xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /*	$NetBSD: uipc_socket2.c,v 1.121 2014/09/05 05:57:21 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.121 2014/09/05 05:57:21 matt Exp $");
62 
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81 
82 /*
83  * Primitive routines for operating on sockets and socket buffers.
84  *
85  * Connection life-cycle:
86  *
87  *	Normal sequence from the active (originating) side:
88  *
89  *	- soisconnecting() is called during processing of connect() call,
90  *	- resulting in an eventual call to soisconnected() if/when the
91  *	  connection is established.
92  *
93  *	When the connection is torn down during processing of disconnect():
94  *
95  *	- soisdisconnecting() is called and,
96  *	- soisdisconnected() is called when the connection to the peer
97  *	  is totally severed.
98  *
99  *	The semantics of these routines are such that connectionless protocols
100  *	can call soisconnected() and soisdisconnected() only, bypassing the
101  *	in-progress calls when setting up a ``connection'' takes no time.
102  *
103  *	From the passive side, a socket is created with two queues of sockets:
104  *
105  *	- so_q0 (0) for partial connections (i.e. connections in progress)
106  *	- so_q (1) for connections already made and awaiting user acceptance.
107  *
108  *	As a protocol is preparing incoming connections, it creates a socket
109  *	structure queued on so_q0 by calling sonewconn().  When the connection
110  *	is established, soisconnected() is called, and transfers the
111  *	socket structure to so_q, making it available to accept().
112  *
113  *	If a socket is closed with sockets on either so_q0 or so_q, these
114  *	sockets are dropped.
115  *
116  * Locking rules and assumptions:
117  *
118  * o socket::so_lock can change on the fly.  The low level routines used
119  *   to lock sockets are aware of this.  When so_lock is acquired, the
120  *   routine locking must check to see if so_lock still points to the
121  *   lock that was acquired.  If so_lock has changed in the meantime, the
122  *   now irrelevant lock that was acquired must be dropped and the lock
123  *   operation retried.  Although not proven here, this is completely safe
124  *   on a multiprocessor system, even with relaxed memory ordering, given
125  *   the next two rules:
126  *
127  * o In order to mutate so_lock, the lock pointed to by the current value
128  *   of so_lock must be held: i.e., the socket must be held locked by the
129  *   changing thread.  The thread must issue membar_exit() to prevent
130  *   memory accesses being reordered, and can set so_lock to the desired
131  *   value.  If the lock pointed to by the new value of so_lock is not
132  *   held by the changing thread, the socket must then be considered
133  *   unlocked.
134  *
135  * o If so_lock is mutated, and the previous lock referred to by so_lock
136  *   could still be visible to other threads in the system (e.g. via file
137  *   descriptor or protocol-internal reference), then the old lock must
138  *   remain valid until the socket and/or protocol control block has been
139  *   torn down.
140  *
141  * o If a socket has a non-NULL so_head value (i.e. is in the process of
142  *   connecting), then locking the socket must also lock the socket pointed
143  *   to by so_head: their lock pointers must match.
144  *
145  * o If a socket has connections in progress (so_q, so_q0 not empty) then
146  *   locking the socket must also lock the sockets attached to both queues.
147  *   Again, their lock pointers must match.
148  *
149  * o Beyond the initial lock assignment in socreate(), assigning locks to
150  *   sockets is the responsibility of the individual protocols / protocol
151  *   domains.
152  */
153 
154 static pool_cache_t	socket_cache;
155 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
156 static u_long		sb_max_adj;	/* adjusted sb_max */
157 
158 void
159 soisconnecting(struct socket *so)
160 {
161 
162 	KASSERT(solocked(so));
163 
164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 	so->so_state |= SS_ISCONNECTING;
166 }
167 
168 void
169 soisconnected(struct socket *so)
170 {
171 	struct socket	*head;
172 
173 	head = so->so_head;
174 
175 	KASSERT(solocked(so));
176 	KASSERT(head == NULL || solocked2(so, head));
177 
178 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 	so->so_state |= SS_ISCONNECTED;
180 	if (head && so->so_onq == &head->so_q0) {
181 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 			/*
183 			 * Re-enqueue and wake up any waiters, e.g.
184 			 * processes blocking on accept().
