
303 	unp->unp_streamlock = olock;
304 	mutex_obj_hold(nlock);
305 	mutex_enter(nlock);
306 	solockreset(so, nlock);
307 	mutex_exit(olock);
308 }
309 
310 static void
311 unp_free(struct unpcb *unp)
312 {
313 	if (unp->unp_addr)
314 		free(unp->unp_addr, M_SONAME);
315 	if (unp->unp_streamlock != NULL)
316 		mutex_obj_free(unp->unp_streamlock);
317 	kmem_free(unp, sizeof(*unp));
318 }
319 
320 static int
321 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp)
322 {
323 	struct socket *so2;
324 	const struct sockaddr_un *sun;
325 
326 	/* XXX: server side closed the socket */
327 	if (unp->unp_conn == NULL)
328 		return ECONNREFUSED;
329 	so2 = unp->unp_conn->unp_socket;
330 
331 	KASSERT(solocked(so2));
332 
333 	if (unp->unp_addr)
334 		sun = unp->unp_addr;
335 	else
336 		sun = &sun_noname;
337 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
338 		control = unp_addsockcred(curlwp, control);
339 #ifdef COMPAT_SOCKCRED70
340 	if (unp->unp_conn->unp_flags & UNP_OWANTCRED)
341 		control = compat_70_unp_addsockcred(curlwp, control);
342 #endif
343 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
344 	    control) == 0) {
345 		unp_dispose(control);
346 		m_freem(control);
347 		m_freem(m);
348 		soroverflow(so2);
349 		return (ENOBUFS);
350 	} else {
351 		sorwakeup(so2);
352 		return (0);
353 	}
354 }
355 
356 static void
357 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr)
358 {
359 	const struct sockaddr_un *sun = NULL;
360 	struct unpcb *unp;
361 
362 	KASSERT(solocked(so));
363 	unp = sotounpcb(so);
364 
365 	if (peeraddr) {
366 		if (unp->unp_conn && unp->unp_conn->unp_addr)
367 			sun = unp->unp_conn->unp_addr;
368 	} else {
369 		if (unp->unp_addr)
370 			sun = unp->unp_addr;
371 	}
372 	if (sun == NULL)
373 		sun = &sun_noname;
374 
375 	memcpy(nam, sun, sun->sun_len);
376 }
377 
378 static int
379 unp_rcvd(struct socket *so, int flags, struct lwp *l)
380 {
381 	struct unpcb *unp = sotounpcb(so);
382 	struct socket *so2;
383 	u_int newhiwat;
384 
385 	KASSERT(solocked(so));
386 	KASSERT(unp != NULL);
387 
388 	switch (so->so_type) {
389 
390 	case SOCK_DGRAM:
391 		panic("uipc 1");
392 		/*NOTREACHED*/
393 
394 	case SOCK_SEQPACKET: /* FALLTHROUGH */
395 	case SOCK_STREAM:
396 #define	rcv (&so->so_rcv)
397 #define snd (&so2->so_snd)
398 		if (unp->unp_conn == 0)
399 			break;
400 		so2 = unp->unp_conn->unp_socket;
401 		KASSERT(solocked2(so, so2));
402 		/*
403 		 * Adjust backpressure on sender
404 		 * and wakeup any waiting to write.
405 		 */
406 		snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
407 		unp->unp_mbcnt = rcv->sb_mbcnt;
408 		newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
409 		(void)chgsbsize(so2->so_uidinfo,
410 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
411 		unp->unp_cc = rcv->sb_cc;
412 		sowwakeup(so2);
413 #undef snd
414 #undef rcv
415 		break;
416 
417 	default:
418 		panic("uipc 2");
419 	}
420 
421 	return 0;
422 }
423 
424 static int
425 unp_recvoob(struct socket *so, struct mbuf *m, int flags)
426 {
427 	KASSERT(solocked(so));
428 
429 	return EOPNOTSUPP;
430 }
431 
432 static int
433 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
434     struct mbuf *control, struct lwp *l)
435 {
436 	struct unpcb *unp = sotounpcb(so);
437 	int error = 0;
438 	u_int newhiwat;
439 	struct socket *so2;
440 
441 	KASSERT(solocked(so));
442 	KASSERT(unp != NULL);
443 	KASSERT(m != NULL);
444 
445 	/*
446 	 * Note: unp_internalize() rejects any control message
447 	 * other than SCM_RIGHTS, and only allows one.  This
448 	 * has the side-effect of preventing a caller from
449 	 * forging SCM_CREDS.
450 	 */
451 	if (control) {
452 		sounlock(so);
453 		error = unp_internalize(&control);
454 		solock(so);
455 		if (error != 0) {
456 			m_freem(control);
457 			m_freem(m);
458 			return error;
459 		}
460 	}
461 
462 	switch (so->so_type) {
463 
464 	case SOCK_DGRAM: {
465 		KASSERT(so->so_lock == uipc_lock);
466 		if (nam) {
467 			if ((so->so_state & SS_ISCONNECTED) != 0)
468 				error = EISCONN;
469 			else {
470 				/*
471 				 * Note: once connected, the
472 				 * socket's lock must not be
473 				 * dropped until we have sent
474 				 * the message and disconnected.
475 				 * This is necessary to prevent
476 				 * intervening control ops, like
477 				 * another connection.
478 				 */
479 				error = unp_connect(so, nam, l);
480 			}
481 		} else {
482 			if ((so->so_state & SS_ISCONNECTED) == 0)
483 				error = ENOTCONN;
484 		}
485 		if (error) {
486 			unp_dispose(control);
487 			m_freem(control);
488 			m_freem(m);
489 			return error;
490 		}
491 		error = unp_output(m, control, unp);
492 		if (nam)
493 			unp_disconnect1(unp);
494 		break;
495 	}
496 
497 	case SOCK_SEQPACKET: /* FALLTHROUGH */
498 	case SOCK_STREAM:
499 #define	rcv (&so2->so_rcv)
500 #define	snd (&so->so_snd)
501 		if (unp->unp_conn == NULL) {
502 			error = ENOTCONN;
503 			break;
504 		}
505 		so2 = unp->unp_conn->unp_socket;
506 		KASSERT(solocked2(so, so2));
507 		if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
508 			/*
509 			 * Credentials are passed only once on
510 			 * SOCK_STREAM and SOCK_SEQPACKET.
511 			 */
512 			unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
513 			control = unp_addsockcred(l, control);
514 		}
515 #ifdef COMPAT_SOCKCRED70
516 		if (unp->unp_conn->unp_flags & UNP_OWANTCRED) {
517 			/*
518 			 * Credentials are passed only once on
519 			 * SOCK_STREAM and SOCK_SEQPACKET.
520 			 */
521 			unp->unp_conn->unp_flags &= ~UNP_OWANTCRED;
522 			control = compat_70_unp_addsockcred(l, control);
523 		}
524 #endif
525 		/*
526 		 * Send to paired receive port, and then reduce
527 		 * send buffer hiwater marks to maintain backpressure.
528 		 * Wake up readers.
