xref: /netbsd-src/sys/kern/uipc_usrreq.c (revision 466a16a118933bd295a8a104f095714fadf9cf68)
1 /*	$NetBSD: uipc_usrreq.c,v 1.119 2008/10/11 13:40:57 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998, 2000, 2004, 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
62  */
63 
64 /*
65  * Copyright (c) 1997 Christopher G. Demetriou.  All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  * 3. All advertising materials mentioning features or use of this software
76  *    must display the following acknowledgement:
77  *	This product includes software developed by the University of
78  *	California, Berkeley and its contributors.
79  * 4. Neither the name of the University nor the names of its contributors
80  *    may be used to endorse or promote products derived from this software
81  *    without specific prior written permission.
82  *
83  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
84  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
85  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
86  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
87  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
88  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
89  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
90  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
91  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
92  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
93  * SUCH DAMAGE.
94  *
95  *	@(#)uipc_usrreq.c	8.9 (Berkeley) 5/14/95
96  */
97 
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.119 2008/10/11 13:40:57 pooka Exp $");
100 
101 #include <sys/param.h>
102 #include <sys/systm.h>
103 #include <sys/proc.h>
104 #include <sys/filedesc.h>
105 #include <sys/domain.h>
106 #include <sys/protosw.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/unpcb.h>
110 #include <sys/un.h>
111 #include <sys/namei.h>
112 #include <sys/vnode.h>
113 #include <sys/file.h>
114 #include <sys/stat.h>
115 #include <sys/mbuf.h>
116 #include <sys/kauth.h>
117 #include <sys/kmem.h>
118 #include <sys/atomic.h>
119 #include <sys/uidinfo.h>
120 
121 /*
122  * Unix communications domain.
123  *
124  * TODO:
125  *	SEQPACKET, RDM
126  *	rethink name space problems
127  *	need a proper out-of-band
128  *
129  * Notes on locking:
130  *
131  * The generic rules noted in uipc_socket2.c apply.  In addition:
132  *
133  * o We have a global lock, uipc_lock.
134  *
135  * o All datagram sockets are locked by uipc_lock.
136  *
137  * o For stream socketpairs, the two endpoints are created sharing the same
138  *   independent lock.  Sockets presented to PRU_CONNECT2 must already have
139  *   matching locks.
140  *
141  * o Stream sockets created via socket() start life with their own
142  *   independent lock.
143  *
144  * o Stream connections to a named endpoint are slightly more complicated.
145  *   Sockets that have called listen() have their lock pointer mutated to
146  *   the global uipc_lock.  When establishing a connection, the connecting
147  *   socket also has its lock mutated to uipc_lock, which matches the head
148  *   (listening socket).  We create a new socket for accept() to return, and
149  *   that also shares the head's lock.  Until the connection is completely
150  *   done on both ends, all three sockets are locked by uipc_lock.  Once the
151  *   connection is complete, the association with the head's lock is broken.
152  *   The connecting socket and the socket returned from accept() have their
153  *   lock pointers mutated away from uipc_lock, and back to the connecting
154  *   socket's original, independent lock.  The head continues to be locked
155  *   by uipc_lock.
156  *
157  * o If uipc_lock is determined to be a significant source of contention,
158  *   it could easily be hashed out.  It is difficult to simply make it an
159  *   independent lock because of visibility / garbage collection issues:
160  *   if a socket has been associated with a lock at any point, that lock
161  *   must remain valid until the socket is no longer visible in the system.
162  *   The lock must not be freed or otherwise destroyed until any sockets
163  *   that had referenced it have also been destroyed.
164  */
165 const struct sockaddr_un sun_noname = {
166 	.sun_len = sizeof(sun_noname),
167 	.sun_family = AF_LOCAL,
168 };
169 ino_t	unp_ino;			/* prototype for fake inode numbers */
170 
171 struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
172 static kmutex_t *uipc_lock;
173 
174 /*
175  * Initialize Unix protocols.
176  */
177 void
178 uipc_init(void)
179 {
180 
181 	uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
182 }
183 
184 /*
185  * A connection succeeded: disassociate both endpoints from the head's
186  * lock, and make them share their own lock.  There is a race here: for
187  * a very brief time one endpoint will be locked by a different lock
188  * than the other end.  However, since the current thread holds the old
189  * lock (the listening socket's lock, the head) access can still only be
190  * made to one side of the connection.
191  */
192 static void
193 unp_setpeerlocks(struct socket *so, struct socket *so2)
194 {
195 	struct unpcb *unp;
196 	kmutex_t *lock;
197 
198 	KASSERT(solocked2(so, so2));
199 
200 	/*
201 	 * Bail out if either end of the socket is not yet fully
202 	 * connected or accepted.  We only break the lock association
203 	 * with the head when the pair of sockets stand completely
204 	 * on their own.
205 	 */
206 	if (so->so_head != NULL || so2->so_head != NULL)
207 		return;
208 
209 	/*
210 	 * Drop references to old lock.  A third reference (from the
211 	 * queue head) must be held as we still hold its lock.  Bonus:
212 	 * we don't need to worry about garbage collecting the lock.
213 	 */
214 	lock = so->so_lock;
215 	KASSERT(lock == uipc_lock);
216 	mutex_obj_free(lock);
217 	mutex_obj_free(lock);
218 
219 	/*
220 	 * Grab stream lock from the initiator and share between the two
221 	 * endpoints.  Issue memory barrier to ensure all modifications
222 	 * become globally visible before the lock change.  so2 is
223 	 * assumed not to have a stream lock, because it was created
224 	 * purely for the server side to accept this connection and
225 	 * started out life using the domain-wide lock.
226 	 */
227 	unp = sotounpcb(so);
228 	KASSERT(unp->unp_streamlock != NULL);
229 	KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
230 	lock = unp->unp_streamlock;
231 	unp->unp_streamlock = NULL;
232 	mutex_obj_hold(lock);
233 	membar_exit();
234 	solockreset(so, lock);
235 	solockreset(so2, lock);
236 }
237 
238 /*
239  * Reset a socket's lock back to the domain-wide lock.