185 			 */
186 			soqremque(so, 0);
187 			soqinsque(head, so, 1);
188 			sorwakeup(head);
189 			cv_broadcast(&head->so_cv);
190 		} else {
191 			so->so_upcall =
192 			    head->so_accf->so_accept_filter->accf_callback;
193 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
194 			so->so_rcv.sb_flags |= SB_UPCALL;
195 			so->so_options &= ~SO_ACCEPTFILTER;
196 			(*so->so_upcall)(so, so->so_upcallarg,
197 					 POLLIN|POLLRDNORM, M_DONTWAIT);
198 		}
199 	} else {
200 		cv_broadcast(&so->so_cv);
201 		sorwakeup(so);
202 		sowwakeup(so);
203 	}
204 }
205 
206 void
207 soisdisconnecting(struct socket *so)
208 {
209 
210 	KASSERT(solocked(so));
211 
212 	so->so_state &= ~SS_ISCONNECTING;
213 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
214 	cv_broadcast(&so->so_cv);
215 	sowwakeup(so);
216 	sorwakeup(so);
217 }
218 
219 void
220 soisdisconnected(struct socket *so)
221 {
222 
223 	KASSERT(solocked(so));
224 
225 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
226 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
227 	cv_broadcast(&so->so_cv);
228 	sowwakeup(so);
229 	sorwakeup(so);
230 }
231 
232 void
233 soinit2(void)
234 {
235 
236 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
237 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
238 }
239 
240 /*
241  * sonewconn: accept a new connection.
242  *
243  * When an attempt at a new connection is noted on a socket which accepts
244  * connections, sonewconn(9) is called.  If the connection is possible
245  * (subject to space constraints, etc) then we allocate a new structure,
246  * properly linked into the data structure of the original socket.
247  *
248  * => If 'soready' is true, then socket will become ready for accept() i.e.
249  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
250  * => May be called from soft-interrupt context.
251  * => Listening socket should be locked.
252  * => Returns the new socket locked.
253  */
254 struct socket *
255 sonewconn(struct socket *head, bool soready)
256 {
257 	struct socket *so;
258 	int soqueue, error;
259 
260 	KASSERT(solocked(head));
261 
262 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
263 		/* Listen queue overflow. */
264 		return NULL;
265 	}
266 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
267 		soready = false;
268 	}
269 	soqueue = soready ? 1 : 0;
270 
271 	if ((so = soget(false)) == NULL) {
272 		return NULL;
273 	}
274 	so->so_type = head->so_type;
275 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
276 	so->so_linger = head->so_linger;
277 	so->so_state = head->so_state | SS_NOFDREF;
278 	so->so_proto = head->so_proto;
279 	so->so_timeo = head->so_timeo;
280 	so->so_pgid = head->so_pgid;
281 	so->so_send = head->so_send;
282 	so->so_receive = head->so_receive;
283 	so->so_uidinfo = head->so_uidinfo;
284 	so->so_cpid = head->so_cpid;
285 
286 	/*
287 	 * Share the lock with the listening-socket, it may get unshared
288 	 * once the connection is complete.
289 	 */
290 	mutex_obj_hold(head->so_lock);
291 	so->so_lock = head->so_lock;
292 
293 	/*
294 	 * Reserve the space for socket buffers.
295 	 */
296 #ifdef MBUFTRACE
297 	so->so_mowner = head->so_mowner;
298 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
299 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
300 #endif
301 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
302 		goto out;
303 	}
304 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
305 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
306 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
307 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
308 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
309 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
310 
311 	/*
312 	 * Finally, perform the protocol attach.  Note: a new socket
313 	 * lock may be assigned at this point (if so, it will be held).
314 	 */
315 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
316 	if (error) {
317 out:
318 		KASSERT(solocked(so));
319 		KASSERT(so->so_accf == NULL);
320 		soput(so);
321 
322 		/* Note: the listening socket shall stay locked. */
323 		KASSERT(solocked(head));
324 		return NULL;
325 	}
326 	KASSERT(solocked2(head, so));
327 
328 	/*
329 	 * Insert into the queue.  If ready, update the connection status
330 	 * and wake up any waiters, e.g. processes blocking on accept().
