xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 8a8f936f250a330d54f8a24ed0e92aadf9743a7b)
1 /*	$NetBSD: uipc_socket2.c,v 1.41 2001/08/05 08:25:39 enami Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/signalvar.h>
49 
50 /*
51  * Primitive routines for operating on sockets and socket buffers
52  */
53 
54 /* strings for sleep message: */
55 const char	netcon[] = "netcon";
56 const char	netcls[] = "netcls";
57 const char	netio[] = "netio";
58 const char	netlck[] = "netlck";
59 
60 /*
61  * Procedures to manipulate state flags of socket
62  * and do appropriate wakeups.  Normal sequence from the
63  * active (originating) side is that soisconnecting() is
64  * called during processing of connect() call,
65  * resulting in an eventual call to soisconnected() if/when the
66  * connection is established.  When the connection is torn down
67  * soisdisconnecting() is called during processing of disconnect() call,
68  * and soisdisconnected() is called when the connection to the peer
69  * is totally severed.  The semantics of these routines are such that
70  * connectionless protocols can call soisconnected() and soisdisconnected()
71  * only, bypassing the in-progress calls when setting up a ``connection''
72  * takes no time.
73  *
74  * From the passive side, a socket is created with
75  * two queues of sockets: so_q0 for connections in progress
76  * and so_q for connections already made and awaiting user acceptance.
77  * As a protocol is preparing incoming connections, it creates a socket
78  * structure queued on so_q0 by calling sonewconn().  When the connection
79  * is established, soisconnected() is called, and transfers the
80  * socket structure to so_q, making it available to accept().
81  *
82  * If a socket is closed with sockets on either
83  * so_q0 or so_q, these sockets are dropped.
84  *
85  * If higher level protocols are implemented in
86  * the kernel, the wakeups done here will sometimes
87  * cause software-interrupt process scheduling.
88  */
89 
90 void
91 soisconnecting(struct socket *so)
92 {
93 
94 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
95 	so->so_state |= SS_ISCONNECTING;
96 }
97 
98 void
99 soisconnected(struct socket *so)
100 {
101 	struct socket	*head;
102 
103 	head = so->so_head;
104 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
105 	so->so_state |= SS_ISCONNECTED;
106 	if (head && soqremque(so, 0)) {
107 		soqinsque(head, so, 1);
108 		sorwakeup(head);
109 		wakeup((caddr_t)&head->so_timeo);
110 	} else {
111 		wakeup((caddr_t)&so->so_timeo);
112 		sorwakeup(so);
113 		sowwakeup(so);
114 	}
115 }
116 
117 void
118 soisdisconnecting(struct socket *so)
119 {
120 
121 	so->so_state &= ~SS_ISCONNECTING;
122 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
123 	wakeup((caddr_t)&so->so_timeo);
124 	sowwakeup(so);
125 	sorwakeup(so);
126 }
127 
128 void
129 soisdisconnected(struct socket *so)
130 {
131 
132 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
133 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
134 	wakeup((caddr_t)&so->so_timeo);
135 	sowwakeup(so);
136 	sorwakeup(so);
137 }
138 
139 /*
140  * When an attempt at a new connection is noted on a socket
141  * which accepts connections, sonewconn is called.  If the
142  * connection is possible (subject to space constraints, etc.)
143  * then we allocate a new structure, propoerly linked into the
144  * data structure of the original socket, and return this.
145  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
146  *
147  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
148  * to catch calls that are missing the (new) second parameter.
