1 /* $NetBSD: uipc_usrreq.c,v 1.203 2022/05/28 22:08:46 andvar Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 2000, 2004, 2008, 2009, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95 62 */ 63 64 /* 65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions 69 * are met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce the above copyright 73 * notice, this list of conditions and the following disclaimer in the 74 * documentation and/or other materials provided with the distribution. 75 * 3. All advertising materials mentioning features or use of this software 76 * must display the following acknowledgement: 77 * This product includes software developed by the University of 78 * California, Berkeley and its contributors. 79 * 4. Neither the name of the University nor the names of its contributors 80 * may be used to endorse or promote products derived from this software 81 * without specific prior written permission. 82 * 83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 93 * SUCH DAMAGE. 94 * 95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95 96 */ 97 98 #include <sys/cdefs.h> 99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.203 2022/05/28 22:08:46 andvar Exp $"); 100 101 #ifdef _KERNEL_OPT 102 #include "opt_compat_netbsd.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/proc.h> 108 #include <sys/filedesc.h> 109 #include <sys/domain.h> 110 #include <sys/protosw.h> 111 #include <sys/socket.h> 112 #include <sys/socketvar.h> 113 #include <sys/unpcb.h> 114 #include <sys/un.h> 115 #include <sys/namei.h> 116 #include <sys/vnode.h> 117 #include <sys/file.h> 118 #include <sys/stat.h> 119 #include <sys/mbuf.h> 120 #include <sys/kauth.h> 121 #include <sys/kmem.h> 122 #include <sys/atomic.h> 123 #include <sys/uidinfo.h> 124 #include <sys/kernel.h> 125 #include <sys/kthread.h> 126 #include <sys/compat_stub.h> 127 128 #include <compat/sys/socket.h> 129 #include <compat/net/route_70.h> 130 131 /* 132 * Unix communications domain. 133 * 134 * TODO: 135 * RDM 136 * rethink name space problems 137 * need a proper out-of-band 138 * 139 * Notes on locking: 140 * 141 * The generic rules noted in uipc_socket2.c apply. In addition: 142 * 143 * o We have a global lock, uipc_lock. 144 * 145 * o All datagram sockets are locked by uipc_lock. 146 * 147 * o For stream socketpairs, the two endpoints are created sharing the same 148 * independent lock. Sockets presented to PRU_CONNECT2 must already have 149 * matching locks. 150 * 151 * o Stream sockets created via socket() start life with their own 152 * independent lock. 153 * 154 * o Stream connections to a named endpoint are slightly more complicated. 155 * Sockets that have called listen() have their lock pointer mutated to 156 * the global uipc_lock. When establishing a connection, the connecting 157 * socket also has its lock mutated to uipc_lock, which matches the head 158 * (listening socket). We create a new socket for accept() to return, and 159 * that also shares the head's lock. Until the connection is completely 160 * done on both ends, all three sockets are locked by uipc_lock. Once the 161 * connection is complete, the association with the head's lock is broken. 162 * The connecting socket and the socket returned from accept() have their 163 * lock pointers mutated away from uipc_lock, and back to the connecting 164 * socket's original, independent lock. The head continues to be locked 165 * by uipc_lock. 166 * 167 * o If uipc_lock is determined to be a significant source of contention, 168 * it could easily be hashed out. It is difficult to simply make it an 169 * independent lock because of visibility / garbage collection issues: 170 * if a socket has been associated with a lock at any point, that lock 171 * must remain valid until the socket is no longer visible in the system. 172 * The lock must not be freed or otherwise destroyed until any sockets 173 * that had referenced it have also been destroyed. 174 */ 175 const struct sockaddr_un sun_noname = { 176 .sun_len = offsetof(struct sockaddr_un, sun_path), 177 .sun_family = AF_LOCAL, 178 }; 179 ino_t unp_ino; /* prototype for fake inode numbers */ 180 181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *); 182 static void unp_discard_later(file_t *); 183 static void unp_discard_now(file_t *); 184 static void unp_disconnect1(struct unpcb *); 185 static bool unp_drop(struct unpcb *, int); 186 static int unp_internalize(struct mbuf **); 187 static void unp_mark(file_t *); 188 static void unp_scan(struct mbuf *, void (*)(file_t *), int); 189 static void unp_shutdown1(struct unpcb *); 190 static void unp_thread(void *); 191 static void unp_thread_kick(void); 192 193 static kmutex_t *uipc_lock; 194 195 static kcondvar_t unp_thread_cv; 196 static lwp_t *unp_thread_lwp; 197 static SLIST_HEAD(,file) unp_thread_discard; 198 static int unp_defer; 199 static struct sysctllog *usrreq_sysctllog; 200 static void unp_sysctl_create(void); 201 202 /* Compat interface */ 203 204 struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *); 205 206 struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp, 207 struct mbuf *control) 208 { 209 210 /* just copy our initial argument */ 211 return control; 212 } 213 214 bool compat70_ocreds_valid = false; 215 216 /* 217 * Initialize Unix protocols. 218 */ 219 void 220 uipc_init(void) 221 { 222 int error; 223 224 unp_sysctl_create(); 225 226 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 227 cv_init(&unp_thread_cv, "unpgc"); 228 229 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread, 230 NULL, &unp_thread_lwp, "unpgc"); 231 if (error != 0) 232 panic("uipc_init %d", error); 233 } 234 235 static void 236 unp_connid(struct lwp *l, struct unpcb *unp, int flags) 237 { 238 unp->unp_connid.unp_pid = l->l_proc->p_pid; 239 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred); 240 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred); 241 unp->unp_flags |= flags; 242 } 243 244 /* 245 * A connection succeeded: disassociate both endpoints from the head's 246 * lock, and make them share their own lock. There is a race here: for 247 * a very brief time one endpoint will be locked by a different lock 248 * than the other end. However, since the current thread holds the old 249 * lock (the listening socket's lock, the head) access can still only be 250 * made to one side of the connection. 