1 /* $NetBSD: uipc_usrreq.c,v 1.200 2020/11/06 14:50:13 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 1998, 2000, 2004, 2008, 2009, 2020 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Andrew Doran. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 30 * POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1982, 1986, 1989, 1991, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95 62 */ 63 64 /* 65 * Copyright (c) 1997 Christopher G. Demetriou. All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions 69 * are met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce the above copyright 73 * notice, this list of conditions and the following disclaimer in the 74 * documentation and/or other materials provided with the distribution. 75 * 3. All advertising materials mentioning features or use of this software 76 * must display the following acknowledgement: 77 * This product includes software developed by the University of 78 * California, Berkeley and its contributors. 79 * 4. Neither the name of the University nor the names of its contributors 80 * may be used to endorse or promote products derived from this software 81 * without specific prior written permission. 82 * 83 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 84 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 85 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 86 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 87 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 88 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 89 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 90 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 91 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 92 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 93 * SUCH DAMAGE. 94 * 95 * @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95 96 */ 97 98 #include <sys/cdefs.h> 99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.200 2020/11/06 14:50:13 christos Exp $"); 100 101 #ifdef _KERNEL_OPT 102 #include "opt_compat_netbsd.h" 103 #endif 104 105 #include <sys/param.h> 106 #include <sys/systm.h> 107 #include <sys/proc.h> 108 #include <sys/filedesc.h> 109 #include <sys/domain.h> 110 #include <sys/protosw.h> 111 #include <sys/socket.h> 112 #include <sys/socketvar.h> 113 #include <sys/unpcb.h> 114 #include <sys/un.h> 115 #include <sys/namei.h> 116 #include <sys/vnode.h> 117 #include <sys/file.h> 118 #include <sys/stat.h> 119 #include <sys/mbuf.h> 120 #include <sys/kauth.h> 121 #include <sys/kmem.h> 122 #include <sys/atomic.h> 123 #include <sys/uidinfo.h> 124 #include <sys/kernel.h> 125 #include <sys/kthread.h> 126 #include <sys/compat_stub.h> 127 128 #include <compat/sys/socket.h> 129 #include <compat/net/route_70.h> 130 131 /* 132 * Unix communications domain. 133 * 134 * TODO: 135 * RDM 136 * rethink name space problems 137 * need a proper out-of-band 138 * 139 * Notes on locking: 140 * 141 * The generic rules noted in uipc_socket2.c apply. In addition: 142 * 143 * o We have a global lock, uipc_lock. 144 * 145 * o All datagram sockets are locked by uipc_lock. 146 * 147 * o For stream socketpairs, the two endpoints are created sharing the same 148 * independent lock. Sockets presented to PRU_CONNECT2 must already have 149 * matching locks. 150 * 151 * o Stream sockets created via socket() start life with their own 152 * independent lock. 153 * 154 * o Stream connections to a named endpoint are slightly more complicated. 155 * Sockets that have called listen() have their lock pointer mutated to 156 * the global uipc_lock. When establishing a connection, the connecting 157 * socket also has its lock mutated to uipc_lock, which matches the head 158 * (listening socket). We create a new socket for accept() to return, and 159 * that also shares the head's lock. Until the connection is completely 160 * done on both ends, all three sockets are locked by uipc_lock. Once the 161 * connection is complete, the association with the head's lock is broken. 162 * The connecting socket and the socket returned from accept() have their 163 * lock pointers mutated away from uipc_lock, and back to the connecting 164 * socket's original, independent lock. The head continues to be locked 165 * by uipc_lock. 166 * 167 * o If uipc_lock is determined to be a significant source of contention, 168 * it could easily be hashed out. It is difficult to simply make it an 169 * independent lock because of visibility / garbage collection issues: 170 * if a socket has been associated with a lock at any point, that lock 171 * must remain valid until the socket is no longer visible in the system. 172 * The lock must not be freed or otherwise destroyed until any sockets 173 * that had referenced it have also been destroyed. 174 */ 175 const struct sockaddr_un sun_noname = { 176 .sun_len = offsetof(struct sockaddr_un, sun_path), 177 .sun_family = AF_LOCAL, 178 }; 179 ino_t unp_ino; /* prototype for fake inode numbers */ 180 181 static struct mbuf * unp_addsockcred(struct lwp *, struct mbuf *); 182 static void unp_discard_later(file_t *); 183 static void unp_discard_now(file_t *); 184 static void unp_disconnect1(struct unpcb *); 185 static bool unp_drop(struct unpcb *, int); 186 static int unp_internalize(struct mbuf **); 187 static void unp_mark(file_t *); 188 static void unp_scan(struct mbuf *, void (*)(file_t *), int); 189 static void unp_shutdown1(struct unpcb *); 190 static void unp_thread(void *); 191 static void unp_thread_kick(void); 192 193 static kmutex_t *uipc_lock; 194 195 static kcondvar_t unp_thread_cv; 196 static lwp_t *unp_thread_lwp; 197 static SLIST_HEAD(,file) unp_thread_discard; 198 static int unp_defer; 199 static struct sysctllog *usrreq_sysctllog; 200 static void unp_sysctl_create(void); 201 202 /* Compat interface */ 203 204 struct mbuf * stub_compat_70_unp_addsockcred(lwp_t *, struct mbuf *); 205 206 struct mbuf * stub_compat_70_unp_addsockcred(struct lwp *lwp, 207 struct mbuf *control) 208 { 209 210 /* just copy our initial argument */ 211 return control; 212 } 213 214 bool compat70_ocreds_valid = false; 215 216 /* 217 * Initialize Unix protocols. 218 */ 219 void 220 uipc_init(void) 221 { 222 int error; 223 224 unp_sysctl_create(); 225 226 uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 227 cv_init(&unp_thread_cv, "unpgc"); 228 229 error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread, 230 NULL, &unp_thread_lwp, "unpgc"); 231 if (error != 0) 232 panic("uipc_init %d", error); 233 } 234 235 static void 236 unp_connid(struct lwp *l, struct unpcb *unp, int flags) 237 { 238 unp->unp_connid.unp_pid = l->l_proc->p_pid; 239 unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred); 240 unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred); 241 unp->unp_flags |= flags; 242 } 243 244 /* 245 * A connection succeeded: disassociate both endpoints from the head's 246 * lock, and make them share their own lock. There is a race here: for 247 * a very brief time one endpoint will be locked by a different lock 248 * than the other end. However, since the current thread holds the old 249 * lock (the listening socket's lock, the head) access can still only be 250 * made to one side of the connection. 