240  */
241 static void
242 unp_resetlock(struct socket *so)
243 {
244 	kmutex_t *olock, *nlock;
245 	struct unpcb *unp;
246 
247 	KASSERT(solocked(so));
248 
249 	olock = so->so_lock;
250 	nlock = uipc_lock;
251 	if (olock == nlock)
252 		return;
253 	unp = sotounpcb(so);
254 	KASSERT(unp->unp_streamlock == NULL);
255 	unp->unp_streamlock = olock;
256 	mutex_obj_hold(nlock);
257 	mutex_enter(nlock);
258 	solockreset(so, nlock);
259 	mutex_exit(olock);
260 }
261 
262 static void
263 unp_free(struct unpcb *unp)
264 {
265 
266 	if (unp->unp_addr)
267 		free(unp->unp_addr, M_SONAME);
268 	if (unp->unp_streamlock != NULL)
269 		mutex_obj_free(unp->unp_streamlock);
270 	free(unp, M_PCB);
271 }
272 
273 int
274 unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
275 	struct lwp *l)
276 {
277 	struct socket *so2;
278 	const struct sockaddr_un *sun;
279 
280 	so2 = unp->unp_conn->unp_socket;
281 
282 	KASSERT(solocked(so2));
283 
284 	if (unp->unp_addr)
285 		sun = unp->unp_addr;
286 	else
287 		sun = &sun_noname;
288 	if (unp->unp_conn->unp_flags & UNP_WANTCRED)
289 		control = unp_addsockcred(l, control);
290 	if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
291 	    control) == 0) {
292 		so2->so_rcv.sb_overflowed++;
293 	    	sounlock(so2);
294 		unp_dispose(control);
295 		m_freem(control);
296 		m_freem(m);
297 	    	solock(so2);
298 		return (ENOBUFS);
299 	} else {
300 		sorwakeup(so2);
301 		return (0);
302 	}
303 }
304 
305 void
306 unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
307 {
308 	const struct sockaddr_un *sun;
309 	struct unpcb *unp;
310 	bool ext;
311 
312 	unp = sotounpcb(so);
313 	ext = false;
314 
315 	for (;;) {
316 		sun = NULL;
317 		if (peeraddr) {
318 			if (unp->unp_conn && unp->unp_conn->unp_addr)
319 				sun = unp->unp_conn->unp_addr;
320 		} else {
321 			if (unp->unp_addr)
322 				sun = unp->unp_addr;
323 		}
324 		if (sun == NULL)
325 			sun = &sun_noname;
326 		nam->m_len = sun->sun_len;
327 		if (nam->m_len > MLEN && !ext) {
328 			sounlock(so);
329 			MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
330 			solock(so);
331 			ext = true;
332 		} else {
333 			KASSERT(nam->m_len <= MAXPATHLEN * 2);
334 			memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
335 			break;
336 		}
337 	}
338 }
339 
340 /*ARGSUSED*/
341 int
342 uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
343 	struct mbuf *control, struct lwp *l)
344 {
345 	struct unpcb *unp = sotounpcb(so);
346 	struct socket *so2;
347 	struct proc *p;
348 	u_int newhiwat;
349 	int error = 0;
350 
351 	if (req == PRU_CONTROL)
352 		return (EOPNOTSUPP);
353 
354 #ifdef DIAGNOSTIC
355 	if (req != PRU_SEND && req != PRU_SENDOOB && control)
356 		panic("uipc_usrreq: unexpected control mbuf");
357 #endif
358 	p = l ? l->l_proc : NULL;
359 	if (req != PRU_ATTACH) {
360 		if (unp == 0) {
361 			error = EINVAL;
362 			goto release;
363 		}
364 		KASSERT(solocked(so));
365 	}
366 
367 	switch (req) {
368 
369 	case PRU_ATTACH:
370 		if (unp != 0) {
371 			error = EISCONN;
372 			break;
373 		}
374 		error = unp_attach(so);
375 		break;
376 
377 	case PRU_DETACH:
378 		unp_detach(unp);
379 		break;
380 
381 	case PRU_BIND:
382 		KASSERT(l != NULL);
383 		error = unp_bind(so, nam, l);
384 		break;
385 
386 	case PRU_LISTEN:
387 		/*
388 		 * If the socket can accept a connection, it must be
389 		 * locked by uipc_lock.
390 		 */
391 		unp_resetlock(so);
392 		if (unp->unp_vnode == 0)
393 			error = EINVAL;
394 		break;
395 
396 	case PRU_CONNECT:
397 		KASSERT(l != NULL);
398 		error = unp_connect(so, nam, l);
399 		break;
400 
401 	case PRU_CONNECT2:
402 		error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
403 		break;
404 
405 	case PRU_DISCONNECT:
406 		unp_disconnect(unp);
407 		break;
408 
409 	case PRU_ACCEPT:
410 		KASSERT(so->so_lock == uipc_lock);
411 		/*
412 		 * Mark the initiating STREAM socket as connected *ONLY*
413 		 * after it's been accepted.  This prevents a client from
414 		 * overrunning a server and receiving ECONNREFUSED.
415 		 */
416 		if (unp->unp_conn == NULL)
417 			break;
418 		so2 = unp->unp_conn->unp_socket;
419 		if (so2->so_state & SS_ISCONNECTING) {
420 			KASSERT(solocked2(so, so->so_head));
421 			KASSERT(solocked2(so2, so->so_head));
422 			soisconnected(so2);
423 		}
424 		/*
425 		 * If the connection is fully established, break the
426 		 * association with uipc_lock and give the connected
427 		 * pair a seperate lock to share.
428 		 */
429 		unp_setpeerlocks(so2, so);
430 		/*
431 		 * Only now return peer's address, as we may need to
432 		 * block in order to allocate memory.
433 		 *
434 		 * XXX Minor race: connection can be broken while
435 		 * lock is dropped in unp_setaddr().  We will return
436 		 * error == 0 and sun_noname as the peer address.
437 		 */
438 		unp_setaddr(so, nam, true);
439 		break;
440 
441 	case PRU_SHUTDOWN:
442 		socantsendmore(so);
443 		unp_shutdown(unp);
444 		break;
445 
446 	case PRU_RCVD:
447 		switch (so->so_type) {
448 
449 		case SOCK_DGRAM:
450 			panic("uipc 1");
451 			/*NOTREACHED*/
452 
453 		case SOCK_STREAM:
454 #define	rcv (&so->so_rcv)
455 #define snd (&so2->so_snd)
456 			if (unp->unp_conn == 0)
457 				break;
458 			so2 = unp->unp_conn->unp_socket;
459 			KASSERT(solocked2(so, so2));
460 			/*
461 			 * Adjust backpressure on sender
462 			 * and wakeup any waiting to write.
463 			 */
464 			snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
465 			unp->unp_mbcnt = rcv->sb_mbcnt;
466 			newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
467 			(void)chgsbsize(so2->so_uidinfo,
468 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
469 			unp->unp_cc = rcv->sb_cc;
470 			sowwakeup(so2);
471 #undef snd
472 #undef rcv
473 			break;
474 
475 		default:
476 			panic("uipc 2");
477 		}
478 		break;
479 
480 	case PRU_SEND:
481 		/*
482 		 * Note: unp_internalize() rejects any control message
483 		 * other than SCM_RIGHTS, and only allows one.  This
484 		 * has the side-effect of preventing a caller from
485 		 * forging SCM_CREDS.