251 */ 252 static void 253 unp_setpeerlocks(struct socket *so, struct socket *so2) 254 { 255 struct unpcb *unp; 256 kmutex_t *lock; 257 258 KASSERT(solocked2(so, so2)); 259 260 /* 261 * Bail out if either end of the socket is not yet fully 262 * connected or accepted. We only break the lock association 263 * with the head when the pair of sockets stand completely 264 * on their own. 265 */ 266 KASSERT(so->so_head == NULL); 267 if (so2->so_head != NULL) 268 return; 269 270 /* 271 * Drop references to old lock. A third reference (from the 272 * queue head) must be held as we still hold its lock. Bonus: 273 * we don't need to worry about garbage collecting the lock. 274 */ 275 lock = so->so_lock; 276 KASSERT(lock == uipc_lock); 277 mutex_obj_free(lock); 278 mutex_obj_free(lock); 279 280 /* 281 * Grab stream lock from the initiator and share between the two 282 * endpoints. Issue memory barrier to ensure all modifications 283 * become globally visible before the lock change. so2 is 284 * assumed not to have a stream lock, because it was created 285 * purely for the server side to accept this connection and 286 * started out life using the domain-wide lock. 287 */ 288 unp = sotounpcb(so); 289 KASSERT(unp->unp_streamlock != NULL); 290 KASSERT(sotounpcb(so2)->unp_streamlock == NULL); 291 lock = unp->unp_streamlock; 292 unp->unp_streamlock = NULL; 293 mutex_obj_hold(lock); 294 /* 295 * Ensure lock is initialized before publishing it with 296 * solockreset. Pairs with atomic_load_consume in solock and 297 * various loops to reacquire lock after wakeup. 298 */ 299 membar_release(); 300 /* 301 * possible race if lock is not held - see comment in 302 * uipc_usrreq(PRU_ACCEPT). 303 */ 304 KASSERT(mutex_owned(lock)); 305 solockreset(so, lock); 306 solockreset(so2, lock); 307 } 308 309 /* 310 * Reset a socket's lock back to the domain-wide lock. 311 */ 312 static void 313 unp_resetlock(struct socket *so) 314 { 315 kmutex_t *olock, *nlock; 316 struct unpcb *unp; 317 318 KASSERT(solocked(so)); 319 320 olock = so->so_lock; 321 nlock = uipc_lock; 322 if (olock == nlock) 323 return; 324 unp = sotounpcb(so); 325 KASSERT(unp->unp_streamlock == NULL); 326 unp->unp_streamlock = olock; 327 mutex_obj_hold(nlock); 328 mutex_enter(nlock); 329 solockreset(so, nlock); 330 mutex_exit(olock); 331 } 332 333 static void 334 unp_free(struct unpcb *unp) 335 { 336 if (unp->unp_addr) 337 free(unp->unp_addr, M_SONAME); 338 if (unp->unp_streamlock != NULL) 339 mutex_obj_free(unp->unp_streamlock); 340 kmem_free(unp, sizeof(*unp)); 341 } 342 343 static int 344 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp) 345 { 346 struct socket *so2; 347 const struct sockaddr_un *sun; 348 349 /* XXX: server side closed the socket */ 350 if (unp->unp_conn == NULL) 351 return ECONNREFUSED; 352 so2 = unp->unp_conn->unp_socket; 353 354 KASSERT(solocked(so2)); 355 356 if (unp->unp_addr) 357 sun = unp->unp_addr; 358 else 359 sun = &sun_noname; 360 if (unp->unp_conn->unp_flags & UNP_WANTCRED) 361 control = unp_addsockcred(curlwp, control); 362 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) 363 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control), 364 stub_compat_70_unp_addsockcred(curlwp, control), control); 365 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m, 366 control) == 0) { 367 unp_dispose(control); 368 m_freem(control); 369 m_freem(m); 370 /* Don't call soroverflow because we're returning this 371 * error directly to the sender. */ 372 so2->so_rcv.sb_overflowed++; 373 return ENOBUFS; 374 } else { 375 sorwakeup(so2); 376 return 0; 377 } 378 } 379 380 static void 381 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr) 382 { 383 const struct sockaddr_un *sun = NULL; 384 struct unpcb *unp; 385 386 KASSERT(solocked(so)); 387 unp = sotounpcb(so); 388 389 if (peeraddr) { 390 if (unp->unp_conn && unp->unp_conn->unp_addr) 391 sun = unp->unp_conn->unp_addr; 392 } else { 393 if (unp->unp_addr) 394 sun = unp->unp_addr; 395 } 396 if (sun == NULL) 397 sun = &sun_noname; 398 399 memcpy(nam, sun, sun->sun_len); 400 } 401 402 static int 403 unp_rcvd(struct socket *so, int flags, struct lwp *l) 404 { 405 struct unpcb *unp = sotounpcb(so); 406 struct socket *so2; 407 u_int newhiwat; 408 409 KASSERT(solocked(so)); 410 KASSERT(unp != NULL); 411 412 switch (so->so_type) { 413 414 case SOCK_DGRAM: 415 panic("uipc 1"); 416 /*NOTREACHED*/ 417 418 case SOCK_SEQPACKET: /* FALLTHROUGH */ 419 case SOCK_STREAM: 420 #define rcv (&so->so_rcv) 421 #define snd (&so2->so_snd) 422 if (unp->unp_conn == 0) 423 break; 424 so2 = unp->unp_conn->unp_socket; 425 KASSERT(solocked2(so, so2)); 426 /* 427 * Adjust backpressure on sender 428 * and wakeup any waiting to write. 429 */ 430 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt; 431 unp->unp_mbcnt = rcv->sb_mbcnt; 432 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc; 433 (void)chgsbsize(so2->so_uidinfo, 434 &snd->sb_hiwat, newhiwat, RLIM_INFINITY); 435 unp->unp_cc = rcv->sb_cc; 436 sowwakeup(so2); 437 #undef snd 438 #undef rcv 439 break; 440 441 default: 442 panic("uipc 2"); 443 } 444 445 return 0; 446 } 447 448 static int 449 unp_recvoob(struct socket *so, struct mbuf *m, int flags) 450 { 451 KASSERT(solocked(so)); 452 453 return EOPNOTSUPP; 454 } 455 456 static int 457 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, 458 struct mbuf *control, struct lwp *l) 459 { 460 struct unpcb *unp = sotounpcb(so); 461 int error = 0; 462 u_int newhiwat; 463 struct socket *so2; 464 465 KASSERT(solocked(so)); 466 KASSERT(unp != NULL); 467 KASSERT(m != NULL); 468 469 /* 470 * Note: unp_internalize() rejects any control message 471 * other than SCM_RIGHTS, and only allows one. This 472 * has the side-effect of preventing a caller from 473 * forging SCM_CREDS. 474 */ 475 if (control) { 476 sounlock(so); 477 error = unp_internalize(&control); 478 solock(so); 479 if (error != 0) { 480 m_freem(control); 481 m_freem(m); 482 return error; 483 } 484 } 485 486 switch (so->so_type) { 487 488 case SOCK_DGRAM: { 489 KASSERT(so->so_lock == uipc_lock); 490 if (nam) { 491 if ((so->so_state & SS_ISCONNECTED) != 0) 492 error = EISCONN; 493 else { 494 /* 495 * Note: once connected, the 496 * socket's lock must not be 497 * dropped until we have sent 498 * the message and disconnected. 499 * This is necessary to prevent 500 * intervening control ops, like 501 * another connection. 502 */ 503 error = unp_connect(so, nam, l); 504 } 505 } else { 506 if ((so->so_state & SS_ISCONNECTED) == 0) 507 error = ENOTCONN; 508 } 509 if (error) { 510 unp_dispose(control); 511 m_freem(control); 512 m_freem(m); 513 return error; 514 } 515 error = unp_output(m, control, unp); 516 if (nam) 517 unp_disconnect1(unp); 518 break; 519 } 520 521 case SOCK_SEQPACKET: /* FALLTHROUGH */ 522 case SOCK_STREAM: 523 #define rcv (&so2->so_rcv) 524 #define snd (&so->so_snd) 525 if (unp->unp_conn == NULL) { 526 error = ENOTCONN; 527 break; 528 } 529 so2 = unp->unp_conn->unp_socket; 530 KASSERT(solocked2(so, so2)); 531 if (unp->unp_conn->unp_flags & UNP_WANTCRED) { 532 /* 533 * Credentials are passed only once on 534 * SOCK_STREAM and SOCK_SEQPACKET. 