xref: /netbsd-src/sys/kern/uipc_socket2.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: uipc_socket2.c,v 1.130 2018/06/06 09:46:46 roy Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.130 2018/06/06 09:46:46 roy Exp $");
62 
63 #ifdef _KERNEL_OPT
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66 #endif
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/buf.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/domain.h>
76 #include <sys/poll.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/signalvar.h>
80 #include <sys/kauth.h>
81 #include <sys/pool.h>
82 #include <sys/uidinfo.h>
83 
84 /*
85  * Primitive routines for operating on sockets and socket buffers.
86  *
87  * Connection life-cycle:
88  *
89  *	Normal sequence from the active (originating) side:
90  *
91  *	- soisconnecting() is called during processing of connect() call,
92  *	- resulting in an eventual call to soisconnected() if/when the
93  *	  connection is established.
94  *
95  *	When the connection is torn down during processing of disconnect():
96  *
97  *	- soisdisconnecting() is called and,
98  *	- soisdisconnected() is called when the connection to the peer
99  *	  is totally severed.
100  *
101  *	The semantics of these routines are such that connectionless protocols
102  *	can call soisconnected() and soisdisconnected() only, bypassing the
103  *	in-progress calls when setting up a ``connection'' takes no time.
104  *
105  *	From the passive side, a socket is created with two queues of sockets:
106  *
107  *	- so_q0 (0) for partial connections (i.e. connections in progress)
108  *	- so_q (1) for connections already made and awaiting user acceptance.
109  *
110  *	As a protocol is preparing incoming connections, it creates a socket
111  *	structure queued on so_q0 by calling sonewconn().  When the connection
112  *	is established, soisconnected() is called, and transfers the
113  *	socket structure to so_q, making it available to accept().
114  *
115  *	If a socket is closed with sockets on either so_q0 or so_q, these
116  *	sockets are dropped.
117  *
118  * Locking rules and assumptions:
119  *
120  * o socket::so_lock can change on the fly.  The low level routines used
121  *   to lock sockets are aware of this.  When so_lock is acquired, the
122  *   routine locking must check to see if so_lock still points to the
123  *   lock that was acquired.  If so_lock has changed in the meantime, the
124  *   now irrelevant lock that was acquired must be dropped and the lock
125  *   operation retried.  Although not proven here, this is completely safe
126  *   on a multiprocessor system, even with relaxed memory ordering, given
127  *   the next two rules:
128  *
129  * o In order to mutate so_lock, the lock pointed to by the current value
130  *   of so_lock must be held: i.e., the socket must be held locked by the
131  *   changing thread.  The thread must issue membar_exit() to prevent
132  *   memory accesses being reordered, and can set so_lock to the desired
133  *   value.  If the lock pointed to by the new value of so_lock is not
134  *   held by the changing thread, the socket must then be considered
135  *   unlocked.
136  *
137  * o If so_lock is mutated, and the previous lock referred to by so_lock
138  *   could still be visible to other threads in the system (e.g. via file
139  *   descriptor or protocol-internal reference), then the old lock must
140  *   remain valid until the socket and/or protocol control block has been
141  *   torn down.
142  *
143  * o If a socket has a non-NULL so_head value (i.e. is in the process of
144  *   connecting), then locking the socket must also lock the socket pointed
145  *   to by so_head: their lock pointers must match.
146  *
147  * o If a socket has connections in progress (so_q, so_q0 not empty) then
148  *   locking the socket must also lock the sockets attached to both queues.
149  *   Again, their lock pointers must match.
150  *
151  * o Beyond the initial lock assignment in socreate(), assigning locks to
152  *   sockets is the responsibility of the individual protocols / protocol
153  *   domains.
154  */
155 
156 static pool_cache_t	socket_cache;
157 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
158 static u_long		sb_max_adj;	/* adjusted sb_max */
159 
160 void
161 soisconnecting(struct socket *so)
162 {
163 
164 	KASSERT(solocked(so));
165 
166 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167 	so->so_state |= SS_ISCONNECTING;
168 }
169 
170 void
171 soisconnected(struct socket *so)
172 {
173 	struct socket	*head;
174 
175 	head = so->so_head;
176 
177 	KASSERT(solocked(so));
178 	KASSERT(head == NULL || solocked2(so, head));
179 
180 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
181 	so->so_state |= SS_ISCONNECTED;
182 	if (head && so->so_onq == &head->so_q0) {
183 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184 			/*
185 			 * Re-enqueue and wake up any waiters, e.g.
186 			 * processes blocking on accept().
187 			 */
188 			soqremque(so, 0);
189 			soqinsque(head, so, 1);
190 			sorwakeup(head);
191 			cv_broadcast(&head->so_cv);
192 		} else {
193 			so->so_upcall =
194 			    head->so_accf->so_accept_filter->accf_callback;
195 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
196 			so->so_rcv.sb_flags |= SB_UPCALL;
197 			so->so_options &= ~SO_ACCEPTFILTER;
198 			(*so->so_upcall)(so, so->so_upcallarg,
199 					 POLLIN|POLLRDNORM, M_DONTWAIT);
200 		}
201 	} else {
202 		cv_broadcast(&so->so_cv);
203 		sorwakeup(so);
204 		sowwakeup(so);
205 	}
206 }
207 
208 void
209 soisdisconnecting(struct socket *so)
210 {
211 
212 	KASSERT(solocked(so));
213 
214 	so->so_state &= ~SS_ISCONNECTING;
215 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
216 	cv_broadcast(&so->so_cv);
217 	sowwakeup(so);
218 	sorwakeup(so);
219 }
220 
221 void
222 soisdisconnected(struct socket *so)
223 {
224 
225 	KASSERT(solocked(so));
226 
227 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
228 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
229 	cv_broadcast(&so->so_cv);
230 	sowwakeup(so);
231 	sorwakeup(so);
232 }
233 
234 void
235 soinit2(void)
236 {
237 
238 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
239 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
240 }
241 
242 /*
243  * sonewconn: accept a new connection.