529 		 */
530 		if (control) {
531 			if (sbappendcontrol(rcv, m, control) != 0)
532 				control = NULL;
533 		} else {
534 			switch(so->so_type) {
535 			case SOCK_SEQPACKET:
536 				sbappendrecord(rcv, m);
537 				break;
538 			case SOCK_STREAM:
539 				sbappend(rcv, m);
540 				break;
541 			default:
542 				panic("uipc_usrreq");
543 				break;
544 			}
545 		}
546 		snd->sb_mbmax -=
547 		    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
548 		unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
549 		newhiwat = snd->sb_hiwat -
550 		    (rcv->sb_cc - unp->unp_conn->unp_cc);
551 		(void)chgsbsize(so->so_uidinfo,
552 		    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
553 		unp->unp_conn->unp_cc = rcv->sb_cc;
554 		sorwakeup(so2);
555 #undef snd
556 #undef rcv
557 		if (control != NULL) {
558 			unp_dispose(control);
559 			m_freem(control);
560 		}
561 		break;
562 
563 	default:
564 		panic("uipc 4");
565 	}
566 
567 	return error;
568 }
569 
570 static int
571 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control)
572 {
573 	KASSERT(solocked(so));
574 
575 	m_freem(m);
576 	m_freem(control);
577 
578 	return EOPNOTSUPP;
579 }
580 
581 /*
582  * Unix domain socket option processing.
583  */
584 int
585 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
586 {
587 	struct unpcb *unp = sotounpcb(so);
588 	int optval = 0, error = 0;
589 
590 	KASSERT(solocked(so));
591 
592 	if (sopt->sopt_level != 0) {
593 		error = ENOPROTOOPT;
594 	} else switch (op) {
595 
596 	case PRCO_SETOPT:
597 		switch (sopt->sopt_name) {
598 		case LOCAL_CREDS:
599 		case LOCAL_CONNWAIT:
600 #ifdef COMPAT_SOCKCRED70
601 		case LOCAL_OCREDS:
602 #endif
603 			error = sockopt_getint(sopt, &optval);
604 			if (error)
605 				break;
606 			switch (sopt->sopt_name) {
607 #define	OPTSET(bit) \
608 	if (optval) \
609 		unp->unp_flags |= (bit); \
610 	else \
611 		unp->unp_flags &= ~(bit);
612 
613 			case LOCAL_CREDS:
614 				OPTSET(UNP_WANTCRED);
615 				break;
616 			case LOCAL_CONNWAIT:
617 				OPTSET(UNP_CONNWAIT);
618 				break;
619 #ifdef COMPAT_SOCKCRED70
620 			case LOCAL_OCREDS:
621 				OPTSET(UNP_OWANTCRED);
622 				break;
623 #endif
624 			}
625 			break;
626 #undef OPTSET
627 
628 		default:
629 			error = ENOPROTOOPT;
630 			break;
631 		}
632 		break;
633 
634 	case PRCO_GETOPT:
635 		sounlock(so);
636 		switch (sopt->sopt_name) {
637 		case LOCAL_PEEREID:
638 			if (unp->unp_flags & UNP_EIDSVALID) {
639 				error = sockopt_set(sopt, &unp->unp_connid,
640 				    sizeof(unp->unp_connid));
641 			} else {
642 				error = EINVAL;
643 			}
644 			break;
645 		case LOCAL_CREDS:
646 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
647 
648 			optval = OPTBIT(UNP_WANTCRED);
649 			error = sockopt_setint(sopt, optval);
650 			break;
651 #ifdef COMPAT_SOCKCRED70
652 		case LOCAL_OCREDS:
653 			optval = OPTBIT(UNP_OWANTCRED);
654 			error = sockopt_setint(sopt, optval);
655 			break;
656 #endif
657 #undef OPTBIT
658 
659 		default:
660 			error = ENOPROTOOPT;
661 			break;
662 		}
663 		solock(so);
664 		break;
665 	}
666 	return (error);
667 }
668 
669 /*
670  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
671  * for stream sockets, although the total for sender and receiver is
672  * actually only PIPSIZ.
673  * Datagram sockets really use the sendspace as the maximum datagram size,
674  * and don't really want to reserve the sendspace.  Their recvspace should
675  * be large enough for at least one max-size datagram plus address.
676  */
677 #ifndef PIPSIZ
678 #define	PIPSIZ	8192
679 #endif
680 u_long	unpst_sendspace = PIPSIZ;
681 u_long	unpst_recvspace = PIPSIZ;
682 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
683 u_long	unpdg_recvspace = 16*1024;
684 
685 u_int	unp_rights;			/* files in flight */
686 u_int	unp_rights_ratio = 2;		/* limit, fraction of maxfiles */
687 
688 static int
689 unp_attach(struct socket *so, int proto)
690 {
691 	struct unpcb *unp = sotounpcb(so);
692 	u_long sndspc, rcvspc;
693 	int error;
694 
695 	KASSERT(unp == NULL);
696 
697 	switch (so->so_type) {
698 	case SOCK_SEQPACKET:
699 		/* FALLTHROUGH */
700 	case SOCK_STREAM:
701 		if (so->so_lock == NULL) {
702 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
703 			solock(so);
704 		}
705 		sndspc = unpst_sendspace;
706 		rcvspc = unpst_recvspace;
707 		break;
708 
709 	case SOCK_DGRAM:
710 		if (so->so_lock == NULL) {
711 			mutex_obj_hold(uipc_lock);
712 			so->so_lock = uipc_lock;
713 			solock(so);
714 		}
715 		sndspc = unpdg_sendspace;
716 		rcvspc = unpdg_recvspace;
717 		break;
718 
719 	default:
720 		panic("unp_attach");
721 	}
722 
723 	if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
724 		error = soreserve(so, sndspc, rcvspc);
725 		if (error) {
726 			return error;
727 		}
728 	}
729 
730 	unp = kmem_zalloc(sizeof(*unp), KM_SLEEP);
731 	nanotime(&unp->unp_ctime);
732 	unp->unp_socket = so;
733 	so->so_pcb = unp;
734 
735 	KASSERT(solocked(so));
736 	return 0;
737 }
738 
739 static void
740 unp_detach(struct socket *so)
741 {
742 	struct unpcb *unp;
743 	vnode_t *vp;
744 
745 	unp = sotounpcb(so);
746 	KASSERT(unp != NULL);
747 	KASSERT(solocked(so));
748  retry:
749 	if ((vp = unp->unp_vnode) != NULL) {
750 		sounlock(so);
751 		/* Acquire v_interlock to protect against unp_connect(). */
752 		/* XXXAD racy */
753 		mutex_enter(vp->v_interlock);
754 		vp->v_socket = NULL;
755 		mutex_exit(vp->v_interlock);
756 		vrele(vp);
757 		solock(so);
758 		unp->unp_vnode = NULL;
759 	}
760 	if (unp->unp_conn)
761 		unp_disconnect1(unp);
762 	while (unp->unp_refs) {
763 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
764 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
765 			solock(so);
766 			goto retry;
767 		}
768 	}
769 	soisdisconnected(so);
770 	so->so_pcb = NULL;
771 	if (unp_rights) {
772 		/*
773 		 * Normally the receive buffer is flushed later, in sofree,
774 		 * but if our receive buffer holds references to files that
775 		 * are now garbage, we will enqueue those file references to
776 		 * the garbage collector and kick it into action.