535 */ 536 unp->unp_conn->unp_flags &= ~UNP_WANTCRED; 537 control = unp_addsockcred(l, control); 538 } 539 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) { 540 /* 541 * Credentials are passed only once on 542 * SOCK_STREAM and SOCK_SEQPACKET. 543 */ 544 unp->unp_conn->unp_flags &= ~UNP_OWANTCRED; 545 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control), 546 stub_compat_70_unp_addsockcred(curlwp, control), 547 control); 548 } 549 /* 550 * Send to paired receive port, and then reduce 551 * send buffer hiwater marks to maintain backpressure. 552 * Wake up readers. 553 */ 554 if (control) { 555 if (sbappendcontrol(rcv, m, control) != 0) 556 control = NULL; 557 } else { 558 switch(so->so_type) { 559 case SOCK_SEQPACKET: 560 sbappendrecord(rcv, m); 561 break; 562 case SOCK_STREAM: 563 sbappend(rcv, m); 564 break; 565 default: 566 panic("uipc_usrreq"); 567 break; 568 } 569 } 570 snd->sb_mbmax -= 571 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt; 572 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt; 573 newhiwat = snd->sb_hiwat - 574 (rcv->sb_cc - unp->unp_conn->unp_cc); 575 (void)chgsbsize(so->so_uidinfo, 576 &snd->sb_hiwat, newhiwat, RLIM_INFINITY); 577 unp->unp_conn->unp_cc = rcv->sb_cc; 578 sorwakeup(so2); 579 #undef snd 580 #undef rcv 581 if (control != NULL) { 582 unp_dispose(control); 583 m_freem(control); 584 } 585 break; 586 587 default: 588 panic("uipc 4"); 589 } 590 591 return error; 592 } 593 594 static int 595 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control) 596 { 597 KASSERT(solocked(so)); 598 599 m_freem(m); 600 m_freem(control); 601 602 return EOPNOTSUPP; 603 } 604 605 /* 606 * Unix domain socket option processing. 607 */ 608 int 609 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt) 610 { 611 struct unpcb *unp = sotounpcb(so); 612 int optval = 0, error = 0; 613 614 KASSERT(solocked(so)); 615 616 if (sopt->sopt_level != SOL_LOCAL) { 617 error = ENOPROTOOPT; 618 } else switch (op) { 619 620 case PRCO_SETOPT: 621 switch (sopt->sopt_name) { 622 case LOCAL_OCREDS: 623 if (!compat70_ocreds_valid) { 624 error = ENOPROTOOPT; 625 break; 626 } 627 /* FALLTHROUGH */ 628 case LOCAL_CREDS: 629 case LOCAL_CONNWAIT: 630 error = sockopt_getint(sopt, &optval); 631 if (error) 632 break; 633 switch (sopt->sopt_name) { 634 #define OPTSET(bit) \ 635 if (optval) \ 636 unp->unp_flags |= (bit); \ 637 else \ 638 unp->unp_flags &= ~(bit); 639 640 case LOCAL_CREDS: 641 OPTSET(UNP_WANTCRED); 642 break; 643 case LOCAL_CONNWAIT: 644 OPTSET(UNP_CONNWAIT); 645 break; 646 case LOCAL_OCREDS: 647 OPTSET(UNP_OWANTCRED); 648 break; 649 } 650 break; 651 #undef OPTSET 652 653 default: 654 error = ENOPROTOOPT; 655 break; 656 } 657 break; 658 659 case PRCO_GETOPT: 660 sounlock(so); 661 switch (sopt->sopt_name) { 662 case LOCAL_PEEREID: 663 if (unp->unp_flags & UNP_EIDSVALID) { 664 error = sockopt_set(sopt, &unp->unp_connid, 665 sizeof(unp->unp_connid)); 666 } else { 667 error = EINVAL; 668 } 669 break; 670 case LOCAL_CREDS: 671 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0) 672 673 optval = OPTBIT(UNP_WANTCRED); 674 error = sockopt_setint(sopt, optval); 675 break; 676 case LOCAL_OCREDS: 677 if (compat70_ocreds_valid) { 678 optval = OPTBIT(UNP_OWANTCRED); 679 error = sockopt_setint(sopt, optval); 680 break; 681 } 682 #undef OPTBIT 683 /* FALLTHROUGH */ 684 default: 685 error = ENOPROTOOPT; 686 break; 687 } 688 solock(so); 689 break; 690 } 691 return (error); 692 } 693 694 /* 695 * Both send and receive buffers are allocated PIPSIZ bytes of buffering 696 * for stream sockets, although the total for sender and receiver is 697 * actually only PIPSIZ. 698 * Datagram sockets really use the sendspace as the maximum datagram size, 699 * and don't really want to reserve the sendspace. Their recvspace should 700 * be large enough for at least one max-size datagram plus address. 701 */ 702 #ifndef PIPSIZ 703 #define PIPSIZ 8192 704 #endif 705 u_long unpst_sendspace = PIPSIZ; 706 u_long unpst_recvspace = PIPSIZ; 707 u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 708 u_long unpdg_recvspace = 16*1024; 709 710 u_int unp_rights; /* files in flight */ 711 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */ 712 713 static int 714 unp_attach(struct socket *so, int proto) 715 { 716 struct unpcb *unp = sotounpcb(so); 717 u_long sndspc, rcvspc; 718 int error; 719 720 KASSERT(unp == NULL); 721 722 switch (so->so_type) { 723 case SOCK_SEQPACKET: 724 /* FALLTHROUGH */ 725 case SOCK_STREAM: 726 if (so->so_lock == NULL) { 727 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 728 solock(so); 729 } 730 sndspc = unpst_sendspace; 731 rcvspc = unpst_recvspace; 732 break; 733 734 case SOCK_DGRAM: 735 if (so->so_lock == NULL) { 736 mutex_obj_hold(uipc_lock); 737 so->so_lock = uipc_lock; 738 solock(so); 739 } 740 sndspc = unpdg_sendspace; 741 rcvspc = unpdg_recvspace; 742 break; 743 744 default: 745 panic("unp_attach"); 746 } 747 748 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 749 error = soreserve(so, sndspc, rcvspc); 750 if (error) { 751 return error; 752 } 753 } 754 755 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP); 756 nanotime(&unp->unp_ctime); 757 unp->unp_socket = so; 758 so->so_pcb = unp; 759 760 KASSERT(solocked(so)); 761 return 0; 762 } 763 764 static void 765 unp_detach(struct socket *so) 766 { 767 struct unpcb *unp; 768 vnode_t *vp; 769 770 unp = sotounpcb(so); 771 KASSERT(unp != NULL); 772 KASSERT(solocked(so)); 773 retry: 774 if ((vp = unp->unp_vnode) != NULL) { 775 sounlock(so); 776 /* Acquire v_interlock to protect against unp_connect(). */ 777 /* XXXAD racy */ 778 mutex_enter(vp->v_interlock); 779 vp->v_socket = NULL; 780 mutex_exit(vp->v_interlock); 781 vrele(vp); 782 solock(so); 783 unp->unp_vnode = NULL; 784 } 785 if (unp->unp_conn) 786 unp_disconnect1(unp); 787 while (unp->unp_refs) { 788 KASSERT(solocked2(so, unp->unp_refs->unp_socket)); 789 if (unp_drop(unp->unp_refs, ECONNRESET)) { 790 solock(so); 791 goto retry; 792 } 793 } 794 soisdisconnected(so); 795 so->so_pcb = NULL; 796 if (unp_rights) { 797 /* 798 * Normally the receive buffer is flushed later, in sofree, 799 * but if our receive buffer holds references to files that 800 * are now garbage, we will enqueue those file references to 801 * the garbage collector and kick it into action. 