244  *
245  * When an attempt at a new connection is noted on a socket which accepts
246  * connections, sonewconn(9) is called.  If the connection is possible
247  * (subject to space constraints, etc) then we allocate a new structure,
248  * properly linked into the data structure of the original socket.
249  *
250  * => If 'soready' is true, then socket will become ready for accept() i.e.
251  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
252  * => May be called from soft-interrupt context.
253  * => Listening socket should be locked.
254  * => Returns the new socket locked.
255  */
256 struct socket *
257 sonewconn(struct socket *head, bool soready)
258 {
259 	struct socket *so;
260 	int soqueue, error;
261 
262 	KASSERT(solocked(head));
263 
264 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
265 		/*
266 		 * Listen queue overflow.  If there is an accept filter
267 		 * active, pass through the oldest cxn it's handling.
268 		 */
269 		if (head->so_accf == NULL) {
270 			return NULL;
271 		} else {
272 			struct socket *so2, *next;
273 
274 			/* Pass the oldest connection waiting in the
275 			   accept filter */
276 			for (so2 = TAILQ_FIRST(&head->so_q0);
277 			     so2 != NULL; so2 = next) {
278 				next = TAILQ_NEXT(so2, so_qe);
279 				if (so2->so_upcall == NULL) {
280 					continue;
281 				}
282 				so2->so_upcall = NULL;
283 				so2->so_upcallarg = NULL;
284 				so2->so_options &= ~SO_ACCEPTFILTER;
285 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
286 				soisconnected(so2);
287 				break;
288 			}
289 
290 			/* If nothing was nudged out of the acept filter, bail
291 			 * out; otherwise proceed allocating the socket. */
292 			if (so2 == NULL) {
293 				return NULL;
294 			}
295 		}
296 	}
297 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
298 		soready = false;
299 	}
300 	soqueue = soready ? 1 : 0;
301 
302 	if ((so = soget(false)) == NULL) {
303 		return NULL;
304 	}
305 	so->so_type = head->so_type;
306 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
307 	so->so_linger = head->so_linger;
308 	so->so_state = head->so_state | SS_NOFDREF;
309 	so->so_proto = head->so_proto;
310 	so->so_timeo = head->so_timeo;
311 	so->so_pgid = head->so_pgid;
312 	so->so_send = head->so_send;
313 	so->so_receive = head->so_receive;
314 	so->so_uidinfo = head->so_uidinfo;
315 	so->so_cpid = head->so_cpid;
316 
317 	/*
318 	 * Share the lock with the listening-socket, it may get unshared
319 	 * once the connection is complete.
320 	 */
321 	mutex_obj_hold(head->so_lock);
322 	so->so_lock = head->so_lock;
323 
324 	/*
325 	 * Reserve the space for socket buffers.
326 	 */
327 #ifdef MBUFTRACE
328 	so->so_mowner = head->so_mowner;
329 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
330 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
331 #endif
332 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
333 		goto out;
334 	}
335 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
336 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
337 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
338 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
339 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
340 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
341 
342 	/*
343 	 * Finally, perform the protocol attach.  Note: a new socket
344 	 * lock may be assigned at this point (if so, it will be held).
345 	 */
346 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
347 	if (error) {
348 out:
349 		KASSERT(solocked(so));
350 		KASSERT(so->so_accf == NULL);
351 		soput(so);
352 
353 		/* Note: the listening socket shall stay locked. */
354 		KASSERT(solocked(head));
355 		return NULL;
356 	}
357 	KASSERT(solocked2(head, so));
358 
359 	/*
360 	 * Insert into the queue.  If ready, update the connection status
361 	 * and wake up any waiters, e.g. processes blocking on accept().
362 	 */
363 	soqinsque(head, so, soqueue);
364 	if (soready) {
365 		so->so_state |= SS_ISCONNECTED;
366 		sorwakeup(head);
367 		cv_broadcast(&head->so_cv);
368 	}
369 	return so;
370 }
371 
372 struct socket *
373 soget(bool waitok)
374 {
375 	struct socket *so;
376 
377 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
378 	if (__predict_false(so == NULL))
379 		return (NULL);
380 	memset(so, 0, sizeof(*so));
381 	TAILQ_INIT(&so->so_q0);
382 	TAILQ_INIT(&so->so_q);
383 	cv_init(&so->so_cv, "socket");
384 	cv_init(&so->so_rcv.sb_cv, "netio");
385 	cv_init(&so->so_snd.sb_cv, "netio");
386 	selinit(&so->so_rcv.sb_sel);
387 	selinit(&so->so_snd.sb_sel);
388 	so->so_rcv.sb_so = so;
389 	so->so_snd.sb_so = so;
390 	return so;
391 }
392 
393 void
394 soput(struct socket *so)
395 {
396 
397 	KASSERT(!cv_has_waiters(&so->so_cv));
398 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
399 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
400 	seldestroy(&so->so_rcv.sb_sel);
401 	seldestroy(&so->so_snd.sb_sel);
402 	mutex_obj_free(so->so_lock);
403 	cv_destroy(&so->so_cv);
404 	cv_destroy(&so->so_rcv.sb_cv);
405 	cv_destroy(&so->so_snd.sb_cv);
406 	pool_cache_put(socket_cache, so);
407 }
408 
409 /*
410  * soqinsque: insert socket of a new connection into the specified
411  * accept queue of the listening socket (head).