486 		 */
487 		if (control) {
488 			sounlock(so);
489 			error = unp_internalize(&control);
490 			solock(so);
491 			if (error != 0) {
492 				m_freem(control);
493 				m_freem(m);
494 				break;
495 			}
496 		}
497 		switch (so->so_type) {
498 
499 		case SOCK_DGRAM: {
500 			KASSERT(so->so_lock == uipc_lock);
501 			if (nam) {
502 				if ((so->so_state & SS_ISCONNECTED) != 0)
503 					error = EISCONN;
504 				else {
505 					/*
506 					 * Note: once connected, the
507 					 * socket's lock must not be
508 					 * dropped until we have sent
509 					 * the message and disconnected.
510 					 * This is necessary to prevent
511 					 * intervening control ops, like
512 					 * another connection.
513 					 */
514 					error = unp_connect(so, nam, l);
515 				}
516 			} else {
517 				if ((so->so_state & SS_ISCONNECTED) == 0)
518 					error = ENOTCONN;
519 			}
520 			if (error) {
521 				sounlock(so);
522 				unp_dispose(control);
523 				m_freem(control);
524 				m_freem(m);
525 				solock(so);
526 				break;
527 			}
528 			KASSERT(p != NULL);
529 			error = unp_output(m, control, unp, l);
530 			if (nam)
531 				unp_disconnect(unp);
532 			break;
533 		}
534 
535 		case SOCK_STREAM:
536 #define	rcv (&so2->so_rcv)
537 #define	snd (&so->so_snd)
538 			if (unp->unp_conn == NULL) {
539 				error = ENOTCONN;
540 				break;
541 			}
542 			so2 = unp->unp_conn->unp_socket;
543 			KASSERT(solocked2(so, so2));
544 			if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
545 				/*
546 				 * Credentials are passed only once on
547 				 * SOCK_STREAM.
548 				 */
549 				unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
550 				control = unp_addsockcred(l, control);
551 			}
552 			/*
553 			 * Send to paired receive port, and then reduce
554 			 * send buffer hiwater marks to maintain backpressure.
555 			 * Wake up readers.
556 			 */
557 			if (control) {
558 				if (sbappendcontrol(rcv, m, control) != 0)
559 					control = NULL;
560 			} else
561 				sbappend(rcv, m);
562 			snd->sb_mbmax -=
563 			    rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
564 			unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
565 			newhiwat = snd->sb_hiwat -
566 			    (rcv->sb_cc - unp->unp_conn->unp_cc);
567 			(void)chgsbsize(so->so_uidinfo,
568 			    &snd->sb_hiwat, newhiwat, RLIM_INFINITY);
569 			unp->unp_conn->unp_cc = rcv->sb_cc;
570 			sorwakeup(so2);
571 #undef snd
572 #undef rcv
573 			if (control != NULL) {
574 				sounlock(so);
575 				unp_dispose(control);
576 				m_freem(control);
577 				solock(so);
578 			}
579 			break;
580 
581 		default:
582 			panic("uipc 4");
583 		}
584 		break;
585 
586 	case PRU_ABORT:
587 		(void)unp_drop(unp, ECONNABORTED);
588 
589 		KASSERT(so->so_head == NULL);
590 #ifdef DIAGNOSTIC
591 		if (so->so_pcb == 0)
592 			panic("uipc 5: drop killed pcb");
593 #endif
594 		unp_detach(unp);
595 		break;
596 
597 	case PRU_SENSE:
598 		((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
599 		if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
600 			so2 = unp->unp_conn->unp_socket;
601 			KASSERT(solocked2(so, so2));
602 			((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
603 		}
604 		((struct stat *) m)->st_dev = NODEV;
605 		if (unp->unp_ino == 0)
606 			unp->unp_ino = unp_ino++;
607 		((struct stat *) m)->st_atimespec =
608 		    ((struct stat *) m)->st_mtimespec =
609 		    ((struct stat *) m)->st_ctimespec = unp->unp_ctime;
610 		((struct stat *) m)->st_ino = unp->unp_ino;
611 		return (0);
612 
613 	case PRU_RCVOOB:
614 		error = EOPNOTSUPP;
615 		break;
616 
617 	case PRU_SENDOOB:
618 		m_freem(control);
619 		m_freem(m);
620 		error = EOPNOTSUPP;
621 		break;
622 
623 	case PRU_SOCKADDR:
624 		unp_setaddr(so, nam, false);
625 		break;
626 
627 	case PRU_PEERADDR:
628 		unp_setaddr(so, nam, true);
629 		break;
630 
631 	default:
632 		panic("piusrreq");
633 	}
634 
635 release:
636 	return (error);
637 }
638 
639 /*
640  * Unix domain socket option processing.
641  */
642 int
643 uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
644 {
645 	struct unpcb *unp = sotounpcb(so);
646 	int optval = 0, error = 0;
647 
648 	KASSERT(solocked(so));
649 
650 	if (sopt->sopt_level != 0) {
651 		error = ENOPROTOOPT;
652 	} else switch (op) {
653 
654 	case PRCO_SETOPT:
655 		switch (sopt->sopt_name) {
656 		case LOCAL_CREDS:
657 		case LOCAL_CONNWAIT:
658 			error = sockopt_getint(sopt, &optval);
659 			if (error)
660 				break;
661 			switch (sopt->sopt_name) {
662 #define	OPTSET(bit) \
663 	if (optval) \
664 		unp->unp_flags |= (bit); \
665 	else \
666 		unp->unp_flags &= ~(bit);
667 
668 			case LOCAL_CREDS:
669 				OPTSET(UNP_WANTCRED);
670 				break;
671 			case LOCAL_CONNWAIT:
672 				OPTSET(UNP_CONNWAIT);
673 				break;
674 			}
675 			break;
676 #undef OPTSET
677 
678 		default:
679 			error = ENOPROTOOPT;
680 			break;
681 		}
682 		break;
683 
684 	case PRCO_GETOPT:
685 		sounlock(so);
686 		switch (sopt->sopt_name) {
687 		case LOCAL_PEEREID:
688 			if (unp->unp_flags & UNP_EIDSVALID) {
689 				error = sockopt_set(sopt,
690 				    &unp->unp_connid, sizeof(unp->unp_connid));
691 			} else {
692 				error = EINVAL;
693 			}
694 			break;
695 		case LOCAL_CREDS:
696 #define	OPTBIT(bit)	(unp->unp_flags & (bit) ? 1 : 0)
697 
698 			optval = OPTBIT(UNP_WANTCRED);
699 			error = sockopt_setint(sopt, optval);
700 			break;
701 #undef OPTBIT
702 
703 		default:
704 			error = ENOPROTOOPT;
705 			break;
706 		}
707 		solock(so);
708 		break;
709 	}
710 	return (error);
711 }
712 
713 /*
714  * Both send and receive buffers are allocated PIPSIZ bytes of buffering
715  * for stream sockets, although the total for sender and receiver is
716  * actually only PIPSIZ.
717  * Datagram sockets really use the sendspace as the maximum datagram size,
718  * and don't really want to reserve the sendspace.  Their recvspace should
719  * be large enough for at least one max-size datagram plus address.