251 */ 252 static void 253 unp_setpeerlocks(struct socket *so, struct socket *so2) 254 { 255 struct unpcb *unp; 256 kmutex_t *lock; 257 258 KASSERT(solocked2(so, so2)); 259 260 /* 261 * Bail out if either end of the socket is not yet fully 262 * connected or accepted. We only break the lock association 263 * with the head when the pair of sockets stand completely 264 * on their own. 265 */ 266 KASSERT(so->so_head == NULL); 267 if (so2->so_head != NULL) 268 return; 269 270 /* 271 * Drop references to old lock. A third reference (from the 272 * queue head) must be held as we still hold its lock. Bonus: 273 * we don't need to worry about garbage collecting the lock. 274 */ 275 lock = so->so_lock; 276 KASSERT(lock == uipc_lock); 277 mutex_obj_free(lock); 278 mutex_obj_free(lock); 279 280 /* 281 * Grab stream lock from the initiator and share between the two 282 * endpoints. Issue memory barrier to ensure all modifications 283 * become globally visible before the lock change. so2 is 284 * assumed not to have a stream lock, because it was created 285 * purely for the server side to accept this connection and 286 * started out life using the domain-wide lock. 287 */ 288 unp = sotounpcb(so); 289 KASSERT(unp->unp_streamlock != NULL); 290 KASSERT(sotounpcb(so2)->unp_streamlock == NULL); 291 lock = unp->unp_streamlock; 292 unp->unp_streamlock = NULL; 293 mutex_obj_hold(lock); 294 membar_exit(); 295 /* 296 * possible race if lock is not held - see comment in 297 * uipc_usrreq(PRU_ACCEPT). 298 */ 299 KASSERT(mutex_owned(lock)); 300 solockreset(so, lock); 301 solockreset(so2, lock); 302 } 303 304 /* 305 * Reset a socket's lock back to the domain-wide lock. 306 */ 307 static void 308 unp_resetlock(struct socket *so) 309 { 310 kmutex_t *olock, *nlock; 311 struct unpcb *unp; 312 313 KASSERT(solocked(so)); 314 315 olock = so->so_lock; 316 nlock = uipc_lock; 317 if (olock == nlock) 318 return; 319 unp = sotounpcb(so); 320 KASSERT(unp->unp_streamlock == NULL); 321 unp->unp_streamlock = olock; 322 mutex_obj_hold(nlock); 323 mutex_enter(nlock); 324 solockreset(so, nlock); 325 mutex_exit(olock); 326 } 327 328 static void 329 unp_free(struct unpcb *unp) 330 { 331 if (unp->unp_addr) 332 free(unp->unp_addr, M_SONAME); 333 if (unp->unp_streamlock != NULL) 334 mutex_obj_free(unp->unp_streamlock); 335 kmem_free(unp, sizeof(*unp)); 336 } 337 338 static int 339 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp) 340 { 341 struct socket *so2; 342 const struct sockaddr_un *sun; 343 344 /* XXX: server side closed the socket */ 345 if (unp->unp_conn == NULL) 346 return ECONNREFUSED; 347 so2 = unp->unp_conn->unp_socket; 348 349 KASSERT(solocked(so2)); 350 351 if (unp->unp_addr) 352 sun = unp->unp_addr; 353 else 354 sun = &sun_noname; 355 if (unp->unp_conn->unp_flags & UNP_WANTCRED) 356 control = unp_addsockcred(curlwp, control); 357 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) 358 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control), 359 stub_compat_70_unp_addsockcred(curlwp, control), control); 360 if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m, 361 control) == 0) { 362 unp_dispose(control); 363 m_freem(control); 364 m_freem(m); 365 /* Don't call soroverflow because we're returning this 366 * error directly to the sender. */ 367 so2->so_rcv.sb_overflowed++; 368 return ENOBUFS; 369 } else { 370 sorwakeup(so2); 371 return 0; 372 } 373 } 374 375 static void 376 unp_setaddr(struct socket *so, struct sockaddr *nam, bool peeraddr) 377 { 378 const struct sockaddr_un *sun = NULL; 379 struct unpcb *unp; 380 381 KASSERT(solocked(so)); 382 unp = sotounpcb(so); 383 384 if (peeraddr) { 385 if (unp->unp_conn && unp->unp_conn->unp_addr) 386 sun = unp->unp_conn->unp_addr; 387 } else { 388 if (unp->unp_addr) 389 sun = unp->unp_addr; 390 } 391 if (sun == NULL) 392 sun = &sun_noname; 393 394 memcpy(nam, sun, sun->sun_len); 395 } 396 397 static int 398 unp_rcvd(struct socket *so, int flags, struct lwp *l) 399 { 400 struct unpcb *unp = sotounpcb(so); 401 struct socket *so2; 402 u_int newhiwat; 403 404 KASSERT(solocked(so)); 405 KASSERT(unp != NULL); 406 407 switch (so->so_type) { 408 409 case SOCK_DGRAM: 410 panic("uipc 1"); 411 /*NOTREACHED*/ 412 413 case SOCK_SEQPACKET: /* FALLTHROUGH */ 414 case SOCK_STREAM: 415 #define rcv (&so->so_rcv) 416 #define snd (&so2->so_snd) 417 if (unp->unp_conn == 0) 418 break; 419 so2 = unp->unp_conn->unp_socket; 420 KASSERT(solocked2(so, so2)); 421 /* 422 * Adjust backpressure on sender 423 * and wakeup any waiting to write. 424 */ 425 snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt; 426 unp->unp_mbcnt = rcv->sb_mbcnt; 427 newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc; 428 (void)chgsbsize(so2->so_uidinfo, 429 &snd->sb_hiwat, newhiwat, RLIM_INFINITY); 430 unp->unp_cc = rcv->sb_cc; 431 sowwakeup(so2); 432 #undef snd 433 #undef rcv 434 break; 435 436 default: 437 panic("uipc 2"); 438 } 439 440 return 0; 441 } 442 443 static int 444 unp_recvoob(struct socket *so, struct mbuf *m, int flags) 445 { 446 KASSERT(solocked(so)); 447 448 return EOPNOTSUPP; 449 } 450 451 static int 452 unp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam, 453 struct mbuf *control, struct lwp *l) 454 { 455 struct unpcb *unp = sotounpcb(so); 456 int error = 0; 457 u_int newhiwat; 458 struct socket *so2; 459 460 KASSERT(solocked(so)); 461 KASSERT(unp != NULL); 462 KASSERT(m != NULL); 463 464 /* 465 * Note: unp_internalize() rejects any control message 466 * other than SCM_RIGHTS, and only allows one. This 467 * has the side-effect of preventing a caller from 468 * forging SCM_CREDS. 469 */ 470 if (control) { 471 sounlock(so); 472 error = unp_internalize(&control); 473 solock(so); 474 if (error != 0) { 475 m_freem(control); 476 m_freem(m); 477 return error; 478 } 479 } 480 481 switch (so->so_type) { 482 483 case SOCK_DGRAM: { 484 KASSERT(so->so_lock == uipc_lock); 485 if (nam) { 486 if ((so->so_state & SS_ISCONNECTED) != 0) 487 error = EISCONN; 488 else { 489 /* 490 * Note: once connected, the 491 * socket's lock must not be 492 * dropped until we have sent 493 * the message and disconnected. 494 * This is necessary to prevent 495 * intervening control ops, like 496 * another connection. 