412  *
413  *	q = 0: queue of partial connections
414  *	q = 1: queue of incoming connections
415  */
416 void
417 soqinsque(struct socket *head, struct socket *so, int q)
418 {
419 	KASSERT(q == 0 || q == 1);
420 	KASSERT(solocked2(head, so));
421 	KASSERT(so->so_onq == NULL);
422 	KASSERT(so->so_head == NULL);
423 
424 	so->so_head = head;
425 	if (q == 0) {
426 		head->so_q0len++;
427 		so->so_onq = &head->so_q0;
428 	} else {
429 		head->so_qlen++;
430 		so->so_onq = &head->so_q;
431 	}
432 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
433 }
434 
435 /*
436  * soqremque: remove socket from the specified queue.
437  *
438  * => Returns true if socket was removed from the specified queue.
439  * => False if socket was not removed (because it was in other queue).
440  */
441 bool
442 soqremque(struct socket *so, int q)
443 {
444 	struct socket *head = so->so_head;
445 
446 	KASSERT(q == 0 || q == 1);
447 	KASSERT(solocked(so));
448 	KASSERT(so->so_onq != NULL);
449 	KASSERT(head != NULL);
450 
451 	if (q == 0) {
452 		if (so->so_onq != &head->so_q0)
453 			return false;
454 		head->so_q0len--;
455 	} else {
456 		if (so->so_onq != &head->so_q)
457 			return false;
458 		head->so_qlen--;
459 	}
460 	KASSERT(solocked2(so, head));
461 	TAILQ_REMOVE(so->so_onq, so, so_qe);
462 	so->so_onq = NULL;
463 	so->so_head = NULL;
464 	return true;
465 }
466 
467 /*
468  * socantsendmore: indicates that no more data will be sent on the
469  * socket; it would normally be applied to a socket when the user
470  * informs the system that no more data is to be sent, by the protocol
471  * code (in case pr_shutdown()).
472  */
473 void
474 socantsendmore(struct socket *so)
475 {
476 	KASSERT(solocked(so));
477 
478 	so->so_state |= SS_CANTSENDMORE;
479 	sowwakeup(so);
480 }
481 
482 /*
483  * socantrcvmore(): indicates that no more data will be received and
484  * will normally be applied to the socket by a protocol when it detects
485  * that the peer will send no more data.  Data queued for reading in
486  * the socket may yet be read.
487  */
488 void
489 socantrcvmore(struct socket *so)
490 {
491 	KASSERT(solocked(so));
492 
493 	so->so_state |= SS_CANTRCVMORE;
494 	sorwakeup(so);
495 }
496 
497 /*
498  * soroverflow(): indicates that data was attempted to be sent
499  * but the receiving buffer overflowed.
500  */
501 void
502 soroverflow(struct socket *so)
503 {
504 	KASSERT(solocked(so));
505 
506 	so->so_rcv.sb_overflowed++;
507 	so->so_rerror = ENOBUFS;
508 	sorwakeup(so);
509 }
510 
511 /*
512  * Wait for data to arrive at/drain from a socket buffer.
513  */
514 int
515 sbwait(struct sockbuf *sb)
516 {
517 	struct socket *so;
518 	kmutex_t *lock;
519 	int error;
520 
521 	so = sb->sb_so;
522 
523 	KASSERT(solocked(so));
524 
525 	sb->sb_flags |= SB_NOTIFY;
526 	lock = so->so_lock;
527 	if ((sb->sb_flags & SB_NOINTR) != 0)
528 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
529 	else
530 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
531 	if (__predict_false(lock != so->so_lock))
532 		solockretry(so, lock);
533 	return error;
534 }
535 
536 /*
537  * Wakeup processes waiting on a socket buffer.
538  * Do asynchronous notification via SIGIO
539  * if the socket buffer has the SB_ASYNC flag set.
540  */
541 void
542 sowakeup(struct socket *so, struct sockbuf *sb, int code)
543 {
544 	int band;
545 
546 	KASSERT(solocked(so));
547 	KASSERT(sb->sb_so == so);
548 
549 	if (code == POLL_IN)
550 		band = POLLIN|POLLRDNORM;
551 	else
552 		band = POLLOUT|POLLWRNORM;
553 	sb->sb_flags &= ~SB_NOTIFY;
554 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
555 	cv_broadcast(&sb->sb_cv);
556 	if (sb->sb_flags & SB_ASYNC)
557 		fownsignal(so->so_pgid, SIGIO, code, band, so);
558 	if (sb->sb_flags & SB_UPCALL)
559 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
560 }
561 
562 /*
563  * Reset a socket's lock pointer.  Wake all threads waiting on the
564  * socket's condition variables so that they can restart their waits
565  * using the new lock.  The existing lock must be held.
566  */
567 void
568 solockreset(struct socket *so, kmutex_t *lock)
569 {
570 
571 	KASSERT(solocked(so));
572 
573 	so->so_lock = lock;
574 	cv_broadcast(&so->so_snd.sb_cv);
575 	cv_broadcast(&so->so_rcv.sb_cv);
576 	cv_broadcast(&so->so_cv);
577 }
578 
579 /*
580  * Socket buffer (struct sockbuf) utility routines.
581  *
582  * Each socket contains two socket buffers: one for sending data and
583  * one for receiving data.  Each buffer contains a queue of mbufs,
584  * information about the number of mbufs and amount of data in the
585  * queue, and other fields allowing poll() statements and notification
586  * on data availability to be implemented.
587  *
588  * Data stored in a socket buffer is maintained as a list of records.
589  * Each record is a list of mbufs chained together with the m_next
590  * field.  Records are chained together with the m_nextpkt field. The upper
591  * level routine soreceive() expects the following conventions to be
592  * observed when placing information in the receive buffer:
593  *
594  * 1. If the protocol requires each message be preceded by the sender's
595  *    name, then a record containing that name must be present before
596  *    any associated data (mbuf's must be of type MT_SONAME).
597  * 2. If the protocol supports the exchange of ``access rights'' (really
598  *    just additional data associated with the message), and there are
599  *    ``rights'' to be received, then a record containing this data
600  *    should be present (mbuf's must be of type MT_CONTROL).