149  */
150 struct socket *
151 sonewconn1(struct socket *head, int connstatus)
152 {
153 	struct socket	*so;
154 	int		soqueue;
155 
156 	soqueue = connstatus ? 1 : 0;
157 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
158 		return ((struct socket *)0);
159 	so = pool_get(&socket_pool, PR_NOWAIT);
160 	if (so == NULL)
161 		return (NULL);
162 	memset((caddr_t)so, 0, sizeof(*so));
163 	so->so_type = head->so_type;
164 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
165 	so->so_linger = head->so_linger;
166 	so->so_state = head->so_state | SS_NOFDREF;
167 	so->so_proto = head->so_proto;
168 	so->so_timeo = head->so_timeo;
169 	so->so_pgid = head->so_pgid;
170 	so->so_send = head->so_send;
171 	so->so_receive = head->so_receive;
172 	so->so_uid = head->so_uid;
173 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
174 	soqinsque(head, so, soqueue);
175 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
176 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
177 	    (struct proc *)0)) {
178 		(void) soqremque(so, soqueue);
179 		pool_put(&socket_pool, so);
180 		return (NULL);
181 	}
182 	if (connstatus) {
183 		sorwakeup(head);
184 		wakeup((caddr_t)&head->so_timeo);
185 		so->so_state |= connstatus;
186 	}
187 	return (so);
188 }
189 
190 void
191 soqinsque(struct socket *head, struct socket *so, int q)
192 {
193 
194 #ifdef DIAGNOSTIC
195 	if (so->so_onq != NULL)
196 		panic("soqinsque");
197 #endif
198 
199 	so->so_head = head;
200 	if (q == 0) {
201 		head->so_q0len++;
202 		so->so_onq = &head->so_q0;
203 	} else {
204 		head->so_qlen++;
205 		so->so_onq = &head->so_q;
206 	}
207 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
208 }
209 
210 int
211 soqremque(struct socket *so, int q)
212 {
213 	struct socket	*head;
214 
215 	head = so->so_head;
216 	if (q == 0) {
217 		if (so->so_onq != &head->so_q0)
218 			return (0);
219 		head->so_q0len--;
220 	} else {
221 		if (so->so_onq != &head->so_q)
222 			return (0);
223 		head->so_qlen--;
224 	}
225 	TAILQ_REMOVE(so->so_onq, so, so_qe);
226 	so->so_onq = NULL;
227 	so->so_head = NULL;
228 	return (1);
229 }
230 
231 /*
232  * Socantsendmore indicates that no more data will be sent on the
233  * socket; it would normally be applied to a socket when the user
234  * informs the system that no more data is to be sent, by the protocol
235  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
236  * will be received, and will normally be applied to the socket by a
237  * protocol when it detects that the peer will send no more data.
238  * Data queued for reading in the socket may yet be read.
239  */
240 
241 void
242 socantsendmore(struct socket *so)
243 {
244 
245 	so->so_state |= SS_CANTSENDMORE;
246 	sowwakeup(so);
247 }
248 
249 void
250 socantrcvmore(struct socket *so)
251 {
252 
253 	so->so_state |= SS_CANTRCVMORE;
254 	sorwakeup(so);
255 }
256 
257 /*
258  * Wait for data to arrive at/drain from a socket buffer.
259  */
260 int
261 sbwait(struct sockbuf *sb)
262 {
263 
264 	sb->sb_flags |= SB_WAIT;
265 	return (tsleep((caddr_t)&sb->sb_cc,
266 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
267 	    sb->sb_timeo));
268 }
269 
270 /*
271  * Lock a sockbuf already known to be locked;
272  * return any error returned from sleep (EINTR).
273  */
274 int
275 sb_lock(struct sockbuf *sb)
276 {
277 	int	error;
278 
279 	while (sb->sb_flags & SB_LOCK) {
280 		sb->sb_flags |= SB_WANT;
281 		error = tsleep((caddr_t)&sb->sb_flags,
282 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
283 		    netlck, 0);
284 		if (error)
285 			return (error);
286 	}
287 	sb->sb_flags |= SB_LOCK;
288 	return (0);
289 }
290 
291 /*
292  * Wakeup processes waiting on a socket buffer.
293  * Do asynchronous notification via SIGIO
294  * if the socket buffer has the SB_ASYNC flag set.