802 */ 803 sorflush(so); 804 unp_free(unp); 805 unp_thread_kick(); 806 } else 807 unp_free(unp); 808 } 809 810 static int 811 unp_accept(struct socket *so, struct sockaddr *nam) 812 { 813 struct unpcb *unp = sotounpcb(so); 814 struct socket *so2; 815 816 KASSERT(solocked(so)); 817 KASSERT(nam != NULL); 818 819 /* XXX code review required to determine if unp can ever be NULL */ 820 if (unp == NULL) 821 return EINVAL; 822 823 KASSERT(so->so_lock == uipc_lock); 824 /* 825 * Mark the initiating STREAM socket as connected *ONLY* 826 * after it's been accepted. This prevents a client from 827 * overrunning a server and receiving ECONNREFUSED. 828 */ 829 if (unp->unp_conn == NULL) { 830 /* 831 * This will use the empty socket and will not 832 * allocate. 833 */ 834 unp_setaddr(so, nam, true); 835 return 0; 836 } 837 so2 = unp->unp_conn->unp_socket; 838 if (so2->so_state & SS_ISCONNECTING) { 839 KASSERT(solocked2(so, so->so_head)); 840 KASSERT(solocked2(so2, so->so_head)); 841 soisconnected(so2); 842 } 843 /* 844 * If the connection is fully established, break the 845 * association with uipc_lock and give the connected 846 * pair a separate lock to share. 847 * There is a race here: sotounpcb(so2)->unp_streamlock 848 * is not locked, so when changing so2->so_lock 849 * another thread can grab it while so->so_lock is still 850 * pointing to the (locked) uipc_lock. 851 * this should be harmless, except that this makes 852 * solocked2() and solocked() unreliable. 853 * Another problem is that unp_setaddr() expects the 854 * the socket locked. Grabbing sotounpcb(so2)->unp_streamlock 855 * fixes both issues. 856 */ 857 mutex_enter(sotounpcb(so2)->unp_streamlock); 858 unp_setpeerlocks(so2, so); 859 /* 860 * Only now return peer's address, as we may need to 861 * block in order to allocate memory. 862 * 863 * XXX Minor race: connection can be broken while 864 * lock is dropped in unp_setaddr(). We will return 865 * error == 0 and sun_noname as the peer address. 866 */ 867 unp_setaddr(so, nam, true); 868 /* so_lock now points to unp_streamlock */ 869 mutex_exit(so2->so_lock); 870 return 0; 871 } 872 873 static int 874 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp) 875 { 876 return EOPNOTSUPP; 877 } 878 879 static int 880 unp_stat(struct socket *so, struct stat *ub) 881 { 882 struct unpcb *unp; 883 struct socket *so2; 884 885 KASSERT(solocked(so)); 886 887 unp = sotounpcb(so); 888 if (unp == NULL) 889 return EINVAL; 890 891 ub->st_blksize = so->so_snd.sb_hiwat; 892 switch (so->so_type) { 893 case SOCK_SEQPACKET: /* FALLTHROUGH */ 894 case SOCK_STREAM: 895 if (unp->unp_conn == 0) 896 break; 897 898 so2 = unp->unp_conn->unp_socket; 899 KASSERT(solocked2(so, so2)); 900 ub->st_blksize += so2->so_rcv.sb_cc; 901 break; 902 default: 903 break; 904 } 905 ub->st_dev = NODEV; 906 if (unp->unp_ino == 0) 907 unp->unp_ino = unp_ino++; 908 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime; 909 ub->st_ino = unp->unp_ino; 910 ub->st_uid = so->so_uidinfo->ui_uid; 911 ub->st_gid = so->so_egid; 912 return (0); 913 } 914 915 static int 916 unp_peeraddr(struct socket *so, struct sockaddr *nam) 917 { 918 KASSERT(solocked(so)); 919 KASSERT(sotounpcb(so) != NULL); 920 KASSERT(nam != NULL); 921 922 unp_setaddr(so, nam, true); 923 return 0; 924 } 925 926 static int 927 unp_sockaddr(struct socket *so, struct sockaddr *nam) 928 { 929 KASSERT(solocked(so)); 930 KASSERT(sotounpcb(so) != NULL); 931 KASSERT(nam != NULL); 932 933 unp_setaddr(so, nam, false); 934 return 0; 935 } 936 937 /* 938 * we only need to perform this allocation until syscalls other than 939 * bind are adjusted to use sockaddr_big. 940 */ 941 static struct sockaddr_un * 942 makeun_sb(struct sockaddr *nam, size_t *addrlen) 943 { 944 struct sockaddr_un *sun; 945 946 *addrlen = nam->sa_len + 1; 947 sun = malloc(*addrlen, M_SONAME, M_WAITOK); 948 memcpy(sun, nam, nam->sa_len); 949 *(((char *)sun) + nam->sa_len) = '\0'; 950 return sun; 951 } 952 953 static int 954 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) 955 { 956 struct sockaddr_un *sun; 957 struct unpcb *unp; 958 vnode_t *vp; 959 struct vattr vattr; 960 size_t addrlen; 961 int error; 962 struct pathbuf *pb; 963 struct nameidata nd; 964 proc_t *p; 965 966 unp = sotounpcb(so); 967 968 KASSERT(solocked(so)); 969 KASSERT(unp != NULL); 970 KASSERT(nam != NULL); 971 972 if (unp->unp_vnode != NULL) 973 return (EINVAL); 974 if ((unp->unp_flags & UNP_BUSY) != 0) { 975 /* 976 * EALREADY may not be strictly accurate, but since this 977 * is a major application error it's hardly a big deal. 978 */ 979 return (EALREADY); 980 } 981 unp->unp_flags |= UNP_BUSY; 982 sounlock(so); 983 984 p = l->l_proc; 985 sun = makeun_sb(nam, &addrlen); 986 987 pb = pathbuf_create(sun->sun_path); 988 if (pb == NULL) { 989 error = ENOMEM; 990 goto bad; 991 } 992 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb); 993 994 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 995 if ((error = namei(&nd)) != 0) { 996 pathbuf_destroy(pb); 997 goto bad; 998 } 999 vp = nd.ni_vp; 1000 if (vp != NULL) { 1001 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd); 1002 if (nd.ni_dvp == vp) 1003 vrele(nd.ni_dvp); 1004 else 1005 vput(nd.ni_dvp); 1006 vrele(vp); 1007 pathbuf_destroy(pb); 1008 error = EADDRINUSE; 1009 goto bad; 1010 } 1011 vattr_null(&vattr); 1012 vattr.va_type = VSOCK; 1013 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask); 1014 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 1015 if (error) { 1016 vput(nd.ni_dvp); 1017 pathbuf_destroy(pb); 1018 goto bad; 1019 } 1020 vp = nd.ni_vp; 1021 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1022 solock(so); 1023 vp->v_socket = unp->unp_socket; 1024 unp->unp_vnode = vp; 1025 unp->unp_addrlen = addrlen; 1026 unp->unp_addr = sun; 1027 VOP_UNLOCK(vp); 1028 vput(nd.ni_dvp); 1029 unp->unp_flags &= ~UNP_BUSY; 1030 pathbuf_destroy(pb); 1031 return (0); 1032 1033 bad: 1034 free(sun, M_SONAME); 1035 solock(so); 1036 unp->unp_flags &= ~UNP_BUSY; 1037 return (error); 1038 } 1039 1040 static int 1041 unp_listen(struct socket *so, struct lwp *l) 1042 { 1043 struct unpcb *unp = sotounpcb(so); 1044 1045 KASSERT(solocked(so)); 1046 KASSERT(unp != NULL); 1047 1048 /* 1049 * If the socket can accept a connection, it must be 1050 * locked by uipc_lock. 1051 */ 1052 unp_resetlock(so); 1053 if (unp->unp_vnode == NULL) 1054 return EINVAL; 1055 1056 unp_connid(l, unp, UNP_EIDSBIND); 1057 return 0; 1058 } 1059 1060 static int 1061 unp_disconnect(struct socket *so) 1062 { 1063 KASSERT(solocked(so)); 1064 KASSERT(sotounpcb(so) != NULL); 1065 1066 unp_disconnect1(sotounpcb(so)); 1067 return 0; 1068 } 1069 1070 static int 1071 unp_shutdown(struct socket *so) 1072 { 1073 KASSERT(solocked(so)); 1074 KASSERT(sotounpcb(so) != NULL); 1075 1076 socantsendmore(so); 1077 unp_shutdown1(sotounpcb(so)); 1078 return 0; 