777 		 */
778 		sorflush(so);
779 		unp_free(unp);
780 		unp_thread_kick();
781 	} else
782 		unp_free(unp);
783 }
784 
785 static int
786 unp_accept(struct socket *so, struct sockaddr *nam)
787 {
788 	struct unpcb *unp = sotounpcb(so);
789 	struct socket *so2;
790 
791 	KASSERT(solocked(so));
792 	KASSERT(nam != NULL);
793 
794 	/* XXX code review required to determine if unp can ever be NULL */
795 	if (unp == NULL)
796 		return EINVAL;
797 
798 	KASSERT(so->so_lock == uipc_lock);
799 	/*
800 	 * Mark the initiating STREAM socket as connected *ONLY*
801 	 * after it's been accepted.  This prevents a client from
802 	 * overrunning a server and receiving ECONNREFUSED.
803 	 */
804 	if (unp->unp_conn == NULL) {
805 		/*
806 		 * This will use the empty socket and will not
807 		 * allocate.
808 		 */
809 		unp_setaddr(so, nam, true);
810 		return 0;
811 	}
812 	so2 = unp->unp_conn->unp_socket;
813 	if (so2->so_state & SS_ISCONNECTING) {
814 		KASSERT(solocked2(so, so->so_head));
815 		KASSERT(solocked2(so2, so->so_head));
816 		soisconnected(so2);
817 	}
818 	/*
819 	 * If the connection is fully established, break the
820 	 * association with uipc_lock and give the connected
821 	 * pair a separate lock to share.
822 	 * There is a race here: sotounpcb(so2)->unp_streamlock
823 	 * is not locked, so when changing so2->so_lock
824 	 * another thread can grab it while so->so_lock is still
825 	 * pointing to the (locked) uipc_lock.
826 	 * this should be harmless, except that this makes
827 	 * solocked2() and solocked() unreliable.
828 	 * Another problem is that unp_setaddr() expects the
829 	 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock
830 	 * fixes both issues.
831 	 */
832 	mutex_enter(sotounpcb(so2)->unp_streamlock);
833 	unp_setpeerlocks(so2, so);
834 	/*
835 	 * Only now return peer's address, as we may need to
836 	 * block in order to allocate memory.
837 	 *
838 	 * XXX Minor race: connection can be broken while
839 	 * lock is dropped in unp_setaddr().  We will return
840 	 * error == 0 and sun_noname as the peer address.
841 	 */
842 	unp_setaddr(so, nam, true);
843 	/* so_lock now points to unp_streamlock */
844 	mutex_exit(so2->so_lock);
845 	return 0;
846 }
847 
848 static int
849 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
850 {
851 	return EOPNOTSUPP;
852 }
853 
854 static int
855 unp_stat(struct socket *so, struct stat *ub)
856 {
857 	struct unpcb *unp;
858 	struct socket *so2;
859 
860 	KASSERT(solocked(so));
861 
862 	unp = sotounpcb(so);
863 	if (unp == NULL)
864 		return EINVAL;
865 
866 	ub->st_blksize = so->so_snd.sb_hiwat;
867 	switch (so->so_type) {
868 	case SOCK_SEQPACKET: /* FALLTHROUGH */
869 	case SOCK_STREAM:
870 		if (unp->unp_conn == 0)
871 			break;
872 
873 		so2 = unp->unp_conn->unp_socket;
874 		KASSERT(solocked2(so, so2));
875 		ub->st_blksize += so2->so_rcv.sb_cc;
876 		break;
877 	default:
878 		break;
879 	}
880 	ub->st_dev = NODEV;
881 	if (unp->unp_ino == 0)
882 		unp->unp_ino = unp_ino++;
883 	ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime;
884 	ub->st_ino = unp->unp_ino;
885 	return (0);
886 }
887 
888 static int
889 unp_peeraddr(struct socket *so, struct sockaddr *nam)
890 {
891 	KASSERT(solocked(so));
892 	KASSERT(sotounpcb(so) != NULL);
893 	KASSERT(nam != NULL);
894 
895 	unp_setaddr(so, nam, true);
896 	return 0;
897 }
898 
899 static int
900 unp_sockaddr(struct socket *so, struct sockaddr *nam)
901 {
902 	KASSERT(solocked(so));
903 	KASSERT(sotounpcb(so) != NULL);
904 	KASSERT(nam != NULL);
905 
906 	unp_setaddr(so, nam, false);
907 	return 0;
908 }
909 
910 /*
911  * we only need to perform this allocation until syscalls other than
912  * bind are adjusted to use sockaddr_big.
913  */
914 static struct sockaddr_un *
915 makeun_sb(struct sockaddr *nam, size_t *addrlen)
916 {
917 	struct sockaddr_un *sun;
918 
919 	*addrlen = nam->sa_len + 1;
920 	sun = malloc(*addrlen, M_SONAME, M_WAITOK);
921 	memcpy(sun, nam, nam->sa_len);
922 	*(((char *)sun) + nam->sa_len) = '\0';
923 	return sun;
924 }
925 
926 static int
927 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
928 {
929 	struct sockaddr_un *sun;
930 	struct unpcb *unp;
931 	vnode_t *vp;
932 	struct vattr vattr;
933 	size_t addrlen;
934 	int error;
935 	struct pathbuf *pb;
936 	struct nameidata nd;
937 	proc_t *p;
938 
939 	unp = sotounpcb(so);
940 
941 	KASSERT(solocked(so));
942 	KASSERT(unp != NULL);
943 	KASSERT(nam != NULL);
944 
945 	if (unp->unp_vnode != NULL)
946 		return (EINVAL);
947 	if ((unp->unp_flags & UNP_BUSY) != 0) {
948 		/*
949 		 * EALREADY may not be strictly accurate, but since this
950 		 * is a major application error it's hardly a big deal.
951 		 */
952 		return (EALREADY);
953 	}
954 	unp->unp_flags |= UNP_BUSY;
955 	sounlock(so);
956 
957 	p = l->l_proc;
958 	sun = makeun_sb(nam, &addrlen);
959 
960 	pb = pathbuf_create(sun->sun_path);
961 	if (pb == NULL) {
962 		error = ENOMEM;
963 		goto bad;
964 	}
965 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb);
966 
967 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
968 	if ((error = namei(&nd)) != 0) {
969 		pathbuf_destroy(pb);
970 		goto bad;
971 	}
972 	vp = nd.ni_vp;
973 	if (vp != NULL) {
974 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
975 		if (nd.ni_dvp == vp)
976 			vrele(nd.ni_dvp);
977 		else
978 			vput(nd.ni_dvp);
979 		vrele(vp);
980 		pathbuf_destroy(pb);
981 		error = EADDRINUSE;
982 		goto bad;
983 	}
984 	vattr_null(&vattr);
985 	vattr.va_type = VSOCK;
986 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
987 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
988 	if (error) {
989 		vput(nd.ni_dvp);
990 		pathbuf_destroy(pb);
991 		goto bad;
992 	}
993 	vp = nd.ni_vp;
994 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
995 	solock(so);
996 	vp->v_socket = unp->unp_socket;
997 	unp->unp_vnode = vp;
998 	unp->unp_addrlen = addrlen;
999 	unp->unp_addr = sun;
1000 	VOP_UNLOCK(vp);
1001 	vput(nd.ni_dvp);
1002 	unp->unp_flags &= ~UNP_BUSY;
1003 	pathbuf_destroy(pb);
1004 	return (0);
1005 
1006  bad:
1007 	free(sun, M_SONAME);
1008 	solock(so);
1009 	unp->unp_flags &= ~UNP_BUSY;
1010 	return (error);
1011 }
1012 
1013 static int
1014 unp_listen(struct socket *so, struct lwp *l)
1015 {
1016 	struct unpcb *unp = sotounpcb(so);
1017 
1018 	KASSERT(solocked(so));
1019 	KASSERT(unp != NULL);
1020 
1021 	/*
1022 	 * If the socket can accept a connection, it must be
1023 	 * locked by uipc_lock.