331 	 */
332 	soqinsque(head, so, soqueue);
333 	if (soready) {
334 		so->so_state |= SS_ISCONNECTED;
335 		sorwakeup(head);
336 		cv_broadcast(&head->so_cv);
337 	}
338 	return so;
339 }
340 
341 struct socket *
342 soget(bool waitok)
343 {
344 	struct socket *so;
345 
346 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
347 	if (__predict_false(so == NULL))
348 		return (NULL);
349 	memset(so, 0, sizeof(*so));
350 	TAILQ_INIT(&so->so_q0);
351 	TAILQ_INIT(&so->so_q);
352 	cv_init(&so->so_cv, "socket");
353 	cv_init(&so->so_rcv.sb_cv, "netio");
354 	cv_init(&so->so_snd.sb_cv, "netio");
355 	selinit(&so->so_rcv.sb_sel);
356 	selinit(&so->so_snd.sb_sel);
357 	so->so_rcv.sb_so = so;
358 	so->so_snd.sb_so = so;
359 	return so;
360 }
361 
362 void
363 soput(struct socket *so)
364 {
365 
366 	KASSERT(!cv_has_waiters(&so->so_cv));
367 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
368 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
369 	seldestroy(&so->so_rcv.sb_sel);
370 	seldestroy(&so->so_snd.sb_sel);
371 	mutex_obj_free(so->so_lock);
372 	cv_destroy(&so->so_cv);
373 	cv_destroy(&so->so_rcv.sb_cv);
374 	cv_destroy(&so->so_snd.sb_cv);
375 	pool_cache_put(socket_cache, so);
376 }
377 
378 /*
379  * soqinsque: insert socket of a new connection into the specified
380  * accept queue of the listening socket (head).
381  *
382  *	q = 0: queue of partial connections
383  *	q = 1: queue of incoming connections
384  */
385 void
386 soqinsque(struct socket *head, struct socket *so, int q)
387 {
388 	KASSERT(q == 0 || q == 1);
389 	KASSERT(solocked2(head, so));
390 	KASSERT(so->so_onq == NULL);
391 	KASSERT(so->so_head == NULL);
392 
393 	so->so_head = head;
394 	if (q == 0) {
395 		head->so_q0len++;
396 		so->so_onq = &head->so_q0;
397 	} else {
398 		head->so_qlen++;
399 		so->so_onq = &head->so_q;
400 	}
401 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
402 }
403 
404 /*
405  * soqremque: remove socket from the specified queue.
406  *
407  * => Returns true if socket was removed from the specified queue.
408  * => False if socket was not removed (because it was in other queue).
409  */
410 bool
411 soqremque(struct socket *so, int q)
412 {
413 	struct socket *head = so->so_head;
414 
415 	KASSERT(q == 0 || q == 1);
416 	KASSERT(solocked(so));
417 	KASSERT(so->so_onq != NULL);
418 	KASSERT(head != NULL);
419 
420 	if (q == 0) {
421 		if (so->so_onq != &head->so_q0)
422 			return false;
423 		head->so_q0len--;
424 	} else {
425 		if (so->so_onq != &head->so_q)
426 			return false;
427 		head->so_qlen--;
428 	}
429 	KASSERT(solocked2(so, head));
430 	TAILQ_REMOVE(so->so_onq, so, so_qe);
431 	so->so_onq = NULL;
432 	so->so_head = NULL;
433 	return true;
434 }
435 
436 /*
437  * socantsendmore: indicates that no more data will be sent on the
438  * socket; it would normally be applied to a socket when the user
439  * informs the system that no more data is to be sent, by the protocol
440  * code (in case pr_shutdown()).
441  */
442 void
443 socantsendmore(struct socket *so)
444 {
445 	KASSERT(solocked(so));
446 
447 	so->so_state |= SS_CANTSENDMORE;
448 	sowwakeup(so);
449 }
450 
451 /*
452  * socantrcvmore(): indicates that no more data will be received and
453  * will normally be applied to the socket by a protocol when it detects
454  * that the peer will send no more data.  Data queued for reading in
455  * the socket may yet be read.
456  */
457 void
458 socantrcvmore(struct socket *so)
459 {
460 	KASSERT(solocked(so));
461 
462 	so->so_state |= SS_CANTRCVMORE;
463 	sorwakeup(so);
464 }
465 
466 /*
467  * Wait for data to arrive at/drain from a socket buffer.