601  * 3. If a name or rights record exists, then it must be followed by
602  *    a data record, perhaps of zero length.
603  *
604  * Before using a new socket structure it is first necessary to reserve
605  * buffer space to the socket, by calling sbreserve().  This should commit
606  * some of the available buffer space in the system buffer pool for the
607  * socket (currently, it does nothing but enforce limits).  The space
608  * should be released by calling sbrelease() when the socket is destroyed.
609  */
610 
611 int
612 sb_max_set(u_long new_sbmax)
613 {
614 	int s;
615 
616 	if (new_sbmax < (16 * 1024))
617 		return (EINVAL);
618 
619 	s = splsoftnet();
620 	sb_max = new_sbmax;
621 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
622 	splx(s);
623 
624 	return (0);
625 }
626 
627 int
628 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
629 {
630 	KASSERT(so->so_pcb == NULL || solocked(so));
631 
632 	/*
633 	 * there's at least one application (a configure script of screen)
634 	 * which expects a fifo is writable even if it has "some" bytes
635 	 * in its buffer.
636 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
637 	 *
638 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
639 	 * we expect it's large enough for such applications.
640 	 */
641 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
642 	u_long  hiwat = lowat + PIPE_BUF;
643 
644 	if (sndcc < hiwat)
645 		sndcc = hiwat;
646 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
647 		goto bad;
648 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
649 		goto bad2;
650 	if (so->so_rcv.sb_lowat == 0)
651 		so->so_rcv.sb_lowat = 1;
652 	if (so->so_snd.sb_lowat == 0)
653 		so->so_snd.sb_lowat = lowat;
654 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
655 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
656 	return (0);
657  bad2:
658 	sbrelease(&so->so_snd, so);
659  bad:
660 	return (ENOBUFS);
661 }
662 
663 /*
664  * Allot mbufs to a sockbuf.
665  * Attempt to scale mbmax so that mbcnt doesn't become limiting
666  * if buffering efficiency is near the normal case.
667  */
668 int
669 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
670 {
671 	struct lwp *l = curlwp; /* XXX */
672 	rlim_t maxcc;
673 	struct uidinfo *uidinfo;
674 
675 	KASSERT(so->so_pcb == NULL || solocked(so));
676 	KASSERT(sb->sb_so == so);
677 	KASSERT(sb_max_adj != 0);
678 
679 	if (cc == 0 || cc > sb_max_adj)
680 		return (0);
681 
682 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
683 
684 	uidinfo = so->so_uidinfo;
685 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
686 		return 0;
687 	sb->sb_mbmax = min(cc * 2, sb_max);
688 	if (sb->sb_lowat > sb->sb_hiwat)
689 		sb->sb_lowat = sb->sb_hiwat;
690 	return (1);
691 }
692 
693 /*
694  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
695  * that the socket is held locked here: see sorflush().
696  */
697 void
698 sbrelease(struct sockbuf *sb, struct socket *so)
699 {
700 
701 	KASSERT(sb->sb_so == so);
702 
703 	sbflush(sb);
704 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
705 	sb->sb_mbmax = 0;
706 }
707 
708 /*
709  * Routines to add and remove
710  * data from an mbuf queue.
711  *
712  * The routines sbappend() or sbappendrecord() are normally called to
713  * append new mbufs to a socket buffer, after checking that adequate
714  * space is available, comparing the function sbspace() with the amount
715  * of data to be added.  sbappendrecord() differs from sbappend() in
716  * that data supplied is treated as the beginning of a new record.
717  * To place a sender's address, optional access rights, and data in a
718  * socket receive buffer, sbappendaddr() should be used.  To place
719  * access rights and data in a socket receive buffer, sbappendrights()
720  * should be used.  In either case, the new data begins a new record.
721  * Note that unlike sbappend() and sbappendrecord(), these routines check
722  * for the caller that there will be enough space to store the data.
723  * Each fails if there is not enough space, or if it cannot find mbufs
724  * to store additional information in.
725  *
726  * Reliable protocols may use the socket send buffer to hold data
727  * awaiting acknowledgement.  Data is normally copied from a socket
728  * send buffer in a protocol with m_copym for output to a peer,
729  * and then removing the data from the socket buffer with sbdrop()
730  * or sbdroprecord() when the data is acknowledged by the peer.
731  */
732 
733 #ifdef SOCKBUF_DEBUG
734 void
735 sblastrecordchk(struct sockbuf *sb, const char *where)
736 {
737 	struct mbuf *m = sb->sb_mb;
738 
739 	KASSERT(solocked(sb->sb_so));
740 
741 	while (m && m->m_nextpkt)
742 		m = m->m_nextpkt;
743 
744 	if (m != sb->sb_lastrecord) {
745 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
746 		    sb->sb_mb, sb->sb_lastrecord, m);
747 		printf("packet chain:\n");
748 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
749 			printf("\t%p\n", m);
750 		panic("sblastrecordchk from %s", where);
751 	}
752 }
753 
754 void
755 sblastmbufchk(struct sockbuf *sb, const char *where)
756 {
757 	struct mbuf *m = sb->sb_mb;
758 	struct mbuf *n;
759 
760 	KASSERT(solocked(sb->sb_so));
761 
762 	while (m && m->m_nextpkt)
763 		m = m->m_nextpkt;
764 
765 	while (m && m->m_next)
766 		m = m->m_next;
767 
768 	if (m != sb->sb_mbtail) {
769 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
770 		    sb->sb_mb, sb->sb_mbtail, m);
771 		printf("packet tree:\n");
772 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
773 			printf("\t");
774 			for (n = m; n != NULL; n = n->m_next)
775 				printf("%p ", n);
776 			printf("\n");
777 		}
778 		panic("sblastmbufchk from %s", where);
779 	}
780 }
781 #endif /* SOCKBUF_DEBUG */
782 
783 /*
784  * Link a chain of records onto a socket buffer
785  */
786 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
787 do {									\
788 	if ((sb)->sb_lastrecord != NULL)				\
789 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
790 	else								\
791 		(sb)->sb_mb = (m0);					\
792 	(sb)->sb_lastrecord = (mlast);					\
793 } while (/*CONSTCOND*/0)
794 
795 
796 #define	SBLINKRECORD(sb, m0)						\
797     SBLINKRECORDCHAIN(sb, m0, m0)
798 
799 /*
800  * Append mbuf chain m to the last record in the
801  * socket buffer sb.  The additional space associated
802  * the mbuf chain is recorded in sb.  Empty mbufs are
803  * discarded and mbufs are compacted where possible.