497 */ 498 error = unp_connect(so, nam, l); 499 } 500 } else { 501 if ((so->so_state & SS_ISCONNECTED) == 0) 502 error = ENOTCONN; 503 } 504 if (error) { 505 unp_dispose(control); 506 m_freem(control); 507 m_freem(m); 508 return error; 509 } 510 error = unp_output(m, control, unp); 511 if (nam) 512 unp_disconnect1(unp); 513 break; 514 } 515 516 case SOCK_SEQPACKET: /* FALLTHROUGH */ 517 case SOCK_STREAM: 518 #define rcv (&so2->so_rcv) 519 #define snd (&so->so_snd) 520 if (unp->unp_conn == NULL) { 521 error = ENOTCONN; 522 break; 523 } 524 so2 = unp->unp_conn->unp_socket; 525 KASSERT(solocked2(so, so2)); 526 if (unp->unp_conn->unp_flags & UNP_WANTCRED) { 527 /* 528 * Credentials are passed only once on 529 * SOCK_STREAM and SOCK_SEQPACKET. 530 */ 531 unp->unp_conn->unp_flags &= ~UNP_WANTCRED; 532 control = unp_addsockcred(l, control); 533 } 534 if (unp->unp_conn->unp_flags & UNP_OWANTCRED) { 535 /* 536 * Credentials are passed only once on 537 * SOCK_STREAM and SOCK_SEQPACKET. 538 */ 539 unp->unp_conn->unp_flags &= ~UNP_OWANTCRED; 540 MODULE_HOOK_CALL(uipc_unp_70_hook, (curlwp, control), 541 stub_compat_70_unp_addsockcred(curlwp, control), 542 control); 543 } 544 /* 545 * Send to paired receive port, and then reduce 546 * send buffer hiwater marks to maintain backpressure. 547 * Wake up readers. 548 */ 549 if (control) { 550 if (sbappendcontrol(rcv, m, control) != 0) 551 control = NULL; 552 } else { 553 switch(so->so_type) { 554 case SOCK_SEQPACKET: 555 sbappendrecord(rcv, m); 556 break; 557 case SOCK_STREAM: 558 sbappend(rcv, m); 559 break; 560 default: 561 panic("uipc_usrreq"); 562 break; 563 } 564 } 565 snd->sb_mbmax -= 566 rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt; 567 unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt; 568 newhiwat = snd->sb_hiwat - 569 (rcv->sb_cc - unp->unp_conn->unp_cc); 570 (void)chgsbsize(so->so_uidinfo, 571 &snd->sb_hiwat, newhiwat, RLIM_INFINITY); 572 unp->unp_conn->unp_cc = rcv->sb_cc; 573 sorwakeup(so2); 574 #undef snd 575 #undef rcv 576 if (control != NULL) { 577 unp_dispose(control); 578 m_freem(control); 579 } 580 break; 581 582 default: 583 panic("uipc 4"); 584 } 585 586 return error; 587 } 588 589 static int 590 unp_sendoob(struct socket *so, struct mbuf *m, struct mbuf * control) 591 { 592 KASSERT(solocked(so)); 593 594 m_freem(m); 595 m_freem(control); 596 597 return EOPNOTSUPP; 598 } 599 600 /* 601 * Unix domain socket option processing. 602 */ 603 int 604 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt) 605 { 606 struct unpcb *unp = sotounpcb(so); 607 int optval = 0, error = 0; 608 609 KASSERT(solocked(so)); 610 611 if (sopt->sopt_level != 0) { 612 error = ENOPROTOOPT; 613 } else switch (op) { 614 615 case PRCO_SETOPT: 616 switch (sopt->sopt_name) { 617 case LOCAL_OCREDS: 618 if (!compat70_ocreds_valid) { 619 error = ENOPROTOOPT; 620 break; 621 } 622 /* FALLTHROUGH */ 623 case LOCAL_CREDS: 624 case LOCAL_CONNWAIT: 625 error = sockopt_getint(sopt, &optval); 626 if (error) 627 break; 628 switch (sopt->sopt_name) { 629 #define OPTSET(bit) \ 630 if (optval) \ 631 unp->unp_flags |= (bit); \ 632 else \ 633 unp->unp_flags &= ~(bit); 634 635 case LOCAL_CREDS: 636 OPTSET(UNP_WANTCRED); 637 break; 638 case LOCAL_CONNWAIT: 639 OPTSET(UNP_CONNWAIT); 640 break; 641 case LOCAL_OCREDS: 642 OPTSET(UNP_OWANTCRED); 643 break; 644 } 645 break; 646 #undef OPTSET 647 648 default: 649 error = ENOPROTOOPT; 650 break; 651 } 652 break; 653 654 case PRCO_GETOPT: 655 sounlock(so); 656 switch (sopt->sopt_name) { 657 case LOCAL_PEEREID: 658 if (unp->unp_flags & UNP_EIDSVALID) { 659 error = sockopt_set(sopt, &unp->unp_connid, 660 sizeof(unp->unp_connid)); 661 } else { 662 error = EINVAL; 663 } 664 break; 665 case LOCAL_CREDS: 666 #define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0) 667 668 optval = OPTBIT(UNP_WANTCRED); 669 error = sockopt_setint(sopt, optval); 670 break; 671 case LOCAL_OCREDS: 672 if (compat70_ocreds_valid) { 673 optval = OPTBIT(UNP_OWANTCRED); 674 error = sockopt_setint(sopt, optval); 675 break; 676 } 677 #undef OPTBIT 678 /* FALLTHROUGH */ 679 default: 680 error = ENOPROTOOPT; 681 break; 682 } 683 solock(so); 684 break; 685 } 686 return (error); 687 } 688 689 /* 690 * Both send and receive buffers are allocated PIPSIZ bytes of buffering 691 * for stream sockets, although the total for sender and receiver is 692 * actually only PIPSIZ. 693 * Datagram sockets really use the sendspace as the maximum datagram size, 694 * and don't really want to reserve the sendspace. Their recvspace should 695 * be large enough for at least one max-size datagram plus address. 696 */ 697 #ifndef PIPSIZ 698 #define PIPSIZ 8192 699 #endif 700 u_long unpst_sendspace = PIPSIZ; 701 u_long unpst_recvspace = PIPSIZ; 702 u_long unpdg_sendspace = 2*1024; /* really max datagram size */ 703 u_long unpdg_recvspace = 16*1024; 704 705 u_int unp_rights; /* files in flight */ 706 u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */ 707 708 static int 709 unp_attach(struct socket *so, int proto) 710 { 711 struct unpcb *unp = sotounpcb(so); 712 u_long sndspc, rcvspc; 713 int error; 714 715 KASSERT(unp == NULL); 716 717 switch (so->so_type) { 718 case SOCK_SEQPACKET: 719 /* FALLTHROUGH */ 720 case SOCK_STREAM: 721 if (so->so_lock == NULL) { 722 so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 723 solock(so); 724 } 725 sndspc = unpst_sendspace; 726 rcvspc = unpst_recvspace; 727 break; 728 729 case SOCK_DGRAM: 730 if (so->so_lock == NULL) { 731 mutex_obj_hold(uipc_lock); 732 so->so_lock = uipc_lock; 733 solock(so); 734 } 735 sndspc = unpdg_sendspace; 736 rcvspc = unpdg_recvspace; 737 break; 738 739 default: 740 panic("unp_attach"); 741 } 742 743 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) { 744 error = soreserve(so, sndspc, rcvspc); 745 if (error) { 746 return error; 747 } 748 } 749 750 unp = kmem_zalloc(sizeof(*unp), KM_SLEEP); 751 nanotime(&unp->unp_ctime); 752 unp->unp_socket = so; 753 so->so_pcb = unp; 754 755 KASSERT(solocked(so)); 756 return 0; 757 } 758 759 static void 760 unp_detach(struct socket *so) 761 { 762 struct unpcb *unp; 763 vnode_t *vp; 764 765 unp = sotounpcb(so); 766 KASSERT(unp != NULL); 767 KASSERT(solocked(so)); 768 retry: 769 if ((vp = unp->unp_vnode) != NULL) { 770 sounlock(so); 771 /* Acquire v_interlock to protect against unp_connect(). */ 772 /* XXXAD racy */ 773 mutex_enter(vp->v_interlock); 774 vp->v_socket = NULL; 775 mutex_exit(vp->v_interlock); 776 vrele(vp); 777 solock(so); 778 unp->unp_vnode = NULL; 779 } 780 if (unp->unp_conn) 781 unp_disconnect1(unp); 782 while (unp->unp_refs) { 783 KASSERT(solocked2(so, unp->unp_refs->unp_socket)); 784 if (unp_drop(unp->unp_refs, ECONNRESET)) { 785 solock(so); 786 goto retry; 787 } 788 } 789 soisdisconnected(so); 790 so->so_pcb = NULL; 791 if (unp_rights) { 792 /* 793 * Normally the receive buffer is flushed later, in sofree, 794 * but if our receive buffer holds references to files that 795 * are now garbage, we will enqueue those file references to 796 * the garbage collector and kick it into action. 