720  */
721 #define	PIPSIZ	4096
722 u_long	unpst_sendspace = PIPSIZ;
723 u_long	unpst_recvspace = PIPSIZ;
724 u_long	unpdg_sendspace = 2*1024;	/* really max datagram size */
725 u_long	unpdg_recvspace = 4*1024;
726 
727 u_int	unp_rights;			/* file descriptors in flight */
728 
729 int
730 unp_attach(struct socket *so)
731 {
732 	struct unpcb *unp;
733 	int error;
734 
735 	switch (so->so_type) {
736 	case SOCK_STREAM:
737 		if (so->so_lock == NULL) {
738 			/*
739 			 * XXX Assuming that no socket locks are held,
740 			 * as this call may sleep.
741 			 */
742 			so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
743 			solock(so);
744 		}
745 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
746 			error = soreserve(so, unpst_sendspace, unpst_recvspace);
747 			if (error != 0)
748 				return (error);
749 		}
750 		break;
751 
752 	case SOCK_DGRAM:
753 		if (so->so_lock == NULL) {
754 			mutex_obj_hold(uipc_lock);
755 			so->so_lock = uipc_lock;
756 			solock(so);
757 		}
758 		if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
759 			error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
760 			if (error != 0)
761 				return (error);
762 		}
763 		break;
764 
765 	default:
766 		panic("unp_attach");
767 	}
768 	KASSERT(solocked(so));
769 	unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
770 	if (unp == NULL)
771 		return (ENOBUFS);
772 	memset((void *)unp, 0, sizeof(*unp));
773 	unp->unp_socket = so;
774 	so->so_pcb = unp;
775 	nanotime(&unp->unp_ctime);
776 	return (0);
777 }
778 
779 void
780 unp_detach(struct unpcb *unp)
781 {
782 	struct socket *so;
783 	vnode_t *vp;
784 
785 	so = unp->unp_socket;
786 
787  retry:
788 	if ((vp = unp->unp_vnode) != NULL) {
789 		sounlock(so);
790 		/* Acquire v_interlock to protect against unp_connect(). */
791 		/* XXXAD racy */
792 		mutex_enter(&vp->v_interlock);
793 		vp->v_socket = NULL;
794 		vrelel(vp, 0);
795 		solock(so);
796 		unp->unp_vnode = NULL;
797 	}
798 	if (unp->unp_conn)
799 		unp_disconnect(unp);
800 	while (unp->unp_refs) {
801 		KASSERT(solocked2(so, unp->unp_refs->unp_socket));
802 		if (unp_drop(unp->unp_refs, ECONNRESET)) {
803 			solock(so);
804 			goto retry;
805 		}
806 	}
807 	soisdisconnected(so);
808 	so->so_pcb = NULL;
809 	if (unp_rights) {
810 		/*
811 		 * Normally the receive buffer is flushed later,
812 		 * in sofree, but if our receive buffer holds references
813 		 * to descriptors that are now garbage, we will dispose
814 		 * of those descriptor references after the garbage collector
815 		 * gets them (resulting in a "panic: closef: count < 0").
816 		 */
817 		sorflush(so);
818 		unp_free(unp);
819 		sounlock(so);
820 		unp_gc();
821 		solock(so);
822 	} else
823 		unp_free(unp);
824 }
825 
826 int
827 unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
828 {
829 	struct sockaddr_un *sun;
830 	struct unpcb *unp;
831 	vnode_t *vp;
832 	struct vattr vattr;
833 	size_t addrlen;
834 	int error;
835 	struct nameidata nd;
836 	proc_t *p;
837 
838 	unp = sotounpcb(so);
839 	if (unp->unp_vnode != NULL)
840 		return (EINVAL);
841 	if ((unp->unp_flags & UNP_BUSY) != 0) {
842 		/*
843 		 * EALREADY may not be strictly accurate, but since this
844 		 * is a major application error it's hardly a big deal.
845 		 */
846 		return (EALREADY);
847 	}
848 	unp->unp_flags |= UNP_BUSY;
849 	sounlock(so);
850 
851 	/*
852 	 * Allocate the new sockaddr.  We have to allocate one
853 	 * extra byte so that we can ensure that the pathname
854 	 * is nul-terminated.
855 	 */
856 	p = l->l_proc;
857 	addrlen = nam->m_len + 1;
858 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
859 	m_copydata(nam, 0, nam->m_len, (void *)sun);
860 	*(((char *)sun) + nam->m_len) = '\0';
861 
862 	NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
863 	    sun->sun_path);
864 
865 /* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
866 	if ((error = namei(&nd)) != 0)
867 		goto bad;
868 	vp = nd.ni_vp;
869 	if (vp != NULL) {
870 		VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
871 		if (nd.ni_dvp == vp)
872 			vrele(nd.ni_dvp);
873 		else
874 			vput(nd.ni_dvp);
875 		vrele(vp);
876 		error = EADDRINUSE;
877 		goto bad;
878 	}
879 	VATTR_NULL(&vattr);
880 	vattr.va_type = VSOCK;
881 	vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
882 	error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
883 	if (error)
884 		goto bad;
885 	vp = nd.ni_vp;
886 	solock(so);
887 	vp->v_socket = unp->unp_socket;
888 	unp->unp_vnode = vp;
889 	unp->unp_addrlen = addrlen;
890 	unp->unp_addr = sun;
891 	unp->unp_connid.unp_pid = p->p_pid;
892 	unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
893 	unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
894 	unp->unp_flags |= UNP_EIDSBIND;
895 	VOP_UNLOCK(vp, 0);
896 	unp->unp_flags &= ~UNP_BUSY;
897 	return (0);
898 
899  bad:
900 	free(sun, M_SONAME);
901 	solock(so);
902 	unp->unp_flags &= ~UNP_BUSY;
903 	return (error);
904 }
905 
906 int
907 unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
908 {
909 	struct sockaddr_un *sun;
910 	vnode_t *vp;
911 	struct socket *so2, *so3;
912 	struct unpcb *unp, *unp2, *unp3;
913 	size_t addrlen;
914 	int error;
915 	struct nameidata nd;
916 
917 	unp = sotounpcb(so);
918 	if ((unp->unp_flags & UNP_BUSY) != 0) {
919 		/*
920 		 * EALREADY may not be strictly accurate, but since this
921 		 * is a major application error it's hardly a big deal.
922 		 */
923 		return (EALREADY);
924 	}
925 	unp->unp_flags |= UNP_BUSY;
926 	sounlock(so);
927 
928 	/*
929 	 * Allocate a temporary sockaddr.  We have to allocate one extra
930 	 * byte so that we can ensure that the pathname is nul-terminated.
931 	 * When we establish the connection, we copy the other PCB's
932 	 * sockaddr to our own.