804  */
805 void
806 sbappend(struct sockbuf *sb, struct mbuf *m)
807 {
808 	struct mbuf	*n;
809 
810 	KASSERT(solocked(sb->sb_so));
811 
812 	if (m == NULL)
813 		return;
814 
815 #ifdef MBUFTRACE
816 	m_claimm(m, sb->sb_mowner);
817 #endif
818 
819 	SBLASTRECORDCHK(sb, "sbappend 1");
820 
821 	if ((n = sb->sb_lastrecord) != NULL) {
822 		/*
823 		 * XXX Would like to simply use sb_mbtail here, but
824 		 * XXX I need to verify that I won't miss an EOR that
825 		 * XXX way.
826 		 */
827 		do {
828 			if (n->m_flags & M_EOR) {
829 				sbappendrecord(sb, m); /* XXXXXX!!!! */
830 				return;
831 			}
832 		} while (n->m_next && (n = n->m_next));
833 	} else {
834 		/*
835 		 * If this is the first record in the socket buffer, it's
836 		 * also the last record.
837 		 */
838 		sb->sb_lastrecord = m;
839 	}
840 	sbcompress(sb, m, n);
841 	SBLASTRECORDCHK(sb, "sbappend 2");
842 }
843 
844 /*
845  * This version of sbappend() should only be used when the caller
846  * absolutely knows that there will never be more than one record
847  * in the socket buffer, that is, a stream protocol (such as TCP).
848  */
849 void
850 sbappendstream(struct sockbuf *sb, struct mbuf *m)
851 {
852 
853 	KASSERT(solocked(sb->sb_so));
854 	KDASSERT(m->m_nextpkt == NULL);
855 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
856 
857 	SBLASTMBUFCHK(sb, __func__);
858 
859 #ifdef MBUFTRACE
860 	m_claimm(m, sb->sb_mowner);
861 #endif
862 
863 	sbcompress(sb, m, sb->sb_mbtail);
864 
865 	sb->sb_lastrecord = sb->sb_mb;
866 	SBLASTRECORDCHK(sb, __func__);
867 }
868 
869 #ifdef SOCKBUF_DEBUG
870 void
871 sbcheck(struct sockbuf *sb)
872 {
873 	struct mbuf	*m, *m2;
874 	u_long		len, mbcnt;
875 
876 	KASSERT(solocked(sb->sb_so));
877 
878 	len = 0;
879 	mbcnt = 0;
880 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
881 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
882 			len += m2->m_len;
883 			mbcnt += MSIZE;
884 			if (m2->m_flags & M_EXT)
885 				mbcnt += m2->m_ext.ext_size;
886 			if (m2->m_nextpkt != NULL)
887 				panic("sbcheck nextpkt");
888 		}
889 	}
890 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
891 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
892 		    mbcnt, sb->sb_mbcnt);
893 		panic("sbcheck");
894 	}
895 }
896 #endif
897 
898 /*
899  * As above, except the mbuf chain
900  * begins a new record.
901  */
902 void
903 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
904 {
905 	struct mbuf	*m;
906 
907 	KASSERT(solocked(sb->sb_so));
908 
909 	if (m0 == NULL)
910 		return;
911 
912 #ifdef MBUFTRACE
913 	m_claimm(m0, sb->sb_mowner);
914 #endif
915 	/*
916 	 * Put the first mbuf on the queue.
917 	 * Note this permits zero length records.
918 	 */
919 	sballoc(sb, m0);
920 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
921 	SBLINKRECORD(sb, m0);
922 	m = m0->m_next;
923 	m0->m_next = 0;
924 	if (m && (m0->m_flags & M_EOR)) {
925 		m0->m_flags &= ~M_EOR;
926 		m->m_flags |= M_EOR;
927 	}
928 	sbcompress(sb, m, m0);
929 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
930 }
931 
932 /*
933  * As above except that OOB data
934  * is inserted at the beginning of the sockbuf,
935  * but after any other OOB data.
936  */
937 void
938 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
939 {
940 	struct mbuf	*m, **mp;
941 
942 	KASSERT(solocked(sb->sb_so));
943 
944 	if (m0 == NULL)
945 		return;
946 
947 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
948 
949 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
950 	    again:
951 		switch (m->m_type) {
952 
953 		case MT_OOBDATA:
954 			continue;		/* WANT next train */
955 
956 		case MT_CONTROL:
957 			if ((m = m->m_next) != NULL)
958 				goto again;	/* inspect THIS train further */
959 		}
960 		break;
961 	}
962 	/*
963 	 * Put the first mbuf on the queue.
964 	 * Note this permits zero length records.
965 	 */
966 	sballoc(sb, m0);
967 	m0->m_nextpkt = *mp;
968 	if (*mp == NULL) {
969 		/* m0 is actually the new tail */
970 		sb->sb_lastrecord = m0;
971 	}
972 	*mp = m0;
973 	m = m0->m_next;
974 	m0->m_next = 0;
975 	if (m && (m0->m_flags & M_EOR)) {
976 		m0->m_flags &= ~M_EOR;
977 		m->m_flags |= M_EOR;
978 	}
979 	sbcompress(sb, m, m0);
980 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
981 }
982 
983 /*
984  * Append address and data, and optionally, control (ancillary) data
985  * to the receive queue of a socket.  If present,
986  * m0 must include a packet header with total length.