797 */ 798 sorflush(so); 799 unp_free(unp); 800 unp_thread_kick(); 801 } else 802 unp_free(unp); 803 } 804 805 static int 806 unp_accept(struct socket *so, struct sockaddr *nam) 807 { 808 struct unpcb *unp = sotounpcb(so); 809 struct socket *so2; 810 811 KASSERT(solocked(so)); 812 KASSERT(nam != NULL); 813 814 /* XXX code review required to determine if unp can ever be NULL */ 815 if (unp == NULL) 816 return EINVAL; 817 818 KASSERT(so->so_lock == uipc_lock); 819 /* 820 * Mark the initiating STREAM socket as connected *ONLY* 821 * after it's been accepted. This prevents a client from 822 * overrunning a server and receiving ECONNREFUSED. 823 */ 824 if (unp->unp_conn == NULL) { 825 /* 826 * This will use the empty socket and will not 827 * allocate. 828 */ 829 unp_setaddr(so, nam, true); 830 return 0; 831 } 832 so2 = unp->unp_conn->unp_socket; 833 if (so2->so_state & SS_ISCONNECTING) { 834 KASSERT(solocked2(so, so->so_head)); 835 KASSERT(solocked2(so2, so->so_head)); 836 soisconnected(so2); 837 } 838 /* 839 * If the connection is fully established, break the 840 * association with uipc_lock and give the connected 841 * pair a separate lock to share. 842 * There is a race here: sotounpcb(so2)->unp_streamlock 843 * is not locked, so when changing so2->so_lock 844 * another thread can grab it while so->so_lock is still 845 * pointing to the (locked) uipc_lock. 846 * this should be harmless, except that this makes 847 * solocked2() and solocked() unreliable. 848 * Another problem is that unp_setaddr() expects the 849 * the socket locked. Grabing sotounpcb(so2)->unp_streamlock 850 * fixes both issues. 851 */ 852 mutex_enter(sotounpcb(so2)->unp_streamlock); 853 unp_setpeerlocks(so2, so); 854 /* 855 * Only now return peer's address, as we may need to 856 * block in order to allocate memory. 857 * 858 * XXX Minor race: connection can be broken while 859 * lock is dropped in unp_setaddr(). We will return 860 * error == 0 and sun_noname as the peer address. 861 */ 862 unp_setaddr(so, nam, true); 863 /* so_lock now points to unp_streamlock */ 864 mutex_exit(so2->so_lock); 865 return 0; 866 } 867 868 static int 869 unp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp) 870 { 871 return EOPNOTSUPP; 872 } 873 874 static int 875 unp_stat(struct socket *so, struct stat *ub) 876 { 877 struct unpcb *unp; 878 struct socket *so2; 879 880 KASSERT(solocked(so)); 881 882 unp = sotounpcb(so); 883 if (unp == NULL) 884 return EINVAL; 885 886 ub->st_blksize = so->so_snd.sb_hiwat; 887 switch (so->so_type) { 888 case SOCK_SEQPACKET: /* FALLTHROUGH */ 889 case SOCK_STREAM: 890 if (unp->unp_conn == 0) 891 break; 892 893 so2 = unp->unp_conn->unp_socket; 894 KASSERT(solocked2(so, so2)); 895 ub->st_blksize += so2->so_rcv.sb_cc; 896 break; 897 default: 898 break; 899 } 900 ub->st_dev = NODEV; 901 if (unp->unp_ino == 0) 902 unp->unp_ino = unp_ino++; 903 ub->st_atimespec = ub->st_mtimespec = ub->st_ctimespec = unp->unp_ctime; 904 ub->st_ino = unp->unp_ino; 905 ub->st_uid = so->so_uidinfo->ui_uid; 906 ub->st_gid = so->so_egid; 907 return (0); 908 } 909 910 static int 911 unp_peeraddr(struct socket *so, struct sockaddr *nam) 912 { 913 KASSERT(solocked(so)); 914 KASSERT(sotounpcb(so) != NULL); 915 KASSERT(nam != NULL); 916 917 unp_setaddr(so, nam, true); 918 return 0; 919 } 920 921 static int 922 unp_sockaddr(struct socket *so, struct sockaddr *nam) 923 { 924 KASSERT(solocked(so)); 925 KASSERT(sotounpcb(so) != NULL); 926 KASSERT(nam != NULL); 927 928 unp_setaddr(so, nam, false); 929 return 0; 930 } 931 932 /* 933 * we only need to perform this allocation until syscalls other than 934 * bind are adjusted to use sockaddr_big. 935 */ 936 static struct sockaddr_un * 937 makeun_sb(struct sockaddr *nam, size_t *addrlen) 938 { 939 struct sockaddr_un *sun; 940 941 *addrlen = nam->sa_len + 1; 942 sun = malloc(*addrlen, M_SONAME, M_WAITOK); 943 memcpy(sun, nam, nam->sa_len); 944 *(((char *)sun) + nam->sa_len) = '\0'; 945 return sun; 946 } 947 948 static int 949 unp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) 950 { 951 struct sockaddr_un *sun; 952 struct unpcb *unp; 953 vnode_t *vp; 954 struct vattr vattr; 955 size_t addrlen; 956 int error; 957 struct pathbuf *pb; 958 struct nameidata nd; 959 proc_t *p; 960 961 unp = sotounpcb(so); 962 963 KASSERT(solocked(so)); 964 KASSERT(unp != NULL); 965 KASSERT(nam != NULL); 966 967 if (unp->unp_vnode != NULL) 968 return (EINVAL); 969 if ((unp->unp_flags & UNP_BUSY) != 0) { 970 /* 971 * EALREADY may not be strictly accurate, but since this 972 * is a major application error it's hardly a big deal. 973 */ 974 return (EALREADY); 975 } 976 unp->unp_flags |= UNP_BUSY; 977 sounlock(so); 978 979 p = l->l_proc; 980 sun = makeun_sb(nam, &addrlen); 981 982 pb = pathbuf_create(sun->sun_path); 983 if (pb == NULL) { 984 error = ENOMEM; 985 goto bad; 986 } 987 NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, pb); 988 989 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */ 990 if ((error = namei(&nd)) != 0) { 991 pathbuf_destroy(pb); 992 goto bad; 993 } 994 vp = nd.ni_vp; 995 if (vp != NULL) { 996 VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd); 997 if (nd.ni_dvp == vp) 998 vrele(nd.ni_dvp); 999 else 1000 vput(nd.ni_dvp); 1001 vrele(vp); 1002 pathbuf_destroy(pb); 1003 error = EADDRINUSE; 1004 goto bad; 1005 } 1006 vattr_null(&vattr); 1007 vattr.va_type = VSOCK; 1008 vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask); 1009 error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr); 1010 if (error) { 1011 vput(nd.ni_dvp); 1012 pathbuf_destroy(pb); 1013 goto bad; 1014 } 1015 vp = nd.ni_vp; 1016 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1017 solock(so); 1018 vp->v_socket = unp->unp_socket; 1019 unp->unp_vnode = vp; 1020 unp->unp_addrlen = addrlen; 1021 unp->unp_addr = sun; 1022 VOP_UNLOCK(vp); 1023 vput(nd.ni_dvp); 1024 unp->unp_flags &= ~UNP_BUSY; 1025 pathbuf_destroy(pb); 1026 return (0); 1027 1028 bad: 1029 free(sun, M_SONAME); 1030 solock(so); 1031 unp->unp_flags &= ~UNP_BUSY; 1032 return (error); 1033 } 1034 1035 static int 1036 unp_listen(struct socket *so, struct lwp *l) 1037 { 1038 struct unpcb *unp = sotounpcb(so); 1039 1040 KASSERT(solocked(so)); 1041 KASSERT(unp != NULL); 1042 1043 /* 1044 * If the socket can accept a connection, it must be 1045 * locked by uipc_lock. 1046 */ 1047 unp_resetlock(so); 1048 if (unp->unp_vnode == NULL) 1049 return EINVAL; 1050 1051 unp_connid(l, unp, UNP_EIDSBIND); 1052 return 0; 1053 } 1054 1055 static