xref: /netbsd-src/sys/kern/uipc_socket2.c (revision ce63d6c20fc4ec8ddc95c84bb229e3c4ecf82b69)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from: @(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
34  *	$Id: uipc_socket2.c,v 1.3 1993/05/18 18:19:38 cgd Exp $
35  */
36 
37 #include "param.h"
38 #include "systm.h"
39 #include "proc.h"
40 #include "file.h"
41 #include "buf.h"
42 #include "malloc.h"
43 #include "select.h"
44 #include "mbuf.h"
45 #include "protosw.h"
46 #include "socket.h"
47 #include "socketvar.h"
48 
49 /*
50  * Primitive routines for operating on sockets and socket buffers
51  */
52 
53 /* strings for sleep message: */
54 char	netio[] = "netio";
55 char	netcon[] = "netcon";
56 char	netcls[] = "netcls";
57 
58 u_long	sb_max = SB_MAX;		/* patchable */
59 
60 /*
61  * Procedures to manipulate state flags of socket
62  * and do appropriate wakeups.  Normal sequence from the
63  * active (originating) side is that soisconnecting() is
64  * called during processing of connect() call,
65  * resulting in an eventual call to soisconnected() if/when the
66  * connection is established.  When the connection is torn down
67  * soisdisconnecting() is called during processing of disconnect() call,
68  * and soisdisconnected() is called when the connection to the peer
69  * is totally severed.  The semantics of these routines are such that
70  * connectionless protocols can call soisconnected() and soisdisconnected()
71  * only, bypassing the in-progress calls when setting up a ``connection''
72  * takes no time.
73  *
74  * From the passive side, a socket is created with
75  * two queues of sockets: so_q0 for connections in progress
76  * and so_q for connections already made and awaiting user acceptance.
77  * As a protocol is preparing incoming connections, it creates a socket
78  * structure queued on so_q0 by calling sonewconn().  When the connection
79  * is established, soisconnected() is called, and transfers the
80  * socket structure to so_q, making it available to accept().
81  *
82  * If a socket is closed with sockets on either
83  * so_q0 or so_q, these sockets are dropped.
84  *
85  * If higher level protocols are implemented in
86  * the kernel, the wakeups done here will sometimes
87  * cause software-interrupt process scheduling.
88  */
89 
90 soisconnecting(so)
91 	register struct socket *so;
92 {
93 
94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 	so->so_state |= SS_ISCONNECTING;
96 }
97 
98 soisconnected(so)
99 	register struct socket *so;
100 {
101 	register struct socket *head = so->so_head;
102 
103 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
104 	so->so_state |= SS_ISCONNECTED;
105 	if (head && soqremque(so, 0)) {
106 		soqinsque(head, so, 1);
107 		sorwakeup(head);
108 		wakeup((caddr_t)&head->so_timeo);
109 	} else {
110 		wakeup((caddr_t)&so->so_timeo);
111 		sorwakeup(so);
112 		sowwakeup(so);
113 	}
114 }
115 
116 soisdisconnecting(so)
117 	register struct socket *so;
118 {
119 
120 	so->so_state &= ~SS_ISCONNECTING;
121 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
122 	wakeup((caddr_t)&so->so_timeo);
123 	sowwakeup(so);
124 	sorwakeup(so);
125 }
126 
127 soisdisconnected(so)
128 	register struct socket *so;
129 {
130 
131 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
132 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
133 	wakeup((caddr_t)&so->so_timeo);
134 	sowwakeup(so);
135 	sorwakeup(so);
136 }
137 
138 /*
139  * When an attempt at a new connection is noted on a socket
140  * which accepts connections, sonewconn is called.  If the
141  * connection is possible (subject to space constraints, etc.)
142  * then we allocate a new structure, propoerly linked into the
143  * data structure of the original socket, and return this.
144  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
145  *
146  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
147  * to catch calls that are missing the (new) second parameter.
