xref: /netbsd-src/sys/kern/uipc_socket2.c (revision f5d3fbbc6ff4a77159fb268d247bd94cb7d7e332)
1 /*	$NetBSD: uipc_socket2.c,v 1.21 1997/10/09 13:00:00 mycroft Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 
50 /*
51  * Primitive routines for operating on sockets and socket buffers
52  */
53 
54 /* strings for sleep message: */
55 const char	netio[] = "netio";
56 const char	netcon[] = "netcon";
57 const char	netcls[] = "netcls";
58 
59 u_long	sb_max = SB_MAX;		/* patchable */
60 
61 /*
62  * Procedures to manipulate state flags of socket
63  * and do appropriate wakeups.  Normal sequence from the
64  * active (originating) side is that soisconnecting() is
65  * called during processing of connect() call,
66  * resulting in an eventual call to soisconnected() if/when the
67  * connection is established.  When the connection is torn down
68  * soisdisconnecting() is called during processing of disconnect() call,
69  * and soisdisconnected() is called when the connection to the peer
70  * is totally severed.  The semantics of these routines are such that
71  * connectionless protocols can call soisconnected() and soisdisconnected()
72  * only, bypassing the in-progress calls when setting up a ``connection''
73  * takes no time.
74  *
75  * From the passive side, a socket is created with
76  * two queues of sockets: so_q0 for connections in progress
77  * and so_q for connections already made and awaiting user acceptance.
78  * As a protocol is preparing incoming connections, it creates a socket
79  * structure queued on so_q0 by calling sonewconn().  When the connection
80  * is established, soisconnected() is called, and transfers the
81  * socket structure to so_q, making it available to accept().
82  *
83  * If a socket is closed with sockets on either
84  * so_q0 or so_q, these sockets are dropped.
85  *
86  * If higher level protocols are implemented in
87  * the kernel, the wakeups done here will sometimes
88  * cause software-interrupt process scheduling.
89  */
90 
91 void
92 soisconnecting(so)
93 	register struct socket *so;
94 {
95 
96 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
97 	so->so_state |= SS_ISCONNECTING;
98 }
99 
100 void
101 soisconnected(so)
102 	register struct socket *so;
103 {
104 	register struct socket *head = so->so_head;
105 
106 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
107 	so->so_state |= SS_ISCONNECTED;
108 	if (head && soqremque(so, 0)) {
109 		soqinsque(head, so, 1);
110 		sorwakeup(head);
111 		wakeup((caddr_t)&head->so_timeo);
112 	} else {
113 		wakeup((caddr_t)&so->so_timeo);
114 		sorwakeup(so);
115 		sowwakeup(so);
116 	}
117 }
118 
119 void
120 soisdisconnecting(so)
121 	register struct socket *so;
122 {
123 
124 	so->so_state &= ~SS_ISCONNECTING;
125 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
126 	wakeup((caddr_t)&so->so_timeo);
127 	sowwakeup(so);
128 	sorwakeup(so);
129 }
130 
131 void
132 soisdisconnected(so)
133 	register struct socket *so;
134 {
135 
136 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 	wakeup((caddr_t)&so->so_timeo);
139 	sowwakeup(so);
140 	sorwakeup(so);
141 }
142 
143 /*
144  * When an attempt at a new connection is noted on a socket
145  * which accepts connections, sonewconn is called.  If the
146  * connection is possible (subject to space constraints, etc.)
147  * then we allocate a new structure, propoerly linked into the
148  * data structure of the original socket, and return this.
149  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150  *
151  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152  * to catch calls that are missing the (new) second parameter.