1024 	 */
1025 	unp_resetlock(so);
1026 	if (unp->unp_vnode == NULL)
1027 		return EINVAL;
1028 
1029 	unp_connid(l, unp, UNP_EIDSBIND);
1030 	return 0;
1031 }
1032 
1033 static int
1034 unp_disconnect(struct socket *so)
1035 {
1036 	KASSERT(solocked(so));
1037 	KASSERT(sotounpcb(so) != NULL);
1038 
1039 	unp_disconnect1(sotounpcb(so));
1040 	return 0;
1041 }
1042 
1043 static int
1044 unp_shutdown(struct socket *so)
1045 {
1046 	KASSERT(solocked(so));
1047 	KASSERT(sotounpcb(so) != NULL);
1048 
1049 	socantsendmore(so);
1050 	unp_shutdown1(sotounpcb(so));
1051 	return 0;
1052 }
1053 
1054 static int
1055 unp_abort(struct socket *so)
1056 {
1057 	KASSERT(solocked(so));
1058 	KASSERT(sotounpcb(so) != NULL);
1059 
1060 	(void)unp_drop(sotounpcb(so), ECONNABORTED);
1061 	KASSERT(so->so_head == NULL);
1062 	KASSERT(so->so_pcb != NULL);
1063 	unp_detach(so);
1064 	return 0;
1065 }
1066 
1067 static int
1068 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l)
1069 {
1070 	struct unpcb *unp = sotounpcb(so);
1071 	struct unpcb *unp2;
1072 
1073 	if (so2->so_type != so->so_type)
1074 		return EPROTOTYPE;
1075 
1076 	/*
1077 	 * All three sockets involved must be locked by same lock:
1078 	 *
1079 	 * local endpoint (so)
1080 	 * remote endpoint (so2)
1081 	 * queue head (so2->so_head, only if PR_CONNREQUIRED)
1082 	 */
1083 	KASSERT(solocked2(so, so2));
1084 	KASSERT(so->so_head == NULL);
1085 	if (so2->so_head != NULL) {
1086 		KASSERT(so2->so_lock == uipc_lock);
1087 		KASSERT(solocked2(so2, so2->so_head));
1088 	}
1089 
1090 	unp2 = sotounpcb(so2);
1091 	unp->unp_conn = unp2;
1092 
1093 	switch (so->so_type) {
1094 
1095 	case SOCK_DGRAM:
1096 		unp->unp_nextref = unp2->unp_refs;
1097 		unp2->unp_refs = unp;
1098 		soisconnected(so);
1099 		break;
1100 
1101 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1102 	case SOCK_STREAM:
1103 
1104 		/*
1105 		 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers
1106 		 * which are unp_connect() or unp_connect2().
1107 		 */
1108 
1109 		break;
1110 
1111 	default:
1112 		panic("unp_connect1");
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 int
1119 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1120 {
1121 	struct sockaddr_un *sun;
1122 	vnode_t *vp;
1123 	struct socket *so2, *so3;
1124 	struct unpcb *unp, *unp2, *unp3;
1125 	size_t addrlen;
1126 	int error;
1127 	struct pathbuf *pb;
1128 	struct nameidata nd;
1129 
1130 	unp = sotounpcb(so);
1131 	if ((unp->unp_flags & UNP_BUSY) != 0) {
1132 		/*
1133 		 * EALREADY may not be strictly accurate, but since this
1134 		 * is a major application error it's hardly a big deal.
1135 		 */
1136 		return (EALREADY);
1137 	}
1138 	unp->unp_flags |= UNP_BUSY;
1139 	sounlock(so);
1140 
1141 	sun = makeun_sb(nam, &addrlen);
1142 	pb = pathbuf_create(sun->sun_path);
1143 	if (pb == NULL) {
1144 		error = ENOMEM;
1145 		goto bad2;
1146 	}
1147 
1148 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
1149 
1150 	if ((error = namei(&nd)) != 0) {
1151 		pathbuf_destroy(pb);
1152 		goto bad2;
1153 	}
1154 	vp = nd.ni_vp;
1155 	pathbuf_destroy(pb);
1156 	if (vp->v_type != VSOCK) {
1157 		error = ENOTSOCK;
1158 		goto bad;
1159 	}
1160 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
1161 		goto bad;
1162 	/* Acquire v_interlock to protect against unp_detach(). */
1163 	mutex_enter(vp->v_interlock);
1164 	so2 = vp->v_socket;
1165 	if (so2 == NULL) {
1166 		mutex_exit(vp->v_interlock);
1167 		error = ECONNREFUSED;
1168 		goto bad;
1169 	}
1170 	if (so->so_type != so2->so_type) {
1171 		mutex_exit(vp->v_interlock);
1172 		error = EPROTOTYPE;
1173 		goto bad;
1174 	}
1175 	solock(so);
1176 	unp_resetlock(so);
1177 	mutex_exit(vp->v_interlock);
1178 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
1179 		/*
1180 		 * This may seem somewhat fragile but is OK: if we can
1181 		 * see SO_ACCEPTCONN set on the endpoint, then it must
1182 		 * be locked by the domain-wide uipc_lock.
1183 		 */
1184 		KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 ||
1185 		    so2->so_lock == uipc_lock);
1186 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
1187 		    (so3 = sonewconn(so2, false)) == NULL) {
1188 			error = ECONNREFUSED;
1189 			sounlock(so);
1190 			goto bad;
1191 		}
1192 		unp2 = sotounpcb(so2);
1193 		unp3 = sotounpcb(so3);
1194 		if (unp2->unp_addr) {
1195 			unp3->unp_addr = malloc(unp2->unp_addrlen,
1196 			    M_SONAME, M_WAITOK);
1197 			memcpy(unp3->unp_addr, unp2->unp_addr,
1198 			    unp2->unp_addrlen);
1199 			unp3->unp_addrlen = unp2->unp_addrlen;
1200 		}
1201 		unp3->unp_flags = unp2->unp_flags;
1202 		so2 = so3;
1203 		/*
1204 		 * The connector's (client's) credentials are copied from its
1205 		 * process structure at the time of connect() (which is now).
