xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 811e6386f8c5e4a3521c7003da29ec8673e344fa)
1 /*
2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)uipc_socket2.c	7.17 (Berkeley) 5/4/91
34  *
35  * PATCHES MAGIC                LEVEL   PATCH THAT GOT US HERE
36  * --------------------         -----   ----------------------
37  * CURRENT PATCH LEVEL:         1       00061
38  * --------------------         -----   ----------------------
39  *
40  * 11 Dec 92	Williams Jolitz		Fixed tty handling
41  */
42 
43 #include "param.h"
44 #include "systm.h"
45 #include "proc.h"
46 #include "file.h"
47 #include "buf.h"
48 #include "malloc.h"
49 #include "mbuf.h"
50 #include "protosw.h"
51 #include "socket.h"
52 #include "socketvar.h"
53 
54 /*
55  * Primitive routines for operating on sockets and socket buffers
56  */
57 
58 /* strings for sleep message: */
59 char	netio[] = "netio";
60 char	netcon[] = "netcon";
61 char	netcls[] = "netcls";
62 
63 u_long	sb_max = SB_MAX;		/* patchable */
64 
65 /*
66  * Procedures to manipulate state flags of socket
67  * and do appropriate wakeups.  Normal sequence from the
68  * active (originating) side is that soisconnecting() is
69  * called during processing of connect() call,
70  * resulting in an eventual call to soisconnected() if/when the
71  * connection is established.  When the connection is torn down
72  * soisdisconnecting() is called during processing of disconnect() call,
73  * and soisdisconnected() is called when the connection to the peer
74  * is totally severed.  The semantics of these routines are such that
75  * connectionless protocols can call soisconnected() and soisdisconnected()
76  * only, bypassing the in-progress calls when setting up a ``connection''
77  * takes no time.
78  *
79  * From the passive side, a socket is created with
80  * two queues of sockets: so_q0 for connections in progress
81  * and so_q for connections already made and awaiting user acceptance.
82  * As a protocol is preparing incoming connections, it creates a socket
83  * structure queued on so_q0 by calling sonewconn().  When the connection
84  * is established, soisconnected() is called, and transfers the
85  * socket structure to so_q, making it available to accept().
86  *
87  * If a socket is closed with sockets on either
88  * so_q0 or so_q, these sockets are dropped.
89  *
90  * If higher level protocols are implemented in
91  * the kernel, the wakeups done here will sometimes
92  * cause software-interrupt process scheduling.
93  */
94 
95 soisconnecting(so)
96 	register struct socket *so;
97 {
98 
99 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100 	so->so_state |= SS_ISCONNECTING;
101 }
102 
103 soisconnected(so)
104 	register struct socket *so;
105 {
106 	register struct socket *head = so->so_head;
107 
108 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
109 	so->so_state |= SS_ISCONNECTED;
110 	if (head && soqremque(so, 0)) {
111 		soqinsque(head, so, 1);
112 		sorwakeup(head);
113 		wakeup((caddr_t)&head->so_timeo);
114 	} else {
115 		wakeup((caddr_t)&so->so_timeo);
116 		sorwakeup(so);
117 		sowwakeup(so);
118 	}
119 }
120 
121 soisdisconnecting(so)
122 	register struct socket *so;
123 {
124 
125 	so->so_state &= ~SS_ISCONNECTING;
126 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
127 	wakeup((caddr_t)&so->so_timeo);
128 	sowwakeup(so);
129 	sorwakeup(so);
130 }
131 
132 soisdisconnected(so)
133 	register struct socket *so;
134 {
135 
136 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
137 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
138 	wakeup((caddr_t)&so->so_timeo);
139 	sowwakeup(so);
140 	sorwakeup(so);
141 }
142 
143 /*
144  * When an attempt at a new connection is noted on a socket
145  * which accepts connections, sonewconn is called.  If the
146  * connection is possible (subject to space constraints, etc.)
147  * then we allocate a new structure, propoerly linked into the
148  * data structure of the original socket, and return this.