987  * Returns 0 if no space in sockbuf or insufficient mbufs.
988  */
989 int
990 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
991 	struct mbuf *control)
992 {
993 	struct mbuf	*m, *n, *nlast;
994 	int		space, len;
995 
996 	KASSERT(solocked(sb->sb_so));
997 
998 	space = asa->sa_len;
999 
1000 	if (m0 != NULL) {
1001 		if ((m0->m_flags & M_PKTHDR) == 0)
1002 			panic("sbappendaddr");
1003 		space += m0->m_pkthdr.len;
1004 #ifdef MBUFTRACE
1005 		m_claimm(m0, sb->sb_mowner);
1006 #endif
1007 	}
1008 	for (n = control; n; n = n->m_next) {
1009 		space += n->m_len;
1010 		MCLAIM(n, sb->sb_mowner);
1011 		if (n->m_next == NULL)	/* keep pointer to last control buf */
1012 			break;
1013 	}
1014 	if (space > sbspace(sb))
1015 		return (0);
1016 	m = m_get(M_DONTWAIT, MT_SONAME);
1017 	if (m == NULL)
1018 		return (0);
1019 	MCLAIM(m, sb->sb_mowner);
1020 	/*
1021 	 * XXX avoid 'comparison always true' warning which isn't easily
1022 	 * avoided.
1023 	 */
1024 	len = asa->sa_len;
1025 	if (len > MLEN) {
1026 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1027 		if ((m->m_flags & M_EXT) == 0) {
1028 			m_free(m);
1029 			return (0);
1030 		}
1031 	}
1032 	m->m_len = asa->sa_len;
1033 	memcpy(mtod(m, void *), asa, asa->sa_len);
1034 	if (n)
1035 		n->m_next = m0;		/* concatenate data to control */
1036 	else
1037 		control = m0;
1038 	m->m_next = control;
1039 
1040 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1041 
1042 	for (n = m; n->m_next != NULL; n = n->m_next)
1043 		sballoc(sb, n);
1044 	sballoc(sb, n);
1045 	nlast = n;
1046 	SBLINKRECORD(sb, m);
1047 
1048 	sb->sb_mbtail = nlast;
1049 	SBLASTMBUFCHK(sb, "sbappendaddr");
1050 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1051 
1052 	return (1);
1053 }
1054 
1055 /*
1056  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1057  * an mbuf chain.
1058  */
1059 static inline struct mbuf *
1060 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1061 		   const struct sockaddr *asa)
1062 {
1063 	struct mbuf *m;
1064 	const int salen = asa->sa_len;
1065 
1066 	KASSERT(solocked(sb->sb_so));
1067 
1068 	/* only the first in each chain need be a pkthdr */
1069 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1070 	if (m == NULL)
1071 		return NULL;
1072 	MCLAIM(m, sb->sb_mowner);
1073 #ifdef notyet
1074 	if (salen > MHLEN) {
1075 		MEXTMALLOC(m, salen, M_NOWAIT);
1076 		if ((m->m_flags & M_EXT) == 0) {
1077 			m_free(m);
1078 			return NULL;
1079 		}
1080 	}
1081 #else
1082 	KASSERT(salen <= MHLEN);
1083 #endif
1084 	m->m_len = salen;
1085 	memcpy(mtod(m, void *), asa, salen);
1086 	m->m_next = m0;
1087 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1088 
1089 	return m;
1090 }
1091 
1092 int
1093 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1094 		  struct mbuf *m0, int sbprio)
1095 {
1096 	struct mbuf *m, *n, *n0, *nlast;
1097 	int error;
1098 
1099 	KASSERT(solocked(sb->sb_so));
1100 
1101 	/*
1102 	 * XXX sbprio reserved for encoding priority of this* request:
1103 	 *  SB_PRIO_NONE --> honour normal sb limits
1104 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1105 	 *	take whole chain. Intended for large requests
1106 	 *      that should be delivered atomically (all, or none).
1107 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1108 	 *       over normal socket limits, for messages indicating
1109 	 *       buffer overflow in earlier normal/lower-priority messages
1110 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1111 	 *       Intended for  kernel-generated messages only.
1112 	 *        Up to generator to avoid total mbuf resource exhaustion.
1113 	 */
1114 	(void)sbprio;
1115 
1116 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1117 		panic("sbappendaddrchain");
1118 
1119 #ifdef notyet
1120 	space = sbspace(sb);
1121 
1122 	/*
1123 	 * Enforce SB_PRIO_* limits as described above.
1124 	 */
1125 #endif
1126 
1127 	n0 = NULL;
1128 	nlast = NULL;
1129 	for (m = m0; m; m = m->m_nextpkt) {
1130 		struct mbuf *np;
1131 
1132 #ifdef MBUFTRACE
1133 		m_claimm(m, sb->sb_mowner);
1134 #endif
1135 
1136 		/* Prepend sockaddr to this record (m) of input chain m0 */
1137 	  	n = m_prepend_sockaddr(sb, m, asa);
1138 		if (n == NULL) {
1139 			error = ENOBUFS;
1140 			goto bad;
1141 		}
1142 
1143 		/* Append record (asa+m) to end of new chain n0 */
1144 		if (n0 == NULL) {
1145 			n0 = n;
1146 		} else {
1147 			nlast->m_nextpkt = n;
1148 		}
1149 		/* Keep track of last record on new chain */
1150 		nlast = n;
1151 
1152 		for (np = n; np; np = np->m_next)
1153 			sballoc(sb, np);
1154 	}
1155 
1156 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1157 
1158 	/* Drop the entire chain of (asa+m) records onto the socket */
1159 	SBLINKRECORDCHAIN(sb, n0, nlast);
1160 
1161 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1162 
1163 	for (m = nlast; m->m_next; m = m->m_next)
1164 		;
1165 	sb->sb_mbtail = m;
1166 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1167 
1168 	return (1);
1169 
1170 bad:
1171 	/*
1172 	 * On error, free the prepended addreseses. For consistency
1173 	 * with sbappendaddr(), leave it to our caller to free
1174 	 * the input record chain passed to us as m0.