1079 } 1080 1081 static int 1082 unp_abort(struct socket *so) 1083 { 1084 KASSERT(solocked(so)); 1085 KASSERT(sotounpcb(so) != NULL); 1086 1087 (void)unp_drop(sotounpcb(so), ECONNABORTED); 1088 KASSERT(so->so_head == NULL); 1089 KASSERT(so->so_pcb != NULL); 1090 unp_detach(so); 1091 return 0; 1092 } 1093 1094 static int 1095 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l) 1096 { 1097 struct unpcb *unp = sotounpcb(so); 1098 struct unpcb *unp2; 1099 1100 if (so2->so_type != so->so_type) 1101 return EPROTOTYPE; 1102 1103 /* 1104 * All three sockets involved must be locked by same lock: 1105 * 1106 * local endpoint (so) 1107 * remote endpoint (so2) 1108 * queue head (so2->so_head, only if PR_CONNREQUIRED) 1109 */ 1110 KASSERT(solocked2(so, so2)); 1111 KASSERT(so->so_head == NULL); 1112 if (so2->so_head != NULL) { 1113 KASSERT(so2->so_lock == uipc_lock); 1114 KASSERT(solocked2(so2, so2->so_head)); 1115 } 1116 1117 unp2 = sotounpcb(so2); 1118 unp->unp_conn = unp2; 1119 1120 switch (so->so_type) { 1121 1122 case SOCK_DGRAM: 1123 unp->unp_nextref = unp2->unp_refs; 1124 unp2->unp_refs = unp; 1125 soisconnected(so); 1126 break; 1127 1128 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1129 case SOCK_STREAM: 1130 1131 /* 1132 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers 1133 * which are unp_connect() or unp_connect2(). 1134 */ 1135 1136 break; 1137 1138 default: 1139 panic("unp_connect1"); 1140 } 1141 1142 return 0; 1143 } 1144 1145 int 1146 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) 1147 { 1148 struct sockaddr_un *sun; 1149 vnode_t *vp; 1150 struct socket *so2, *so3; 1151 struct unpcb *unp, *unp2, *unp3; 1152 size_t addrlen; 1153 int error; 1154 struct pathbuf *pb; 1155 struct nameidata nd; 1156 1157 unp = sotounpcb(so); 1158 if ((unp->unp_flags & UNP_BUSY) != 0) { 1159 /* 1160 * EALREADY may not be strictly accurate, but since this 1161 * is a major application error it's hardly a big deal. 1162 */ 1163 return (EALREADY); 1164 } 1165 unp->unp_flags |= UNP_BUSY; 1166 sounlock(so); 1167 1168 sun = makeun_sb(nam, &addrlen); 1169 pb = pathbuf_create(sun->sun_path); 1170 if (pb == NULL) { 1171 error = ENOMEM; 1172 goto bad2; 1173 } 1174 1175 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 1176 1177 if ((error = namei(&nd)) != 0) { 1178 pathbuf_destroy(pb); 1179 goto bad2; 1180 } 1181 vp = nd.ni_vp; 1182 pathbuf_destroy(pb); 1183 if (vp->v_type != VSOCK) { 1184 error = ENOTSOCK; 1185 goto bad; 1186 } 1187 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0) 1188 goto bad; 1189 /* Acquire v_interlock to protect against unp_detach(). */ 1190 mutex_enter(vp->v_interlock); 1191 so2 = vp->v_socket; 1192 if (so2 == NULL) { 1193 mutex_exit(vp->v_interlock); 1194 error = ECONNREFUSED; 1195 goto bad; 1196 } 1197 if (so->so_type != so2->so_type) { 1198 mutex_exit(vp->v_interlock); 1199 error = EPROTOTYPE; 1200 goto bad; 1201 } 1202 solock(so); 1203 unp_resetlock(so); 1204 mutex_exit(vp->v_interlock); 1205 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1206 /* 1207 * This may seem somewhat fragile but is OK: if we can 1208 * see SO_ACCEPTCONN set on the endpoint, then it must 1209 * be locked by the domain-wide uipc_lock. 1210 */ 1211 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 || 1212 so2->so_lock == uipc_lock); 1213 if ((so2->so_options & SO_ACCEPTCONN) == 0 || 1214 (so3 = sonewconn(so2, false)) == NULL) { 1215 error = ECONNREFUSED; 1216 sounlock(so); 1217 goto bad; 1218 } 1219 unp2 = sotounpcb(so2); 1220 unp3 = sotounpcb(so3); 1221 if (unp2->unp_addr) { 1222 unp3->unp_addr = malloc(unp2->unp_addrlen, 1223 M_SONAME, M_WAITOK); 1224 memcpy(unp3->unp_addr, unp2->unp_addr, 1225 unp2->unp_addrlen); 1226 unp3->unp_addrlen = unp2->unp_addrlen; 1227 } 1228 unp3->unp_flags = unp2->unp_flags; 1229 so2 = so3; 1230 /* 1231 * The connector's (client's) credentials are copied from its 1232 * process structure at the time of connect() (which is now). 1233 */ 1234 unp_connid(l, unp3, UNP_EIDSVALID); 1235 /* 1236 * The receiver's (server's) credentials are copied from the 1237 * unp_peercred member of socket on which the former called 1238 * listen(); unp_listen() cached that process's credentials 1239 * at that time so we can use them now. 1240 */ 1241 if (unp2->unp_flags & UNP_EIDSBIND) { 1242 memcpy(&unp->unp_connid, &unp2->unp_connid, 1243 sizeof(unp->unp_connid)); 1244 unp->unp_flags |= UNP_EIDSVALID; 1245 } 1246 } 1247 error = unp_connect1(so, so2, l); 1248 if (error) { 1249 sounlock(so); 1250 goto bad; 1251 } 1252 unp2 = sotounpcb(so2); 1253 switch (so->so_type) { 1254 1255 /* 1256 * SOCK_DGRAM and default cases are handled in prior call to 1257 * unp_connect1(), do not add a default case without fixing 1258 * unp_connect1(). 1259 */ 1260 1261 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1262 case SOCK_STREAM: 1263 unp2->unp_conn = unp; 1264 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT) 1265 soisconnecting(so); 1266 else 1267 soisconnected(so); 1268 soisconnected(so2); 1269 /* 1270 * If the connection is fully established, break the 1271 * association with uipc_lock and give the connected 1272 * pair a separate lock to share. 1273 */ 1274 KASSERT(so2->so_head != NULL); 1275 unp_setpeerlocks(so, so2); 1276 break; 1277 1278 } 1279 sounlock(so); 1280 bad: 1281 vput(vp); 1282 bad2: 1283 free(sun, M_SONAME); 1284 solock(so); 1285 unp->unp_flags &= ~UNP_BUSY; 1286 return (error); 1287 } 1288 1289 int 1290 unp_connect2(struct socket *so, struct socket *so2) 1291 { 1292 struct unpcb *unp = sotounpcb(so); 1293 struct unpcb *unp2; 1294 int error = 0; 1295 1296 KASSERT(solocked2(so, so2)); 1297 1298 error = unp_connect1(so, so2, curlwp); 1299 if (error) 1300 return error; 1301 1302 unp2 = sotounpcb(so2); 1303 switch (so->so_type) { 1304 1305 /* 1306 * SOCK_DGRAM and default cases are handled in prior call to 1307 * unp_connect1(), do not add a default case without fixing 1308 * unp_connect1(). 