int 1056 unp_disconnect(struct socket *so) 1057 { 1058 KASSERT(solocked(so)); 1059 KASSERT(sotounpcb(so) != NULL); 1060 1061 unp_disconnect1(sotounpcb(so)); 1062 return 0; 1063 } 1064 1065 static int 1066 unp_shutdown(struct socket *so) 1067 { 1068 KASSERT(solocked(so)); 1069 KASSERT(sotounpcb(so) != NULL); 1070 1071 socantsendmore(so); 1072 unp_shutdown1(sotounpcb(so)); 1073 return 0; 1074 } 1075 1076 static int 1077 unp_abort(struct socket *so) 1078 { 1079 KASSERT(solocked(so)); 1080 KASSERT(sotounpcb(so) != NULL); 1081 1082 (void)unp_drop(sotounpcb(so), ECONNABORTED); 1083 KASSERT(so->so_head == NULL); 1084 KASSERT(so->so_pcb != NULL); 1085 unp_detach(so); 1086 return 0; 1087 } 1088 1089 static int 1090 unp_connect1(struct socket *so, struct socket *so2, struct lwp *l) 1091 { 1092 struct unpcb *unp = sotounpcb(so); 1093 struct unpcb *unp2; 1094 1095 if (so2->so_type != so->so_type) 1096 return EPROTOTYPE; 1097 1098 /* 1099 * All three sockets involved must be locked by same lock: 1100 * 1101 * local endpoint (so) 1102 * remote endpoint (so2) 1103 * queue head (so2->so_head, only if PR_CONNREQUIRED) 1104 */ 1105 KASSERT(solocked2(so, so2)); 1106 KASSERT(so->so_head == NULL); 1107 if (so2->so_head != NULL) { 1108 KASSERT(so2->so_lock == uipc_lock); 1109 KASSERT(solocked2(so2, so2->so_head)); 1110 } 1111 1112 unp2 = sotounpcb(so2); 1113 unp->unp_conn = unp2; 1114 1115 switch (so->so_type) { 1116 1117 case SOCK_DGRAM: 1118 unp->unp_nextref = unp2->unp_refs; 1119 unp2->unp_refs = unp; 1120 soisconnected(so); 1121 break; 1122 1123 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1124 case SOCK_STREAM: 1125 1126 /* 1127 * SOCK_SEQPACKET and SOCK_STREAM cases are handled by callers 1128 * which are unp_connect() or unp_connect2(). 1129 */ 1130 1131 break; 1132 1133 default: 1134 panic("unp_connect1"); 1135 } 1136 1137 return 0; 1138 } 1139 1140 int 1141 unp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) 1142 { 1143 struct sockaddr_un *sun; 1144 vnode_t *vp; 1145 struct socket *so2, *so3; 1146 struct unpcb *unp, *unp2, *unp3; 1147 size_t addrlen; 1148 int error; 1149 struct pathbuf *pb; 1150 struct nameidata nd; 1151 1152 unp = sotounpcb(so); 1153 if ((unp->unp_flags & UNP_BUSY) != 0) { 1154 /* 1155 * EALREADY may not be strictly accurate, but since this 1156 * is a major application error it's hardly a big deal. 1157 */ 1158 return (EALREADY); 1159 } 1160 unp->unp_flags |= UNP_BUSY; 1161 sounlock(so); 1162 1163 sun = makeun_sb(nam, &addrlen); 1164 pb = pathbuf_create(sun->sun_path); 1165 if (pb == NULL) { 1166 error = ENOMEM; 1167 goto bad2; 1168 } 1169 1170 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 1171 1172 if ((error = namei(&nd)) != 0) { 1173 pathbuf_destroy(pb); 1174 goto bad2; 1175 } 1176 vp = nd.ni_vp; 1177 pathbuf_destroy(pb); 1178 if (vp->v_type != VSOCK) { 1179 error = ENOTSOCK; 1180 goto bad; 1181 } 1182 if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0) 1183 goto bad; 1184 /* Acquire v_interlock to protect against unp_detach(). */ 1185 mutex_enter(vp->v_interlock); 1186 so2 = vp->v_socket; 1187 if (so2 == NULL) { 1188 mutex_exit(vp->v_interlock); 1189 error = ECONNREFUSED; 1190 goto bad; 1191 } 1192 if (so->so_type != so2->so_type) { 1193 mutex_exit(vp->v_interlock); 1194 error = EPROTOTYPE; 1195 goto bad; 1196 } 1197 solock(so); 1198 unp_resetlock(so); 1199 mutex_exit(vp->v_interlock); 1200 if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) { 1201 /* 1202 * This may seem somewhat fragile but is OK: if we can 1203 * see SO_ACCEPTCONN set on the endpoint, then it must 1204 * be locked by the domain-wide uipc_lock. 1205 */ 1206 KASSERT((so2->so_options & SO_ACCEPTCONN) == 0 || 1207 so2->so_lock == uipc_lock); 1208 if ((so2->so_options & SO_ACCEPTCONN) == 0 || 1209 (so3 = sonewconn(so2, false)) == NULL) { 1210 error = ECONNREFUSED; 1211 sounlock(so); 1212 goto bad; 1213 } 1214 unp2 = sotounpcb(so2); 1215 unp3 = sotounpcb(so3); 1216 if (unp2->unp_addr) { 1217 unp3->unp_addr = malloc(unp2->unp_addrlen, 1218 M_SONAME, M_WAITOK); 1219 memcpy(unp3->unp_addr, unp2->unp_addr, 1220 unp2->unp_addrlen); 1221 unp3->unp_addrlen = unp2->unp_addrlen; 1222 } 1223 unp3->unp_flags = unp2->unp_flags; 1224 so2 = so3; 1225 /* 1226 * The connector's (client's) credentials are copied from its 1227 * process structure at the time of connect() (which is now). 1228 */ 1229 unp_connid(l, unp3, UNP_EIDSVALID); 1230 /* 1231 * The receiver's (server's) credentials are copied from the 1232 * unp_peercred member of socket on which the former called 1233 * listen(); unp_listen() cached that process's credentials 1234 * at that time so we can use them now. 1235 */ 1236 if (unp2->unp_flags & UNP_EIDSBIND) { 1237 memcpy(&unp->unp_connid, &unp2->unp_connid, 1238 sizeof(unp->unp_connid)); 1239 unp->unp_flags |= UNP_EIDSVALID; 1240 } 1241 } 1242 error = unp_connect1(so, so2, l); 1243 if (error) { 1244 sounlock(so); 1245 goto bad; 1246 } 1247 unp2 = sotounpcb(so2); 1248 switch (so->so_type) { 1249 1250 /* 1251 * SOCK_DGRAM and default cases are handled in prior call to 1252 * unp_connect1(), do not add a default case without fixing 1253 * unp_connect1(). 1254 */ 1255 1256 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1257 case SOCK_STREAM: 1258 unp2->unp_conn = unp; 1259 if ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT) 1260 soisconnecting(so); 1261 else 1262 soisconnected(so); 1263 soisconnected(so2); 1264 /* 1265 * If the connection is fully established, break the 1266 * association with uipc_lock and give the connected 1267 * pair a separate lock to share. 1268 */ 1269 KASSERT(so2->so_head != NULL); 1270 unp_setpeerlocks(so, so2); 1271 break; 1272 1273 } 1274 sounlock(so); 1275 bad: 1276 vput(vp); 1277 bad2: 1278 free(sun, M_SONAME); 1279 solock(so); 1280 unp->unp_flags &= ~UNP_BUSY; 1281 return (error); 1282 } 1283 1284 int 1285 unp_connect2(struct socket *so, struct socket *so2) 1286 { 1287 struct unpcb *unp = sotounpcb(so); 1288 struct unpcb *unp2; 1289 int error = 0; 1290 1291 KASSERT(solocked2(so, so2)); 1292 1293 error = unp_connect1(so, so2, curlwp); 1294 if (error) 1295 return error; 1296 1297 unp2 = sotounpcb(so2); 1298 switch (so->so_type) { 1299 1300 /* 1301 * SOCK_DGRAM and default cases are handled in prior call to 1302 * unp_connect1(), do not add a default case without fixing 1303 * unp_connect1(). 