1175 	 */
1176 	while ((n = n0) != NULL) {
1177 	  	struct mbuf *np;
1178 
1179 		/* Undo the sballoc() of this record */
1180 		for (np = n; np; np = np->m_next)
1181 			sbfree(sb, np);
1182 
1183 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1184 		np = m_free(n);		/* free prepended address (not data) */
1185 	}
1186 	return error;
1187 }
1188 
1189 
1190 int
1191 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1192 {
1193 	struct mbuf	*m, *mlast, *n;
1194 	int		space;
1195 
1196 	KASSERT(solocked(sb->sb_so));
1197 
1198 	space = 0;
1199 	if (control == NULL)
1200 		panic("sbappendcontrol");
1201 	for (m = control; ; m = m->m_next) {
1202 		space += m->m_len;
1203 		MCLAIM(m, sb->sb_mowner);
1204 		if (m->m_next == NULL)
1205 			break;
1206 	}
1207 	n = m;			/* save pointer to last control buffer */
1208 	for (m = m0; m; m = m->m_next) {
1209 		MCLAIM(m, sb->sb_mowner);
1210 		space += m->m_len;
1211 	}
1212 	if (space > sbspace(sb))
1213 		return (0);
1214 	n->m_next = m0;			/* concatenate data to control */
1215 
1216 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1217 
1218 	for (m = control; m->m_next != NULL; m = m->m_next)
1219 		sballoc(sb, m);
1220 	sballoc(sb, m);
1221 	mlast = m;
1222 	SBLINKRECORD(sb, control);
1223 
1224 	sb->sb_mbtail = mlast;
1225 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1226 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1227 
1228 	return (1);
1229 }
1230 
1231 /*
1232  * Compress mbuf chain m into the socket
1233  * buffer sb following mbuf n.  If n
1234  * is null, the buffer is presumed empty.
1235  */
1236 void
1237 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1238 {
1239 	int		eor;
1240 	struct mbuf	*o;
1241 
1242 	KASSERT(solocked(sb->sb_so));
1243 
1244 	eor = 0;
1245 	while (m) {
1246 		eor |= m->m_flags & M_EOR;
1247 		if (m->m_len == 0 &&
1248 		    (eor == 0 ||
1249 		     (((o = m->m_next) || (o = n)) &&
1250 		      o->m_type == m->m_type))) {
1251 			if (sb->sb_lastrecord == m)
1252 				sb->sb_lastrecord = m->m_next;
1253 			m = m_free(m);
1254 			continue;
1255 		}
1256 		if (n && (n->m_flags & M_EOR) == 0 &&
1257 		    /* M_TRAILINGSPACE() checks buffer writeability */
1258 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1259 		    m->m_len <= M_TRAILINGSPACE(n) &&
1260 		    n->m_type == m->m_type) {
1261 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1262 			    (unsigned)m->m_len);
1263 			n->m_len += m->m_len;
1264 			sb->sb_cc += m->m_len;
1265 			m = m_free(m);
1266 			continue;
1267 		}
1268 		if (n)
1269 			n->m_next = m;
1270 		else
1271 			sb->sb_mb = m;
1272 		sb->sb_mbtail = m;
1273 		sballoc(sb, m);
1274 		n = m;
1275 		m->m_flags &= ~M_EOR;
1276 		m = m->m_next;
1277 		n->m_next = 0;
1278 	}
1279 	if (eor) {
1280 		if (n)
1281 			n->m_flags |= eor;
1282 		else
1283 			printf("semi-panic: sbcompress\n");
1284 	}
1285 	SBLASTMBUFCHK(sb, __func__);
1286 }
1287 
1288 /*
1289  * Free all mbufs in a sockbuf.
1290  * Check that all resources are reclaimed.
1291  */
1292 void
1293 sbflush(struct sockbuf *sb)
1294 {
1295 
1296 	KASSERT(solocked(sb->sb_so));
1297 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1298 
1299 	while (sb->sb_mbcnt)
1300 		sbdrop(sb, (int)sb->sb_cc);
1301 
1302 	KASSERT(sb->sb_cc == 0);
1303 	KASSERT(sb->sb_mb == NULL);
1304 	KASSERT(sb->sb_mbtail == NULL);
1305 	KASSERT(sb->sb_lastrecord == NULL);
1306 }
1307 
1308 /*
1309  * Drop data from (the front of) a sockbuf.
1310  */
1311 void
1312 sbdrop(struct sockbuf *sb, int len)
1313 {
1314 	struct mbuf	*m, *next;
1315 
1316 	KASSERT(solocked(sb->sb_so));
1317 
1318 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1319 	while (len > 0) {
1320 		if (m == NULL) {
1321 			if (next == NULL)
1322 				panic("sbdrop(%p,%d): cc=%lu",
1323 				    sb, len, sb->sb_cc);
1324 			m = next;
1325 			next = m->m_nextpkt;
1326 			continue;
1327 		}
1328 		if (m->m_len > len) {
1329 			m->m_len -= len;
1330 			m->m_data += len;
1331 			sb->sb_cc -= len;
1332 			break;
1333 		}
1334 		len -= m->m_len;
1335 		sbfree(sb, m);
1336 		m = m_free(m);
1337 	}
1338 	while (m && m->m_len == 0) {
1339 		sbfree(sb, m);
1340 		m = m_free(m);
1341 	}
1342 	if (m) {
1343 		sb->sb_mb = m;
1344 		m->m_nextpkt = next;
1345 	} else
1346 		sb->sb_mb = next;
1347 	/*
1348 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1349 	 * makes sure sb_lastrecord is up-to-date if we dropped
1350 	 * part of the last record.