149  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
150  *
151  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
152  * to catch calls that are missing the (new) second parameter.
153  */
154 struct socket *
155 sonewconn1(head, connstatus)
156 	register struct socket *head;
157 	int connstatus;
158 {
159 	register struct socket *so;
160 	int soqueue = connstatus ? 1 : 0;
161 
162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 		return ((struct socket *)0);
164 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
165 	if (so == NULL)
166 		return ((struct socket *)0);
167 	bzero((caddr_t)so, sizeof(*so));
168 	so->so_type = head->so_type;
169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 	so->so_linger = head->so_linger;
171 	so->so_state = head->so_state | SS_NOFDREF;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
176 	soqinsque(head, so, soqueue);
177 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
178 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
179 		(void) soqremque(so, soqueue);
180 		(void) free((caddr_t)so, M_SOCKET);
181 		return ((struct socket *)0);
182 	}
183 	if (connstatus) {
184 		sorwakeup(head);
185 		wakeup((caddr_t)&head->so_timeo);
186 		so->so_state |= connstatus;
187 	}
188 	return (so);
189 }
190 
191 soqinsque(head, so, q)
192 	register struct socket *head, *so;
193 	int q;
194 {
195 
196 	register struct socket **prev;
197 	so->so_head = head;
198 	if (q == 0) {
199 		head->so_q0len++;
200 		so->so_q0 = 0;
201 		for (prev = &(head->so_q0); *prev; )
202 			prev = &((*prev)->so_q0);
203 	} else {
204 		head->so_qlen++;
205 		so->so_q = 0;
206 		for (prev = &(head->so_q); *prev; )
207 			prev = &((*prev)->so_q);
208 	}
209 	*prev = so;
210 }
211 
212 soqremque(so, q)
213 	register struct socket *so;
214 	int q;
215 {
216 	register struct socket *head, *prev, *next;
217 
218 	head = so->so_head;
219 	prev = head;
220 	for (;;) {
221 		next = q ? prev->so_q : prev->so_q0;
222 		if (next == so)
223 			break;
224 		if (next == 0)
225 			return (0);
226 		prev = next;
227 	}
228 	if (q == 0) {
229 		prev->so_q0 = next->so_q0;
230 		head->so_q0len--;
231 	} else {
232 		prev->so_q = next->so_q;
233 		head->so_qlen--;
234 	}
235 	next->so_q0 = next->so_q = 0;
236 	next->so_head = 0;
237 	return (1);
238 }
239 
240 /*
241  * Socantsendmore indicates that no more data will be sent on the
242  * socket; it would normally be applied to a socket when the user
243  * informs the system that no more data is to be sent, by the protocol
244  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
245  * will be received, and will normally be applied to the socket by a
246  * protocol when it detects that the peer will send no more data.
247  * Data queued for reading in the socket may yet be read.
248  */
249 
250 socantsendmore(so)
251 	struct socket *so;
252 {
253 
254 	so->so_state |= SS_CANTSENDMORE;
255 	sowwakeup(so);
256 }
257 
258 socantrcvmore(so)
259 	struct socket *so;
260 {
261 
262 	so->so_state |= SS_CANTRCVMORE;
263 	sorwakeup(so);
264 }
265 
266 /*
267  * Socket select/wakeup routines.
268  */
269 
270 /*
271  * Queue a process for a select on a socket buffer.
272  */
273 sbselqueue(sb, cp)
274 	struct sockbuf *sb;
275 	struct proc *cp;
276 {
277 	struct proc *p;
278 
279 	if (sb->sb_sel && (p = pfind(sb->sb_sel)) && p->p_wchan == (caddr_t)&selwait)
280 		sb->sb_flags |= SB_COLL;
281 	else {
282 		sb->sb_sel = cp->p_pid;
283 		sb->sb_flags |= SB_SEL;
284 	}
285 }
286 
287 /*
288  * Wait for data to arrive at/drain from a socket buffer.