933 	 */
934 	addrlen = nam->m_len + 1;
935 	sun = malloc(addrlen, M_SONAME, M_WAITOK);
936 	m_copydata(nam, 0, nam->m_len, (void *)sun);
937 	*(((char *)sun) + nam->m_len) = '\0';
938 
939 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
940 	    sun->sun_path);
941 
942 	if ((error = namei(&nd)) != 0)
943 		goto bad2;
944 	vp = nd.ni_vp;
945 	if (vp->v_type != VSOCK) {
946 		error = ENOTSOCK;
947 		goto bad;
948 	}
949 	if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
950 		goto bad;
951 	/* Acquire v_interlock to protect against unp_detach(). */
952 	mutex_enter(&vp->v_interlock);
953 	so2 = vp->v_socket;
954 	if (so2 == NULL) {
955 		mutex_exit(&vp->v_interlock);
956 		error = ECONNREFUSED;
957 		goto bad;
958 	}
959 	if (so->so_type != so2->so_type) {
960 		mutex_exit(&vp->v_interlock);
961 		error = EPROTOTYPE;
962 		goto bad;
963 	}
964 	solock(so);
965 	unp_resetlock(so);
966 	mutex_exit(&vp->v_interlock);
967 	if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
968 		/*
969 		 * This may seem somewhat fragile but is OK: if we can
970 		 * see SO_ACCEPTCONN set on the endpoint, then it must
971 		 * be locked by the domain-wide uipc_lock.
972 		 */
973 		KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
974 		    so2->so_lock == uipc_lock);
975 		if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
976 		    (so3 = sonewconn(so2, 0)) == 0) {
977 			error = ECONNREFUSED;
978 			sounlock(so);
979 			goto bad;
980 		}
981 		unp2 = sotounpcb(so2);
982 		unp3 = sotounpcb(so3);
983 		if (unp2->unp_addr) {
984 			unp3->unp_addr = malloc(unp2->unp_addrlen,
985 			    M_SONAME, M_WAITOK);
986 			memcpy(unp3->unp_addr, unp2->unp_addr,
987 			    unp2->unp_addrlen);
988 			unp3->unp_addrlen = unp2->unp_addrlen;
989 		}
990 		unp3->unp_flags = unp2->unp_flags;
991 		unp3->unp_connid.unp_pid = l->l_proc->p_pid;
992 		unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
993 		unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
994 		unp3->unp_flags |= UNP_EIDSVALID;
995 		if (unp2->unp_flags & UNP_EIDSBIND) {
996 			unp->unp_connid = unp2->unp_connid;
997 			unp->unp_flags |= UNP_EIDSVALID;
998 		}
999 		so2 = so3;
1000 	}
1001 	error = unp_connect2(so, so2, PRU_CONNECT);
1002 	sounlock(so);
1003  bad:
1004 	vput(vp);
1005  bad2:
1006 	free(sun, M_SONAME);
1007 	solock(so);
1008 	unp->unp_flags &= ~UNP_BUSY;
1009 	return (error);
1010 }
1011 
1012 int
1013 unp_connect2(struct socket *so, struct socket *so2, int req)
1014 {
1015 	struct unpcb *unp = sotounpcb(so);
1016 	struct unpcb *unp2;
1017 
1018 	if (so2->so_type != so->so_type)
1019 		return (EPROTOTYPE);
1020 
1021 	/*
1022 	 * All three sockets involved must be locked by same lock:
1023 	 *
1024 	 * local endpoint (so)
1025 	 * remote endpoint (so2)
1026 	 * queue head (so->so_head, only if PR_CONNREQUIRED)
1027 	 */
1028 	KASSERT(solocked2(so, so2));
1029 	if (so->so_head != NULL) {
1030 		KASSERT(so->so_lock == uipc_lock);
1031 		KASSERT(solocked2(so, so->so_head));
1032 	}
1033 
1034 	unp2 = sotounpcb(so2);
1035 	unp->unp_conn = unp2;
1036 	switch (so->so_type) {
1037 
1038 	case SOCK_DGRAM:
1039 		unp->unp_nextref = unp2->unp_refs;
1040 		unp2->unp_refs = unp;
1041 		soisconnected(so);
1042 		break;
1043 
1044 	case SOCK_STREAM:
1045 		unp2->unp_conn = unp;
1046 		if (req == PRU_CONNECT &&
1047 		    ((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
1048 			soisconnecting(so);
1049 		else
1050 			soisconnected(so);
1051 		soisconnected(so2);
1052 		/*
1053 		 * If the connection is fully established, break the
1054 		 * association with uipc_lock and give the connected
1055 		 * pair a seperate lock to share.  For CONNECT2, we
1056 		 * require that the locks already match (the sockets
1057 		 * are created that way).
1058 		 */
1059 		if (req == PRU_CONNECT)
1060 			unp_setpeerlocks(so, so2);
1061 		break;
1062 
1063 	default:
1064 		panic("unp_connect2");
1065 	}
1066 	return (0);
1067 }
1068 
1069 void
1070 unp_disconnect(struct unpcb *unp)
1071 {
1072 	struct unpcb *unp2 = unp->unp_conn;
1073 	struct socket *so;
1074 
1075 	if (unp2 == 0)
1076 		return;
1077 	unp->unp_conn = 0;
1078 	so = unp->unp_socket;
1079 	switch (so->so_type) {
1080 	case SOCK_DGRAM:
1081 		if (unp2->unp_refs == unp)
1082 			unp2->unp_refs = unp->unp_nextref;
1083 		else {
1084 			unp2 = unp2->unp_refs;
1085 			for (;;) {
1086 				KASSERT(solocked2(so, unp2->unp_socket));
1087 				if (unp2 == 0)
1088 					panic("unp_disconnect");
1089 				if (unp2->unp_nextref == unp)
1090 					break;
1091 				unp2 = unp2->unp_nextref;
1092 			}
1093 			unp2->unp_nextref = unp->unp_nextref;
1094 		}
1095 		unp->unp_nextref = 0;
1096 		so->so_state &= ~SS_ISCONNECTED;
1097 		break;
1098 
1099 	case SOCK_STREAM:
1100 		KASSERT(solocked2(so, unp2->unp_socket));
1101 		soisdisconnected(so);
1102 		unp2->unp_conn = 0;
1103 		soisdisconnected(unp2->unp_socket);
1104 		break;
1105 	}
1106 }
1107 
1108 #ifdef notdef
1109 unp_abort(struct unpcb *unp)
1110 {
1111 	unp_detach(unp);
1112 }
1113 #endif
1114 
1115 void
1116 unp_shutdown(struct unpcb *unp)
1117 {
1118 	struct socket *so;
1119 
1120 	if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
1121 	    (so = unp->unp_conn->unp_socket))
1122 		socantrcvmore(so);
1123 }
1124 
1125 bool
1126 unp_drop(struct unpcb *unp, int errno)
1127 {
1128 	struct socket *so = unp->unp_socket;
1129 
1130 	KASSERT(solocked(so));
1131 
1132 	so->so_error = errno;
1133 	unp_disconnect(unp);
1134 	if (so->so_head) {
1135 		so->so_pcb = NULL;
1136 		/* sofree() drops the socket lock */
1137 		sofree(so);
1138 		unp_free(unp);
1139 		return true;
1140 	}
1141 	return false;
1142 }
1143 
1144 #ifdef notdef
1145 unp_drain(void)
1146 {
1147 
1148 }
1149 #endif
1150 
1151 int
1152 unp_externalize(struct mbuf *rights, struct lwp *l)
1153 {
1154 	struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
1155 	struct proc *p = l->l_proc;
1156 	int i, *fdp;
1157 	file_t **rp;
1158 	file_t *fp;
1159 	int nfds, error = 0;
1160 
1161 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
1162 	    sizeof(file_t *);
1163 	rp = (file_t **)CMSG_DATA(cm);
1164 
1165 	fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
1166 	rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
1167 
1168 	/* Make sure the recipient should be able to see the descriptors.. */
1169 	if (p->p_cwdi->cwdi_rdir != NULL) {
1170 		rp = (file_t **)CMSG_DATA(cm);
1171 		for (i = 0; i < nfds; i++) {
1172 			fp = *rp++;
1173 			/*
1174 			 * If we are in a chroot'ed directory, and
1175 			 * someone wants to pass us a directory, make
1176 			 * sure it's inside the subtree we're allowed
1177 			 * to access.
1178 			 */
1179 			if (fp->f_type == DTYPE_VNODE) {
1180 				vnode_t *vp = (vnode_t *)fp->f_data;
1181 				if ((vp->v_type == VDIR) &&
1182 				    !vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
1183 					error = EPERM;
1184 					break;
1185 				}
1186 			}
1187 		}
1188 	}
1189 
1190  restart:
1191 	rp = (file_t **)CMSG_DATA(cm);
1192 	if (error != 0) {
1193 		for (i = 0; i < nfds; i++) {
1194 			fp = *rp;
1195 			/*
1196 			 * zero the pointer before calling unp_discard,
1197 			 * since it may end up in unp_gc()..
1198 			 */
1199 			*rp++ = 0;
1200 			unp_discard(fp);
1201 		}
1202 		goto out;
1203 	}
1204 
1205 	/*
1206 	 * First loop -- allocate file descriptor table slots for the
1207 	 * new descriptors.
1208 	 */
1209 	for (i = 0; i < nfds; i++) {
1210 		fp = *rp++;
1211 		if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
1212 			/*
1213 			 * Back out what we've done so far.
1214 			 */
1215 			for (--i; i >= 0; i--) {
1216 				fd_abort(p, NULL, fdp[i]);
1217 			}
1218 			if (error == ENOSPC) {
1219 				fd_tryexpand(p);
1220 				error = 0;
1221 			} else {
1222 				/*
1223 				 * This is the error that has historically
1224 				 * been returned, and some callers may
1225 				 * expect it.
1226 				 */
1227 				error = EMSGSIZE;
1228 			}
1229 			goto restart;
1230 		}
1231 	}
1232 
1233 	/*
1234 	 * Now that adding them has succeeded, update all of the
1235 	 * descriptor passing state.
1236 	 */
1237 	rp = (file_t **)CMSG_DATA(cm);
1238 	for (i = 0; i < nfds; i++) {
1239 		fp = *rp++;
1240 		atomic_dec_uint(&unp_rights);
1241 		fd_affix(p, fp, fdp[i]);
1242 		mutex_enter(&fp->f_lock);
1243 		fp->f_msgcount--;
1244 		mutex_exit(&fp->f_lock);
1245 		/*
1246 		 * Note that fd_affix() adds a reference to the file.
1247 		 * The file may already have been closed by another
1248 		 * LWP in the process, so we must drop the reference
1249 		 * added by unp_internalize() with closef().
1250 		 */
1251 		closef(fp);
1252 	}
1253 
1254 	/*
1255 	 * Copy temporary array to message and adjust length, in case of
1256 	 * transition from large file_t pointers to ints.
1257 	 */
1258 	memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
1259 	cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
1260 	rights->m_len = CMSG_SPACE(nfds * sizeof(int));
1261  out:
1262 	rw_exit(&p->p_cwdi->cwdi_lock);
1263 	free(fdp, M_TEMP);
1264 	return (error);
1265 }
1266 
1267 int
1268 unp_internalize(struct mbuf **controlp)
1269 {
1270 	struct filedesc *fdescp = curlwp->l_fd;
1271 	struct mbuf *control = *controlp;
1272 	struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
1273 	file_t **rp, **files;
1274 	file_t *fp;
1275 	int i, fd, *fdp;
1276 	int nfds, error;
1277 
1278 	error = 0;
1279 	newcm = NULL;
1280 
1281 	/* Sanity check the control message header. */
1282 	if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
1283 	    cm->cmsg_len > control->m_len ||
1284 	    cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
1285 		return (EINVAL);
1286 
1287 	/*
1288 	 * Verify that the file descriptors are valid, and acquire
1289 	 * a reference to each.
1290 	 */
1291 	nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
1292 	fdp = (int *)CMSG_DATA(cm);
1293 	for (i = 0; i < nfds; i++) {
1294 		fd = *fdp++;
1295 		if ((fp = fd_getfile(fd)) == NULL) {
1296 			nfds = i + 1;
1297 			error = EBADF;
1298 			goto out;
1299 		}
1300 	}
1301 
1302 	/* Allocate new space and copy header into it. */
1303 	newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
1304 	if (newcm == NULL) {
1305 		error = E2BIG;
1306 		goto out;
1307 	}
1308 	memcpy(newcm, cm, sizeof(struct cmsghdr));
1309 	files = (file_t **)CMSG_DATA(newcm);
1310 
1311 	/*
1312 	 * Transform the file descriptors into file_t pointers, in
1313 	 * reverse order so that if pointers are bigger than ints, the
1314 	 * int won't get until we're done.  No need to lock, as we have
1315 	 * already validated the descriptors with fd_getfile().
1316 	 */
1317 	fdp = (int *)CMSG_DATA(cm) + nfds;
1318 	rp = files + nfds;
1319 	for (i = 0; i < nfds; i++) {
1320 		fp = fdescp->fd_ofiles[*--fdp]->ff_file;
1321 		KASSERT(fp != NULL);
1322 		mutex_enter(&fp->f_lock);
1323 		*--rp = fp;
1324 		fp->f_count++;
1325 		fp->f_msgcount++;
1326 		mutex_exit(&fp->f_lock);
1327 		atomic_inc_uint(&unp_rights);
1328 	}
1329 
1330  out:
1331  	/* Release descriptor references. */
1332 	fdp = (int *)CMSG_DATA(cm);
1333 	for (i = 0; i < nfds; i++) {
1334 		fd_putfile(*fdp++);
1335 	}
1336 
1337 	if (error == 0) {
1338 		if (control->m_flags & M_EXT) {
1339 			m_freem(control);
1340 			*controlp = control = m_get(M_WAIT, MT_CONTROL);
1341 		}
1342 		MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
1343 		    M_MBUF, NULL, NULL);
1344 		cm = newcm;
1345 		/*
1346 		 * Adjust message & mbuf to note amount of space
1347 		 * actually used.
1348 		 */
1349 		cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
1350 		control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
1351 	}
1352 
1353 	return error;
1354 }
1355 
1356 struct mbuf *
1357 unp_addsockcred(struct lwp *l, struct mbuf *control)
1358 {
1359 	struct cmsghdr *cmp;
1360 	struct sockcred *sc;
1361 	struct mbuf *m, *n;
1362 	int len, space, i;
1363 
1364 	len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1365 	space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
1366 
1367 	m = m_get(M_WAIT, MT_CONTROL);
1368 	if (space > MLEN) {
1369 		if (space > MCLBYTES)
1370 			MEXTMALLOC(m, space, M_WAITOK);
1371 		else
1372 			m_clget(m, M_WAIT);
1373 		if ((m->m_flags & M_EXT) == 0) {
1374 			m_free(m);
1375 			return (control);
1376 		}
1377 	}
1378 
1379 	m->m_len = space;
1380 	m->m_next = NULL;
1381 	cmp = mtod(m, struct cmsghdr *);
1382 	sc = (struct sockcred *)CMSG_DATA(cmp);
1383 	cmp->cmsg_len = len;
1384 	cmp->cmsg_level = SOL_SOCKET;
1385 	cmp->cmsg_type = SCM_CREDS;
1386 	sc->sc_uid = kauth_cred_getuid(l->l_cred);
1387 	sc->sc_euid = kauth_cred_geteuid(l->l_cred);
1388 	sc->sc_gid = kauth_cred_getgid(l->l_cred);
1389 	sc->sc_egid = kauth_cred_getegid(l->l_cred);
1390 	sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
1391 	for (i = 0; i < sc->sc_ngroups; i++)
1392 		sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
1393 
1394 	/*
1395 	 * If a control message already exists, append us to the end.
1396 	 */
1397 	if (control != NULL) {
1398 		for (n = control; n->m_next != NULL; n = n->m_next)
1399 			;
1400 		n->m_next = m;
1401 	} else
1402 		control = m;
1403 
1404 	return (control);
1405 }
1406 
1407 int	unp_defer, unp_gcing;
1408 extern	struct domain unixdomain;
1409 
1410 /*
1411  * Comment added long after the fact explaining what's going on here.
1412  * Do a mark-sweep GC of file descriptors on the system, to free up
1413  * any which are caught in flight to an about-to-be-closed socket.
1414  *
1415  * Traditional mark-sweep gc's start at the "root", and mark
1416  * everything reachable from the root (which, in our case would be the
1417  * process table).  The mark bits are cleared during the sweep.
1418  *
1419  * XXX For some inexplicable reason (perhaps because the file
1420  * descriptor tables used to live in the u area which could be swapped
1421  * out and thus hard to reach), we do multiple scans over the set of
1422  * descriptors, using use *two* mark bits per object (DEFER and MARK).
1423  * Whenever we find a descriptor which references other descriptors,
1424  * the ones it references are marked with both bits, and we iterate
1425  * over the whole file table until there are no more DEFER bits set.
1426  * We also make an extra pass *before* the GC to clear the mark bits,
1427  * which could have been cleared at almost no cost during the previous
1428  * sweep.
1429  */
1430 void
1431 unp_gc(void)
1432 {
1433 	file_t *fp, *nextfp;
1434 	struct socket *so, *so1;
1435 	file_t **extra_ref, **fpp;
1436 	int nunref, nslots, i;
1437 
1438 	if (atomic_swap_uint(&unp_gcing, 1) == 1)
1439 		return;
1440 
1441  restart:
1442  	nslots = nfiles * 2;
1443  	extra_ref = kmem_alloc(nslots * sizeof(file_t *), KM_SLEEP);
1444 
1445 	mutex_enter(&filelist_lock);
1446 	unp_defer = 0;
1447 
1448 	/* Clear mark bits */
1449 	LIST_FOREACH(fp, &filehead, f_list) {
1450 		atomic_and_uint(&fp->f_flag, ~(FMARK|FDEFER));
1451 	}
1452 
1453 	/*
1454 	 * Iterate over the set of descriptors, marking ones believed
1455 	 * (based on refcount) to be referenced from a process, and
1456 	 * marking for rescan descriptors which are queued on a socket.
1457 	 */
1458 	do {
1459 		LIST_FOREACH(fp, &filehead, f_list) {
1460 			mutex_enter(&fp->f_lock);
1461 			if (fp->f_flag & FDEFER) {
1462 				atomic_and_uint(&fp->f_flag, ~FDEFER);
1463 				unp_defer--;
1464 				KASSERT(fp->f_count != 0);
1465 			} else {
1466 				if (fp->f_count == 0 ||
1467 				    (fp->f_flag & FMARK) ||
1468 				    fp->f_count == fp->f_msgcount) {
1469 					mutex_exit(&fp->f_lock);
1470 					continue;
1471 				}
1472 			}
1473 			atomic_or_uint(&fp->f_flag, FMARK);
1474 
1475 			if (fp->f_type != DTYPE_SOCKET ||
1476 			    (so = fp->f_data) == NULL ||
1477 			    so->so_proto->pr_domain != &unixdomain ||
1478 			    (so->so_proto->pr_flags&PR_RIGHTS) == 0) {
1479 				mutex_exit(&fp->f_lock);
1480 				continue;
1481 			}
1482 #ifdef notdef
1483 			if (so->so_rcv.sb_flags & SB_LOCK) {
1484 				mutex_exit(&fp->f_lock);
1485 				mutex_exit(&filelist_lock);
1486 				kmem_free(extra_ref, nslots * sizeof(file_t *));
1487 				/*
1488 				 * This is problematical; it's not clear
1489 				 * we need to wait for the sockbuf to be
1490 				 * unlocked (on a uniprocessor, at least),
1491 				 * and it's also not clear what to do
1492 				 * if sbwait returns an error due to receipt
1493 				 * of a signal.  If sbwait does return
1494 				 * an error, we'll go into an infinite
1495 				 * loop.  Delete all of this for now.
1496 				 */
1497 				(void) sbwait(&so->so_rcv);
1498 				goto restart;
1499 			}
1500 #endif
1501 			mutex_exit(&fp->f_lock);
1502 
1503 			/*
1504 			 * XXX Locking a socket with filelist_lock held
1505 			 * is ugly.  filelist_lock can be taken by the
1506 			 * pagedaemon when reclaiming items from file_cache.
1507 			 * Socket activity could delay the pagedaemon.
1508 			 */
1509 			solock(so);
1510 			unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
1511 			/*
1512 			 * Mark descriptors referenced from sockets queued
1513 			 * on the accept queue as well.
1514 			 */
1515 			if (so->so_options & SO_ACCEPTCONN) {
1516 				TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
1517 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1518 				}
1519 				TAILQ_FOREACH(so1, &so->so_q, so_qe) {
1520 					unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
1521 				}
1522 			}
1523 			sounlock(so);
1524 		}
1525 	} while (unp_defer);
1526 
1527 	/*
1528 	 * Sweep pass.  Find unmarked descriptors, and free them.
1529 	 *
1530 	 * We grab an extra reference to each of the file table entries
1531 	 * that are not otherwise accessible and then free the rights
1532 	 * that are stored in messages on them.
1533 	 *
1534 	 * The bug in the original code is a little tricky, so I'll describe
1535 	 * what's wrong with it here.
1536 	 *
1537 	 * It is incorrect to simply unp_discard each entry for f_msgcount
1538 	 * times -- consider the case of sockets A and B that contain
1539 	 * references to each other.  On a last close of some other socket,
1540 	 * we trigger a gc since the number of outstanding rights (unp_rights)
1541 	 * is non-zero.  If during the sweep phase the gc code un_discards,
1542 	 * we end up doing a (full) closef on the descriptor.  A closef on A
1543 	 * results in the following chain.  Closef calls soo_close, which
1544 	 * calls soclose.   Soclose calls first (through the switch
1545 	 * uipc_usrreq) unp_detach, which re-invokes unp_gc.  Unp_gc simply
1546 	 * returns because the previous instance had set unp_gcing, and
1547 	 * we return all the way back to soclose, which marks the socket
1548 	 * with SS_NOFDREF, and then calls sofree.  Sofree calls sorflush
1549 	 * to free up the rights that are queued in messages on the socket A,
1550 	 * i.e., the reference on B.  The sorflush calls via the dom_dispose
1551 	 * switch unp_dispose, which unp_scans with unp_discard.  This second
1552 	 * instance of unp_discard just calls closef on B.
1553 	 *
1554 	 * Well, a similar chain occurs on B, resulting in a sorflush on B,
1555 	 * which results in another closef on A.  Unfortunately, A is already
1556 	 * being closed, and the descriptor has already been marked with
1557 	 * SS_NOFDREF, and soclose panics at this point.
1558 	 *
1559 	 * Here, we first take an extra reference to each inaccessible
1560 	 * descriptor.  Then, if the inaccessible descriptor is a
1561 	 * socket, we call sorflush in case it is a Unix domain
1562 	 * socket.  After we destroy all the rights carried in
1563 	 * messages, we do a last closef to get rid of our extra
1564 	 * reference.  This is the last close, and the unp_detach etc
1565 	 * will shut down the socket.
1566 	 *
1567 	 * 91/09/19, bsy@cs.cmu.edu
1568 	 */
1569 	if (nslots < nfiles) {
1570 		mutex_exit(&filelist_lock);
1571 		kmem_free(extra_ref, nslots * sizeof(file_t *));
1572 		goto restart;
1573 	}
1574 	for (nunref = 0, fp = LIST_FIRST(&filehead), fpp = extra_ref; fp != 0;
1575 	    fp = nextfp) {
1576 		nextfp = LIST_NEXT(fp, f_list);
1577 		mutex_enter(&fp->f_lock);
1578 		if (fp->f_count != 0 &&
1579 		    fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
1580 			*fpp++ = fp;
1581 			nunref++;
1582 			fp->f_count++;
1583 		}
1584 		mutex_exit(&fp->f_lock);
1585 	}
1586 	mutex_exit(&filelist_lock);
1587 
1588 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1589 		fp = *fpp;
1590 		if (fp->f_type == DTYPE_SOCKET) {
1591 			so = fp->f_data;
1592 			solock(so);
1593 			sorflush(fp->f_data);
1594 			sounlock(so);
1595 		}
1596 	}
1597 	for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
1598 		closef(*fpp);
1599 	}
1600 	kmem_free(extra_ref, nslots * sizeof(file_t *));
1601 	atomic_swap_uint(&unp_gcing, 0);
1602 }
1603 
1604 void
1605 unp_dispose(struct mbuf *m)
1606 {
1607 
1608 	if (m)
1609 		unp_scan(m, unp_discard, 1);
1610 }
1611 
1612 void
1613 unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
1614 {
1615 	struct mbuf *m;
1616 	file_t **rp;
1617 	struct cmsghdr *cm;
1618 	int i;
1619 	int qfds;
1620 
1621 	while (m0) {
1622 		for (m = m0; m; m = m->m_next) {
1623 			if (m->m_type == MT_CONTROL &&
1624 			    m->m_len >= sizeof(*cm)) {
1625 				cm = mtod(m, struct cmsghdr *);
1626 				if (cm->cmsg_level != SOL_SOCKET ||
1627 				    cm->cmsg_type != SCM_RIGHTS)
1628 					continue;
1629 				qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
1630 				    / sizeof(file_t *);
1631 				rp = (file_t **)CMSG_DATA(cm);
1632 				for (i = 0; i < qfds; i++) {
1633 					file_t *fp = *rp;
1634 					if (discard)
1635 						*rp = 0;
1636 					(*op)(fp);
1637 					rp++;
1638 				}
1639 				break;		/* XXX, but saves time */
1640 			}
1641 		}
1642 		m0 = m0->m_nextpkt;
1643 	}
1644 }
1645 
1646 void
1647 unp_mark(file_t *fp)
1648 {
1649 
1650 	if (fp == NULL)
1651 		return;
1652 
1653 	/* If we're already deferred, don't screw up the defer count */
1654 	mutex_enter(&fp->f_lock);
1655 	if (fp->f_flag & (FMARK | FDEFER)) {
1656 		mutex_exit(&fp->f_lock);
1657 		return;
1658 	}
1659 
1660 	/*
1661 	 * Minimize the number of deferrals...  Sockets are the only
1662 	 * type of descriptor which can hold references to another
1663 	 * descriptor, so just mark other descriptors, and defer
1664 	 * unmarked sockets for the next pass.
1665 	 */
1666 	if (fp->f_type == DTYPE_SOCKET) {
1667 		unp_defer++;
1668 		KASSERT(fp->f_count != 0);
1669 		atomic_or_uint(&fp->f_flag, FDEFER);
1670 	} else {
1671 		atomic_or_uint(&fp->f_flag, FMARK);
1672 	}
1673 	mutex_exit(&fp->f_lock);
1674 	return;
1675 }
1676 
1677 void
1678 unp_discard(file_t *fp)
1679 {
1680 
1681 	if (fp == NULL)
1682 		return;
1683 
1684 	mutex_enter(&fp->f_lock);
1685 	KASSERT(fp->f_count > 0);
1686 	fp->f_msgcount--;
1687 	mutex_exit(&fp->f_lock);
1688 	atomic_dec_uint(&unp_rights);
1689 	(void)closef(fp);
1690 }
1691