295  */
296 void
297 sowakeup(struct socket *so, struct sockbuf *sb)
298 {
299 	struct proc	*p;
300 
301 	selwakeup(&sb->sb_sel);
302 	sb->sb_flags &= ~SB_SEL;
303 	if (sb->sb_flags & SB_WAIT) {
304 		sb->sb_flags &= ~SB_WAIT;
305 		wakeup((caddr_t)&sb->sb_cc);
306 	}
307 	if (sb->sb_flags & SB_ASYNC) {
308 		if (so->so_pgid < 0)
309 			gsignal(-so->so_pgid, SIGIO);
310 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
311 			psignal(p, SIGIO);
312 	}
313 	if (sb->sb_flags & SB_UPCALL)
314 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
315 }
316 
317 /*
318  * Socket buffer (struct sockbuf) utility routines.
319  *
320  * Each socket contains two socket buffers: one for sending data and
321  * one for receiving data.  Each buffer contains a queue of mbufs,
322  * information about the number of mbufs and amount of data in the
323  * queue, and other fields allowing poll() statements and notification
324  * on data availability to be implemented.
325  *
326  * Data stored in a socket buffer is maintained as a list of records.
327  * Each record is a list of mbufs chained together with the m_next
328  * field.  Records are chained together with the m_nextpkt field. The upper
329  * level routine soreceive() expects the following conventions to be
330  * observed when placing information in the receive buffer:
331  *
332  * 1. If the protocol requires each message be preceded by the sender's
333  *    name, then a record containing that name must be present before
334  *    any associated data (mbuf's must be of type MT_SONAME).
335  * 2. If the protocol supports the exchange of ``access rights'' (really
336  *    just additional data associated with the message), and there are
337  *    ``rights'' to be received, then a record containing this data
338  *    should be present (mbuf's must be of type MT_CONTROL).
339  * 3. If a name or rights record exists, then it must be followed by
340  *    a data record, perhaps of zero length.
341  *
342  * Before using a new socket structure it is first necessary to reserve
343  * buffer space to the socket, by calling sbreserve().  This should commit
344  * some of the available buffer space in the system buffer pool for the
345  * socket (currently, it does nothing but enforce limits).  The space
346  * should be released by calling sbrelease() when the socket is destroyed.
347  */
348 
349 int
350 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
351 {
352 
353 	if (sbreserve(&so->so_snd, sndcc) == 0)
354 		goto bad;
355 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
356 		goto bad2;
357 	if (so->so_rcv.sb_lowat == 0)
358 		so->so_rcv.sb_lowat = 1;
359 	if (so->so_snd.sb_lowat == 0)
360 		so->so_snd.sb_lowat = MCLBYTES;
361 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
362 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
363 	return (0);
364  bad2:
365 	sbrelease(&so->so_snd);
366  bad:
367 	return (ENOBUFS);
368 }
369 
370 /*
371  * Allot mbufs to a sockbuf.
372  * Attempt to scale mbmax so that mbcnt doesn't become limiting
373  * if buffering efficiency is near the normal case.
374  */
375 int
376 sbreserve(struct sockbuf *sb, u_long cc)
377 {
378 
379 	if (cc == 0 ||
380 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
381 		return (0);
382 	sb->sb_hiwat = cc;
383 	sb->sb_mbmax = min(cc * 2, sb_max);
384 	if (sb->sb_lowat > sb->sb_hiwat)
385 		sb->sb_lowat = sb->sb_hiwat;
386 	return (1);
387 }
388 
389 /*
390  * Free mbufs held by a socket, and reserved mbuf space.
391  */
392 void
393 sbrelease(struct sockbuf *sb)
394 {
395 
396 	sbflush(sb);
397 	sb->sb_hiwat = sb->sb_mbmax = 0;
398 }
399 
400 /*
401  * Routines to add and remove
402  * data from an mbuf queue.
403  *
404  * The routines sbappend() or sbappendrecord() are normally called to
405  * append new mbufs to a socket buffer, after checking that adequate
406  * space is available, comparing the function sbspace() with the amount
407  * of data to be added.  sbappendrecord() differs from sbappend() in
408  * that data supplied is treated as the beginning of a new record.