289  */
290 sbwait(sb)
291 	struct sockbuf *sb;
292 {
293 
294 	sb->sb_flags |= SB_WAIT;
295 	return (tsleep((caddr_t)&sb->sb_cc,
296 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
297 	    sb->sb_timeo));
298 }
299 
300 /*
301  * Lock a sockbuf already known to be locked;
302  * return any error returned from sleep (EINTR).
303  */
304 sb_lock(sb)
305 	register struct sockbuf *sb;
306 {
307 	int error;
308 
309 	while (sb->sb_flags & SB_LOCK) {
310 		sb->sb_flags |= SB_WANT;
311 		if (error = tsleep((caddr_t)&sb->sb_flags,
312 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
313 		    netio, 0))
314 			return (error);
315 	}
316 	sb->sb_flags |= SB_LOCK;
317 	return (0);
318 }
319 
320 /*
321  * Wakeup processes waiting on a socket buffer.
322  * Do asynchronous notification via SIGIO
323  * if the socket has the SS_ASYNC flag set.
324  */
325 sowakeup(so, sb)
326 	register struct socket *so;
327 	register struct sockbuf *sb;
328 {
329 	struct proc *p;
330 
331 	if (sb->sb_sel) {
332 		selwakeup(sb->sb_sel, sb->sb_flags & SB_COLL);
333 		sb->sb_sel = 0;
334 		sb->sb_flags &= ~(SB_SEL|SB_COLL);
335 	}
336 	if (sb->sb_flags & SB_WAIT) {
337 		sb->sb_flags &= ~SB_WAIT;
338 		wakeup((caddr_t)&sb->sb_cc);
339 	}
340 	if (so->so_state & SS_ASYNC) {
341 		if (so->so_pgid < 0)
342 			gsignal(-so->so_pgid, SIGIO);
343 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
344 			psignal(p, SIGIO);
345 	}
346 }
347 
348 /*
349  * Socket buffer (struct sockbuf) utility routines.
350  *
351  * Each socket contains two socket buffers: one for sending data and
352  * one for receiving data.  Each buffer contains a queue of mbufs,
353  * information about the number of mbufs and amount of data in the
354  * queue, and other fields allowing select() statements and notification
355  * on data availability to be implemented.
356  *
357  * Data stored in a socket buffer is maintained as a list of records.
358  * Each record is a list of mbufs chained together with the m_next
359  * field.  Records are chained together with the m_nextpkt field. The upper
360  * level routine soreceive() expects the following conventions to be
361  * observed when placing information in the receive buffer:
362  *
363  * 1. If the protocol requires each message be preceded by the sender's
364  *    name, then a record containing that name must be present before
365  *    any associated data (mbuf's must be of type MT_SONAME).
366  * 2. If the protocol supports the exchange of ``access rights'' (really
367  *    just additional data associated with the message), and there are
368  *    ``rights'' to be received, then a record containing this data
369  *    should be present (mbuf's must be of type MT_RIGHTS).
370  * 3. If a name or rights record exists, then it must be followed by
371  *    a data record, perhaps of zero length.
372  *
373  * Before using a new socket structure it is first necessary to reserve
374  * buffer space to the socket, by calling sbreserve().  This should commit
375  * some of the available buffer space in the system buffer pool for the
376  * socket (currently, it does nothing but enforce limits).  The space
377  * should be released by calling sbrelease() when the socket is destroyed.
378  */
379 
380 soreserve(so, sndcc, rcvcc)
381 	register struct socket *so;
382 	u_long sndcc, rcvcc;
383 {
384 
385 	if (sbreserve(&so->so_snd, sndcc) == 0)
386 		goto bad;
387 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
388 		goto bad2;
389 	if (so->so_rcv.sb_lowat == 0)
390 		so->so_rcv.sb_lowat = 1;
391 	if (so->so_snd.sb_lowat == 0)
392 		so->so_snd.sb_lowat = MCLBYTES;
393 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
394 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
395 	return (0);
396 bad2:
397 	sbrelease(&so->so_snd);
398 bad:
399 	return (ENOBUFS);
400 }
401 
402 /*
403  * Allot mbufs to a sockbuf.
404  * Attempt to scale mbmax so that mbcnt doesn't become limiting
405  * if buffering efficiency is near the normal case.
406  */
407 sbreserve(sb, cc)
408 	struct sockbuf *sb;
409 	u_long cc;
410 {
411 
412 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
413 		return (0);
414 	sb->sb_hiwat = cc;
415 	sb->sb_mbmax = min(cc * 2, sb_max);
416 	if (sb->sb_lowat > sb->sb_hiwat)
417 		sb->sb_lowat = sb->sb_hiwat;
418 	return (1);
419 }
420 
421 /*
422  * Free mbufs held by a socket, and reserved mbuf space.
423  */
424 sbrelease(sb)
425 	struct sockbuf *sb;
426 {
427 
428 	sbflush(sb);
429 	sb->sb_hiwat = sb->sb_mbmax = 0;
430 }
431 
432 /*
433  * Routines to add and remove
434  * data from an mbuf queue.
435  *
436  * The routines sbappend() or sbappendrecord() are normally called to
437  * append new mbufs to a socket buffer, after checking that adequate
438  * space is available, comparing the function sbspace() with the amount
439  * of data to be added.  sbappendrecord() differs from sbappend() in
440  * that data supplied is treated as the beginning of a new record.
441  * To place a sender's address, optional access rights, and data in a
442  * socket receive buffer, sbappendaddr() should be used.  To place
443  * access rights and data in a socket receive buffer, sbappendrights()
444  * should be used.  In either case, the new data begins a new record.
445  * Note that unlike sbappend() and sbappendrecord(), these routines check
446  * for the caller that there will be enough space to store the data.
447  * Each fails if there is not enough space, or if it cannot find mbufs
448  * to store additional information in.
449  *
450  * Reliable protocols may use the socket send buffer to hold data
451  * awaiting acknowledgement.  Data is normally copied from a socket
452  * send buffer in a protocol with m_copy for output to a peer,
453  * and then removing the data from the socket buffer with sbdrop()
454  * or sbdroprecord() when the data is acknowledged by the peer.
455  */
456 
457 /*
458  * Append mbuf chain m to the last record in the
459  * socket buffer sb.  The additional space associated
460  * the mbuf chain is recorded in sb.  Empty mbufs are
461  * discarded and mbufs are compacted where possible.
462  */
463 sbappend(sb, m)
464 	struct sockbuf *sb;
465 	struct mbuf *m;
466 {
467 	register struct mbuf *n;
468 
469 	if (m == 0)
470 		return;
471 	if (n = sb->sb_mb) {
472 		while (n->m_nextpkt)
473 			n = n->m_nextpkt;
474 		do {
475 			if (n->m_flags & M_EOR) {
476 				sbappendrecord(sb, m); /* XXXXXX!!!! */
477 				return;
478 			}
479 		} while (n->m_next && (n = n->m_next));
480 	}
481 	sbcompress(sb, m, n);
482 }
483 
484 #ifdef SOCKBUF_DEBUG
485 sbcheck(sb)
486 	register struct sockbuf *sb;
487 {
488 	register struct mbuf *m;
489 	register int len = 0, mbcnt = 0;
490 
491 	for (m = sb->sb_mb; m; m = m->m_next) {
492 		len += m->m_len;
493 		mbcnt += MSIZE;
494 		if (m->m_flags & M_EXT)
495 			mbcnt += m->m_ext.ext_size;
496 		if (m->m_nextpkt)
497 			panic("sbcheck nextpkt");
498 	}
499 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
500 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
501 		    mbcnt, sb->sb_mbcnt);
502 		panic("sbcheck");
503 	}
504 }
505 #endif
506 
507 /*
508  * As above, except the mbuf chain
509  * begins a new record.
510  */
511 sbappendrecord(sb, m0)
512 	register struct sockbuf *sb;
513 	register struct mbuf *m0;
514 {
515 	register struct mbuf *m;
516 
517 	if (m0 == 0)
518 		return;
519 	if (m = sb->sb_mb)
520 		while (m->m_nextpkt)
521 			m = m->m_nextpkt;
522 	/*
523 	 * Put the first mbuf on the queue.