1206 		 */
1207 		unp_connid(l, unp3, UNP_EIDSVALID);
1208 		 /*
1209 		  * The receiver's (server's) credentials are copied from the
1210 		  * unp_peercred member of socket on which the former called
1211 		  * listen(); unp_listen() cached that process's credentials
1212 		  * at that time so we can use them now.
1213 		  */
1214 		if (unp2->unp_flags & UNP_EIDSBIND) {
1215 			memcpy(&unp->unp_connid, &unp2->unp_connid,
1216 			    sizeof(unp->unp_connid));
1217 			unp->unp_flags |= UNP_EIDSVALID;
1218 		}
1219 	}
1220 	error = unp_connect1(so, so2, l);
1221 	if (error) {
1222 		sounlock(so);
1223 		goto bad;
1224 	}
1225 	unp2 = sotounpcb(so2);
1226 	switch (so->so_type) {
1227 
1228 	/*
1229 	 * SOCK_DGRAM and default cases are handled in prior call to
1230 	 * unp_connect1(), do not add a default case without fixing
1231 	 * unp_connect1().
1232 	 */
1233 
1234 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1235 	case SOCK_STREAM:
1236 		unp2->unp_conn = unp;
1237 		if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT)
1238 			soisconnecting(so);
1239 		else
1240 			soisconnected(so);
1241 		soisconnected(so2);
1242 		/*
1243 		 * If the connection is fully established, break the
1244 		 * association with uipc_lock and give the connected
1245 		 * pair a seperate lock to share.
1246 		 */
1247 		KASSERT(so2->so_head != NULL);
1248 		unp_setpeerlocks(so, so2);
1249 		break;
1250 
1251 	}
1252 	sounlock(so);
1253  bad:
1254 	vput(vp);
1255  bad2:
1256 	free(sun, M_SONAME);
1257 	solock(so);
1258 	unp->unp_flags &= ~UNP_BUSY;
1259 	return (error);
1260 }
1261 
1262 int
1263 unp_connect2(struct socket *so, struct socket *so2)
1264 {
1265 	struct unpcb *unp = sotounpcb(so);
1266 	struct unpcb *unp2;
1267 	int error = 0;
1268 
1269 	KASSERT(solocked2(so, so2));
1270 
1271 	error = unp_connect1(so, so2, curlwp);
1272 	if (error)
1273 		return error;
1274 
1275 	unp2 = sotounpcb(so2);
1276 	switch (so->so_type) {
1277 
1278 	/*
1279 	 * SOCK_DGRAM and default cases are handled in prior call to
1280 	 * unp_connect1(), do not add a default case without fixing
1281 	 * unp_connect1().
1282 	 */
1283 
1284 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1285 	case SOCK_STREAM:
1286 		unp2->unp_conn = unp;
1287 		soisconnected(so);
1288 		soisconnected(so2);
1289 		break;
1290 
1291 	}
1292 	return error;
1293 }
1294 
1295 static void
1296 unp_disconnect1(struct unpcb *unp)
1297 {
1298 	struct unpcb *unp2 = unp->unp_conn;
1299 	struct socket *so;
1300 
1301 	if (unp2 == 0)
1302 		return;
1303 	unp->unp_conn = 0;
1304 	so = unp->unp_socket;
1305 	switch (so->so_type) {
1306 	case SOCK_DGRAM:
1307 		if (unp2->unp_refs == unp)
1308 			unp2->unp_refs = unp->unp_nextref;
1309 		else {
1310 			unp2 = unp2->unp_refs;
1311 			for (;;) {
1312 				KASSERT(solocked2(so, unp2->unp_socket));
1313 				if (unp2 == 0)
1314 					panic("unp_disconnect1");
1315 				if (unp2->unp_nextref == unp)
1316 					break;
1317 				unp2 = unp2->unp_nextref;
1318 			}
1319 			unp2->unp_nextref = unp->unp_nextref;
1320 		}
1321 		unp->unp_nextref = 0;
1322 		so->so_state &= ~SS_ISCONNECTED;
1323 		break;
1324 
1325 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1326 	case SOCK_STREAM:
1327 		KASSERT(solocked2(so, unp2->unp_socket));
1328 		soisdisconnected(so);
1329 		unp2->unp_conn = 0;
1330 		soisdisconnected(unp2->unp_socket);
1331 		break;
1332 	}
1333 }
1334 
1335 static void
1336 unp_shutdown1(struct unpcb *unp)
1337 {
1338 	struct socket *so;
1339 
1340 	switch(unp->unp_socket->so_type) {
1341 	case SOCK_SEQPACKET: /* FALLTHROUGH */
1342 	case SOCK_STREAM:
1343 		if (unp->unp_conn && (so = unp->unp_conn->unp_socket))
1344 			socantrcvmore(so);
1345 		break;
1346 	default:
1347 		break;
1348 	}
1349 }
1350 
1351 static bool
1352 unp_drop(struct unpcb *unp, int errno)
1353 {
1354 	struct socket *so = unp->unp_socket;
1355 
1356 	KASSERT(solocked(so));
1357 
1358 	so->so_error = errno;
1359 	unp_disconnect1(unp);
1360 	if (so->so_head) {
1361 		so->so_pcb = NULL;
1362 		/* sofree() drops the socket lock */
1363 		sofree(so);
1364 		unp_free(unp);
1365 		return true;
1366 	}
1367 	return false;
1368 }
1369 
1370 #ifdef notdef
1371 unp_drain(void)
1372 {
1373 
1374 }
1375 #endif
1376 
1377 int
1378 unp_externalize(struct mbuf *rights, struct lwp *l, int flags)
1379 {
1380 	struct cmsghdr * const cm = mtod(rights, struct cmsghdr *);
1381 	struct proc * const p = l->l_proc;
1382 	file_t **rp;
1383 	int error = 0;
1384 
1385 	const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1386 	    sizeof(file_t *);
1387 	if (nfds == 0)
1388 		goto noop;
1389 
1390 	int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP);
1391 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1392 
1393 	/* Make sure the recipient should be able to see the files.. */
1394 	rp = (file_t **)CMSG_DATA(cm);
1395 	for (size_t i = 0; i < nfds; i++) {
1396 		file_t * const fp = *rp++;
1397 		if (fp == NULL) {
1398 			error = EINVAL;
1399 			goto out;
1400 		}
1401 		/*
1402 		 * If we are in a chroot'ed directory, and
1403 		 * someone wants to pass us a directory, make
1404 		 * sure it's inside the subtree we're allowed
1405 		 * to access.
1406 		 */
1407 		if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) {
1408 			vnode_t *vp = fp->f_vnode;
1409 			if ((vp->v_type == VDIR) &&
1410 			    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1411 				error = EPERM;
1412 				goto out;
1413 			}
1414 		}
1415 	}
1416 
1417  restart:
1418 	/*
1419 	 * First loop -- allocate file descriptor table slots for the
1420 	 * new files.
1421 	 */
1422 	for (size_t i = 0; i < nfds; i++) {
1423 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1424 			/*
1425 			 * Back out what we've done so far.