409  * To place a sender's address, optional access rights, and data in a
410  * socket receive buffer, sbappendaddr() should be used.  To place
411  * access rights and data in a socket receive buffer, sbappendrights()
412  * should be used.  In either case, the new data begins a new record.
413  * Note that unlike sbappend() and sbappendrecord(), these routines check
414  * for the caller that there will be enough space to store the data.
415  * Each fails if there is not enough space, or if it cannot find mbufs
416  * to store additional information in.
417  *
418  * Reliable protocols may use the socket send buffer to hold data
419  * awaiting acknowledgement.  Data is normally copied from a socket
420  * send buffer in a protocol with m_copy for output to a peer,
421  * and then removing the data from the socket buffer with sbdrop()
422  * or sbdroprecord() when the data is acknowledged by the peer.
423  */
424 
425 /*
426  * Append mbuf chain m to the last record in the
427  * socket buffer sb.  The additional space associated
428  * the mbuf chain is recorded in sb.  Empty mbufs are
429  * discarded and mbufs are compacted where possible.
430  */
431 void
432 sbappend(struct sockbuf *sb, struct mbuf *m)
433 {
434 	struct mbuf	*n;
435 
436 	if (m == 0)
437 		return;
438 	if ((n = sb->sb_mb) != NULL) {
439 		while (n->m_nextpkt)
440 			n = n->m_nextpkt;
441 		do {
442 			if (n->m_flags & M_EOR) {
443 				sbappendrecord(sb, m); /* XXXXXX!!!! */
444 				return;
445 			}
446 		} while (n->m_next && (n = n->m_next));
447 	}
448 	sbcompress(sb, m, n);
449 }
450 
451 #ifdef SOCKBUF_DEBUG
452 void
453 sbcheck(struct sockbuf *sb)
454 {
455 	struct mbuf	*m;
456 	int		len, mbcnt;
457 
458 	len = 0;
459 	mbcnt = 0;
460 	for (m = sb->sb_mb; m; m = m->m_next) {
461 		len += m->m_len;
462 		mbcnt += MSIZE;
463 		if (m->m_flags & M_EXT)
464 			mbcnt += m->m_ext.ext_size;
465 		if (m->m_nextpkt)
466 			panic("sbcheck nextpkt");
467 	}
468 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
469 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
470 		    mbcnt, sb->sb_mbcnt);
471 		panic("sbcheck");
472 	}
473 }
474 #endif
475 
476 /*
477  * As above, except the mbuf chain
478  * begins a new record.
479  */
480 void
481 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
482 {
483 	struct mbuf	*m;
484 
485 	if (m0 == 0)
486 		return;
487 	if ((m = sb->sb_mb) != NULL)
488 		while (m->m_nextpkt)
489 			m = m->m_nextpkt;
490 	/*
491 	 * Put the first mbuf on the queue.
492 	 * Note this permits zero length records.
493 	 */
494 	sballoc(sb, m0);
495 	if (m)
496 		m->m_nextpkt = m0;
497 	else
498 		sb->sb_mb = m0;
499 	m = m0->m_next;
500 	m0->m_next = 0;
501 	if (m && (m0->m_flags & M_EOR)) {
502 		m0->m_flags &= ~M_EOR;
503 		m->m_flags |= M_EOR;
504 	}
505 	sbcompress(sb, m, m0);
506 }
507 
508 /*
509  * As above except that OOB data
510  * is inserted at the beginning of the sockbuf,
511  * but after any other OOB data.
512  */
513 void
514 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
515 {
516 	struct mbuf	*m, **mp;
517 
518 	if (m0 == 0)
519 		return;
520 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
521 	    again:
522 		switch (m->m_type) {
523 
524 		case MT_OOBDATA:
525 			continue;		/* WANT next train */
526 
527 		case MT_CONTROL:
528 			if ((m = m->m_next) != NULL)
529 				goto again;	/* inspect THIS train further */
530 		}
531 		break;
532 	}
533 	/*
534 	 * Put the first mbuf on the queue.