148  */
149 struct socket *
150 sonewconn1(head, connstatus)
151 	register struct socket *head;
152 	int connstatus;
153 {
154 	register struct socket *so;
155 	int soqueue = connstatus ? 1 : 0;
156 
157 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158 		return ((struct socket *)0);
159 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
160 	if (so == NULL)
161 		return ((struct socket *)0);
162 	bzero((caddr_t)so, sizeof(*so));
163 	so->so_type = head->so_type;
164 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
165 	so->so_linger = head->so_linger;
166 	so->so_state = head->so_state | SS_NOFDREF;
167 	so->so_proto = head->so_proto;
168 	so->so_timeo = head->so_timeo;
169 	so->so_pgid = head->so_pgid;
170 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
171 	soqinsque(head, so, soqueue);
172 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
173 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
174 		(void) soqremque(so, soqueue);
175 		(void) free((caddr_t)so, M_SOCKET);
176 		return ((struct socket *)0);
177 	}
178 	if (connstatus) {
179 		sorwakeup(head);
180 		wakeup((caddr_t)&head->so_timeo);
181 		so->so_state |= connstatus;
182 	}
183 	return (so);
184 }
185 
186 soqinsque(head, so, q)
187 	register struct socket *head, *so;
188 	int q;
189 {
190 
191 	register struct socket **prev;
192 	so->so_head = head;
193 	if (q == 0) {
194 		head->so_q0len++;
195 		so->so_q0 = 0;
196 		for (prev = &(head->so_q0); *prev; )
197 			prev = &((*prev)->so_q0);
198 	} else {
199 		head->so_qlen++;
200 		so->so_q = 0;
201 		for (prev = &(head->so_q); *prev; )
202 			prev = &((*prev)->so_q);
203 	}
204 	*prev = so;
205 }
206 
207 soqremque(so, q)
208 	register struct socket *so;
209 	int q;
210 {
211 	register struct socket *head, *prev, *next;
212 
213 	head = so->so_head;
214 	prev = head;
215 	for (;;) {
216 		next = q ? prev->so_q : prev->so_q0;
217 		if (next == so)
218 			break;
219 		if (next == 0)
220 			return (0);
221 		prev = next;
222 	}
223 	if (q == 0) {
224 		prev->so_q0 = next->so_q0;
225 		head->so_q0len--;
226 	} else {
227 		prev->so_q = next->so_q;
228 		head->so_qlen--;
229 	}
230 	next->so_q0 = next->so_q = 0;
231 	next->so_head = 0;
232 	return (1);
233 }
234 
235 /*
236  * Socantsendmore indicates that no more data will be sent on the
237  * socket; it would normally be applied to a socket when the user
238  * informs the system that no more data is to be sent, by the protocol
239  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
240  * will be received, and will normally be applied to the socket by a
241  * protocol when it detects that the peer will send no more data.
242  * Data queued for reading in the socket may yet be read.
243  */
244 
245 socantsendmore(so)
246 	struct socket *so;
247 {
248 
249 	so->so_state |= SS_CANTSENDMORE;
250 	sowwakeup(so);
251 }
252 
253 socantrcvmore(so)
254 	struct socket *so;
255 {
256 
257 	so->so_state |= SS_CANTRCVMORE;
258 	sorwakeup(so);
259 }
260 
261 /*
262  * Socket select/wakeup routines.
263  */
264 
265 /*
266  * Queue a process for a select on a socket buffer.
267  */
268 sbselqueue(sb, cp)
269 	struct sockbuf *sb;
270 	struct proc *cp;
271 {
272 	selrecord(cp, &sb->sb_sel);
273 	sb->sb_flags |= SB_SEL;
274 }
275 
276 /*
277  * Wait for data to arrive at/drain from a socket buffer.
278  */
279 sbwait(sb)
280 	struct sockbuf *sb;
281 {
282 
283 	sb->sb_flags |= SB_WAIT;
284 	return (tsleep((caddr_t)&sb->sb_cc,
285 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
286 	    sb->sb_timeo));
287 }
288 
289 /*
290  * Lock a sockbuf already known to be locked;
291  * return any error returned from sleep (EINTR).