1426 			 */
1427 			while (i-- > 0) {
1428 				fd_abort(p, NULL, fdp[i]);
1429 			}
1430 			if (error == ENOSPC) {
1431 				fd_tryexpand(p);
1432 				error = 0;
1433 				goto restart;
1434 			}
1435 			/*
1436 			 * This is the error that has historically
1437 			 * been returned, and some callers may
1438 			 * expect it.
1439 			 */
1440 			error = EMSGSIZE;
1441 			goto out;
1442 		}
1443 	}
1444 
1445 	/*
1446 	 * Now that adding them has succeeded, update all of the
1447 	 * file passing state and affix the descriptors.
1448 	 */
1449 	rp = (file_t **)CMSG_DATA(cm);
1450 	int *ofdp = (int *)CMSG_DATA(cm);
1451 	for (size_t i = 0; i < nfds; i++) {
1452 		file_t * const fp = *rp++;
1453 		const int fd = fdp[i];
1454 		atomic_dec_uint(&unp_rights);
1455 		fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0);
1456 		fd_affix(p, fp, fd);
1457 		/*
1458 		 * Done with this file pointer, replace it with a fd;
1459 		 */
1460 		*ofdp++ = fd;
1461 		mutex_enter(&fp->f_lock);
1462 		fp->f_msgcount--;
1463 		mutex_exit(&fp->f_lock);
1464 		/*
1465 		 * Note that fd_affix() adds a reference to the file.
1466 		 * The file may already have been closed by another
1467 		 * LWP in the process, so we must drop the reference
1468 		 * added by unp_internalize() with closef().
1469 		 */
1470 		closef(fp);
1471 	}
1472 
1473 	/*
1474 	 * Adjust length, in case of transition from large file_t
1475 	 * pointers to ints.
1476 	 */
1477 	if (sizeof(file_t *) != sizeof(int)) {
1478 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1479 		rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1480 	}
1481  out:
1482 	if (__predict_false(error != 0)) {
1483 		file_t **const fpp = (file_t **)CMSG_DATA(cm);
1484 		for (size_t i = 0; i < nfds; i++)
1485 			unp_discard_now(fpp[i]);
1486 		/*
1487 		 * Truncate the array so that nobody will try to interpret
1488 		 * what is now garbage in it.
1489 		 */
1490 		cm->cmsg_len = CMSG_LEN(0);
1491 		rights->m_len = CMSG_SPACE(0);
1492 	}
1493 	rw_exit(&p->p_cwdi->cwdi_lock);
1494 	kmem_free(fdp, nfds * sizeof(int));
1495 
1496  noop:
1497 	/*
1498 	 * Don't disclose kernel memory in the alignment space.
1499 	 */
1500 	KASSERT(cm->cmsg_len <= rights->m_len);
1501 	memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len -
1502 	    cm->cmsg_len);
1503 	return error;
1504 }
1505 
1506 static int
1507 unp_internalize(struct mbuf **controlp)
1508 {
1509 	filedesc_t *fdescp = curlwp->l_fd;
1510 	struct mbuf *control = *controlp;
1511 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1512 	file_t **rp, **files;
1513 	file_t *fp;
1514 	int i, fd, *fdp;
1515 	int nfds, error;
1516 	u_int maxmsg;
1517 
1518 	error = 0;
1519 	newcm = NULL;
1520 
1521 	/* Sanity check the control message header. */
1522 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1523 	    cm->cmsg_len > control->m_len ||
1524 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1525 		return (EINVAL);
1526 
1527 	/*
1528 	 * Verify that the file descriptors are valid, and acquire
1529 	 * a reference to each.
1530 	 */
1531 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1532 	fdp = (int *)CMSG_DATA(cm);
1533 	maxmsg = maxfiles / unp_rights_ratio;
1534 	for (i = 0; i < nfds; i++) {
1535 		fd = *fdp++;
1536 		if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
1537 			atomic_dec_uint(&unp_rights);
1538 			nfds = i;
1539 			error = EAGAIN;
1540 			goto out;
1541 		}
1542 		if ((fp = fd_getfile(fd)) == NULL
1543 		    || fp->f_type == DTYPE_KQUEUE) {
1544 		    	if (fp)
1545 		    		fd_putfile(fd);
1546 			atomic_dec_uint(&unp_rights);
1547 			nfds = i;
1548 			error = EBADF;
1549 			goto out;
1550 		}
1551 	}
1552 
1553 	/* Allocate new space and copy header into it. */
1554 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1555 	if (newcm == NULL) {
1556 		error = E2BIG;
1557 		goto out;
1558 	}
1559 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1560 	files = (file_t **)CMSG_DATA(newcm);
1561 
1562 	/*
1563 	 * Transform the file descriptors into file_t pointers, in
1564 	 * reverse order so that if pointers are bigger than ints, the
1565 	 * int won't get until we're done.  No need to lock, as we have
1566 	 * already validated the descriptors with fd_getfile().
1567 	 */
1568 	fdp = (int *)CMSG_DATA(cm) + nfds;
1569 	rp = files + nfds;
1570 	for (i = 0; i < nfds; i++) {
1571 		fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
1572 		KASSERT(fp != NULL);
1573 		mutex_enter(&fp->f_lock);
1574 		*--rp = fp;
1575 		fp->f_count++;
1576 		fp->f_msgcount++;
1577 		mutex_exit(&fp->f_lock);
1578 	}
1579 
1580  out:
1581  	/* Release descriptor references. */
1582 	fdp = (int *)CMSG_DATA(cm);
1583 	for (i = 0; i < nfds; i++) {
1584 		fd_putfile(*fdp++);
1585 		if (error != 0) {
1586 			atomic_dec_uint(&unp_rights);
1587 		}
1588 	}
1589 
1590 	if (error == 0) {
1591 		if (control->m_flags & M_EXT) {
1592 			m_freem(control);
1593 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1594 		}
1595 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1596 		    M_MBUF, NULL, NULL);
1597 		cm = newcm;
1598 		/*
1599 		 * Adjust message & mbuf to note amount of space
1600 		 * actually used.
1601 		 */
1602 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1603 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1604 	}
1605 
1606 	return error;
1607 }
1608 
1609 struct mbuf *
1610 unp_addsockcred(struct lwp *l, struct mbuf *control)
1611 {
1612 	struct sockcred *sc;
1613 	struct mbuf *m;
1614 	void *p;
1615 
1616 	m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)),
1617 		SCM_CREDS, SOL_SOCKET, M_WAITOK);
1618 	if (m == NULL)
1619 		return control;
1620 
1621 	sc = p;
1622 	sc->sc_pid = l->l_proc->p_pid;
1623 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1624 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1625 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1626 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1627 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1628 
1629 	for (int i = 0; i < sc->sc_ngroups; i++)
1630 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1631 
1632 	return m_add(control, m);
1633 }
1634 
1635 /*
1636  * Do a mark-sweep GC of files in the system, to free up any which are
1637  * caught in flight to an about-to-be-closed socket.  Additionally,
1638  * process deferred file closures.
1639  */
1640 static void
1641 unp_gc(file_t *dp)
1642 {
1643 	extern	struct domain unixdomain;
1644 	file_t *fp, *np;
1645 	struct socket *so, *so1;
1646 	u_int i, oflags, rflags;
1647 	bool didwork;
1648 
1649 	KASSERT(curlwp == unp_thread_lwp);
1650 	KASSERT(mutex_owned(&filelist_lock));
1651 
1652 	/*
1653 	 * First, process deferred file closures.
1654 	 */
1655 	while (!SLIST_EMPTY(&unp_thread_discard)) {
1656 		fp = SLIST_FIRST(&unp_thread_discard);
1657 		KASSERT(fp->f_unpcount > 0);
1658 		KASSERT(fp->f_count > 0);
1659 		KASSERT(fp->f_msgcount > 0);
1660 		KASSERT(fp->f_count >= fp->f_unpcount);
1661 		KASSERT(fp->f_count >= fp->f_msgcount);
1662 		KASSERT(fp->f_msgcount >= fp->f_unpcount);
1663 		SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
1664 		i = fp->f_unpcount;
1665 		fp->f_unpcount = 0;
1666 		mutex_exit(&filelist_lock);
1667 		for (; i != 0; i--) {
1668 			unp_discard_now(fp);
1669 		}
1670 		mutex_enter(&filelist_lock);
1671 	}
1672 
1673 	/*
1674 	 * Clear mark bits.  Ensure that we don't consider new files
1675 	 * entering the file table during this loop (they will not have
1676 	 * FSCAN set).
1677 	 */
1678 	unp_defer = 0;
1679 	LIST_FOREACH(fp, &filehead, f_list) {
1680 		for (oflags = fp->f_flag;; oflags = rflags) {
1681 			rflags = atomic_cas_uint(&fp->f_flag, oflags,
1682 			    (oflags | FSCAN) & ~(FMARK|FDEFER));
1683 			if (__predict_true(oflags == rflags)) {
1684 				break;
1685 			}
1686 		}
1687 	}
1688 
1689 	/*
1690 	 * Iterate over the set of sockets, marking ones believed (based on
1691 	 * refcount) to be referenced from a process, and marking for rescan
1692 	 * sockets which are queued on a socket.  Recan continues descending
1693 	 * and searching for sockets referenced by sockets (FDEFER), until
1694 	 * there are no more socket->socket references to be discovered.
1695 	 */
1696 	do {
1697 		didwork = false;
1698 		for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1699 			KASSERT(mutex_owned(&filelist_lock));
1700 			np = LIST_NEXT(fp, f_list);
1701 			mutex_enter(&fp->f_lock);
1702 			if ((fp->f_flag & FDEFER) != 0) {
1703 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1704 				unp_defer--;
1705 				if (fp->f_count == 0) {
1706 					/*
1707 					 * XXX: closef() doesn't pay attention
1708 					 * to FDEFER
1709 					 */
1710 					mutex_exit(&fp->f_lock);
1711 					continue;
1712 				}
1713 			} else {
1714 				if (fp->f_count == 0 ||
1715 				    (fp->f_flag & FMARK) != 0 ||
1716 				    fp->f_count == fp->f_msgcount ||
1717 				    fp->f_unpcount != 0) {
1718 					mutex_exit(&fp->f_lock);
1719 					continue;
1720 				}
1721 			}
1722 			atomic_or_uint(&fp->f_flag, FMARK);
1723 
1724 			if (fp->f_type != DTYPE_SOCKET ||
1725 			    (so = fp->f_socket) == NULL ||
1726 			    so->so_proto->pr_domain != &unixdomain ||
1727 			    (so->so_proto->pr_flags & PR_RIGHTS) == 0) {
1728 				mutex_exit(&fp->f_lock);
1729 				continue;
1730 			}
1731 
1732 			/* Gain file ref, mark our position, and unlock. */
1733 			didwork = true;
1734 			LIST_INSERT_AFTER(fp, dp, f_list);
1735 			fp->f_count++;
1736 			mutex_exit(&fp->f_lock);
1737 			mutex_exit(&filelist_lock);
1738 
1739 			/*
1740 			 * Mark files referenced from sockets queued on the
1741 			 * accept queue as well.
1742 			 */
1743 			solock(so);
1744 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1745 			if ((so->so_options & SO_ACCEPTCONN) != 0) {
1746 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1747 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1748 				}
1749 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1750 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1751 				}
1752 			}
1753 			sounlock(so);
1754 
1755 			/* Re-lock and restart from where we left off. */
1756 			closef(fp);
1757 			mutex_enter(&filelist_lock);
1758 			np = LIST_NEXT(dp, f_list);
1759 			LIST_REMOVE(dp, f_list);
1760 		}
1761 		/*
1762 		 * Bail early if we did nothing in the loop above.  Could
1763 		 * happen because of concurrent activity causing unp_defer
1764 		 * to get out of sync.
1765 		 */
1766 	} while (unp_defer != 0 && didwork);
1767 
1768 	/*
1769 	 * Sweep pass.
1770 	 *
1771 	 * We grab an extra reference to each of the files that are
1772 	 * not otherwise accessible and then free the rights that are
1773 	 * stored in messages on them.
1774 	 */
1775 	for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
1776 		KASSERT(mutex_owned(&filelist_lock));
1777 		np = LIST_NEXT(fp, f_list);
1778 		mutex_enter(&fp->f_lock);
1779 
1780 		/*
1781 		 * Ignore non-sockets.
1782 		 * Ignore dead sockets, or sockets with pending close.
1783 		 * Ignore sockets obviously referenced elsewhere.
1784 		 * Ignore sockets marked as referenced by our scan.
1785 		 * Ignore new sockets that did not exist during the scan.
1786 		 */
1787 		if (fp->f_type != DTYPE_SOCKET ||
1788 		    fp->f_count == 0 || fp->f_unpcount != 0 ||
1789 		    fp->f_count != fp->f_msgcount ||
1790 		    (fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
1791 			mutex_exit(&fp->f_lock);
1792 			continue;
1793 		}
1794 
1795 		/* Gain file ref, mark our position, and unlock. */
1796 		LIST_INSERT_AFTER(fp, dp, f_list);
1797 		fp->f_count++;
1798 		mutex_exit(&fp->f_lock);
1799 		mutex_exit(&filelist_lock);
1800 
1801 		/*
1802 		 * Flush all data from the socket's receive buffer.
1803 		 * This will cause files referenced only by the
1804 		 * socket to be queued for close.
1805 		 */
1806 		so = fp->f_socket;
1807 		solock(so);
1808 		sorflush(so);
1809 		sounlock(so);
1810 
1811 		/* Re-lock and restart from where we left off. */
1812 		closef(fp);
1813 		mutex_enter(&filelist_lock);
1814 		np = LIST_NEXT(dp, f_list);
1815 		LIST_REMOVE(dp, f_list);
1816 	}
1817 }
1818 
1819 /*
1820  * Garbage collector thread.  While SCM_RIGHTS messages are in transit,
1821  * wake once per second to garbage collect.  Run continually while we
1822  * have deferred closes to process.