153  */
154 struct socket *
155 sonewconn1(head, connstatus)
156 	register struct socket *head;
157 	int connstatus;
158 {
159 	register struct socket *so;
160 	int soqueue = connstatus ? 1 : 0;
161 
162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 		return ((struct socket *)0);
164 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 	if (so == NULL)
166 		return ((struct socket *)0);
167 	bzero((caddr_t)so, sizeof(*so));
168 	so->so_type = head->so_type;
169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 	so->so_linger = head->so_linger;
171 	so->so_state = head->so_state | SS_NOFDREF;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 	soqinsque(head, so, soqueue);
177 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
179 	    (struct proc *)0)) {
180 		(void) soqremque(so, soqueue);
181 		(void) free((caddr_t)so, M_SOCKET);
182 		return ((struct socket *)0);
183 	}
184 	if (connstatus) {
185 		sorwakeup(head);
186 		wakeup((caddr_t)&head->so_timeo);
187 		so->so_state |= connstatus;
188 	}
189 	return (so);
190 }
191 
192 void
193 soqinsque(head, so, q)
194 	register struct socket *head, *so;
195 	int q;
196 {
197 
198 	register struct socket **prev;
199 	so->so_head = head;
200 	if (q == 0) {
201 		head->so_q0len++;
202 		so->so_q0 = 0;
203 		for (prev = &(head->so_q0); *prev; )
204 			prev = &((*prev)->so_q0);
205 	} else {
206 		head->so_qlen++;
207 		so->so_q = 0;
208 		for (prev = &(head->so_q); *prev; )
209 			prev = &((*prev)->so_q);
210 	}
211 	*prev = so;
212 }
213 
214 int
215 soqremque(so, q)
216 	register struct socket *so;
217 	int q;
218 {
219 	register struct socket *head, *prev, *next;
220 
221 	head = so->so_head;
222 	prev = head;
223 	for (;;) {
224 		next = q ? prev->so_q : prev->so_q0;
225 		if (next == so)
226 			break;
227 		if (next == 0)
228 			return (0);
229 		prev = next;
230 	}
231 	if (q == 0) {
232 		prev->so_q0 = next->so_q0;
233 		head->so_q0len--;
234 	} else {
235 		prev->so_q = next->so_q;
236 		head->so_qlen--;
237 	}
238 	next->so_q0 = next->so_q = 0;
239 	next->so_head = 0;
240 	return (1);
241 }
242 
243 /*
244  * Socantsendmore indicates that no more data will be sent on the
245  * socket; it would normally be applied to a socket when the user
246  * informs the system that no more data is to be sent, by the protocol
247  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
248  * will be received, and will normally be applied to the socket by a
249  * protocol when it detects that the peer will send no more data.
250  * Data queued for reading in the socket may yet be read.
251  */
252 
253 void
254 socantsendmore(so)
255 	struct socket *so;
256 {
257 
258 	so->so_state |= SS_CANTSENDMORE;
259 	sowwakeup(so);
260 }
261 
262 void
263 socantrcvmore(so)
264 	struct socket *so;
265 {
266 
267 	so->so_state |= SS_CANTRCVMORE;
268 	sorwakeup(so);
269 }
270 
271 /*
272  * Wait for data to arrive at/drain from a socket buffer.
273  */
274 int
275 sbwait(sb)
276 	struct sockbuf *sb;
277 {
278 
279 	sb->sb_flags |= SB_WAIT;
280 	return (tsleep((caddr_t)&sb->sb_cc,
281 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
282 	    sb->sb_timeo));
283 }
284 
285 /*
286  * Lock a sockbuf already known to be locked;
287  * return any error returned from sleep (EINTR).
288  */
289 int
290 sb_lock(sb)
291 	register struct sockbuf *sb;
292 {
293 	int error;
294 
295 	while (sb->sb_flags & SB_LOCK) {
296 		sb->sb_flags |= SB_WANT;
297 		error = tsleep((caddr_t)&sb->sb_flags,
298 			       (sb->sb_flags & SB_NOINTR) ?
299 					PSOCK : PSOCK|PCATCH, netio, 0);
300 		if (error)
301 			return (error);
302 	}
303 	sb->sb_flags |= SB_LOCK;
304 	return (0);
305 }
306 
307 /*
308  * Wakeup processes waiting on a socket buffer.
309  * Do asynchronous notification via SIGIO
310  * if the socket has the SS_ASYNC flag set.
311  */
312 void
313 sowakeup(so, sb)
314 	register struct socket *so;
315 	register struct sockbuf *sb;
316 {
317 	struct proc *p;
318 
319 	selwakeup(&sb->sb_sel);
320 	sb->sb_flags &= ~SB_SEL;
321 	if (sb->sb_flags & SB_WAIT) {
322 		sb->sb_flags &= ~SB_WAIT;
323 		wakeup((caddr_t)&sb->sb_cc);
324 	}
325 	if (so->so_state & SS_ASYNC) {
326 		if (so->so_pgid < 0)
327 			gsignal(-so->so_pgid, SIGIO);
328 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
329 			psignal(p, SIGIO);
330 	}
331 }
332 
333 /*
334  * Socket buffer (struct sockbuf) utility routines.
335  *
336  * Each socket contains two socket buffers: one for sending data and
337  * one for receiving data.  Each buffer contains a queue of mbufs,
338  * information about the number of mbufs and amount of data in the
339  * queue, and other fields allowing poll() statements and notification
340  * on data availability to be implemented.
341  *
342  * Data stored in a socket buffer is maintained as a list of records.
343  * Each record is a list of mbufs chained together with the m_next
344  * field.  Records are chained together with the m_nextpkt field. The upper
345  * level routine soreceive() expects the following conventions to be
346  * observed when placing information in the receive buffer:
347  *
348  * 1. If the protocol requires each message be preceded by the sender's
349  *    name, then a record containing that name must be present before
350  *    any associated data (mbuf's must be of type MT_SONAME).
351  * 2. If the protocol supports the exchange of ``access rights'' (really
352  *    just additional data associated with the message), and there are
353  *    ``rights'' to be received, then a record containing this data
354  *    should be present (mbuf's must be of type MT_CONTROL).
355  * 3. If a name or rights record exists, then it must be followed by
356  *    a data record, perhaps of zero length.
357  *
358  * Before using a new socket structure it is first necessary to reserve
359  * buffer space to the socket, by calling sbreserve().  This should commit
360  * some of the available buffer space in the system buffer pool for the
361  * socket (currently, it does nothing but enforce limits).  The space
362  * should be released by calling sbrelease() when the socket is destroyed.
363  */
364 
365 int
366 soreserve(so, sndcc, rcvcc)
367 	register struct socket *so;
368 	u_long sndcc, rcvcc;
369 {
370 
371 	if (sbreserve(&so->so_snd, sndcc) == 0)
372 		goto bad;
373 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
374 		goto bad2;
375 	if (so->so_rcv.sb_lowat == 0)
376 		so->so_rcv.sb_lowat = 1;
377 	if (so->so_snd.sb_lowat == 0)
378 		so->so_snd.sb_lowat = MCLBYTES;
379 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
380 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
381 	return (0);
382 bad2:
383 	sbrelease(&so->so_snd);
384 bad:
385 	return (ENOBUFS);
386 }
387 
388 /*
389  * Allot mbufs to a sockbuf.
390  * Attempt to scale mbmax so that mbcnt doesn't become limiting
391  * if buffering efficiency is near the normal case.
392  */
393 int
394 sbreserve(sb, cc)
395 	struct sockbuf *sb;
396 	u_long cc;
397 {
398 
399 	if (cc == 0 || cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
400 		return (0);
401 	sb->sb_hiwat = cc;
402 	sb->sb_mbmax = min(cc * 2, sb_max);
403 	if (sb->sb_lowat > sb->sb_hiwat)
404 		sb->sb_lowat = sb->sb_hiwat;
405 	return (1);
406 }
407 
408 /*
409  * Free mbufs held by a socket, and reserved mbuf space.
410  */
411 void
412 sbrelease(sb)
413 	struct sockbuf *sb;
414 {
415 
416 	sbflush(sb);
417 	sb->sb_hiwat = sb->sb_mbmax = 0;
418 }
419 
420 /*
421  * Routines to add and remove
422  * data from an mbuf queue.
423  *
424  * The routines sbappend() or sbappendrecord() are normally called to
425  * append new mbufs to a socket buffer, after checking that adequate
426  * space is available, comparing the function sbspace() with the amount
427  * of data to be added.  sbappendrecord() differs from sbappend() in
428  * that data supplied is treated as the beginning of a new record.
429  * To place a sender's address, optional access rights, and data in a
430  * socket receive buffer, sbappendaddr() should be used.  To place
431  * access rights and data in a socket receive buffer, sbappendrights()
432  * should be used.  In either case, the new data begins a new record.
433  * Note that unlike sbappend() and sbappendrecord(), these routines check
434  * for the caller that there will be enough space to store the data.
435  * Each fails if there is not enough space, or if it cannot find mbufs
436  * to store additional information in.
437  *
438  * Reliable protocols may use the socket send buffer to hold data
439  * awaiting acknowledgement.  Data is normally copied from a socket
440  * send buffer in a protocol with m_copy for output to a peer,
441  * and then removing the data from the socket buffer with sbdrop()
442  * or sbdroprecord() when the data is acknowledged by the peer.
443  */
444 
445 /*
446  * Append mbuf chain m to the last record in the
447  * socket buffer sb.  The additional space associated
448  * the mbuf chain is recorded in sb.  Empty mbufs are
449  * discarded and mbufs are compacted where possible.
450  */
451 void
452 sbappend(sb, m)
453 	struct sockbuf *sb;
454 	struct mbuf *m;
455 {
456 	register struct mbuf *n;
457 
458 	if (m == 0)
459 		return;
460 	if ((n = sb->sb_mb) != NULL) {
461 		while (n->m_nextpkt)
462 			n = n->m_nextpkt;
463 		do {
464 			if (n->m_flags & M_EOR) {
465 				sbappendrecord(sb, m); /* XXXXXX!!!! */
466 				return;
467 			}
468 		} while (n->m_next && (n = n->m_next));
469 	}
470 	sbcompress(sb, m, n);
471 }
472 
473 #ifdef SOCKBUF_DEBUG
474 void
475 sbcheck(sb)
476 	register struct sockbuf *sb;
477 {
478 	register struct mbuf *m;
479 	register int len = 0, mbcnt = 0;
480 
481 	for (m = sb->sb_mb; m; m = m->m_next) {
482 		len += m->m_len;
483 		mbcnt += MSIZE;
484 		if (m->m_flags & M_EXT)
485 			mbcnt += m->m_ext.ext_size;
486 		if (m->m_nextpkt)
487 			panic("sbcheck nextpkt");
488 	}
489 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
490 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
491 		    mbcnt, sb->sb_mbcnt);
492 		panic("sbcheck");
493 	}
494 }
495 #endif
496 
497 /*
498  * As above, except the mbuf chain
499  * begins a new record.
500  */
501 void
502 sbappendrecord(sb, m0)
503 	register struct sockbuf *sb;
504 	register struct mbuf *m0;
505 {
506 	register struct mbuf *m;
507 
508 	if (m0 == 0)
509 		return;
510 	if ((m = sb->sb_mb) != NULL)
511 		while (m->m_nextpkt)
512 			m = m->m_nextpkt;
513 	/*
514 	 * Put the first mbuf on the queue.
515 	 * Note this permits zero length records.
516 	 */
517 	sballoc(sb, m0);
518 	if (m)
519 		m->m_nextpkt = m0;
520 	else
521 		sb->sb_mb = m0;
522 	m = m0->m_next;
523 	m0->m_next = 0;
524 	if (m && (m0->m_flags & M_EOR)) {
525 		m0->m_flags &= ~M_EOR;
526 		m->m_flags |= M_EOR;
527 	}
528 	sbcompress(sb, m, m0);
529 }
530 
531 /*
532  * As above except that OOB data
533  * is inserted at the beginning of the sockbuf,
534  * but after any other OOB data.
535  */
536 void
537 sbinsertoob(sb, m0)
538 	register struct sockbuf *sb;
539 	register struct mbuf *m0;
540 {
541 	register struct mbuf *m;
542 	register struct mbuf **mp;
543 
544 	if (m0 == 0)
545 		return;
546 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
547 	    again:
548 		switch (m->m_type) {
549 
550 		case MT_OOBDATA:
551 			continue;		/* WANT next train */
552 
553 		case MT_CONTROL:
554 			if ((m = m->m_next) != NULL)
555 				goto again;	/* inspect THIS train further */
556 		}
557 		break;
558 	}
559 	/*
560 	 * Put the first mbuf on the queue.
561 	 * Note this permits zero length records.
562 	 */
563 	sballoc(sb, m0);
564 	m0->m_nextpkt = *mp;
565 	*mp = m0;
566 	m = m0->m_next;
567 	m0->m_next = 0;
568 	if (m && (m0->m_flags & M_EOR)) {
569 		m0->m_flags &= ~M_EOR;
570 		m->m_flags |= M_EOR;
571 	}
572 	sbcompress(sb, m, m0);
573 }
574 
575 /*
576  * Append address and data, and optionally, control (ancillary) data
577  * to the receive queue of a socket.  If present,
578  * m0 must include a packet header with total length.
579  * Returns 0 if no space in sockbuf or insufficient mbufs.
580  */
581 int
582 sbappendaddr(sb, asa, m0, control)
583 	register struct sockbuf *sb;
584 	struct sockaddr *asa;
585 	struct mbuf *m0, *control;
586 {
587 	register struct mbuf *m, *n;
588 	int space = asa->sa_len;
589 
590 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
591 panic("sbappendaddr");
592 	if (m0)
593 		space += m0->m_pkthdr.len;
594 	for (n = control; n; n = n->m_next) {
595 		space += n->m_len;
596 		if (n->m_next == 0)	/* keep pointer to last control buf */
597 			break;
598 	}
599 	if (space > sbspace(sb))
600 		return (0);
601 	MGET(m, M_DONTWAIT, MT_SONAME);
602 	if (m == 0)
603 		return (0);
604 	if (asa->sa_len > MLEN) {
605 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
606 		if ((m->m_flags & M_EXT) == 0) {
607 			m_free(m);
608 			return (0);
609 		}
610 	}
611 	m->m_len = asa->sa_len;
612 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
613 	if (n)
614 		n->m_next = m0;		/* concatenate data to control */
615 	else
616 		control = m0;
617 	m->m_next = control;
618 	for (n = m; n; n = n->m_next)
619 		sballoc(sb, n);
620 	if ((n = sb->sb_mb) != NULL) {
621 		while (n->m_nextpkt)
622 			n = n->m_nextpkt;
623 		n->m_nextpkt = m;
624 	} else
625 		sb->sb_mb = m;
626 	return (1);
627 }
628 
629 int
630 sbappendcontrol(sb, m0, control)
631 	struct sockbuf *sb;
632 	struct mbuf *m0, *control;
633 {
634 	register struct mbuf *m, *n;
635 	int space = 0;
636 
637 	if (control == 0)
638 		panic("sbappendcontrol");
639 	for (m = control; ; m = m->m_next) {
640 		space += m->m_len;
641 		if (m->m_next == 0)
642 			break;
643 	}
644 	n = m;			/* save pointer to last control buffer */
645 	for (m = m0; m; m = m->m_next)
646 		space += m->m_len;
647 	if (space > sbspace(sb))
648 		return (0);
649 	n->m_next = m0;			/* concatenate data to control */
650 	for (m = control; m; m = m->m_next)
651 		sballoc(sb, m);
652 	if ((n = sb->sb_mb) != NULL) {
653 		while (n->m_nextpkt)
654 			n = n->m_nextpkt;
655 		n->m_nextpkt = control;
656 	} else
657 		sb->sb_mb = control;
658 	return (1);
659 }
660 
661 /*
662  * Compress mbuf chain m into the socket
663  * buffer sb following mbuf n.  If n
664  * is null, the buffer is presumed empty.
665  */
666 void
667 sbcompress(sb, m, n)
668 	register struct sockbuf *sb;
669 	register struct mbuf *m, *n;
670 {
671 	register int eor = 0;
672 	register struct mbuf *o;
673 
674 	while (m) {
675 		eor |= m->m_flags & M_EOR;
676 		if (m->m_len == 0 &&
677 		    (eor == 0 ||
678 		     (((o = m->m_next) || (o = n)) &&
679 		      o->m_type == m->m_type))) {
680 			m = m_free(m);
681 			continue;
682 		}
683 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
684 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
685 		    n->m_type == m->m_type) {
686 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
687 			    (unsigned)m->m_len);
688 			n->m_len += m->m_len;
689 			sb->sb_cc += m->m_len;
690 			m = m_free(m);
691 			continue;
692 		}
693 		if (n)
694 			n->m_next = m;
695 		else
696 			sb->sb_mb = m;
697 		sballoc(sb, m);
698 		n = m;
699 		m->m_flags &= ~M_EOR;
700 		m = m->m_next;
701 		n->m_next = 0;
702 	}
703 	if (eor) {
704 		if (n)
705 			n->m_flags |= eor;
706 		else
707 			printf("semi-panic: sbcompress\n");
708 	}
709 }
710 
711 /*
712  * Free all mbufs in a sockbuf.
713  * Check that all resources are reclaimed.
714  */
715 void
716 sbflush(sb)
717 	register struct sockbuf *sb;
718 {
719 
720 	if (sb->sb_flags & SB_LOCK)
721 		panic("sbflush");
722 	while (sb->sb_mbcnt)
723 		sbdrop(sb, (int)sb->sb_cc);
724 	if (sb->sb_cc || sb->sb_mb)
725 		panic("sbflush 2");
726 }
727 
728 /*
729  * Drop data from (the front of) a sockbuf.
730  */
731 void
732 sbdrop(sb, len)
733 	register struct sockbuf *sb;
734 	register int len;
735 {
736 	register struct mbuf *m, *mn;
737 	struct mbuf *next;
738 
739 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
740 	while (len > 0) {
741 		if (m == 0) {
742 			if (next == 0)
743 				panic("sbdrop");
744 			m = next;
745 			next = m->m_nextpkt;
746 			continue;
747 		}
748 		if (m->m_len > len) {
749 			m->m_len -= len;
750 			m->m_data += len;
751 			sb->sb_cc -= len;
752 			break;
753 		}
754 		len -= m->m_len;
755 		sbfree(sb, m);
756 		MFREE(m, mn);
757 		m = mn;
758 	}
759 	while (m && m->m_len == 0) {
760 		sbfree(sb, m);
761 		MFREE(m, mn);
762 		m = mn;
763 	}
764 	if (m) {
765 		sb->sb_mb = m;
766 		m->m_nextpkt = next;
767 	} else
768 		sb->sb_mb = next;
769 }
770 
771 /*
772  * Drop a record off the front of a sockbuf
773  * and move the next record to the front.
774  */
775 void
776 sbdroprecord(sb)
777 	register struct sockbuf *sb;
778 {
779 	register struct mbuf *m, *mn;
780 
781 	m = sb->sb_mb;
782 	if (m) {
783 		sb->sb_mb = m->m_nextpkt;
784 		do {
785 			sbfree(sb, m);
786 			MFREE(m, mn);
787 		} while ((m = mn) != NULL);
788 	}
789 }
790 
791 /*
792  * Create a "control" mbuf containing the specified data
793  * with the specified type for presentation on a socket buffer.
794  */
795 struct mbuf *
796 sbcreatecontrol(p, size, type, level)
797 	caddr_t p;
798 	register int size;
799 	int type, level;
800 {
801 	register struct cmsghdr *cp;
802 	struct mbuf *m;
803 
804 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
805 		return ((struct mbuf *) NULL);
806 	cp = mtod(m, struct cmsghdr *);
807 	bcopy(p, CMSG_DATA(cp), size);
808 	size += sizeof(*cp);
809 	m->m_len = size;
810 	cp->cmsg_len = size;
811 	cp->cmsg_level = level;
812 	cp->cmsg_type = type;
813 	return (m);
814 }
815