1309 */ 1310 1311 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1312 case SOCK_STREAM: 1313 unp2->unp_conn = unp; 1314 soisconnected(so); 1315 soisconnected(so2); 1316 break; 1317 1318 } 1319 return error; 1320 } 1321 1322 static void 1323 unp_disconnect1(struct unpcb *unp) 1324 { 1325 struct unpcb *unp2 = unp->unp_conn; 1326 struct socket *so; 1327 1328 if (unp2 == 0) 1329 return; 1330 unp->unp_conn = 0; 1331 so = unp->unp_socket; 1332 switch (so->so_type) { 1333 case SOCK_DGRAM: 1334 if (unp2->unp_refs == unp) 1335 unp2->unp_refs = unp->unp_nextref; 1336 else { 1337 unp2 = unp2->unp_refs; 1338 for (;;) { 1339 KASSERT(solocked2(so, unp2->unp_socket)); 1340 if (unp2 == 0) 1341 panic("unp_disconnect1"); 1342 if (unp2->unp_nextref == unp) 1343 break; 1344 unp2 = unp2->unp_nextref; 1345 } 1346 unp2->unp_nextref = unp->unp_nextref; 1347 } 1348 unp->unp_nextref = 0; 1349 so->so_state &= ~SS_ISCONNECTED; 1350 break; 1351 1352 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1353 case SOCK_STREAM: 1354 KASSERT(solocked2(so, unp2->unp_socket)); 1355 soisdisconnected(so); 1356 unp2->unp_conn = 0; 1357 soisdisconnected(unp2->unp_socket); 1358 break; 1359 } 1360 } 1361 1362 static void 1363 unp_shutdown1(struct unpcb *unp) 1364 { 1365 struct socket *so; 1366 1367 switch(unp->unp_socket->so_type) { 1368 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1369 case SOCK_STREAM: 1370 if (unp->unp_conn && (so = unp->unp_conn->unp_socket)) 1371 socantrcvmore(so); 1372 break; 1373 default: 1374 break; 1375 } 1376 } 1377 1378 static bool 1379 unp_drop(struct unpcb *unp, int errno) 1380 { 1381 struct socket *so = unp->unp_socket; 1382 1383 KASSERT(solocked(so)); 1384 1385 so->so_error = errno; 1386 unp_disconnect1(unp); 1387 if (so->so_head) { 1388 so->so_pcb = NULL; 1389 /* sofree() drops the socket lock */ 1390 sofree(so); 1391 unp_free(unp); 1392 return true; 1393 } 1394 return false; 1395 } 1396 1397 #ifdef notdef 1398 unp_drain(void) 1399 { 1400 1401 } 1402 #endif 1403 1404 int 1405 unp_externalize(struct mbuf *rights, struct lwp *l, int flags) 1406 { 1407 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *); 1408 struct proc * const p = l->l_proc; 1409 file_t **rp; 1410 int error = 0; 1411 1412 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / 1413 sizeof(file_t *); 1414 if (nfds == 0) 1415 goto noop; 1416 1417 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP); 1418 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER); 1419 1420 /* Make sure the recipient should be able to see the files.. */ 1421 rp = (file_t **)CMSG_DATA(cm); 1422 for (size_t i = 0; i < nfds; i++) { 1423 file_t * const fp = *rp++; 1424 if (fp == NULL) { 1425 error = EINVAL; 1426 goto out; 1427 } 1428 /* 1429 * If we are in a chroot'ed directory, and 1430 * someone wants to pass us a directory, make 1431 * sure it's inside the subtree we're allowed 1432 * to access. 1433 */ 1434 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) { 1435 vnode_t *vp = fp->f_vnode; 1436 if ((vp->v_type == VDIR) && 1437 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) { 1438 error = EPERM; 1439 goto out; 1440 } 1441 } 1442 } 1443 1444 restart: 1445 /* 1446 * First loop -- allocate file descriptor table slots for the 1447 * new files. 1448 */ 1449 for (size_t i = 0; i < nfds; i++) { 1450 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) { 1451 /* 1452 * Back out what we've done so far. 1453 */ 1454 while (i-- > 0) { 1455 fd_abort(p, NULL, fdp[i]); 1456 } 1457 if (error == ENOSPC) { 1458 fd_tryexpand(p); 1459 error = 0; 1460 goto restart; 1461 } 1462 /* 1463 * This is the error that has historically 1464 * been returned, and some callers may 1465 * expect it. 1466 */ 1467 error = EMSGSIZE; 1468 goto out; 1469 } 1470 } 1471 1472 /* 1473 * Now that adding them has succeeded, update all of the 1474 * file passing state and affix the descriptors. 1475 */ 1476 rp = (file_t **)CMSG_DATA(cm); 1477 int *ofdp = (int *)CMSG_DATA(cm); 1478 for (size_t i = 0; i < nfds; i++) { 1479 file_t * const fp = *rp++; 1480 const int fd = fdp[i]; 1481 atomic_dec_uint(&unp_rights); 1482 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1483 fd_affix(p, fp, fd); 1484 /* 1485 * Done with this file pointer, replace it with a fd; 1486 */ 1487 *ofdp++ = fd; 1488 mutex_enter(&fp->f_lock); 1489 fp->f_msgcount--; 1490 mutex_exit(&fp->f_lock); 1491 /* 1492 * Note that fd_affix() adds a reference to the file. 1493 * The file may already have been closed by another 1494 * LWP in the process, so we must drop the reference 1495 * added by unp_internalize() with closef(). 1496 */ 1497 closef(fp); 1498 } 1499 1500 /* 1501 * Adjust length, in case of transition from large file_t 1502 * pointers to ints. 1503 */ 1504 if (sizeof(file_t *) != sizeof(int)) { 1505 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int)); 1506 rights->m_len = CMSG_SPACE(nfds * sizeof(int)); 1507 } 1508 out: 1509 if (__predict_false(error != 0)) { 1510 file_t **const fpp = (file_t **)CMSG_DATA(cm); 1511 for (size_t i = 0; i < nfds; i++) 1512 unp_discard_now(fpp[i]); 1513 /* 1514 * Truncate the array so that nobody will try to interpret 1515 * what is now garbage in it. 1516 */ 1517 cm->cmsg_len = CMSG_LEN(0); 1518 rights->m_len = CMSG_SPACE(0); 1519 } 1520 rw_exit(&p->p_cwdi->cwdi_lock); 1521 kmem_free(fdp, nfds * sizeof(int)); 1522 1523 noop: 1524 /* 1525 * Don't disclose kernel memory in the alignment space. 1526 */ 1527 KASSERT(cm->cmsg_len <= rights->m_len); 1528 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len - 1529 cm->cmsg_len); 1530 return error; 1531 } 1532 1533 static int 1534 unp_internalize(struct mbuf **controlp) 1535 { 1536 filedesc_t *fdescp = curlwp->l_fd; 1537 fdtab_t *dt; 1538 struct mbuf *control = *controlp; 1539 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *); 1540 file_t **rp, **files; 1541 file_t *fp; 1542 int i, fd, *fdp; 1543 int nfds, error; 1544 u_int maxmsg; 1545 1546 error = 0; 1547 newcm = NULL; 1548 1549 /* Sanity check the control message header. */ 1550 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET || 1551 cm->cmsg_len > control->m_len || 1552 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm))) 1553 return (EINVAL); 1554 1555 /* 1556 * Verify that the file descriptors are valid, and acquire 1557 * a reference to each. 1558 */ 1559 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int); 1560 fdp = (int *)CMSG_DATA(cm); 1561 maxmsg = maxfiles / unp_rights_ratio; 1562 for (i = 0; i < nfds; i++) { 1563 fd = *fdp++; 1564 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) { 1565 atomic_dec_uint(&unp_rights); 1566 nfds = i; 1567 error = EAGAIN; 1568 goto out; 1569 } 1570 if ((fp = fd_getfile(fd)) == NULL 1571 || fp->f_type == DTYPE_KQUEUE) { 1572 if (fp) 1573 fd_putfile(fd); 1574 atomic_dec_uint(&unp_rights); 1575 nfds = i; 1576 error = EBADF; 1577 goto out; 1578 } 1579 } 1580 1581 /* Allocate new space and copy header into it. */ 1582 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK); 1583 if (newcm == NULL) { 1584 error = E2BIG; 1585 goto out; 1586 } 1587 memcpy(newcm, cm, sizeof(struct cmsghdr)); 1588 memset(newcm + 1, 0, CMSG_LEN(0) - sizeof(struct cmsghdr)); 1589 files = (file_t **)CMSG_DATA(newcm); 1590 1591 /* 1592 * Transform the file descriptors into file_t pointers, in 1593 * reverse order so that if pointers are bigger than ints, the 1594 * int won't get until we're done. No need to lock, as we have 1595 * already validated the descriptors with fd_getfile(). 