468  */
469 int
470 sbwait(struct sockbuf *sb)
471 {
472 	struct socket *so;
473 	kmutex_t *lock;
474 	int error;
475 
476 	so = sb->sb_so;
477 
478 	KASSERT(solocked(so));
479 
480 	sb->sb_flags |= SB_NOTIFY;
481 	lock = so->so_lock;
482 	if ((sb->sb_flags & SB_NOINTR) != 0)
483 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
484 	else
485 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
486 	if (__predict_false(lock != so->so_lock))
487 		solockretry(so, lock);
488 	return error;
489 }
490 
491 /*
492  * Wakeup processes waiting on a socket buffer.
493  * Do asynchronous notification via SIGIO
494  * if the socket buffer has the SB_ASYNC flag set.
495  */
496 void
497 sowakeup(struct socket *so, struct sockbuf *sb, int code)
498 {
499 	int band;
500 
501 	KASSERT(solocked(so));
502 	KASSERT(sb->sb_so == so);
503 
504 	if (code == POLL_IN)
505 		band = POLLIN|POLLRDNORM;
506 	else
507 		band = POLLOUT|POLLWRNORM;
508 	sb->sb_flags &= ~SB_NOTIFY;
509 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
510 	cv_broadcast(&sb->sb_cv);
511 	if (sb->sb_flags & SB_ASYNC)
512 		fownsignal(so->so_pgid, SIGIO, code, band, so);
513 	if (sb->sb_flags & SB_UPCALL)
514 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
515 }
516 
517 /*
518  * Reset a socket's lock pointer.  Wake all threads waiting on the
519  * socket's condition variables so that they can restart their waits
520  * using the new lock.  The existing lock must be held.
521  */
522 void
523 solockreset(struct socket *so, kmutex_t *lock)
524 {
525 
526 	KASSERT(solocked(so));
527 
528 	so->so_lock = lock;
529 	cv_broadcast(&so->so_snd.sb_cv);
530 	cv_broadcast(&so->so_rcv.sb_cv);
531 	cv_broadcast(&so->so_cv);
532 }
533 
534 /*
535  * Socket buffer (struct sockbuf) utility routines.
536  *
537  * Each socket contains two socket buffers: one for sending data and
538  * one for receiving data.  Each buffer contains a queue of mbufs,
539  * information about the number of mbufs and amount of data in the
540  * queue, and other fields allowing poll() statements and notification
541  * on data availability to be implemented.
542  *
543  * Data stored in a socket buffer is maintained as a list of records.
544  * Each record is a list of mbufs chained together with the m_next
545  * field.  Records are chained together with the m_nextpkt field. The upper
546  * level routine soreceive() expects the following conventions to be
547  * observed when placing information in the receive buffer:
548  *
549  * 1. If the protocol requires each message be preceded by the sender's
550  *    name, then a record containing that name must be present before
551  *    any associated data (mbuf's must be of type MT_SONAME).
552  * 2. If the protocol supports the exchange of ``access rights'' (really
553  *    just additional data associated with the message), and there are
554  *    ``rights'' to be received, then a record containing this data
555  *    should be present (mbuf's must be of type MT_CONTROL).
556  * 3. If a name or rights record exists, then it must be followed by
557  *    a data record, perhaps of zero length.
558  *
559  * Before using a new socket structure it is first necessary to reserve
560  * buffer space to the socket, by calling sbreserve().  This should commit
561  * some of the available buffer space in the system buffer pool for the
562  * socket (currently, it does nothing but enforce limits).  The space
563  * should be released by calling sbrelease() when the socket is destroyed.
564  */
565 
566 int
567 sb_max_set(u_long new_sbmax)
568 {
569 	int s;
570 
571 	if (new_sbmax < (16 * 1024))
572 		return (EINVAL);
573 
574 	s = splsoftnet();
575 	sb_max = new_sbmax;
576 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
577 	splx(s);
578 
579 	return (0);
580 }
581 
582 int
583 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
584 {
585 	KASSERT(so->so_pcb == NULL || solocked(so));
586 
587 	/*
588 	 * there's at least one application (a configure script of screen)
589 	 * which expects a fifo is writable even if it has "some" bytes
590 	 * in its buffer.