524 	 * Note this permits zero length records.
525 	 */
526 	sballoc(sb, m0);
527 	if (m)
528 		m->m_nextpkt = m0;
529 	else
530 		sb->sb_mb = m0;
531 	m = m0->m_next;
532 	m0->m_next = 0;
533 	if (m && (m0->m_flags & M_EOR)) {
534 		m0->m_flags &= ~M_EOR;
535 		m->m_flags |= M_EOR;
536 	}
537 	sbcompress(sb, m, m0);
538 }
539 
540 /*
541  * As above except that OOB data
542  * is inserted at the beginning of the sockbuf,
543  * but after any other OOB data.
544  */
545 sbinsertoob(sb, m0)
546 	register struct sockbuf *sb;
547 	register struct mbuf *m0;
548 {
549 	register struct mbuf *m;
550 	register struct mbuf **mp;
551 
552 	if (m0 == 0)
553 		return;
554 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
555 	    again:
556 		switch (m->m_type) {
557 
558 		case MT_OOBDATA:
559 			continue;		/* WANT next train */
560 
561 		case MT_CONTROL:
562 			if (m = m->m_next)
563 				goto again;	/* inspect THIS train further */
564 		}
565 		break;
566 	}
567 	/*
568 	 * Put the first mbuf on the queue.
569 	 * Note this permits zero length records.
570 	 */
571 	sballoc(sb, m0);
572 	m0->m_nextpkt = *mp;
573 	*mp = m0;
574 	m = m0->m_next;
575 	m0->m_next = 0;
576 	if (m && (m0->m_flags & M_EOR)) {
577 		m0->m_flags &= ~M_EOR;
578 		m->m_flags |= M_EOR;
579 	}
580 	sbcompress(sb, m, m0);
581 }
582 
583 /*
584  * Append address and data, and optionally, control (ancillary) data
585  * to the receive queue of a socket.  If present,
586  * m0 must include a packet header with total length.
587  * Returns 0 if no space in sockbuf or insufficient mbufs.
588  */
589 sbappendaddr(sb, asa, m0, control)
590 	register struct sockbuf *sb;
591 	struct sockaddr *asa;
592 	struct mbuf *m0, *control;
593 {
594 	register struct mbuf *m, *n;
595 	int space = asa->sa_len;
596 
597 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
598 panic("sbappendaddr");
599 	if (m0)
600 		space += m0->m_pkthdr.len;
601 	for (n = control; n; n = n->m_next) {
602 		space += n->m_len;
603 		if (n->m_next == 0)	/* keep pointer to last control buf */
604 			break;
605 	}
606 	if (space > sbspace(sb))
607 		return (0);
608 	if (asa->sa_len > MLEN)
609 		return (0);
610 	MGET(m, M_DONTWAIT, MT_SONAME);
611 	if (m == 0)
612 		return (0);
613 	m->m_len = asa->sa_len;
614 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
615 	if (n)
616 		n->m_next = m0;		/* concatenate data to control */
617 	else
618 		control = m0;
619 	m->m_next = control;
620 	for (n = m; n; n = n->m_next)
621 		sballoc(sb, n);
622 	if (n = sb->sb_mb) {
623 		while (n->m_nextpkt)
624 			n = n->m_nextpkt;
625 		n->m_nextpkt = m;
626 	} else
627 		sb->sb_mb = m;
628 	return (1);
629 }
630 
631 sbappendcontrol(sb, m0, control)
632 	struct sockbuf *sb;
633 	struct mbuf *control, *m0;
634 {
635 	register struct mbuf *m, *n;
636 	int space = 0;
637 
638 	if (control == 0)
639 		panic("sbappendcontrol");
640 	for (m = control; ; m = m->m_next) {
641 		space += m->m_len;
642 		if (m->m_next == 0)
643 			break;
644 	}
645 	n = m;			/* save pointer to last control buffer */
646 	for (m = m0; m; m = m->m_next)
647 		space += m->m_len;
648 	if (space > sbspace(sb))
649 		return (0);
650 	n->m_next = m0;			/* concatenate data to control */
651 	for (m = control; m; m = m->m_next)
652 		sballoc(sb, m);
653 	if (n = sb->sb_mb) {
654 		while (n->m_nextpkt)
655 			n = n->m_nextpkt;
656 		n->m_nextpkt = control;
657 	} else
658 		sb->sb_mb = control;
659 	return (1);
660 }
661 
662 /*
663  * Compress mbuf chain m into the socket
664  * buffer sb following mbuf n.  If n
665  * is null, the buffer is presumed empty.