292  */
293 sb_lock(sb)
294 	register struct sockbuf *sb;
295 {
296 	int error;
297 
298 	while (sb->sb_flags & SB_LOCK) {
299 		sb->sb_flags |= SB_WANT;
300 		if (error = tsleep((caddr_t)&sb->sb_flags,
301 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
302 		    netio, 0))
303 			return (error);
304 	}
305 	sb->sb_flags |= SB_LOCK;
306 	return (0);
307 }
308 
309 /*
310  * Wakeup processes waiting on a socket buffer.
311  * Do asynchronous notification via SIGIO
312  * if the socket has the SS_ASYNC flag set.
313  */
314 sowakeup(so, sb)
315 	register struct socket *so;
316 	register struct sockbuf *sb;
317 {
318 	struct proc *p;
319 
320 	selwakeup(&sb->sb_sel);
321         sb->sb_flags &= ~SB_SEL;
322 	if (sb->sb_flags & SB_WAIT) {
323 		sb->sb_flags &= ~SB_WAIT;
324 		wakeup((caddr_t)&sb->sb_cc);
325 	}
326 	if (so->so_state & SS_ASYNC) {
327 		if (so->so_pgid < 0)
328 			gsignal(-so->so_pgid, SIGIO);
329 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
330 			psignal(p, SIGIO);
331 	}
332 }
333 
334 /*
335  * Socket buffer (struct sockbuf) utility routines.
336  *
337  * Each socket contains two socket buffers: one for sending data and
338  * one for receiving data.  Each buffer contains a queue of mbufs,
339  * information about the number of mbufs and amount of data in the
340  * queue, and other fields allowing select() statements and notification
341  * on data availability to be implemented.
342  *
343  * Data stored in a socket buffer is maintained as a list of records.
344  * Each record is a list of mbufs chained together with the m_next
345  * field.  Records are chained together with the m_nextpkt field. The upper
346  * level routine soreceive() expects the following conventions to be
347  * observed when placing information in the receive buffer:
348  *
349  * 1. If the protocol requires each message be preceded by the sender's
350  *    name, then a record containing that name must be present before
351  *    any associated data (mbuf's must be of type MT_SONAME).
352  * 2. If the protocol supports the exchange of ``access rights'' (really
353  *    just additional data associated with the message), and there are
354  *    ``rights'' to be received, then a record containing this data
355  *    should be present (mbuf's must be of type MT_RIGHTS).
356  * 3. If a name or rights record exists, then it must be followed by
357  *    a data record, perhaps of zero length.
358  *
359  * Before using a new socket structure it is first necessary to reserve
360  * buffer space to the socket, by calling sbreserve().  This should commit
361  * some of the available buffer space in the system buffer pool for the
362  * socket (currently, it does nothing but enforce limits).  The space
363  * should be released by calling sbrelease() when the socket is destroyed.
364  */
365 
366 soreserve(so, sndcc, rcvcc)
367 	register struct socket *so;
368 	u_long sndcc, rcvcc;
369 {
370 
371 	if (sbreserve(&so->so_snd, sndcc) == 0)
372 		goto bad;
373 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
374 		goto bad2;
375 	if (so->so_rcv.sb_lowat == 0)
376 		so->so_rcv.sb_lowat = 1;
377 	if (so->so_snd.sb_lowat == 0)
378 		so->so_snd.sb_lowat = MCLBYTES;
379 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
380 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
381 	return (0);
382 bad2:
383 	sbrelease(&so->so_snd);
384 bad:
385 	return (ENOBUFS);
386 }
387 
388 /*
389  * Allot mbufs to a sockbuf.
390  * Attempt to scale mbmax so that mbcnt doesn't become limiting
391  * if buffering efficiency is near the normal case.
392  */
393 sbreserve(sb, cc)
394 	struct sockbuf *sb;
395 	u_long cc;
396 {
397 
398 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
399 		return (0);
400 	sb->sb_hiwat = cc;
401 	sb->sb_mbmax = min(cc * 2, sb_max);
402 	if (sb->sb_lowat > sb->sb_hiwat)
403 		sb->sb_lowat = sb->sb_hiwat;
404 	return (1);
405 }
406 
407 /*
408  * Free mbufs held by a socket, and reserved mbuf space.
409  */
410 sbrelease(sb)
411 	struct sockbuf *sb;
412 {
413 
414 	sbflush(sb);
415 	sb->sb_hiwat = sb->sb_mbmax = 0;
416 }
417 
418 /*
419  * Routines to add and remove
420  * data from an mbuf queue.
421  *
422  * The routines sbappend() or sbappendrecord() are normally called to
423  * append new mbufs to a socket buffer, after checking that adequate
424  * space is available, comparing the function sbspace() with the amount
425  * of data to be added.  sbappendrecord() differs from sbappend() in
426  * that data supplied is treated as the beginning of a new record.
427  * To place a sender's address, optional access rights, and data in a
428  * socket receive buffer, sbappendaddr() should be used.  To place
429  * access rights and data in a socket receive buffer, sbappendrights()
430  * should be used.  In either case, the new data begins a new record.
431  * Note that unlike sbappend() and sbappendrecord(), these routines check
432  * for the caller that there will be enough space to store the data.
433  * Each fails if there is not enough space, or if it cannot find mbufs
434  * to store additional information in.
435  *
436  * Reliable protocols may use the socket send buffer to hold data
437  * awaiting acknowledgement.  Data is normally copied from a socket
438  * send buffer in a protocol with m_copy for output to a peer,
439  * and then removing the data from the socket buffer with sbdrop()
440  * or sbdroprecord() when the data is acknowledged by the peer.
441  */
442 
443 /*
444  * Append mbuf chain m to the last record in the
445  * socket buffer sb.  The additional space associated
446  * the mbuf chain is recorded in sb.  Empty mbufs are
447  * discarded and mbufs are compacted where possible.
448  */
449 sbappend(sb, m)
450 	struct sockbuf *sb;
451 	struct mbuf *m;
452 {
453 	register struct mbuf *n;
454 
455 	if (m == 0)
456 		return;
457 	if (n = sb->sb_mb) {
458 		while (n->m_nextpkt)
459 			n = n->m_nextpkt;
460 		do {
461 			if (n->m_flags & M_EOR) {
462 				sbappendrecord(sb, m); /* XXXXXX!!!! */
463 				return;
464 			}
465 		} while (n->m_next && (n = n->m_next));
466 	}
467 	sbcompress(sb, m, n);
468 }
469 
470 #ifdef SOCKBUF_DEBUG
471 sbcheck(sb)
472 	register struct sockbuf *sb;
473 {
474 	register struct mbuf *m;
475 	register int len = 0, mbcnt = 0;
476 
477 	for (m = sb->sb_mb; m; m = m->m_next) {
478 		len += m->m_len;
479 		mbcnt += MSIZE;
480 		if (m->m_flags & M_EXT)
481 			mbcnt += m->m_ext.ext_size;
482 		if (m->m_nextpkt)
483 			panic("sbcheck nextpkt");
484 	}
485 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
486 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
487 		    mbcnt, sb->sb_mbcnt);
488 		panic("sbcheck");
489 	}
490 }
491 #endif
492 
493 /*
494  * As above, except the mbuf chain
495  * begins a new record.
496  */
497 sbappendrecord(sb, m0)
498 	register struct sockbuf *sb;
499 	register struct mbuf *m0;
500 {
501 	register struct mbuf *m;
502 
503 	if (m0 == 0)
504 		return;
505 	if (m = sb->sb_mb)
506 		while (m->m_nextpkt)
507 			m = m->m_nextpkt;
508 	/*
509 	 * Put the first mbuf on the queue.
510 	 * Note this permits zero length records.
511 	 */
512 	sballoc(sb, m0);
513 	if (m)
514 		m->m_nextpkt = m0;
515 	else
516 		sb->sb_mb = m0;
517 	m = m0->m_next;
518 	m0->m_next = 0;
519 	if (m && (m0->m_flags & M_EOR)) {
520 		m0->m_flags &= ~M_EOR;
521 		m->m_flags |= M_EOR;
522 	}
523 	sbcompress(sb, m, m0);
524 }
525 
526 /*
527  * As above except that OOB data
528  * is inserted at the beginning of the sockbuf,
529  * but after any other OOB data.
530  */
531 sbinsertoob(sb, m0)
532 	register struct sockbuf *sb;
533 	register struct mbuf *m0;
534 {
535 	register struct mbuf *m;
536 	register struct mbuf **mp;
537 
538 	if (m0 == 0)
539 		return;
540 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
541 	    again:
542 		switch (m->m_type) {
543 
544 		case MT_OOBDATA:
545 			continue;		/* WANT next train */
546 
547 		case MT_CONTROL:
548 			if (m = m->m_next)
549 				goto again;	/* inspect THIS train further */
550 		}
551 		break;
552 	}
553 	/*
554 	 * Put the first mbuf on the queue.
555 	 * Note this permits zero length records.
556 	 */
557 	sballoc(sb, m0);
558 	m0->m_nextpkt = *mp;
559 	*mp = m0;
560 	m = m0->m_next;
561 	m0->m_next = 0;
562 	if (m && (m0->m_flags & M_EOR)) {
563 		m0->m_flags &= ~M_EOR;
564 		m->m_flags |= M_EOR;
565 	}
566 	sbcompress(sb, m, m0);
567 }
568 
569 /*
570  * Append address and data, and optionally, control (ancillary) data
571  * to the receive queue of a socket.  If present,
572  * m0 must include a packet header with total length.
573  * Returns 0 if no space in sockbuf or insufficient mbufs.
574  */
575 sbappendaddr(sb, asa, m0, control)
576 	register struct sockbuf *sb;
577 	struct sockaddr *asa;
578 	struct mbuf *m0, *control;
579 {
580 	register struct mbuf *m, *n;
581 	int space = asa->sa_len;
582 
583 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
584 panic("sbappendaddr");
585 	if (m0)
586 		space += m0->m_pkthdr.len;
587 	for (n = control; n; n = n->m_next) {
588 		space += n->m_len;
589 		if (n->m_next == 0)	/* keep pointer to last control buf */
590 			break;
591 	}
592 	if (space > sbspace(sb))
593 		return (0);
594 	if (asa->sa_len > MLEN)
595 		return (0);
596 	MGET(m, M_DONTWAIT, MT_SONAME);
597 	if (m == 0)
598 		return (0);
599 	m->m_len = asa->sa_len;
600 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
601 	if (n)
602 		n->m_next = m0;		/* concatenate data to control */
603 	else
604 		control = m0;
605 	m->m_next = control;
606 	for (n = m; n; n = n->m_next)
607 		sballoc(sb, n);
608 	if (n = sb->sb_mb) {
609 		while (n->m_nextpkt)
610 			n = n->m_nextpkt;
611 		n->m_nextpkt = m;
612 	} else
613 		sb->sb_mb = m;
614 	return (1);
615 }
616 
617 sbappendcontrol(sb, m0, control)
618 	struct sockbuf *sb;
619 	struct mbuf *control, *m0;
620 {
621 	register struct mbuf *m, *n;
622 	int space = 0;
623 
624 	if (control == 0)
625 		panic("sbappendcontrol");
626 	for (m = control; ; m = m->m_next) {
627 		space += m->m_len;
628 		if (m->m_next == 0)
629 			break;
630 	}
631 	n = m;			/* save pointer to last control buffer */
632 	for (m = m0; m; m = m->m_next)
633 		space += m->m_len;
634 	if (space > sbspace(sb))
635 		return (0);
636 	n->m_next = m0;			/* concatenate data to control */
637 	for (m = control; m; m = m->m_next)
638 		sballoc(sb, m);
639 	if (n = sb->sb_mb) {
640 		while (n->m_nextpkt)
641 			n = n->m_nextpkt;
642 		n->m_nextpkt = control;
643 	} else
644 		sb->sb_mb = control;
645 	return (1);
646 }
647 
648 /*
649  * Compress mbuf chain m into the socket
650  * buffer sb following mbuf n.  If n
651  * is null, the buffer is presumed empty.
652  */
653 sbcompress(sb, m, n)
654 	register struct sockbuf *sb;
655 	register struct mbuf *m, *n;
656 {
657 	register int eor = 0;
658 	register struct mbuf *o;
659 
660 	while (m) {
661 		eor |= m->m_flags & M_EOR;
662 		if (m->m_len == 0 &&
663 		    (eor == 0 ||
664 		     (((o = m->m_next) || (o = n)) &&
665 		      o->m_type == m->m_type))) {
666 			m = m_free(m);
667 			continue;
668 		}
669 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
670 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
671 		    n->m_type == m->m_type) {
672 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
673 			    (unsigned)m->m_len);
674 			n->m_len += m->m_len;
675 			sb->sb_cc += m->m_len;
676 			m = m_free(m);
677 			continue;
678 		}
679 		if (n)
680 			n->m_next = m;
681 		else
682 			sb->sb_mb = m;
683 		sballoc(sb, m);
684 		n = m;
685 		m->m_flags &= ~M_EOR;
686 		m = m->m_next;
687 		n->m_next = 0;
688 	}
689 	if (eor) {
690 		if (n)
691 			n->m_flags |= eor;
692 		else
693 			printf("semi-panic: sbcompress\n");
694 	}
695 }
696 
697 /*
698  * Free all mbufs in a sockbuf.
699  * Check that all resources are reclaimed.
700  */
701 sbflush(sb)
702 	register struct sockbuf *sb;
703 {
704 
705 	if (sb->sb_flags & SB_LOCK)
706 		panic("sbflush");
707 	while (sb->sb_mbcnt)
708 		sbdrop(sb, (int)sb->sb_cc);
709 	if (sb->sb_cc || sb->sb_mb)
710 		panic("sbflush 2");
711 }
712 
713 /*
714  * Drop data from (the front of) a sockbuf.
715  */
716 sbdrop(sb, len)
717 	register struct sockbuf *sb;
718 	register int len;
719 {
720 	register struct mbuf *m, *mn;
721 	struct mbuf *next;
722 
723 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
724 	while (len > 0) {
725 		if (m == 0) {
726 			if (next == 0)
727 				panic("sbdrop");
728 			m = next;
729 			next = m->m_nextpkt;
730 			continue;
731 		}
732 		if (m->m_len > len) {
733 			m->m_len -= len;
734 			m->m_data += len;
735 			sb->sb_cc -= len;
736 			break;
737 		}
738 		len -= m->m_len;
739 		sbfree(sb, m);
740 		MFREE(m, mn);
741 		m = mn;
742 	}
743 	while (m && m->m_len == 0) {
744 		sbfree(sb, m);
745 		MFREE(m, mn);
746 		m = mn;
747 	}
748 	if (m) {
749 		sb->sb_mb = m;
750 		m->m_nextpkt = next;
751 	} else
752 		sb->sb_mb = next;
753 }
754 
755 /*
756  * Drop a record off the front of a sockbuf
757  * and move the next record to the front.
758  */
759 sbdroprecord(sb)
760 	register struct sockbuf *sb;
761 {
762 	register struct mbuf *m, *mn;
763 
764 	m = sb->sb_mb;
765 	if (m) {
766 		sb->sb_mb = m->m_nextpkt;
767 		do {
768 			sbfree(sb, m);
769 			MFREE(m, mn);
770 		} while (m = mn);
771 	}
772 }
773