1823  */
1824 static void
1825 unp_thread(void *cookie)
1826 {
1827 	file_t *dp;
1828 
1829 	/* Allocate a dummy file for our scans. */
1830 	if ((dp = fgetdummy()) == NULL) {
1831 		panic("unp_thread");
1832 	}
1833 
1834 	mutex_enter(&filelist_lock);
1835 	for (;;) {
1836 		KASSERT(mutex_owned(&filelist_lock));
1837 		if (SLIST_EMPTY(&unp_thread_discard)) {
1838 			if (unp_rights != 0) {
1839 				(void)cv_timedwait(&unp_thread_cv,
1840 				    &filelist_lock, hz);
1841 			} else {
1842 				cv_wait(&unp_thread_cv, &filelist_lock);
1843 			}
1844 		}
1845 		unp_gc(dp);
1846 	}
1847 	/* NOTREACHED */
1848 }
1849 
1850 /*
1851  * Kick the garbage collector into action if there is something for
1852  * it to process.
1853  */
1854 static void
1855 unp_thread_kick(void)
1856 {
1857 
1858 	if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
1859 		mutex_enter(&filelist_lock);
1860 		cv_signal(&unp_thread_cv);
1861 		mutex_exit(&filelist_lock);
1862 	}
1863 }
1864 
1865 void
1866 unp_dispose(struct mbuf *m)
1867 {
1868 
1869 	if (m)
1870 		unp_scan(m, unp_discard_later, 1);
1871 }
1872 
1873 void
1874 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1875 {
1876 	struct mbuf *m;
1877 	file_t **rp, *fp;
1878 	struct cmsghdr *cm;
1879 	int i, qfds;
1880 
1881 	while (m0) {
1882 		for (m = m0; m; m = m->m_next) {
1883 			if (m->m_type != MT_CONTROL ||
1884 			    m->m_len < sizeof(*cm)) {
1885 			    	continue;
1886 			}
1887 			cm = mtod(m, struct cmsghdr *);
1888 			if (cm->cmsg_level != SOL_SOCKET ||
1889 			    cm->cmsg_type != SCM_RIGHTS)
1890 				continue;
1891 			qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1892 			    / sizeof(file_t *);
1893 			rp = (file_t **)CMSG_DATA(cm);
1894 			for (i = 0; i < qfds; i++) {
1895 				fp = *rp;
1896 				if (discard) {
1897 					*rp = 0;
1898 				}
1899 				(*op)(fp);
1900 				rp++;
1901 			}
1902 		}
1903 		m0 = m0->m_nextpkt;
1904 	}
1905 }
1906 
1907 void
1908 unp_mark(file_t *fp)
1909 {
1910 
1911 	if (fp == NULL)
1912 		return;
1913 
1914 	/* If we're already deferred, don't screw up the defer count */
1915 	mutex_enter(&fp->f_lock);
1916 	if (fp->f_flag & (FMARK | FDEFER)) {
1917 		mutex_exit(&fp->f_lock);
1918 		return;
1919 	}
1920 
1921 	/*
1922 	 * Minimize the number of deferrals...  Sockets are the only type of
1923 	 * file which can hold references to another file, so just mark
1924 	 * other files, and defer unmarked sockets for the next pass.
1925 	 */
1926 	if (fp->f_type == DTYPE_SOCKET) {
1927 		unp_defer++;
1928 		KASSERT(fp->f_count != 0);
1929 		atomic_or_uint(&fp->f_flag, FDEFER);
1930 	} else {
1931 		atomic_or_uint(&fp->f_flag, FMARK);
1932 	}
1933 	mutex_exit(&fp->f_lock);
1934 }
1935 
1936 static void
1937 unp_discard_now(file_t *fp)
1938 {
1939 
1940 	if (fp == NULL)
1941 		return;
1942 
1943 	KASSERT(fp->f_count > 0);
1944 	KASSERT(fp->f_msgcount > 0);
1945 
1946 	mutex_enter(&fp->f_lock);
1947 	fp->f_msgcount--;
1948 	mutex_exit(&fp->f_lock);
1949 	atomic_dec_uint(&unp_rights);
1950 	(void)closef(fp);
1951 }
1952 
1953 static void
1954 unp_discard_later(file_t *fp)
1955 {
1956 
1957 	if (fp == NULL)
1958 		return;
1959 
1960 	KASSERT(fp->f_count > 0);
1961 	KASSERT(fp->f_msgcount > 0);
1962 
1963 	mutex_enter(&filelist_lock);
1964 	if (fp->f_unpcount++ == 0) {
1965 		SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
1966 	}
1967 	mutex_exit(&filelist_lock);
1968 }
1969 
1970 void
1971 unp_sysctl_create(struct sysctllog **clog)
1972 {
1973 	sysctl_createv(clog, 0, NULL, NULL,
1974 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1975 		       CTLTYPE_LONG, "sendspace",
1976 		       SYSCTL_DESCR("Default stream send space"),
1977 		       NULL, 0, &unpst_sendspace, 0,
1978 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
1979 	sysctl_createv(clog, 0, NULL, NULL,
1980 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1981 		       CTLTYPE_LONG, "recvspace",
1982 		       SYSCTL_DESCR("Default stream recv space"),
1983 		       NULL, 0, &unpst_recvspace, 0,
1984 		       CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL);
1985 	sysctl_createv(clog, 0, NULL, NULL,
1986 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1987 		       CTLTYPE_LONG, "sendspace",
1988 		       SYSCTL_DESCR("Default datagram send space"),
1989 		       NULL, 0, &unpdg_sendspace, 0,
1990 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
1991 	sysctl_createv(clog, 0, NULL, NULL,
1992 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1993 		       CTLTYPE_LONG, "recvspace",
1994 		       SYSCTL_DESCR("Default datagram recv space"),
1995 		       NULL, 0, &unpdg_recvspace, 0,
1996 		       CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL);
1997 	sysctl_createv(clog, 0, NULL, NULL,
1998 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
1999 		       CTLTYPE_INT, "inflight",
2000 		       SYSCTL_DESCR("File descriptors in flight"),
2001 		       NULL, 0, &unp_rights, 0,
2002 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2003 	sysctl_createv(clog, 0, NULL, NULL,
2004 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
2005 		       CTLTYPE_INT, "deferred",
2006 		       SYSCTL_DESCR("File descriptors deferred for close"),
2007 		       NULL, 0, &unp_defer, 0,
2008 		       CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL);
2009 }
2010 
2011 const struct pr_usrreqs unp_usrreqs = {
2012 	.pr_attach	= unp_attach,
2013 	.pr_detach	= unp_detach,
2014 	.pr_accept	= unp_accept,
2015 	.pr_bind	= unp_bind,
2016 	.pr_listen	= unp_listen,
2017 	.pr_connect	= unp_connect,
2018 	.pr_connect2	= unp_connect2,
2019 	.pr_disconnect	= unp_disconnect,
2020 	.pr_shutdown	= unp_shutdown,
2021 	.pr_abort	= unp_abort,
2022 	.pr_ioctl	= unp_ioctl,
2023 	.pr_stat	= unp_stat,
2024 	.pr_peeraddr	= unp_peeraddr,
2025 	.pr_sockaddr	= unp_sockaddr,
2026 	.pr_rcvd	= unp_rcvd,
2027 	.pr_recvoob	= unp_recvoob,
2028 	.pr_send	= unp_send,
2029 	.pr_sendoob	= unp_sendoob,
2030 };
2031