666  */
667 sbcompress(sb, m, n)
668 	register struct sockbuf *sb;
669 	register struct mbuf *m, *n;
670 {
671 	register int eor = 0;
672 	register struct mbuf *o;
673 
674 	while (m) {
675 		eor |= m->m_flags & M_EOR;
676 		if (m->m_len == 0 &&
677 		    (eor == 0 ||
678 		     (((o = m->m_next) || (o = n)) &&
679 		      o->m_type == m->m_type))) {
680 			m = m_free(m);
681 			continue;
682 		}
683 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
684 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
685 		    n->m_type == m->m_type) {
686 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
687 			    (unsigned)m->m_len);
688 			n->m_len += m->m_len;
689 			sb->sb_cc += m->m_len;
690 			m = m_free(m);
691 			continue;
692 		}
693 		if (n)
694 			n->m_next = m;
695 		else
696 			sb->sb_mb = m;
697 		sballoc(sb, m);
698 		n = m;
699 		m->m_flags &= ~M_EOR;
700 		m = m->m_next;
701 		n->m_next = 0;
702 	}
703 	if (eor) {
704 		if (n)
705 			n->m_flags |= eor;
706 		else
707 			printf("semi-panic: sbcompress\n");
708 	}
709 }
710 
711 /*
712  * Free all mbufs in a sockbuf.
713  * Check that all resources are reclaimed.
714  */
715 sbflush(sb)
716 	register struct sockbuf *sb;
717 {
718 
719 	if (sb->sb_flags & SB_LOCK)
720 		panic("sbflush");
721 	while (sb->sb_mbcnt)
722 		sbdrop(sb, (int)sb->sb_cc);
723 	if (sb->sb_cc || sb->sb_mb)
724 		panic("sbflush 2");
725 }
726 
727 /*
728  * Drop data from (the front of) a sockbuf.
729  */
730 sbdrop(sb, len)
731 	register struct sockbuf *sb;
732 	register int len;
733 {
734 	register struct mbuf *m, *mn;
735 	struct mbuf *next;
736 
737 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
738 	while (len > 0) {
739 		if (m == 0) {
740 			if (next == 0)
741 				panic("sbdrop");
742 			m = next;
743 			next = m->m_nextpkt;
744 			continue;
745 		}
746 		if (m->m_len > len) {
747 			m->m_len -= len;
748 			m->m_data += len;
749 			sb->sb_cc -= len;
750 			break;
751 		}
752 		len -= m->m_len;
753 		sbfree(sb, m);
754 		MFREE(m, mn);
755 		m = mn;
756 	}
757 	while (m && m->m_len == 0) {
758 		sbfree(sb, m);
759 		MFREE(m, mn);
760 		m = mn;
761 	}
762 	if (m) {
763 		sb->sb_mb = m;
764 		m->m_nextpkt = next;
765 	} else
766 		sb->sb_mb = next;
767 }
768 
769 /*
770  * Drop a record off the front of a sockbuf
771  * and move the next record to the front.
772  */
773 sbdroprecord(sb)
774 	register struct sockbuf *sb;
775 {
776 	register struct mbuf *m, *mn;
777 
778 	m = sb->sb_mb;
779 	if (m) {
780 		sb->sb_mb = m->m_nextpkt;
781 		do {
782 			sbfree(sb, m);
783 			MFREE(m, mn);
784 		} while (m = mn);
785 	}
786 }
787