535 	 * Note this permits zero length records.
536 	 */
537 	sballoc(sb, m0);
538 	m0->m_nextpkt = *mp;
539 	*mp = m0;
540 	m = m0->m_next;
541 	m0->m_next = 0;
542 	if (m && (m0->m_flags & M_EOR)) {
543 		m0->m_flags &= ~M_EOR;
544 		m->m_flags |= M_EOR;
545 	}
546 	sbcompress(sb, m, m0);
547 }
548 
549 /*
550  * Append address and data, and optionally, control (ancillary) data
551  * to the receive queue of a socket.  If present,
552  * m0 must include a packet header with total length.
553  * Returns 0 if no space in sockbuf or insufficient mbufs.
554  */
555 int
556 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
557 	struct mbuf *control)
558 {
559 	struct mbuf	*m, *n;
560 	int		space;
561 
562 	space = asa->sa_len;
563 
564 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
565 		panic("sbappendaddr");
566 	if (m0)
567 		space += m0->m_pkthdr.len;
568 	for (n = control; n; n = n->m_next) {
569 		space += n->m_len;
570 		if (n->m_next == 0)	/* keep pointer to last control buf */
571 			break;
572 	}
573 	if (space > sbspace(sb))
574 		return (0);
575 	MGET(m, M_DONTWAIT, MT_SONAME);
576 	if (m == 0)
577 		return (0);
578 	if (asa->sa_len > MLEN) {
579 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
580 		if ((m->m_flags & M_EXT) == 0) {
581 			m_free(m);
582 			return (0);
583 		}
584 	}
585 	m->m_len = asa->sa_len;
586 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
587 	if (n)
588 		n->m_next = m0;		/* concatenate data to control */
589 	else
590 		control = m0;
591 	m->m_next = control;
592 	for (n = m; n; n = n->m_next)
593 		sballoc(sb, n);
594 	if ((n = sb->sb_mb) != NULL) {
595 		while (n->m_nextpkt)
596 			n = n->m_nextpkt;
597 		n->m_nextpkt = m;
598 	} else
599 		sb->sb_mb = m;
600 	return (1);
601 }
602 
603 int
604 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
605 {
606 	struct mbuf	*m, *n;
607 	int		space;
608 
609 	space = 0;
610 	if (control == 0)
611 		panic("sbappendcontrol");
612 	for (m = control; ; m = m->m_next) {
613 		space += m->m_len;
614 		if (m->m_next == 0)
615 			break;
616 	}
617 	n = m;			/* save pointer to last control buffer */
618 	for (m = m0; m; m = m->m_next)
619 		space += m->m_len;
620 	if (space > sbspace(sb))
621 		return (0);
622 	n->m_next = m0;			/* concatenate data to control */
623 	for (m = control; m; m = m->m_next)
624 		sballoc(sb, m);
625 	if ((n = sb->sb_mb) != NULL) {
626 		while (n->m_nextpkt)
627 			n = n->m_nextpkt;
628 		n->m_nextpkt = control;
629 	} else
630 		sb->sb_mb = control;
631 	return (1);
632 }
633 
634 /*
635  * Compress mbuf chain m into the socket
636  * buffer sb following mbuf n.  If n
637  * is null, the buffer is presumed empty.