591 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
592 	 *
593 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
594 	 * we expect it's large enough for such applications.
595 	 */
596 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
597 	u_long  hiwat = lowat + PIPE_BUF;
598 
599 	if (sndcc < hiwat)
600 		sndcc = hiwat;
601 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
602 		goto bad;
603 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
604 		goto bad2;
605 	if (so->so_rcv.sb_lowat == 0)
606 		so->so_rcv.sb_lowat = 1;
607 	if (so->so_snd.sb_lowat == 0)
608 		so->so_snd.sb_lowat = lowat;
609 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
610 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
611 	return (0);
612  bad2:
613 	sbrelease(&so->so_snd, so);
614  bad:
615 	return (ENOBUFS);
616 }
617 
618 /*
619  * Allot mbufs to a sockbuf.
620  * Attempt to scale mbmax so that mbcnt doesn't become limiting
621  * if buffering efficiency is near the normal case.
622  */
623 int
624 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
625 {
626 	struct lwp *l = curlwp; /* XXX */
627 	rlim_t maxcc;
628 	struct uidinfo *uidinfo;
629 
630 	KASSERT(so->so_pcb == NULL || solocked(so));
631 	KASSERT(sb->sb_so == so);
632 	KASSERT(sb_max_adj != 0);
633 
634 	if (cc == 0 || cc > sb_max_adj)
635 		return (0);
636 
637 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
638 
639 	uidinfo = so->so_uidinfo;
640 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
641 		return 0;
642 	sb->sb_mbmax = min(cc * 2, sb_max);
643 	if (sb->sb_lowat > sb->sb_hiwat)
644 		sb->sb_lowat = sb->sb_hiwat;
645 	return (1);
646 }
647 
648 /*
649  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
650  * that the socket is held locked here: see sorflush().
651  */
652 void
653 sbrelease(struct sockbuf *sb, struct socket *so)
654 {
655 
656 	KASSERT(sb->sb_so == so);
657 
658 	sbflush(sb);
659 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
660 	sb->sb_mbmax = 0;
661 }
662 
663 /*
664  * Routines to add and remove
665  * data from an mbuf queue.
666  *
667  * The routines sbappend() or sbappendrecord() are normally called to
668  * append new mbufs to a socket buffer, after checking that adequate
669  * space is available, comparing the function sbspace() with the amount
670  * of data to be added.  sbappendrecord() differs from sbappend() in
671  * that data supplied is treated as the beginning of a new record.
672  * To place a sender's address, optional access rights, and data in a
673  * socket receive buffer, sbappendaddr() should be used.  To place
674  * access rights and data in a socket receive buffer, sbappendrights()
675  * should be used.  In either case, the new data begins a new record.
676  * Note that unlike sbappend() and sbappendrecord(), these routines check
677  * for the caller that there will be enough space to store the data.
678  * Each fails if there is not enough space, or if it cannot find mbufs
679  * to store additional information in.
680  *
681  * Reliable protocols may use the socket send buffer to hold data
682  * awaiting acknowledgement.  Data is normally copied from a socket
683  * send buffer in a protocol with m_copy for output to a peer,
684  * and then removing the data from the socket buffer with sbdrop()
685  * or sbdroprecord() when the data is acknowledged by the peer.