1304 */ 1305 1306 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1307 case SOCK_STREAM: 1308 unp2->unp_conn = unp; 1309 soisconnected(so); 1310 soisconnected(so2); 1311 break; 1312 1313 } 1314 return error; 1315 } 1316 1317 static void 1318 unp_disconnect1(struct unpcb *unp) 1319 { 1320 struct unpcb *unp2 = unp->unp_conn; 1321 struct socket *so; 1322 1323 if (unp2 == 0) 1324 return; 1325 unp->unp_conn = 0; 1326 so = unp->unp_socket; 1327 switch (so->so_type) { 1328 case SOCK_DGRAM: 1329 if (unp2->unp_refs == unp) 1330 unp2->unp_refs = unp->unp_nextref; 1331 else { 1332 unp2 = unp2->unp_refs; 1333 for (;;) { 1334 KASSERT(solocked2(so, unp2->unp_socket)); 1335 if (unp2 == 0) 1336 panic("unp_disconnect1"); 1337 if (unp2->unp_nextref == unp) 1338 break; 1339 unp2 = unp2->unp_nextref; 1340 } 1341 unp2->unp_nextref = unp->unp_nextref; 1342 } 1343 unp->unp_nextref = 0; 1344 so->so_state &= ~SS_ISCONNECTED; 1345 break; 1346 1347 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1348 case SOCK_STREAM: 1349 KASSERT(solocked2(so, unp2->unp_socket)); 1350 soisdisconnected(so); 1351 unp2->unp_conn = 0; 1352 soisdisconnected(unp2->unp_socket); 1353 break; 1354 } 1355 } 1356 1357 static void 1358 unp_shutdown1(struct unpcb *unp) 1359 { 1360 struct socket *so; 1361 1362 switch(unp->unp_socket->so_type) { 1363 case SOCK_SEQPACKET: /* FALLTHROUGH */ 1364 case SOCK_STREAM: 1365 if (unp->unp_conn && (so = unp->unp_conn->unp_socket)) 1366 socantrcvmore(so); 1367 break; 1368 default: 1369 break; 1370 } 1371 } 1372 1373 static bool 1374 unp_drop(struct unpcb *unp, int errno) 1375 { 1376 struct socket *so = unp->unp_socket; 1377 1378 KASSERT(solocked(so)); 1379 1380 so->so_error = errno; 1381 unp_disconnect1(unp); 1382 if (so->so_head) { 1383 so->so_pcb = NULL; 1384 /* sofree() drops the socket lock */ 1385 sofree(so); 1386 unp_free(unp); 1387 return true; 1388 } 1389 return false; 1390 } 1391 1392 #ifdef notdef 1393 unp_drain(void) 1394 { 1395 1396 } 1397 #endif 1398 1399 int 1400 unp_externalize(struct mbuf *rights, struct lwp *l, int flags) 1401 { 1402 struct cmsghdr * const cm = mtod(rights, struct cmsghdr *); 1403 struct proc * const p = l->l_proc; 1404 file_t **rp; 1405 int error = 0; 1406 1407 const size_t nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / 1408 sizeof(file_t *); 1409 if (nfds == 0) 1410 goto noop; 1411 1412 int * const fdp = kmem_alloc(nfds * sizeof(int), KM_SLEEP); 1413 rw_enter(&p->p_cwdi->cwdi_lock, RW_READER); 1414 1415 /* Make sure the recipient should be able to see the files.. */ 1416 rp = (file_t **)CMSG_DATA(cm); 1417 for (size_t i = 0; i < nfds; i++) { 1418 file_t * const fp = *rp++; 1419 if (fp == NULL) { 1420 error = EINVAL; 1421 goto out; 1422 } 1423 /* 1424 * If we are in a chroot'ed directory, and 1425 * someone wants to pass us a directory, make 1426 * sure it's inside the subtree we're allowed 1427 * to access. 1428 */ 1429 if (p->p_cwdi->cwdi_rdir != NULL && fp->f_type == DTYPE_VNODE) { 1430 vnode_t *vp = fp->f_vnode; 1431 if ((vp->v_type == VDIR) && 1432 !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) { 1433 error = EPERM; 1434 goto out; 1435 } 1436 } 1437 } 1438 1439 restart: 1440 /* 1441 * First loop -- allocate file descriptor table slots for the 1442 * new files. 1443 */ 1444 for (size_t i = 0; i < nfds; i++) { 1445 if ((error = fd_alloc(p, 0, &fdp[i])) != 0) { 1446 /* 1447 * Back out what we've done so far. 1448 */ 1449 while (i-- > 0) { 1450 fd_abort(p, NULL, fdp[i]); 1451 } 1452 if (error == ENOSPC) { 1453 fd_tryexpand(p); 1454 error = 0; 1455 goto restart; 1456 } 1457 /* 1458 * This is the error that has historically 1459 * been returned, and some callers may 1460 * expect it. 1461 */ 1462 error = EMSGSIZE; 1463 goto out; 1464 } 1465 } 1466 1467 /* 1468 * Now that adding them has succeeded, update all of the 1469 * file passing state and affix the descriptors. 1470 */ 1471 rp = (file_t **)CMSG_DATA(cm); 1472 int *ofdp = (int *)CMSG_DATA(cm); 1473 for (size_t i = 0; i < nfds; i++) { 1474 file_t * const fp = *rp++; 1475 const int fd = fdp[i]; 1476 atomic_dec_uint(&unp_rights); 1477 fd_set_exclose(l, fd, (flags & O_CLOEXEC) != 0); 1478 fd_affix(p, fp, fd); 1479 /* 1480 * Done with this file pointer, replace it with a fd; 1481 */ 1482 *ofdp++ = fd; 1483 mutex_enter(&fp->f_lock); 1484 fp->f_msgcount--; 1485 mutex_exit(&fp->f_lock); 1486 /* 1487 * Note that fd_affix() adds a reference to the file. 1488 * The file may already have been closed by another 1489 * LWP in the process, so we must drop the reference 1490 * added by unp_internalize() with closef(). 1491 */ 1492 closef(fp); 1493 } 1494 1495 /* 1496 * Adjust length, in case of transition from large file_t 1497 * pointers to ints. 1498 */ 1499 if (sizeof(file_t *) != sizeof(int)) { 1500 cm->cmsg_len = CMSG_LEN(nfds * sizeof(int)); 1501 rights->m_len = CMSG_SPACE(nfds * sizeof(int)); 1502 } 1503 out: 1504 if (__predict_false(error != 0)) { 1505 file_t **const fpp = (file_t **)CMSG_DATA(cm); 1506 for (size_t i = 0; i < nfds; i++) 1507 unp_discard_now(fpp[i]); 1508 /* 1509 * Truncate the array so that nobody will try to interpret 1510 * what is now garbage in it. 1511 */ 1512 cm->cmsg_len = CMSG_LEN(0); 1513 rights->m_len = CMSG_SPACE(0); 1514 } 1515 rw_exit(&p->p_cwdi->cwdi_lock); 1516 kmem_free(fdp, nfds * sizeof(int)); 1517 1518 noop: 1519 /* 1520 * Don't disclose kernel memory in the alignment space. 1521 */ 1522 KASSERT(cm->cmsg_len <= rights->m_len); 1523 memset(&mtod(rights, char *)[cm->cmsg_len], 0, rights->m_len - 1524 cm->cmsg_len); 1525 return error; 1526 } 1527 1528 static int 1529 unp_internalize(struct mbuf **controlp) 1530 { 1531 filedesc_t *fdescp = curlwp->l_fd; 1532 fdtab_t *dt; 1533 struct mbuf *control = *controlp; 1534 struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *); 1535 file_t **rp, **files; 1536 file_t *fp; 1537 int i, fd, *fdp; 1538 int nfds, error; 1539 u_int maxmsg; 1540 1541 error = 0; 1542 newcm = NULL; 1543 1544 /* Sanity check the control message header. */ 1545 if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET || 1546 cm->cmsg_len > control->m_len || 1547 cm->cmsg_len < CMSG_ALIGN(sizeof(*cm))) 1548 return (EINVAL); 1549 1550 /* 1551 * Verify that the file descriptors are valid, and acquire 1552 * a reference to each. 1553 */ 1554 nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int); 1555 fdp = (int *)CMSG_DATA(cm); 1556 maxmsg = maxfiles / unp_rights_ratio; 1557 for (i = 0; i < nfds; i++) { 1558 fd = *fdp++; 1559 if (atomic_inc_uint_nv(&unp_rights) > maxmsg) { 1560 atomic_dec_uint(&unp_rights); 1561 nfds = i; 1562 error = EAGAIN; 1563 goto out; 1564 } 1565 if ((fp = fd_getfile(fd)) == NULL 1566 || fp->f_type == DTYPE_KQUEUE) { 1567 if (fp) 1568 fd_putfile(fd); 1569 atomic_dec_uint(&unp_rights); 1570 nfds = i; 1571 error = EBADF; 1572 goto out; 1573 } 1574 } 1575 1576 /* Allocate new space and copy header into it. */ 1577 newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK); 1578 if (newcm == NULL) { 1579 error = E2BIG; 1580 goto out; 1581 } 1582 memcpy(newcm, cm, sizeof(struct cmsghdr)); 1583 memset(newcm + 1, 0, CMSG_LEN(0) - sizeof(struct cmsghdr)); 1584 files = (file_t **)CMSG_DATA(newcm); 1585 1586 /* 1587 * Transform the file descriptors into file_t pointers, in 1588 * reverse order so that if pointers are bigger than ints, the 1589 * int won't get until we're done. No need to lock, as we have 1590 * already validated the descriptors with fd_getfile(). 