638  */
639 void
640 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
641 {
642 	int		eor;
643 	struct mbuf	*o;
644 
645 	eor = 0;
646 	while (m) {
647 		eor |= m->m_flags & M_EOR;
648 		if (m->m_len == 0 &&
649 		    (eor == 0 ||
650 		     (((o = m->m_next) || (o = n)) &&
651 		      o->m_type == m->m_type))) {
652 			m = m_free(m);
653 			continue;
654 		}
655 		if (n && (n->m_flags & M_EOR) == 0 &&
656 		    /* M_TRAILINGSPACE() checks buffer writeability */
657 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
658 		    m->m_len <= M_TRAILINGSPACE(n) &&
659 		    n->m_type == m->m_type) {
660 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
661 			    (unsigned)m->m_len);
662 			n->m_len += m->m_len;
663 			sb->sb_cc += m->m_len;
664 			m = m_free(m);
665 			continue;
666 		}
667 		if (n)
668 			n->m_next = m;
669 		else
670 			sb->sb_mb = m;
671 		sballoc(sb, m);
672 		n = m;
673 		m->m_flags &= ~M_EOR;
674 		m = m->m_next;
675 		n->m_next = 0;
676 	}
677 	if (eor) {
678 		if (n)
679 			n->m_flags |= eor;
680 		else
681 			printf("semi-panic: sbcompress\n");
682 	}
683 }
684 
685 /*
686  * Free all mbufs in a sockbuf.
687  * Check that all resources are reclaimed.
688  */
689 void
690 sbflush(struct sockbuf *sb)
691 {
692 
693 	if (sb->sb_flags & SB_LOCK)
694 		panic("sbflush");
695 	while (sb->sb_mbcnt)
696 		sbdrop(sb, (int)sb->sb_cc);
697 	if (sb->sb_cc || sb->sb_mb)
698 		panic("sbflush 2");
699 }
700 
701 /*
702  * Drop data from (the front of) a sockbuf.
703  */
704 void
705 sbdrop(struct sockbuf *sb, int len)
706 {
707 	struct mbuf	*m, *mn, *next;
708 
709 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
710 	while (len > 0) {
711 		if (m == 0) {
712 			if (next == 0)
713 				panic("sbdrop");
714 			m = next;
715 			next = m->m_nextpkt;
716 			continue;
717 		}
718 		if (m->m_len > len) {
719 			m->m_len -= len;
720 			m->m_data += len;
721 			sb->sb_cc -= len;
722 			break;
723 		}
724 		len -= m->m_len;
725 		sbfree(sb, m);
726 		MFREE(m, mn);
727 		m = mn;
728 	}
729 	while (m && m->m_len == 0) {
730 		sbfree(sb, m);
731 		MFREE(m, mn);
732 		m = mn;
733 	}
734 	if (m) {
735 		sb->sb_mb = m;
736 		m->m_nextpkt = next;
737 	} else
738 		sb->sb_mb = next;
739 }
740 
741 /*
742  * Drop a record off the front of a sockbuf
743  * and move the next record to the front.
744  */
745 void
746 sbdroprecord(struct sockbuf *sb)
747 {
748 	struct mbuf	*m, *mn;
749 
750 	m = sb->sb_mb;
751 	if (m) {
752 		sb->sb_mb = m->m_nextpkt;
753 		do {
754 			sbfree(sb, m);
755 			MFREE(m, mn);
756 		} while ((m = mn) != NULL);
757 	}
758 }
759 
760 /*
761  * Create a "control" mbuf containing the specified data
762  * with the specified type for presentation on a socket buffer.
763  */
764 struct mbuf *
765 sbcreatecontrol(caddr_t p, int size, int type, int level)
766 {
767 	struct cmsghdr	*cp;
768 	struct mbuf	*m;
769 
770 	if (CMSG_SPACE(size) > MCLBYTES) {
771 		printf("sbcreatecontrol: message too large %d\n", size);
772 		return NULL;
773 	}
774 
775 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
776 		return ((struct mbuf *) NULL);
777 	if (CMSG_SPACE(size) > MLEN) {
778 		MCLGET(m, M_DONTWAIT);
779 		if ((m->m_flags & M_EXT) == 0) {
780 			m_free(m);
781 			return NULL;
782 		}
783 	}
784 	cp = mtod(m, struct cmsghdr *);
785 	memcpy(CMSG_DATA(cp), p, size);
786 	m->m_len = CMSG_SPACE(size);
787 	cp->cmsg_len = CMSG_LEN(size);
788 	cp->cmsg_level = level;
789 	cp->cmsg_type = type;
790 	return (m);
791 }
792