1596 */ 1597 fdp = (int *)CMSG_DATA(cm) + nfds; 1598 rp = files + nfds; 1599 for (i = 0; i < nfds; i++) { 1600 dt = atomic_load_consume(&fdescp->fd_dt); 1601 fp = atomic_load_consume(&dt->dt_ff[*--fdp]->ff_file); 1602 KASSERT(fp != NULL); 1603 mutex_enter(&fp->f_lock); 1604 *--rp = fp; 1605 fp->f_count++; 1606 fp->f_msgcount++; 1607 mutex_exit(&fp->f_lock); 1608 } 1609 1610 out: 1611 /* Release descriptor references. */ 1612 fdp = (int *)CMSG_DATA(cm); 1613 for (i = 0; i < nfds; i++) { 1614 fd_putfile(*fdp++); 1615 if (error != 0) { 1616 atomic_dec_uint(&unp_rights); 1617 } 1618 } 1619 1620 if (error == 0) { 1621 if (control->m_flags & M_EXT) { 1622 m_freem(control); 1623 *controlp = control = m_get(M_WAIT, MT_CONTROL); 1624 } 1625 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)), 1626 M_MBUF, NULL, NULL); 1627 cm = newcm; 1628 /* 1629 * Adjust message & mbuf to note amount of space 1630 * actually used. 1631 */ 1632 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *)); 1633 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *)); 1634 } 1635 1636 return error; 1637 } 1638 1639 struct mbuf * 1640 unp_addsockcred(struct lwp *l, struct mbuf *control) 1641 { 1642 struct sockcred *sc; 1643 struct mbuf *m; 1644 void *p; 1645 1646 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)), 1647 SCM_CREDS, SOL_SOCKET, M_WAITOK); 1648 if (m == NULL) 1649 return control; 1650 1651 sc = p; 1652 sc->sc_pid = l->l_proc->p_pid; 1653 sc->sc_uid = kauth_cred_getuid(l->l_cred); 1654 sc->sc_euid = kauth_cred_geteuid(l->l_cred); 1655 sc->sc_gid = kauth_cred_getgid(l->l_cred); 1656 sc->sc_egid = kauth_cred_getegid(l->l_cred); 1657 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred); 1658 1659 for (int i = 0; i < sc->sc_ngroups; i++) 1660 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i); 1661 1662 return m_add(control, m); 1663 } 1664 1665 /* 1666 * Do a mark-sweep GC of files in the system, to free up any which are 1667 * caught in flight to an about-to-be-closed socket. Additionally, 1668 * process deferred file closures. 1669 */ 1670 static void 1671 unp_gc(file_t *dp) 1672 { 1673 extern struct domain unixdomain; 1674 file_t *fp, *np; 1675 struct socket *so, *so1; 1676 u_int i, oflags, rflags; 1677 bool didwork; 1678 1679 KASSERT(curlwp == unp_thread_lwp); 1680 KASSERT(mutex_owned(&filelist_lock)); 1681 1682 /* 1683 * First, process deferred file closures. 1684 */ 1685 while (!SLIST_EMPTY(&unp_thread_discard)) { 1686 fp = SLIST_FIRST(&unp_thread_discard); 1687 KASSERT(fp->f_unpcount > 0); 1688 KASSERT(fp->f_count > 0); 1689 KASSERT(fp->f_msgcount > 0); 1690 KASSERT(fp->f_count >= fp->f_unpcount); 1691 KASSERT(fp->f_count >= fp->f_msgcount); 1692 KASSERT(fp->f_msgcount >= fp->f_unpcount); 1693 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist); 1694 i = fp->f_unpcount; 1695 fp->f_unpcount = 0; 1696 mutex_exit(&filelist_lock); 1697 for (; i != 0; i--) { 1698 unp_discard_now(fp); 1699 } 1700 mutex_enter(&filelist_lock); 1701 } 1702 1703 /* 1704 * Clear mark bits. Ensure that we don't consider new files 1705 * entering the file table during this loop (they will not have 1706 * FSCAN set). 1707 */ 1708 unp_defer = 0; 1709 LIST_FOREACH(fp, &filehead, f_list) { 1710 for (oflags = fp->f_flag;; oflags = rflags) { 1711 rflags = atomic_cas_uint(&fp->f_flag, oflags, 1712 (oflags | FSCAN) & ~(FMARK|FDEFER)); 1713 if (__predict_true(oflags == rflags)) { 1714 break; 1715 } 1716 } 1717 } 1718 1719 /* 1720 * Iterate over the set of sockets, marking ones believed (based on 1721 * refcount) to be referenced from a process, and marking for rescan 1722 * sockets which are queued on a socket. Recan continues descending 1723 * and searching for sockets referenced by sockets (FDEFER), until 1724 * there are no more socket->socket references to be discovered. 1725 */ 1726 do { 1727 didwork = false; 1728 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) { 1729 KASSERT(mutex_owned(&filelist_lock)); 1730 np = LIST_NEXT(fp, f_list); 1731 mutex_enter(&fp->f_lock); 1732 if ((fp->f_flag & FDEFER) != 0) { 1733 atomic_and_uint(&fp->f_flag, ~FDEFER); 1734 unp_defer--; 1735 if (fp->f_count == 0) { 1736 /* 1737 * XXX: closef() doesn't pay attention 1738 * to FDEFER 1739 */ 1740 mutex_exit(&fp->f_lock); 1741 continue; 1742 } 1743 } else { 1744 if (fp->f_count == 0 || 1745 (fp->f_flag & FMARK) != 0 || 1746 fp->f_count == fp->f_msgcount || 1747 fp->f_unpcount != 0) { 1748 mutex_exit(&fp->f_lock); 1749 continue; 1750 } 1751 } 1752 atomic_or_uint(&fp->f_flag, FMARK); 1753 1754 if (fp->f_type != DTYPE_SOCKET || 1755 (so = fp->f_socket) == NULL || 1756 so->so_proto->pr_domain != &unixdomain || 1757 (so->so_proto->pr_flags & PR_RIGHTS) == 0) { 1758 mutex_exit(&fp->f_lock); 1759 continue; 1760 } 1761 1762 /* Gain file ref, mark our position, and unlock. */ 1763 didwork = true; 1764 LIST_INSERT_AFTER(fp, dp, f_list); 1765 fp->f_count++; 1766 mutex_exit(&fp->f_lock); 1767 mutex_exit(&filelist_lock); 1768 1769 /* 1770 * Mark files referenced from sockets queued on the 1771 * accept queue as well. 1772 */ 1773 solock(so); 1774 unp_scan(so->so_rcv.sb_mb, unp_mark, 0); 1775 if ((so->so_options & SO_ACCEPTCONN) != 0) { 1776 TAILQ_FOREACH(so1, &so->so_q0, so_qe) { 1777 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0); 1778 } 1779 TAILQ_FOREACH(so1, &so->so_q, so_qe) { 1780 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0); 1781 } 1782 } 1783 sounlock(so); 1784 1785 /* Re-lock and restart from where we left off. */ 1786 closef(fp); 1787 mutex_enter(&filelist_lock); 1788 np = LIST_NEXT(dp, f_list); 1789 LIST_REMOVE(dp, f_list); 1790 } 1791 /* 1792 * Bail early if we did nothing in the loop above. Could 1793 * happen because of concurrent activity causing unp_defer 1794 * to get out of sync. 1795 */ 1796 } while (unp_defer != 0 && didwork); 1797 1798 /* 1799 * Sweep pass. 1800 * 1801 * We grab an extra reference to each of the files that are 1802 * not otherwise accessible and then free the rights that are 1803 * stored in messages on them. 1804 */ 1805 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) { 1806 KASSERT(mutex_owned(&filelist_lock)); 1807 np = LIST_NEXT(fp, f_list); 1808 mutex_enter(&fp->f_lock); 1809 1810 /* 1811 * Ignore non-sockets. 1812 * Ignore dead sockets, or sockets with pending close. 1813 * Ignore sockets obviously referenced elsewhere. 