1591 */ 1592 fdp = (int *)CMSG_DATA(cm) + nfds; 1593 rp = files + nfds; 1594 for (i = 0; i < nfds; i++) { 1595 dt = atomic_load_consume(&fdescp->fd_dt); 1596 fp = atomic_load_consume(&dt->dt_ff[*--fdp]->ff_file); 1597 KASSERT(fp != NULL); 1598 mutex_enter(&fp->f_lock); 1599 *--rp = fp; 1600 fp->f_count++; 1601 fp->f_msgcount++; 1602 mutex_exit(&fp->f_lock); 1603 } 1604 1605 out: 1606 /* Release descriptor references. */ 1607 fdp = (int *)CMSG_DATA(cm); 1608 for (i = 0; i < nfds; i++) { 1609 fd_putfile(*fdp++); 1610 if (error != 0) { 1611 atomic_dec_uint(&unp_rights); 1612 } 1613 } 1614 1615 if (error == 0) { 1616 if (control->m_flags & M_EXT) { 1617 m_freem(control); 1618 *controlp = control = m_get(M_WAIT, MT_CONTROL); 1619 } 1620 MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)), 1621 M_MBUF, NULL, NULL); 1622 cm = newcm; 1623 /* 1624 * Adjust message & mbuf to note amount of space 1625 * actually used. 1626 */ 1627 cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *)); 1628 control->m_len = CMSG_SPACE(nfds * sizeof(file_t *)); 1629 } 1630 1631 return error; 1632 } 1633 1634 struct mbuf * 1635 unp_addsockcred(struct lwp *l, struct mbuf *control) 1636 { 1637 struct sockcred *sc; 1638 struct mbuf *m; 1639 void *p; 1640 1641 m = sbcreatecontrol1(&p, SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)), 1642 SCM_CREDS, SOL_SOCKET, M_WAITOK); 1643 if (m == NULL) 1644 return control; 1645 1646 sc = p; 1647 sc->sc_pid = l->l_proc->p_pid; 1648 sc->sc_uid = kauth_cred_getuid(l->l_cred); 1649 sc->sc_euid = kauth_cred_geteuid(l->l_cred); 1650 sc->sc_gid = kauth_cred_getgid(l->l_cred); 1651 sc->sc_egid = kauth_cred_getegid(l->l_cred); 1652 sc->sc_ngroups = kauth_cred_ngroups(l->l_cred); 1653 1654 for (int i = 0; i < sc->sc_ngroups; i++) 1655 sc->sc_groups[i] = kauth_cred_group(l->l_cred, i); 1656 1657 return m_add(control, m); 1658 } 1659 1660 /* 1661 * Do a mark-sweep GC of files in the system, to free up any which are 1662 * caught in flight to an about-to-be-closed socket. Additionally, 1663 * process deferred file closures. 1664 */ 1665 static void 1666 unp_gc(file_t *dp) 1667 { 1668 extern struct domain unixdomain; 1669 file_t *fp, *np; 1670 struct socket *so, *so1; 1671 u_int i, oflags, rflags; 1672 bool didwork; 1673 1674 KASSERT(curlwp == unp_thread_lwp); 1675 KASSERT(mutex_owned(&filelist_lock)); 1676 1677 /* 1678 * First, process deferred file closures. 1679 */ 1680 while (!SLIST_EMPTY(&unp_thread_discard)) { 1681 fp = SLIST_FIRST(&unp_thread_discard); 1682 KASSERT(fp->f_unpcount > 0); 1683 KASSERT(fp->f_count > 0); 1684 KASSERT(fp->f_msgcount > 0); 1685 KASSERT(fp->f_count >= fp->f_unpcount); 1686 KASSERT(fp->f_count >= fp->f_msgcount); 1687 KASSERT(fp->f_msgcount >= fp->f_unpcount); 1688 SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist); 1689 i = fp->f_unpcount; 1690 fp->f_unpcount = 0; 1691 mutex_exit(&filelist_lock); 1692 for (; i != 0; i--) { 1693 unp_discard_now(fp); 1694 } 1695 mutex_enter(&filelist_lock); 1696 } 1697 1698 /* 1699 * Clear mark bits. Ensure that we don't consider new files 1700 * entering the file table during this loop (they will not have 1701 * FSCAN set). 1702 */ 1703 unp_defer = 0; 1704 LIST_FOREACH(fp, &filehead, f_list) { 1705 for (oflags = fp->f_flag;; oflags = rflags) { 1706 rflags = atomic_cas_uint(&fp->f_flag, oflags, 1707 (oflags | FSCAN) & ~(FMARK|FDEFER)); 1708 if (__predict_true(oflags == rflags)) { 1709 break; 1710 } 1711 } 1712 } 1713 1714 /* 1715 * Iterate over the set of sockets, marking ones believed (based on 1716 * refcount) to be referenced from a process, and marking for rescan 1717 * sockets which are queued on a socket. Recan continues descending 1718 * and searching for sockets referenced by sockets (FDEFER), until 1719 * there are no more socket->socket references to be discovered. 1720 */ 1721 do { 1722 didwork = false; 1723 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) { 1724 KASSERT(mutex_owned(&filelist_lock)); 1725 np = LIST_NEXT(fp, f_list); 1726 mutex_enter(&fp->f_lock); 1727 if ((fp->f_flag & FDEFER) != 0) { 1728 atomic_and_uint(&fp->f_flag, ~FDEFER); 1729 unp_defer--; 1730 if (fp->f_count == 0) { 1731 /* 1732 * XXX: closef() doesn't pay attention 1733 * to FDEFER 1734 */ 1735 mutex_exit(&fp->f_lock); 1736 continue; 1737 } 1738 } else { 1739 if (fp->f_count == 0 || 1740 (fp->f_flag & FMARK) != 0 || 1741 fp->f_count == fp->f_msgcount || 1742 fp->f_unpcount != 0) { 1743 mutex_exit(&fp->f_lock); 1744 continue; 1745 } 1746 } 1747 atomic_or_uint(&fp->f_flag, FMARK); 1748 1749 if (fp->f_type != DTYPE_SOCKET || 1750 (so = fp->f_socket) == NULL || 1751 so->so_proto->pr_domain != &unixdomain || 1752 (so->so_proto->pr_flags & PR_RIGHTS) == 0) { 1753 mutex_exit(&fp->f_lock); 1754 continue; 1755 } 1756 1757 /* Gain file ref, mark our position, and unlock. */ 1758 didwork = true; 1759 LIST_INSERT_AFTER(fp, dp, f_list); 1760 fp->f_count++; 1761 mutex_exit(&fp->f_lock); 1762 mutex_exit(&filelist_lock); 1763 1764 /* 1765 * Mark files referenced from sockets queued on the 1766 * accept queue as well. 1767 */ 1768 solock(so); 1769 unp_scan(so->so_rcv.sb_mb, unp_mark, 0); 1770 if ((so->so_options & SO_ACCEPTCONN) != 0) { 1771 TAILQ_FOREACH(so1, &so->so_q0, so_qe) { 1772 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0); 1773 } 1774 TAILQ_FOREACH(so1, &so->so_q, so_qe) { 1775 unp_scan(so1->so_rcv.sb_mb, unp_mark, 0); 1776 } 1777 } 1778 sounlock(so); 1779 1780 /* Re-lock and restart from where we left off. */ 1781 closef(fp); 1782 mutex_enter(&filelist_lock); 1783 np = LIST_NEXT(dp, f_list); 1784 LIST_REMOVE(dp, f_list); 1785 } 1786 /* 1787 * Bail early if we did nothing in the loop above. Could 1788 * happen because of concurrent activity causing unp_defer 1789 * to get out of sync. 1790 */ 1791 } while (unp_defer != 0 && didwork); 1792 1793 /* 1794 * Sweep pass. 1795 * 1796 * We grab an extra reference to each of the files that are 1797 * not otherwise accessible and then free the rights that are 1798 * stored in messages on them. 1799 */ 1800 for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) { 1801 KASSERT(mutex_owned(&filelist_lock)); 1802 np = LIST_NEXT(fp, f_list); 1803 mutex_enter(&fp->f_lock); 1804 1805 /* 1806 * Ignore non-sockets. 1807 * Ignore dead sockets, or sockets with pending close. 1808 * Ignore sockets obviously referenced elsewhere. 1809 * Ignore sockets marked as referenced by our scan. 1810 * Ignore new sockets that did not exist during the scan. 1811 */ 1812 if (fp->f_type != DTYPE_SOCKET || 1813 fp->f_count == 0 || fp->f_unpcount != 0 || 1814 fp->f_count != fp->f_msgcount || 1815 (fp->f_flag & (FMARK | FSCAN)) != FSCAN) { 1816 mutex_exit(&fp->f_lock); 1817 continue; 1818 } 1819 1820 /* Gain file ref, mark our position, and unlock. */ 1821 LIST_INSERT_AFTER(fp, dp, f_list); 1822 fp->f_count++; 1823 mutex_exit(&fp->f_lock); 1824 mutex_exit(&filelist_lock); 1825 1826 /* 1827 * Flush all data from the socket's receive buffer. 1828 * This will cause files referenced only by the 1829 * socket to be queued for close. 1830 */ 1831 so = fp->f_socket; 1832 solock(so); 1833 sorflush(so); 1834 sounlock(so); 1835 1836 /* Re-lock and restart from where we left off. */ 1837 closef(fp); 1838 mutex_enter(&filelist_lock); 1839 np = LIST_NEXT(dp, f_list); 1840 LIST_REMOVE(dp, f_list); 1841 } 1842 } 1843 1844 /* 1845 * Garbage collector thread. While SCM_RIGHTS messages are in transit, 1846 * wake once per second to garbage collect. Run continually while we 1847 * have deferred closes to process. 1848 */ 1849 static void 1850 unp_thread(void *cookie) 1851 { 1852 file_t *dp; 1853 1854 /* Allocate a dummy file for our scans. */ 1855 if ((dp = fgetdummy()) == NULL) { 1856 panic("unp_thread"); 1857 } 1858 1859 mutex_enter(&filelist_lock); 1860 for (;;) { 1861 KASSERT(mutex_owned(&filelist_lock)); 1862 if (SLIST_EMPTY(&unp_thread_discard)) { 1863 if (unp_rights != 0) { 1864 (void)cv_timedwait(&unp_thread_cv, 1865 &filelist_lock, hz); 1866 } else { 1867 cv_wait(&unp_thread_cv, &filelist_lock); 1868 } 1869 } 1870 unp_gc(dp); 1871 } 1872 /* NOTREACHED */ 1873 } 1874 1875 /* 1876 * Kick the garbage collector into action if there is something for 1877 * it to process. 1878 */ 1879 static void 1880 unp_thread_kick(void) 1881 { 1882 1883 if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) { 1884 mutex_enter(&filelist_lock); 1885 cv_signal(&unp_thread_cv); 1886 mutex_exit(&filelist_lock); 1887 } 1888 } 1889 1890 void 1891 unp_dispose(struct mbuf *m) 1892 { 1893 1894 if (m) 1895 unp_scan(m, unp_discard_later, 1); 1896 } 1897 1898 void 1899 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard) 1900 { 1901 struct mbuf *m; 1902 file_t **rp, *fp; 1903 struct cmsghdr *cm; 1904 int i, qfds; 1905 1906 while (m0) { 1907 for (m = m0; m; m = m->m_next) { 1908 if (m->m_type != MT_CONTROL || 1909 m->m_len < sizeof(*cm)) { 1910 continue; 1911 } 1912 cm = mtod(m, struct cmsghdr *); 1913 if (cm->cmsg_level != SOL_SOCKET || 1914 cm->cmsg_type != SCM_RIGHTS) 1915 continue; 1916 qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) 1917 / sizeof(file_t *); 1918 rp = (file_t **)CMSG_DATA(cm); 1919 for (i = 0; i < qfds; i++) { 1920 fp = *rp; 1921 if (discard) { 1922 *rp = 0; 1923 } 1924 (*op)(fp); 1925 rp++; 1926 } 1927 } 1928 m0 = m0->m_nextpkt; 1929 } 1930 } 1931 1932 void 1933 unp_mark(file_t *fp) 1934 { 1935 1936 if (fp == NULL) 1937 return; 1938 1939 /* If we're already deferred, don't screw up the defer count */ 1940 mutex_enter(&fp->f_lock); 1941 if (fp->f_flag & (FMARK | FDEFER)) { 1942 mutex_exit(&fp->f_lock); 1943 return; 1944 } 1945 1946 /* 1947 * Minimize the number of deferrals... Sockets are the only type of 1948 * file which can hold references to another file, so just mark 1949 * other files, and defer unmarked sockets for the next pass. 1950 */ 1951 if (fp->f_type == DTYPE_SOCKET) { 1952 unp_defer++; 1953 KASSERT(fp->f_count != 0); 1954 atomic_or_uint(&fp->f_flag, FDEFER); 1955 } else { 1956 atomic_or_uint(&fp->f_flag, FMARK); 1957 } 1958 mutex_exit(&fp->f_lock); 1959 } 1960 1961 static void 1962 unp_discard_now(file_t *fp) 1963 { 1964 1965 if (fp == NULL) 1966 return; 1967 1968 KASSERT(fp->f_count > 0); 1969 KASSERT(fp->f_msgcount > 0); 1970 1971 mutex_enter(&fp->f_lock); 1972 fp->f_msgcount--; 1973 mutex_exit(&fp->f_lock); 1974 atomic_dec_uint(&unp_rights); 1975 (void)closef(fp); 1976 } 1977 1978 static void 1979 unp_discard_later(file_t *fp) 1980 { 1981 1982 if (fp == NULL) 1983 return; 1984 1985 KASSERT(fp->f_count > 0); 1986 KASSERT(fp->f_msgcount > 0); 1987 1988 mutex_enter(&filelist_lock); 1989 if (fp->f_unpcount++ == 0) { 1990 SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist); 1991 } 1992 mutex_exit(&filelist_lock); 1993 } 1994 1995 static void 1996 unp_sysctl_create(void) 1997 { 1998 1999 KASSERT(usrreq_sysctllog == NULL); 2000 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2001 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2002 CTLTYPE_LONG, "sendspace", 2003 SYSCTL_DESCR("Default stream send space"), 2004 NULL, 0, &unpst_sendspace, 0, 2005 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL); 2006 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2007 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2008 CTLTYPE_LONG, "recvspace", 2009 SYSCTL_DESCR("Default stream recv space"), 2010 NULL, 0, &unpst_recvspace, 0, 2011 CTL_NET, PF_LOCAL, SOCK_STREAM, CTL_CREATE, CTL_EOL); 2012 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2013 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2014 CTLTYPE_LONG, "sendspace", 2015 SYSCTL_DESCR("Default datagram send space"), 2016 NULL, 0, &unpdg_sendspace, 0, 2017 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL); 2018 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2019 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2020 CTLTYPE_LONG, "recvspace", 2021 SYSCTL_DESCR("Default datagram recv space"), 2022 NULL, 0, &unpdg_recvspace, 0, 2023 CTL_NET, PF_LOCAL, SOCK_DGRAM, CTL_CREATE, CTL_EOL); 2024 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2025 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 2026 CTLTYPE_INT, "inflight", 2027 SYSCTL_DESCR("File descriptors in flight"), 2028 NULL, 0, &unp_rights, 0, 2029 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL); 2030 sysctl_createv(&usrreq_sysctllog, 0, NULL, NULL, 2031 CTLFLAG_PERMANENT|CTLFLAG_READONLY, 2032 CTLTYPE_INT, "deferred", 2033 SYSCTL_DESCR("File descriptors deferred for close"), 2034 NULL, 0, &unp_defer, 0, 2035 CTL_NET, PF_LOCAL, CTL_CREATE, CTL_EOL); 2036 } 2037 2038 const struct pr_usrreqs unp_usrreqs = { 2039 .pr_attach = unp_attach, 2040 .pr_detach = unp_detach, 2041 .pr_accept = unp_accept, 2042 .pr_bind = unp_bind, 2043 .pr_listen = unp_listen, 2044 .pr_connect = unp_connect, 2045 .pr_connect2 = unp_connect2, 2046 .pr_disconnect = unp_disconnect, 2047 .pr_shutdown = unp_shutdown, 2048 .pr_abort = unp_abort, 2049 .pr_ioctl = unp_ioctl, 2050 .pr_stat = unp_stat, 2051 .pr_peeraddr = unp_peeraddr, 2052 .pr_sockaddr = unp_sockaddr, 2053 .pr_rcvd = unp_rcvd, 2054 .pr_recvoob = unp_recvoob, 2055 .pr_send = unp_send, 2056 .pr_sendoob = unp_sendoob, 2057 }; 2058