686  */
687 
688 #ifdef SOCKBUF_DEBUG
689 void
690 sblastrecordchk(struct sockbuf *sb, const char *where)
691 {
692 	struct mbuf *m = sb->sb_mb;
693 
694 	KASSERT(solocked(sb->sb_so));
695 
696 	while (m && m->m_nextpkt)
697 		m = m->m_nextpkt;
698 
699 	if (m != sb->sb_lastrecord) {
700 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
701 		    sb->sb_mb, sb->sb_lastrecord, m);
702 		printf("packet chain:\n");
703 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
704 			printf("\t%p\n", m);
705 		panic("sblastrecordchk from %s", where);
706 	}
707 }
708 
709 void
710 sblastmbufchk(struct sockbuf *sb, const char *where)
711 {
712 	struct mbuf *m = sb->sb_mb;
713 	struct mbuf *n;
714 
715 	KASSERT(solocked(sb->sb_so));
716 
717 	while (m && m->m_nextpkt)
718 		m = m->m_nextpkt;
719 
720 	while (m && m->m_next)
721 		m = m->m_next;
722 
723 	if (m != sb->sb_mbtail) {
724 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
725 		    sb->sb_mb, sb->sb_mbtail, m);
726 		printf("packet tree:\n");
727 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
728 			printf("\t");
729 			for (n = m; n != NULL; n = n->m_next)
730 				printf("%p ", n);
731 			printf("\n");
732 		}
733 		panic("sblastmbufchk from %s", where);
734 	}
735 }
736 #endif /* SOCKBUF_DEBUG */
737 
738 /*
739  * Link a chain of records onto a socket buffer
740  */
741 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
742 do {									\
743 	if ((sb)->sb_lastrecord != NULL)				\
744 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
745 	else								\
746 		(sb)->sb_mb = (m0);					\
747 	(sb)->sb_lastrecord = (mlast);					\
748 } while (/*CONSTCOND*/0)
749 
750 
751 #define	SBLINKRECORD(sb, m0)						\
752     SBLINKRECORDCHAIN(sb, m0, m0)
753 
754 /*
755  * Append mbuf chain m to the last record in the
756  * socket buffer sb.  The additional space associated
757  * the mbuf chain is recorded in sb.  Empty mbufs are
758  * discarded and mbufs are compacted where possible.
759  */
760 void
761 sbappend(struct sockbuf *sb, struct mbuf *m)
762 {
763 	struct mbuf	*n;
764 
765 	KASSERT(solocked(sb->sb_so));
766 
767 	if (m == NULL)
768 		return;
769 
770 #ifdef MBUFTRACE
771 	m_claimm(m, sb->sb_mowner);
772 #endif
773 
774 	SBLASTRECORDCHK(sb, "sbappend 1");
775 
776 	if ((n = sb->sb_lastrecord) != NULL) {
777 		/*
778 		 * XXX Would like to simply use sb_mbtail here, but
779 		 * XXX I need to verify that I won't miss an EOR that
780 		 * XXX way.
781 		 */
782 		do {
783 			if (n->m_flags & M_EOR) {
784 				sbappendrecord(sb, m); /* XXXXXX!!!! */
785 				return;
786 			}
787 		} while (n->m_next && (n = n->m_next));
788 	} else {
789 		/*
790 		 * If this is the first record in the socket buffer, it's
791 		 * also the last record.
792 		 */
793 		sb->sb_lastrecord = m;
794 	}
795 	sbcompress(sb, m, n);
796 	SBLASTRECORDCHK(sb, "sbappend 2");
797 }
798 
799 /*
800  * This version of sbappend() should only be used when the caller
801  * absolutely knows that there will never be more than one record
802  * in the socket buffer, that is, a stream protocol (such as TCP).
803  */
804 void
805 sbappendstream(struct sockbuf *sb, struct mbuf *m)
806 {
807 
808 	KASSERT(solocked(sb->sb_so));
809 	KDASSERT(m->m_nextpkt == NULL);
810 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
811 
812 	SBLASTMBUFCHK(sb, __func__);
813 
814 #ifdef MBUFTRACE
815 	m_claimm(m, sb->sb_mowner);
816 #endif
817 
818 	sbcompress(sb, m, sb->sb_mbtail);
819 
820 	sb->sb_lastrecord = sb->sb_mb;
821 	SBLASTRECORDCHK(sb, __func__);
822 }
823 
824 #ifdef SOCKBUF_DEBUG
825 void
826 sbcheck(struct sockbuf *sb)
827 {
828 	struct mbuf	*m, *m2;
829 	u_long		len, mbcnt;
830 
831 	KASSERT(solocked(sb->sb_so));
832 
833 	len = 0;
834 	mbcnt = 0;
835 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
836 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
837 			len += m2->m_len;
838 			mbcnt += MSIZE;
839 			if (m2->m_flags & M_EXT)
840 				mbcnt += m2->m_ext.ext_size;
841 			if (m2->m_nextpkt != NULL)
842 				panic("sbcheck nextpkt");
843 		}
844 	}
845 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
846 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
847 		    mbcnt, sb->sb_mbcnt);
848 		panic("sbcheck");
849 	}
850 }
851 #endif
852 
853 /*
854  * As above, except the mbuf chain
855  * begins a new record.
856  */
857 void
858 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
859 {
860 	struct mbuf	*m;
861 
862 	KASSERT(solocked(sb->sb_so));
863 
864 	if (m0 == NULL)
865 		return;
866 
867 #ifdef MBUFTRACE
868 	m_claimm(m0, sb->sb_mowner);
869 #endif
870 	/*
871 	 * Put the first mbuf on the queue.
872 	 * Note this permits zero length records.
873 	 */
874 	sballoc(sb, m0);
875 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
876 	SBLINKRECORD(sb, m0);
877 	m = m0->m_next;
878 	m0->m_next = 0;
879 	if (m && (m0->m_flags & M_EOR)) {
880 		m0->m_flags &= ~M_EOR;
881 		m->m_flags |= M_EOR;
882 	}
883 	sbcompress(sb, m, m0);
884 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
885 }
886 
887 /*
888  * As above except that OOB data
889  * is inserted at the beginning of the sockbuf,
890  * but after any other OOB data.
891  */
892 void
893 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
894 {
895 	struct mbuf	*m, **mp;
896 
897 	KASSERT(solocked(sb->sb_so));
898 
899 	if (m0 == NULL)
900 		return;
901 
902 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
903 
904 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
905 	    again:
906 		switch (m->m_type) {
907 
908 		case MT_OOBDATA:
909 			continue;		/* WANT next train */
910 
911 		case MT_CONTROL:
912 			if ((m = m->m_next) != NULL)
913 				goto again;	/* inspect THIS train further */
914 		}
915 		break;
916 	}
917 	/*
918 	 * Put the first mbuf on the queue.
919 	 * Note this permits zero length records.
920 	 */
921 	sballoc(sb, m0);
922 	m0->m_nextpkt = *mp;
923 	if (*mp == NULL) {
924 		/* m0 is actually the new tail */
925 		sb->sb_lastrecord = m0;
926 	}
927 	*mp = m0;
928 	m = m0->m_next;
929 	m0->m_next = 0;
930 	if (m && (m0->m_flags & M_EOR)) {
931 		m0->m_flags &= ~M_EOR;
932 		m->m_flags |= M_EOR;
933 	}
934 	sbcompress(sb, m, m0);
935 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
936 }
937 
938 /*
939  * Append address and data, and optionally, control (ancillary) data
940  * to the receive queue of a socket.  If present,
941  * m0 must include a packet header with total length.
942  * Returns 0 if no space in sockbuf or insufficient mbufs.
943  */
944 int
945 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
946 	struct mbuf *control)
947 {
948 	struct mbuf	*m, *n, *nlast;
949 	int		space, len;
950 
951 	KASSERT(solocked(sb->sb_so));
952 
953 	space = asa->sa_len;
954 
955 	if (m0 != NULL) {
956 		if ((m0->m_flags & M_PKTHDR) == 0)
957 			panic("sbappendaddr");
958 		space += m0->m_pkthdr.len;
959 #ifdef MBUFTRACE
960 		m_claimm(m0, sb->sb_mowner);
961 #endif
962 	}
963 	for (n = control; n; n = n->m_next) {
964 		space += n->m_len;
965 		MCLAIM(n, sb->sb_mowner);
966 		if (n->m_next == NULL)	/* keep pointer to last control buf */
967 			break;
968 	}
969 	if (space > sbspace(sb))
970 		return (0);
971 	m = m_get(M_DONTWAIT, MT_SONAME);
972 	if (m == NULL)
973 		return (0);
974 	MCLAIM(m, sb->sb_mowner);
975 	/*
976 	 * XXX avoid 'comparison always true' warning which isn't easily
977 	 * avoided.
978 	 */
979 	len = asa->sa_len;
980 	if (len > MLEN) {
981 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
982 		if ((m->m_flags & M_EXT) == 0) {
983 			m_free(m);
984 			return (0);
985 		}
986 	}
987 	m->m_len = asa->sa_len;
988 	memcpy(mtod(m, void *), asa, asa->sa_len);
989 	if (n)
990 		n->m_next = m0;		/* concatenate data to control */
991 	else
992 		control = m0;
993 	m->m_next = control;
994 
995 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
996 
997 	for (n = m; n->m_next != NULL; n = n->m_next)
998 		sballoc(sb, n);
999 	sballoc(sb, n);
1000 	nlast = n;
1001 	SBLINKRECORD(sb, m);
1002 
1003 	sb->sb_mbtail = nlast;
1004 	SBLASTMBUFCHK(sb, "sbappendaddr");
1005 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1006 
1007 	return (1);
1008 }
1009 
1010 /*
1011  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1012  * an mbuf chain.
1013  */
1014 static inline struct mbuf *
1015 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1016 		   const struct sockaddr *asa)
1017 {
1018 	struct mbuf *m;
1019 	const int salen = asa->sa_len;
1020 
1021 	KASSERT(solocked(sb->sb_so));
1022 
1023 	/* only the first in each chain need be a pkthdr */
1024 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1025 	if (m == NULL)
1026 		return NULL;
1027 	MCLAIM(m, sb->sb_mowner);
1028 #ifdef notyet
1029 	if (salen > MHLEN) {
1030 		MEXTMALLOC(m, salen, M_NOWAIT);
1031 		if ((m->m_flags & M_EXT) == 0) {
1032 			m_free(m);
1033 			return NULL;
1034 		}
1035 	}
1036 #else
1037 	KASSERT(salen <= MHLEN);
1038 #endif
1039 	m->m_len = salen;
1040 	memcpy(mtod(m, void *), asa, salen);
1041 	m->m_next = m0;
1042 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1043 
1044 	return m;
1045 }
1046 
1047 int
1048 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1049 		  struct mbuf *m0, int sbprio)
1050 {
1051 	struct mbuf *m, *n, *n0, *nlast;
1052 	int error;
1053 
1054 	KASSERT(solocked(sb->sb_so));
1055 
1056 	/*
1057 	 * XXX sbprio reserved for encoding priority of this* request:
1058 	 *  SB_PRIO_NONE --> honour normal sb limits
1059 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1060 	 *	take whole chain. Intended for large requests
1061 	 *      that should be delivered atomically (all, or none).
1062 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1063 	 *       over normal socket limits, for messages indicating
1064 	 *       buffer overflow in earlier normal/lower-priority messages
1065 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1066 	 *       Intended for  kernel-generated messages only.
1067 	 *        Up to generator to avoid total mbuf resource exhaustion.
1068 	 */
1069 	(void)sbprio;
1070 
1071 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1072 		panic("sbappendaddrchain");
1073 
1074 #ifdef notyet
1075 	space = sbspace(sb);
1076 
1077 	/*
1078 	 * Enforce SB_PRIO_* limits as described above.
1079 	 */
1080 #endif
1081 
1082 	n0 = NULL;
1083 	nlast = NULL;
1084 	for (m = m0; m; m = m->m_nextpkt) {
1085 		struct mbuf *np;
1086 
1087 #ifdef MBUFTRACE
1088 		m_claimm(m, sb->sb_mowner);
1089 #endif
1090 
1091 		/* Prepend sockaddr to this record (m) of input chain m0 */
1092 	  	n = m_prepend_sockaddr(sb, m, asa);
1093 		if (n == NULL) {
1094 			error = ENOBUFS;
1095 			goto bad;
1096 		}
1097 
1098 		/* Append record (asa+m) to end of new chain n0 */
1099 		if (n0 == NULL) {
1100 			n0 = n;
1101 		} else {
1102 			nlast->m_nextpkt = n;
1103 		}
1104 		/* Keep track of last record on new chain */
1105 		nlast = n;
1106 
1107 		for (np = n; np; np = np->m_next)
1108 			sballoc(sb, np);
1109 	}
1110 
1111 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1112 
1113 	/* Drop the entire chain of (asa+m) records onto the socket */
1114 	SBLINKRECORDCHAIN(sb, n0, nlast);
1115 
1116 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1117 
1118 	for (m = nlast; m->m_next; m = m->m_next)
1119 		;
1120 	sb->sb_mbtail = m;
1121 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1122 
1123 	return (1);
1124 
1125 bad:
1126 	/*
1127 	 * On error, free the prepended addreseses. For consistency
1128 	 * with sbappendaddr(), leave it to our caller to free
1129 	 * the input record chain passed to us as m0.
1130 	 */
1131 	while ((n = n0) != NULL) {
1132 	  	struct mbuf *np;
1133 
1134 		/* