xref: /netbsd-src/sys/kern/uipc_socket2.c (revision ce2c90c7c172d95d2402a5b3d96d8f8e6d138a21)
1 /*	$NetBSD: uipc_socket2.c,v 1.80 2006/10/12 01:32:19 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.80 2006/10/12 01:32:19 christos Exp $");
36 
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53 
54 /*
55  * Primitive routines for operating on sockets and socket buffers
56  */
57 
58 /* strings for sleep message: */
59 const char	netcon[] = "netcon";
60 const char	netcls[] = "netcls";
61 const char	netio[] = "netio";
62 const char	netlck[] = "netlck";
63 
64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
65 static u_long sb_max_adj;	/* adjusted sb_max */
66 
67 /*
68  * Procedures to manipulate state flags of socket
69  * and do appropriate wakeups.  Normal sequence from the
70  * active (originating) side is that soisconnecting() is
71  * called during processing of connect() call,
72  * resulting in an eventual call to soisconnected() if/when the
73  * connection is established.  When the connection is torn down
74  * soisdisconnecting() is called during processing of disconnect() call,
75  * and soisdisconnected() is called when the connection to the peer
76  * is totally severed.  The semantics of these routines are such that
77  * connectionless protocols can call soisconnected() and soisdisconnected()
78  * only, bypassing the in-progress calls when setting up a ``connection''
79  * takes no time.
80  *
81  * From the passive side, a socket is created with
82  * two queues of sockets: so_q0 for connections in progress
83  * and so_q for connections already made and awaiting user acceptance.
84  * As a protocol is preparing incoming connections, it creates a socket
85  * structure queued on so_q0 by calling sonewconn().  When the connection
86  * is established, soisconnected() is called, and transfers the
87  * socket structure to so_q, making it available to accept().
88  *
89  * If a socket is closed with sockets on either
90  * so_q0 or so_q, these sockets are dropped.
91  *
92  * If higher level protocols are implemented in
93  * the kernel, the wakeups done here will sometimes
94  * cause software-interrupt process scheduling.
95  */
96 
97 void
98 soisconnecting(struct socket *so)
99 {
100 
101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 	so->so_state |= SS_ISCONNECTING;
103 }
104 
105 void
106 soisconnected(struct socket *so)
107 {
108 	struct socket	*head;
109 
110 	head = so->so_head;
111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 	so->so_state |= SS_ISCONNECTED;
113 	if (head && soqremque(so, 0)) {
114 		soqinsque(head, so, 1);
115 		sorwakeup(head);
116 		wakeup((caddr_t)&head->so_timeo);
117 	} else {
118 		wakeup((caddr_t)&so->so_timeo);
119 		sorwakeup(so);
120 		sowwakeup(so);
121 	}
122 }
123 
124 void
125 soisdisconnecting(struct socket *so)
126 {
127 
128 	so->so_state &= ~SS_ISCONNECTING;
129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 	wakeup((caddr_t)&so->so_timeo);
131 	sowwakeup(so);
132 	sorwakeup(so);
133 }
134 
135 void
136 soisdisconnected(struct socket *so)
137 {
138 
139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 	wakeup((caddr_t)&so->so_timeo);
142 	sowwakeup(so);
143 	sorwakeup(so);
144 }
145 
146 /*
147  * When an attempt at a new connection is noted on a socket
148  * which accepts connections, sonewconn is called.  If the
149  * connection is possible (subject to space constraints, etc.)
150  * then we allocate a new structure, propoerly linked into the
151  * data structure of the original socket, and return this.
152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153  */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 	struct socket	*so;
158 	int		soqueue;
159 
160 	soqueue = connstatus ? 1 : 0;
161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 		return ((struct socket *)0);
163 	so = pool_get(&socket_pool, PR_NOWAIT);
164 	if (so == NULL)
165 		return (NULL);
166 	memset((caddr_t)so, 0, sizeof(*so));
167 	so->so_type = head->so_type;
168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 	so->so_linger = head->so_linger;
170 	so->so_state = head->so_state | SS_NOFDREF;
171 	so->so_proto = head->so_proto;
172 	so->so_timeo = head->so_timeo;
173 	so->so_pgid = head->so_pgid;
174 	so->so_send = head->so_send;
175 	so->so_receive = head->so_receive;
176 	so->so_uidinfo = head->so_uidinfo;
177 #ifdef MBUFTRACE
178 	so->so_mowner = head->so_mowner;
179 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
180 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
181 #endif
182 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
183 	soqinsque(head, so, soqueue);
184 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
185 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
186 	    (struct lwp *)0)) {
187 		(void) soqremque(so, soqueue);
188 		pool_put(&socket_pool, so);
189 		return (NULL);
190 	}
191 	if (connstatus) {
192 		sorwakeup(head);
193 		wakeup((caddr_t)&head->so_timeo);
194 		so->so_state |= connstatus;
195 	}
196 	return (so);
197 }
198 
199 void
200 soqinsque(struct socket *head, struct socket *so, int q)
201 {
202 
203 #ifdef DIAGNOSTIC
204 	if (so->so_onq != NULL)
205 		panic("soqinsque");
206 #endif
207 
208 	so->so_head = head;
209 	if (q == 0) {
210 		head->so_q0len++;
211 		so->so_onq = &head->so_q0;
212 	} else {
213 		head->so_qlen++;
214 		so->so_onq = &head->so_q;
215 	}
216 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
217 }
218 
219 int
220 soqremque(struct socket *so, int q)
221 {
222 	struct socket	*head;
223 
224 	head = so->so_head;
225 	if (q == 0) {
226 		if (so->so_onq != &head->so_q0)
227 			return (0);
228 		head->so_q0len--;
229 	} else {
230 		if (so->so_onq != &head->so_q)
231 			return (0);
232 		head->so_qlen--;
233 	}
234 	TAILQ_REMOVE(so->so_onq, so, so_qe);
235 	so->so_onq = NULL;
236 	so->so_head = NULL;
237 	return (1);
238 }
239 
240 /*
241  * Socantsendmore indicates that no more data will be sent on the
242  * socket; it would normally be applied to a socket when the user
243  * informs the system that no more data is to be sent, by the protocol
244  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
245  * will be received, and will normally be applied to the socket by a
246  * protocol when it detects that the peer will send no more data.
247  * Data queued for reading in the socket may yet be read.
248  */
249 
250 void
251 socantsendmore(struct socket *so)
252 {
253 
254 	so->so_state |= SS_CANTSENDMORE;
255 	sowwakeup(so);
256 }
257 
258 void
259 socantrcvmore(struct socket *so)
260 {
261 
262 	so->so_state |= SS_CANTRCVMORE;
263 	sorwakeup(so);
264 }
265 
266 /*
267  * Wait for data to arrive at/drain from a socket buffer.
268  */
269 int
270 sbwait(struct sockbuf *sb)
271 {
272 
273 	sb->sb_flags |= SB_WAIT;
274 	return (tsleep((caddr_t)&sb->sb_cc,
275 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
276 	    sb->sb_timeo));
277 }
278 
279 /*
280  * Lock a sockbuf already known to be locked;
281  * return any error returned from sleep (EINTR).
282  */
283 int
284 sb_lock(struct sockbuf *sb)
285 {
286 	int	error;
287 
288 	while (sb->sb_flags & SB_LOCK) {
289 		sb->sb_flags |= SB_WANT;
290 		error = tsleep((caddr_t)&sb->sb_flags,
291 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
292 		    netlck, 0);
293 		if (error)
294 			return (error);
295 	}
296 	sb->sb_flags |= SB_LOCK;
297 	return (0);
298 }
299 
300 /*
301  * Wakeup processes waiting on a socket buffer.
302  * Do asynchronous notification via SIGIO
303  * if the socket buffer has the SB_ASYNC flag set.
304  */
305 void
306 sowakeup(struct socket *so, struct sockbuf *sb, int code)
307 {
308 	selnotify(&sb->sb_sel, 0);
309 	sb->sb_flags &= ~SB_SEL;
310 	if (sb->sb_flags & SB_WAIT) {
311 		sb->sb_flags &= ~SB_WAIT;
312 		wakeup((caddr_t)&sb->sb_cc);
313 	}
314 	if (sb->sb_flags & SB_ASYNC) {
315 		int band;
316 		if (code == POLL_IN)
317 			band = POLLIN|POLLRDNORM;
318 		else
319 			band = POLLOUT|POLLWRNORM;
320 		fownsignal(so->so_pgid, SIGIO, code, band, so);
321 	}
322 	if (sb->sb_flags & SB_UPCALL)
323 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
324 }
325 
326 /*
327  * Socket buffer (struct sockbuf) utility routines.
328  *
329  * Each socket contains two socket buffers: one for sending data and
330  * one for receiving data.  Each buffer contains a queue of mbufs,
331  * information about the number of mbufs and amount of data in the
332  * queue, and other fields allowing poll() statements and notification
333  * on data availability to be implemented.
334  *
335  * Data stored in a socket buffer is maintained as a list of records.
336  * Each record is a list of mbufs chained together with the m_next
337  * field.  Records are chained together with the m_nextpkt field. The upper
338  * level routine soreceive() expects the following conventions to be
339  * observed when placing information in the receive buffer:
340  *
341  * 1. If the protocol requires each message be preceded by the sender's
342  *    name, then a record containing that name must be present before
343  *    any associated data (mbuf's must be of type MT_SONAME).
344  * 2. If the protocol supports the exchange of ``access rights'' (really
345  *    just additional data associated with the message), and there are
346  *    ``rights'' to be received, then a record containing this data
347  *    should be present (mbuf's must be of type MT_CONTROL).
348  * 3. If a name or rights record exists, then it must be followed by
349  *    a data record, perhaps of zero length.
350  *
351  * Before using a new socket structure it is first necessary to reserve
352  * buffer space to the socket, by calling sbreserve().  This should commit
353  * some of the available buffer space in the system buffer pool for the
354  * socket (currently, it does nothing but enforce limits).  The space
355  * should be released by calling sbrelease() when the socket is destroyed.
356  */
357 
358 int
359 sb_max_set(u_long new_sbmax)
360 {
361 	int s;
362 
363 	if (new_sbmax < (16 * 1024))
364 		return (EINVAL);
365 
366 	s = splsoftnet();
367 	sb_max = new_sbmax;
368 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
369 	splx(s);
370 
371 	return (0);
372 }
373 
374 int
375 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
376 {
377 	/*
378 	 * there's at least one application (a configure script of screen)
379 	 * which expects a fifo is writable even if it has "some" bytes
380 	 * in its buffer.
381 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
382 	 *
383 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
384 	 * we expect it's large enough for such applications.
385 	 */
386 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
387 	u_long  hiwat = lowat + PIPE_BUF;
388 
389 	if (sndcc < hiwat)
390 		sndcc = hiwat;
391 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
392 		goto bad;
393 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
394 		goto bad2;
395 	if (so->so_rcv.sb_lowat == 0)
396 		so->so_rcv.sb_lowat = 1;
397 	if (so->so_snd.sb_lowat == 0)
398 		so->so_snd.sb_lowat = lowat;
399 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
400 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
401 	return (0);
402  bad2:
403 	sbrelease(&so->so_snd, so);
404  bad:
405 	return (ENOBUFS);
406 }
407 
408 /*
409  * Allot mbufs to a sockbuf.
410  * Attempt to scale mbmax so that mbcnt doesn't become limiting
411  * if buffering efficiency is near the normal case.
412  */
413 int
414 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
415 {
416 	struct lwp *l = curlwp; /* XXX */
417 	rlim_t maxcc;
418 	struct uidinfo *uidinfo;
419 
420 	KDASSERT(sb_max_adj != 0);
421 	if (cc == 0 || cc > sb_max_adj)
422 		return (0);
423 	if (so) {
424 		if (l && kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
425 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
426 		else
427 			maxcc = RLIM_INFINITY;
428 		uidinfo = so->so_uidinfo;
429 	} else {
430 		uidinfo = uid_find(0);	/* XXX: nothing better */
431 		maxcc = RLIM_INFINITY;
432 	}
433 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
434 		return 0;
435 	sb->sb_mbmax = min(cc * 2, sb_max);
436 	if (sb->sb_lowat > sb->sb_hiwat)
437 		sb->sb_lowat = sb->sb_hiwat;
438 	return (1);
439 }
440 
441 /*
442  * Free mbufs held by a socket, and reserved mbuf space.
443  */
444 void
445 sbrelease(struct sockbuf *sb, struct socket *so)
446 {
447 
448 	sbflush(sb);
449 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0,
450 	    RLIM_INFINITY);
451 	sb->sb_mbmax = 0;
452 }
453 
454 /*
455  * Routines to add and remove
456  * data from an mbuf queue.
457  *
458  * The routines sbappend() or sbappendrecord() are normally called to
459  * append new mbufs to a socket buffer, after checking that adequate
460  * space is available, comparing the function sbspace() with the amount
461  * of data to be added.  sbappendrecord() differs from sbappend() in
462  * that data supplied is treated as the beginning of a new record.
463  * To place a sender's address, optional access rights, and data in a
464  * socket receive buffer, sbappendaddr() should be used.  To place
465  * access rights and data in a socket receive buffer, sbappendrights()
466  * should be used.  In either case, the new data begins a new record.
467  * Note that unlike sbappend() and sbappendrecord(), these routines check
468  * for the caller that there will be enough space to store the data.
469  * Each fails if there is not enough space, or if it cannot find mbufs
470  * to store additional information in.
471  *
472  * Reliable protocols may use the socket send buffer to hold data
473  * awaiting acknowledgement.  Data is normally copied from a socket
474  * send buffer in a protocol with m_copy for output to a peer,
475  * and then removing the data from the socket buffer with sbdrop()
476  * or sbdroprecord() when the data is acknowledged by the peer.
477  */
478 
479 #ifdef SOCKBUF_DEBUG
480 void
481 sblastrecordchk(struct sockbuf *sb, const char *where)
482 {
483 	struct mbuf *m = sb->sb_mb;
484 
485 	while (m && m->m_nextpkt)
486 		m = m->m_nextpkt;
487 
488 	if (m != sb->sb_lastrecord) {
489 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
490 		    sb->sb_mb, sb->sb_lastrecord, m);
491 		printf("packet chain:\n");
492 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
493 			printf("\t%p\n", m);
494 		panic("sblastrecordchk from %s", where);
495 	}
496 }
497 
498 void
499 sblastmbufchk(struct sockbuf *sb, const char *where)
500 {
501 	struct mbuf *m = sb->sb_mb;
502 	struct mbuf *n;
503 
504 	while (m && m->m_nextpkt)
505 		m = m->m_nextpkt;
506 
507 	while (m && m->m_next)
508 		m = m->m_next;
509 
510 	if (m != sb->sb_mbtail) {
511 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
512 		    sb->sb_mb, sb->sb_mbtail, m);
513 		printf("packet tree:\n");
514 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
515 			printf("\t");
516 			for (n = m; n != NULL; n = n->m_next)
517 				printf("%p ", n);
518 			printf("\n");
519 		}
520 		panic("sblastmbufchk from %s", where);
521 	}
522 }
523 #endif /* SOCKBUF_DEBUG */
524 
525 /*
526  * Link a chain of records onto a socket buffer
527  */
528 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
529 do {									\
530 	if ((sb)->sb_lastrecord != NULL)				\
531 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
532 	else								\
533 		(sb)->sb_mb = (m0);					\
534 	(sb)->sb_lastrecord = (mlast);					\
535 } while (/*CONSTCOND*/0)
536 
537 
538 #define	SBLINKRECORD(sb, m0)						\
539     SBLINKRECORDCHAIN(sb, m0, m0)
540 
541 /*
542  * Append mbuf chain m to the last record in the
543  * socket buffer sb.  The additional space associated
544  * the mbuf chain is recorded in sb.  Empty mbufs are
545  * discarded and mbufs are compacted where possible.
546  */
547 void
548 sbappend(struct sockbuf *sb, struct mbuf *m)
549 {
550 	struct mbuf	*n;
551 
552 	if (m == 0)
553 		return;
554 
555 #ifdef MBUFTRACE
556 	m_claimm(m, sb->sb_mowner);
557 #endif
558 
559 	SBLASTRECORDCHK(sb, "sbappend 1");
560 
561 	if ((n = sb->sb_lastrecord) != NULL) {
562 		/*
563 		 * XXX Would like to simply use sb_mbtail here, but
564 		 * XXX I need to verify that I won't miss an EOR that
565 		 * XXX way.
566 		 */
567 		do {
568 			if (n->m_flags & M_EOR) {
569 				sbappendrecord(sb, m); /* XXXXXX!!!! */
570 				return;
571 			}
572 		} while (n->m_next && (n = n->m_next));
573 	} else {
574 		/*
575 		 * If this is the first record in the socket buffer, it's
576 		 * also the last record.
577 		 */
578 		sb->sb_lastrecord = m;
579 	}
580 	sbcompress(sb, m, n);
581 	SBLASTRECORDCHK(sb, "sbappend 2");
582 }
583 
584 /*
585  * This version of sbappend() should only be used when the caller
586  * absolutely knows that there will never be more than one record
587  * in the socket buffer, that is, a stream protocol (such as TCP).
588  */
589 void
590 sbappendstream(struct sockbuf *sb, struct mbuf *m)
591 {
592 
593 	KDASSERT(m->m_nextpkt == NULL);
594 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
595 
596 	SBLASTMBUFCHK(sb, __func__);
597 
598 #ifdef MBUFTRACE
599 	m_claimm(m, sb->sb_mowner);
600 #endif
601 
602 	sbcompress(sb, m, sb->sb_mbtail);
603 
604 	sb->sb_lastrecord = sb->sb_mb;
605 	SBLASTRECORDCHK(sb, __func__);
606 }
607 
608 #ifdef SOCKBUF_DEBUG
609 void
610 sbcheck(struct sockbuf *sb)
611 {
612 	struct mbuf	*m;
613 	u_long		len, mbcnt;
614 
615 	len = 0;
616 	mbcnt = 0;
617 	for (m = sb->sb_mb; m; m = m->m_next) {
618 		len += m->m_len;
619 		mbcnt += MSIZE;
620 		if (m->m_flags & M_EXT)
621 			mbcnt += m->m_ext.ext_size;
622 		if (m->m_nextpkt)
623 			panic("sbcheck nextpkt");
624 	}
625 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
626 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
627 		    mbcnt, sb->sb_mbcnt);
628 		panic("sbcheck");
629 	}
630 }
631 #endif
632 
633 /*
634  * As above, except the mbuf chain
635  * begins a new record.
636  */
637 void
638 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
639 {
640 	struct mbuf	*m;
641 
642 	if (m0 == 0)
643 		return;
644 
645 #ifdef MBUFTRACE
646 	m_claimm(m0, sb->sb_mowner);
647 #endif
648 	/*
649 	 * Put the first mbuf on the queue.
650 	 * Note this permits zero length records.
651 	 */
652 	sballoc(sb, m0);
653 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
654 	SBLINKRECORD(sb, m0);
655 	m = m0->m_next;
656 	m0->m_next = 0;
657 	if (m && (m0->m_flags & M_EOR)) {
658 		m0->m_flags &= ~M_EOR;
659 		m->m_flags |= M_EOR;
660 	}
661 	sbcompress(sb, m, m0);
662 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
663 }
664 
665 /*
666  * As above except that OOB data
667  * is inserted at the beginning of the sockbuf,
668  * but after any other OOB data.
669  */
670 void
671 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
672 {
673 	struct mbuf	*m, **mp;
674 
675 	if (m0 == 0)
676 		return;
677 
678 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
679 
680 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
681 	    again:
682 		switch (m->m_type) {
683 
684 		case MT_OOBDATA:
685 			continue;		/* WANT next train */
686 
687 		case MT_CONTROL:
688 			if ((m = m->m_next) != NULL)
689 				goto again;	/* inspect THIS train further */
690 		}
691 		break;
692 	}
693 	/*
694 	 * Put the first mbuf on the queue.
695 	 * Note this permits zero length records.
696 	 */
697 	sballoc(sb, m0);
698 	m0->m_nextpkt = *mp;
699 	if (*mp == NULL) {
700 		/* m0 is actually the new tail */
701 		sb->sb_lastrecord = m0;
702 	}
703 	*mp = m0;
704 	m = m0->m_next;
705 	m0->m_next = 0;
706 	if (m && (m0->m_flags & M_EOR)) {
707 		m0->m_flags &= ~M_EOR;
708 		m->m_flags |= M_EOR;
709 	}
710 	sbcompress(sb, m, m0);
711 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
712 }
713 
714 /*
715  * Append address and data, and optionally, control (ancillary) data
716  * to the receive queue of a socket.  If present,
717  * m0 must include a packet header with total length.
718  * Returns 0 if no space in sockbuf or insufficient mbufs.
719  */
720 int
721 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
722 	struct mbuf *control)
723 {
724 	struct mbuf	*m, *n, *nlast;
725 	int		space, len;
726 
727 	space = asa->sa_len;
728 
729 	if (m0 != NULL) {
730 		if ((m0->m_flags & M_PKTHDR) == 0)
731 			panic("sbappendaddr");
732 		space += m0->m_pkthdr.len;
733 #ifdef MBUFTRACE
734 		m_claimm(m0, sb->sb_mowner);
735 #endif
736 	}
737 	for (n = control; n; n = n->m_next) {
738 		space += n->m_len;
739 		MCLAIM(n, sb->sb_mowner);
740 		if (n->m_next == 0)	/* keep pointer to last control buf */
741 			break;
742 	}
743 	if (space > sbspace(sb))
744 		return (0);
745 	MGET(m, M_DONTWAIT, MT_SONAME);
746 	if (m == 0)
747 		return (0);
748 	MCLAIM(m, sb->sb_mowner);
749 	/*
750 	 * XXX avoid 'comparison always true' warning which isn't easily
751 	 * avoided.
752 	 */
753 	len = asa->sa_len;
754 	if (len > MLEN) {
755 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
756 		if ((m->m_flags & M_EXT) == 0) {
757 			m_free(m);
758 			return (0);
759 		}
760 	}
761 	m->m_len = asa->sa_len;
762 	memcpy(mtod(m, caddr_t), asa, asa->sa_len);
763 	if (n)
764 		n->m_next = m0;		/* concatenate data to control */
765 	else
766 		control = m0;
767 	m->m_next = control;
768 
769 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
770 
771 	for (n = m; n->m_next != NULL; n = n->m_next)
772 		sballoc(sb, n);
773 	sballoc(sb, n);
774 	nlast = n;
775 	SBLINKRECORD(sb, m);
776 
777 	sb->sb_mbtail = nlast;
778 	SBLASTMBUFCHK(sb, "sbappendaddr");
779 
780 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
781 
782 	return (1);
783 }
784 
785 /*
786  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
787  * an mbuf chain.
788  */
789 static inline struct mbuf *
790 m_prepend_sockaddr(struct sockbuf *sb __unused, struct mbuf *m0,
791 		   const struct sockaddr *asa)
792 {
793 	struct mbuf *m;
794 	const int salen = asa->sa_len;
795 
796 	/* only the first in each chain need be a pkthdr */
797 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
798 	if (m == 0)
799 		return (0);
800 	MCLAIM(m, sb->sb_mowner);
801 #ifdef notyet
802 	if (salen > MHLEN) {
803 		MEXTMALLOC(m, salen, M_NOWAIT);
804 		if ((m->m_flags & M_EXT) == 0) {
805 			m_free(m);
806 			return (0);
807 		}
808 	}
809 #else
810 	KASSERT(salen <= MHLEN);
811 #endif
812 	m->m_len = salen;
813 	memcpy(mtod(m, caddr_t), asa, salen);
814 	m->m_next = m0;
815 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
816 
817 	return m;
818 }
819 
820 int
821 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
822 		  struct mbuf *m0, int sbprio)
823 {
824 	int space;
825 	struct mbuf *m, *n, *n0, *nlast;
826 	int error;
827 
828 	/*
829 	 * XXX sbprio reserved for encoding priority of this* request:
830 	 *  SB_PRIO_NONE --> honour normal sb limits
831 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
832 	 *	take whole chain. Intended for large requests
833 	 *      that should be delivered atomically (all, or none).
834 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
835 	 *       over normal socket limits, for messages indicating
836 	 *       buffer overflow in earlier normal/lower-priority messages
837 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
838 	 *       Intended for  kernel-generated messages only.
839 	 *        Up to generator to avoid total mbuf resource exhaustion.
840 	 */
841 	(void)sbprio;
842 
843 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
844 		panic("sbappendaddrchain");
845 
846 	space = sbspace(sb);
847 
848 #ifdef notyet
849 	/*
850 	 * Enforce SB_PRIO_* limits as described above.
851 	 */
852 #endif
853 
854 	n0 = NULL;
855 	nlast = NULL;
856 	for (m = m0; m; m = m->m_nextpkt) {
857 		struct mbuf *np;
858 
859 #ifdef MBUFTRACE
860 		m_claimm(m, sb->sb_mowner);
861 #endif
862 
863 		/* Prepend sockaddr to this record (m) of input chain m0 */
864 	  	n = m_prepend_sockaddr(sb, m, asa);
865 		if (n == NULL) {
866 			error = ENOBUFS;
867 			goto bad;
868 		}
869 
870 		/* Append record (asa+m) to end of new chain n0 */
871 		if (n0 == NULL) {
872 			n0 = n;
873 		} else {
874 			nlast->m_nextpkt = n;
875 		}
876 		/* Keep track of last record on new chain */
877 		nlast = n;
878 
879 		for (np = n; np; np = np->m_next)
880 			sballoc(sb, np);
881 	}
882 
883 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
884 
885 	/* Drop the entire chain of (asa+m) records onto the socket */
886 	SBLINKRECORDCHAIN(sb, n0, nlast);
887 
888 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
889 
890 	for (m = nlast; m->m_next; m = m->m_next)
891 		;
892 	sb->sb_mbtail = m;
893 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
894 
895 	return (1);
896 
897 bad:
898 	/*
899 	 * On error, free the prepended addreseses. For consistency
900 	 * with sbappendaddr(), leave it to our caller to free
901 	 * the input record chain passed to us as m0.
902 	 */
903 	while ((n = n0) != NULL) {
904 	  	struct mbuf *np;
905 
906 		/* Undo the sballoc() of this record */
907 		for (np = n; np; np = np->m_next)
908 			sbfree(sb, np);
909 
910 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
911 		MFREE(n, np);		/* free prepended address (not data) */
912 	}
913 	return 0;
914 }
915 
916 
917 int
918 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
919 {
920 	struct mbuf	*m, *mlast, *n;
921 	int		space;
922 
923 	space = 0;
924 	if (control == 0)
925 		panic("sbappendcontrol");
926 	for (m = control; ; m = m->m_next) {
927 		space += m->m_len;
928 		MCLAIM(m, sb->sb_mowner);
929 		if (m->m_next == 0)
930 			break;
931 	}
932 	n = m;			/* save pointer to last control buffer */
933 	for (m = m0; m; m = m->m_next) {
934 		MCLAIM(m, sb->sb_mowner);
935 		space += m->m_len;
936 	}
937 	if (space > sbspace(sb))
938 		return (0);
939 	n->m_next = m0;			/* concatenate data to control */
940 
941 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
942 
943 	for (m = control; m->m_next != NULL; m = m->m_next)
944 		sballoc(sb, m);
945 	sballoc(sb, m);
946 	mlast = m;
947 	SBLINKRECORD(sb, control);
948 
949 	sb->sb_mbtail = mlast;
950 	SBLASTMBUFCHK(sb, "sbappendcontrol");
951 
952 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
953 
954 	return (1);
955 }
956 
957 /*
958  * Compress mbuf chain m into the socket
959  * buffer sb following mbuf n.  If n
960  * is null, the buffer is presumed empty.
961  */
962 void
963 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
964 {
965 	int		eor;
966 	struct mbuf	*o;
967 
968 	eor = 0;
969 	while (m) {
970 		eor |= m->m_flags & M_EOR;
971 		if (m->m_len == 0 &&
972 		    (eor == 0 ||
973 		     (((o = m->m_next) || (o = n)) &&
974 		      o->m_type == m->m_type))) {
975 			if (sb->sb_lastrecord == m)
976 				sb->sb_lastrecord = m->m_next;
977 			m = m_free(m);
978 			continue;
979 		}
980 		if (n && (n->m_flags & M_EOR) == 0 &&
981 		    /* M_TRAILINGSPACE() checks buffer writeability */
982 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
983 		    m->m_len <= M_TRAILINGSPACE(n) &&
984 		    n->m_type == m->m_type) {
985 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
986 			    (unsigned)m->m_len);
987 			n->m_len += m->m_len;
988 			sb->sb_cc += m->m_len;
989 			m = m_free(m);
990 			continue;
991 		}
992 		if (n)
993 			n->m_next = m;
994 		else
995 			sb->sb_mb = m;
996 		sb->sb_mbtail = m;
997 		sballoc(sb, m);
998 		n = m;
999 		m->m_flags &= ~M_EOR;
1000 		m = m->m_next;
1001 		n->m_next = 0;
1002 	}
1003 	if (eor) {
1004 		if (n)
1005 			n->m_flags |= eor;
1006 		else
1007 			printf("semi-panic: sbcompress\n");
1008 	}
1009 	SBLASTMBUFCHK(sb, __func__);
1010 }
1011 
1012 /*
1013  * Free all mbufs in a sockbuf.
1014  * Check that all resources are reclaimed.
1015  */
1016 void
1017 sbflush(struct sockbuf *sb)
1018 {
1019 
1020 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1021 
1022 	while (sb->sb_mbcnt)
1023 		sbdrop(sb, (int)sb->sb_cc);
1024 
1025 	KASSERT(sb->sb_cc == 0);
1026 	KASSERT(sb->sb_mb == NULL);
1027 	KASSERT(sb->sb_mbtail == NULL);
1028 	KASSERT(sb->sb_lastrecord == NULL);
1029 }
1030 
1031 /*
1032  * Drop data from (the front of) a sockbuf.
1033  */
1034 void
1035 sbdrop(struct sockbuf *sb, int len)
1036 {
1037 	struct mbuf	*m, *mn, *next;
1038 
1039 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1040 	while (len > 0) {
1041 		if (m == 0) {
1042 			if (next == 0)
1043 				panic("sbdrop");
1044 			m = next;
1045 			next = m->m_nextpkt;
1046 			continue;
1047 		}
1048 		if (m->m_len > len) {
1049 			m->m_len -= len;
1050 			m->m_data += len;
1051 			sb->sb_cc -= len;
1052 			break;
1053 		}
1054 		len -= m->m_len;
1055 		sbfree(sb, m);
1056 		MFREE(m, mn);
1057 		m = mn;
1058 	}
1059 	while (m && m->m_len == 0) {
1060 		sbfree(sb, m);
1061 		MFREE(m, mn);
1062 		m = mn;
1063 	}
1064 	if (m) {
1065 		sb->sb_mb = m;
1066 		m->m_nextpkt = next;
1067 	} else
1068 		sb->sb_mb = next;
1069 	/*
1070 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1071 	 * makes sure sb_lastrecord is up-to-date if we dropped
1072 	 * part of the last record.
1073 	 */
1074 	m = sb->sb_mb;
1075 	if (m == NULL) {
1076 		sb->sb_mbtail = NULL;
1077 		sb->sb_lastrecord = NULL;
1078 	} else if (m->m_nextpkt == NULL)
1079 		sb->sb_lastrecord = m;
1080 }
1081 
1082 /*
1083  * Drop a record off the front of a sockbuf
1084  * and move the next record to the front.
1085  */
1086 void
1087 sbdroprecord(struct sockbuf *sb)
1088 {
1089 	struct mbuf	*m, *mn;
1090 
1091 	m = sb->sb_mb;
1092 	if (m) {
1093 		sb->sb_mb = m->m_nextpkt;
1094 		do {
1095 			sbfree(sb, m);
1096 			MFREE(m, mn);
1097 		} while ((m = mn) != NULL);
1098 	}
1099 	SB_EMPTY_FIXUP(sb);
1100 }
1101 
1102 /*
1103  * Create a "control" mbuf containing the specified data
1104  * with the specified type for presentation on a socket buffer.
1105  */
1106 struct mbuf *
1107 sbcreatecontrol(caddr_t p, int size, int type, int level)
1108 {
1109 	struct cmsghdr	*cp;
1110 	struct mbuf	*m;
1111 
1112 	if (CMSG_SPACE(size) > MCLBYTES) {
1113 		printf("sbcreatecontrol: message too large %d\n", size);
1114 		return NULL;
1115 	}
1116 
1117 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1118 		return ((struct mbuf *) NULL);
1119 	if (CMSG_SPACE(size) > MLEN) {
1120 		MCLGET(m, M_DONTWAIT);
1121 		if ((m->m_flags & M_EXT) == 0) {
1122 			m_free(m);
1123 			return NULL;
1124 		}
1125 	}
1126 	cp = mtod(m, struct cmsghdr *);
1127 	memcpy(CMSG_DATA(cp), p, size);
1128 	m->m_len = CMSG_SPACE(size);
1129 	cp->cmsg_len = CMSG_LEN(size);
1130 	cp->cmsg_level = level;
1131 	cp->cmsg_type = type;
1132 	return (m);
1133 }
1134