1351 	 */
1352 	m = sb->sb_mb;
1353 	if (m == NULL) {
1354 		sb->sb_mbtail = NULL;
1355 		sb->sb_lastrecord = NULL;
1356 	} else if (m->m_nextpkt == NULL)
1357 		sb->sb_lastrecord = m;
1358 }
1359 
1360 /*
1361  * Drop a record off the front of a sockbuf
1362  * and move the next record to the front.
1363  */
1364 void
1365 sbdroprecord(struct sockbuf *sb)
1366 {
1367 	struct mbuf	*m, *mn;
1368 
1369 	KASSERT(solocked(sb->sb_so));
1370 
1371 	m = sb->sb_mb;
1372 	if (m) {
1373 		sb->sb_mb = m->m_nextpkt;
1374 		do {
1375 			sbfree(sb, m);
1376 			mn = m_free(m);
1377 		} while ((m = mn) != NULL);
1378 	}
1379 	SB_EMPTY_FIXUP(sb);
1380 }
1381 
1382 /*
1383  * Create a "control" mbuf containing the specified data
1384  * with the specified type for presentation on a socket buffer.
1385  */
1386 struct mbuf *
1387 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1388 {
1389 	struct cmsghdr	*cp;
1390 	struct mbuf	*m;
1391 	int space = CMSG_SPACE(size);
1392 
1393 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1394 		printf("%s: message too large %d\n", __func__, space);
1395 		return NULL;
1396 	}
1397 
1398 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1399 		return NULL;
1400 	if (space > MLEN) {
1401 		if (space > MCLBYTES)
1402 			MEXTMALLOC(m, space, M_WAITOK);
1403 		else
1404 			MCLGET(m, flags);
1405 		if ((m->m_flags & M_EXT) == 0) {
1406 			m_free(m);
1407 			return NULL;
1408 		}
1409 	}
1410 	cp = mtod(m, struct cmsghdr *);
1411 	*p = CMSG_DATA(cp);
1412 	m->m_len = space;
1413 	cp->cmsg_len = CMSG_LEN(size);
1414 	cp->cmsg_level = level;
1415 	cp->cmsg_type = type;
1416 	return m;
1417 }
1418 
1419 struct mbuf *
1420 sbcreatecontrol(void *p, int size, int type, int level)
1421 {
1422 	struct mbuf *m;
1423 	void *v;
1424 
1425 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1426 	if (m == NULL)
1427 		return NULL;
1428 	memcpy(v, p, size);
1429 	return m;
1430 }
1431 
1432 void
1433 solockretry(struct socket *so, kmutex_t *lock)
1434 {
1435 
1436 	while (lock != so->so_lock) {
1437 		mutex_exit(lock);
1438 		lock = so->so_lock;
1439 		mutex_enter(lock);
1440 	}
1441 }
1442 
1443 bool
1444 solocked(const struct socket *so)
1445 {
1446 
1447 	return mutex_owned(so->so_lock);
1448 }
1449 
1450 bool
1451 solocked2(const struct socket *so1, const struct socket *so2)
1452 {
1453 	const kmutex_t *lock;
1454 
1455 	lock = so1->so_lock;
1456 	if (lock != so2->so_lock)
1457 		return false;
1458 	return mutex_owned(lock);
1459 }
1460 
1461 /*
1462  * sosetlock: assign a default lock to a new socket.
1463  */
1464 void
1465 sosetlock(struct socket *so)
1466 {
1467 	if (so->so_lock == NULL) {
1468 		kmutex_t *lock = softnet_lock;
1469 
1470 		so->so_lock = lock;
1471 		mutex_obj_hold(lock);
1472 		mutex_enter(lock);
1473 	}
1474 	KASSERT(solocked(so));
1475 }
1476 
1477 /*
1478  * Set lock on sockbuf sb; sleep if lock is already held.
1479  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1480  * Returns error without lock if sleep is interrupted.
1481  */
1482 int
1483 sblock(struct sockbuf *sb, int wf)
1484 {
1485 	struct socket *so;
1486 	kmutex_t *lock;
1487 	int error;
1488 
1489 	KASSERT(solocked(sb->sb_so));
1490 
1491 	for (;;) {
1492 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1493 			sb->sb_flags |= SB_LOCK;
1494 			return 0;
1495 		}
1496 		if (wf != M_WAITOK)
1497 			return EWOULDBLOCK;
1498 		so = sb->sb_so;
1499 		lock = so->so_lock;
1500 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1501 			cv_wait(&so->so_cv, lock);
1502 			error = 0;
1503 		} else
1504 			error = cv_wait_sig(&so->so_cv, lock);
1505 		if (__predict_false(lock != so->so_lock))
1506 			solockretry(so, lock);
1507 		if (error != 0)
1508 			return error;
1509 	}
1510 }
1511 
1512 void
1513 sbunlock(struct sockbuf *sb)
1514 {
1515 	struct socket *so;
1516 
1517 	so = sb->sb_so;
1518 
1519 	KASSERT(solocked(so));
1520 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1521 
1522 	sb->sb_flags &= ~SB_LOCK;
1523 	cv_broadcast(&so->so_cv);
1524 }
1525 
1526 int
1527 sowait(struct socket *so, bool catch_p, int timo)
1528 {
1529 	kmutex_t *lock;
1530 	int error;
1531 
1532 	KASSERT(solocked(so));
1533 	KASSERT(catch_p || timo != 0);
1534 
1535 	lock = so->so_lock;
1536 	if (catch_p)
1537 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1538 	else
1539 		error = cv_timedwait(&so->so_cv, lock, timo);
1540 	if (__predict_false(lock != so->so_lock))
1541 		solockretry(so, lock);
1542 	return error;
1543 }
1544