1814 * Ignore sockets marked as referenced by our scan. 1815 * Ignore new sockets that did not exist during the scan. 1816 */ 1817 if (fp->f_type != DTYPE_SOCKET || 1818 fp->f_count == 0 || fp->f_unpcount != 0 || 1819 fp->f_count != fp->f_msgcount || 1820 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) { 1821 mutex_exit(&fp->f_lock); 1822 continue; 1823 } 1824 1825 /* Gain file ref, mark our position, and unlock. */ 1826 LIST_INSERT_AFTER(fp, dp, f_list); 1827 fp->f_count++; 1828 mutex_exit(&fp->f_lock); 1829 mutex_exit(&filelist_lock); 1830 1831 /* 1832 * Flush all data from the socket's receive buffer. 1833 * This will cause files referenced only by the 1834 * socket to be queued for close. 1835 */ 1836 so = fp->f_socket; 1837 solock(so); 1838 sorflush(so); 1839 sounlock(so); 1840 1841 /* Re-lock and restart from where we left off. */ 1842 closef(fp); 1843 mutex_enter(&filelist_lock); 1844 np = LIST_NEXT(dp, f_list); 1845 LIST_REMOVE(dp, f_list); 1846 } 1847 } 1848 1849 /* 1850 * Garbage collector thread. While SCM_RIGHTS messages are in transit, 1851 * wake once per second to garbage collect. Run continually while we 1852 * have deferred closes to process. 1853 */ 1854 static void 1855 unp_thread(void *cookie) 1856 { 1857 file_t *dp; 1858 1859 /* Allocate a dummy file for our scans. */ 1860 if ((dp = fgetdummy()) == NULL) { 1861 panic("unp_thread"); 1862 } 1863 1864 mutex_enter(&filelist_lock); 1865 for (;;) { 1866 KASSERT(mutex_owned(&filelist_lock)); 1867 if (SLIST_EMPTY(&unp_thread_discard)) { 1868 if (unp_rights != 0) { 1869 (void)cv_timedwait(&unp_thread_cv, 1870 &filelist_lock, hz); 1871 } else { 1872 cv_wait(&unp_thread_cv, &filelist_lock); 1873 } 1874 } 1875 unp_gc(dp); 1876 } 1877 /* NOTREACHED */ 1878 } 1879 1880 /* 1881 * Kick the garbage collector into action if there is something for 1882 * it to process. 1883 */ 1884 static void 1885 unp_thread_kick(void) 1886 { 1887 1888 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) { 1889 mutex_enter(&filelist_lock); 1890 cv_signal(&unp_thread_cv); 1891 mutex_exit(&filelist_lock); 1892 } 1893 } 1894 1895 void 1896 unp_dispose(struct mbuf *m) 1897 { 1898 1899 if (m) 1900 unp_scan(m, unp_discard_later, 1); 1901 } 1902 1903 void 1904 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard) 1905 { 1906 struct mbuf *m; 1907 file_t **rp, *fp; 1908 struct cmsghdr *cm; 1909 int i, qfds; 1910 1911 while (m0) { 1912 for (m = m0; m; m = m->m_next) { 1913 if (m->m_type != MT_CONTROL || 1914 m->m_len < sizeof(*cm)) { 1915 continue; 1916 } 1917 cm = mtod(m, struct cmsghdr *); 1918 if (cm->cmsg_level != SOL_SOCKET || 1919 cm->cmsg_type != SCM_RIGHTS) 1920 continue; 1921 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) 1922 / sizeof(file_t *); 1923 rp = (file_t **)CMSG_DATA(cm); 1924 for (i = 0; i < qfds; i++) { 1925 fp = *rp; 1926 if (discard) { 1927 *rp = 0; 1928 } 1929 (*op)(fp); 1930 rp++; 1931 } 1932 } 1933 m0 = m0->m_nextpkt; 1934 } 1935 } 1936 1937 void 1938 unp_mark(file_t *fp) 1939 { 1940 1941 if (fp == NULL) 1942 return; 1943 1944 /* If we're already deferred, don't screw up the defer count */ 1945 mutex_enter(&fp->f_lock); 1946 if (fp->f_flag & (FMARK | FDEFER)) { 1947 mutex_exit(&fp->f_lock); 1948 return; 1949 } 1950 1951 /* 1952 * Minimize the number of deferrals... Sockets are the only type of 1953 * file which can hold references to another file, so just mark 1954 * other files, and defer unmarked sockets for the next pass. 1955 */ 1956 if (fp->f_type == DTYPE_SOCKET) { 1957 unp_defer++; 1958 KASSERT(fp->f_count != 0); 1959 atomic_or_uint(&fp->f_flag, FDEFER); 1960 } else { 1961 atomic_or_uint(&fp->f_flag, FMARK); 1962 } 1963 mutex_exit(&fp->f_lock); 1964 } 1965 1966 static void 1967 unp_discard_now(file_t *fp) 1968 { 1969 1970 if (fp == NULL) 1971 return; 1972 1973 KASSERT(fp->f_count > 0); 1974 KASSERT(fp->f_msgcount > 0); 1975 1976 mutex_enter(&fp->f_lock); 1977 fp->f_msgcount--; 1978 mutex_exit(&fp->f_lock); 1979 atomic_dec_uint(&unp_rights); 1980 (void)closef(fp); 1981 } 1982 1983 static void 1984 unp_discard_later(file_t *fp) 1985 { 1986 1987 if (fp == NULL) 1988 return; 1989 1990 KASSERT(fp->f_count > 0); 1991 KASSERT(fp->f_msgcount > 0); 1992 1993 mutex_enter(&filelist_lock); 1994 if (fp->f_unpcount++ == 0) { 1995 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist); 1996 } 1997 mutex_exit(&filelist_lock); 1998 } 1999 2000 static void 2001 unp_sysctl_create(void) 2002 { 2003 2004 KASSERT(usrreq_sysctllog == NULL); 2005 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2006 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2007 CTLTYPE_LONG, "sendspace", 2008 SYSCTL_DESCR("Default stream send space"), 2009 NULL, 0, &unpst_sendspace, 0, 2010 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL); 2011 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2012 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2013 CTLTYPE_LONG, "recvspace", 2014 SYSCTL_DESCR("Default stream recv space"), 2015 NULL, 0, &unpst_recvspace, 0, 2016 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL); 2017 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2018 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2019 CTLTYPE_LONG, "sendspace", 2020 SYSCTL_DESCR("Default datagram send space"), 2021 NULL, 0, &unpdg_sendspace, 0, 2022 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL); 2023 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2024 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2025 CTLTYPE_LONG, "recvspace", 2026 SYSCTL_DESCR("Default datagram recv space"), 2027 NULL, 0, &unpdg_recvspace, 0, 2028 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL); 2029 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2030 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 2031 CTLTYPE_INT, "inflight", 2032 SYSCTL_DESCR("File descriptors in flight"), 2033 NULL, 0, &unp_rights, 0, 2034 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL); 2035 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2036 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 2037 CTLTYPE_INT, "deferred", 2038 SYSCTL_DESCR("File descriptors deferred for close"), 2039 NULL, 0, &unp_defer, 0, 2040 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL); 2041 } 2042 2043 const struct pr_usrreqs unp_usrreqs = { 2044 .pr_attach = unp_attach, 2045 .pr_detach = unp_detach, 2046 .pr_accept = unp_accept, 2047 .pr_bind = unp_bind, 2048 .pr_listen = unp_listen, 2049 .pr_connect = unp_connect, 2050 .pr_connect2 = unp_connect2, 2051 .pr_disconnect = unp_disconnect, 2052 .pr_shutdown = unp_shutdown, 2053 .pr_abort = unp_abort, 2054 .pr_ioctl = unp_ioctl, 2055 .pr_stat = unp_stat, 2056 .pr_peeraddr = unp_peeraddr, 2057 .pr_sockaddr = unp_sockaddr, 2058 .pr_rcvd = unp_rcvd, 2059 .pr_recvoob = unp_recvoob, 2060 .pr_send = unp_send, 2061 .pr_sendoob = unp_sendoob, 2062 }; 2063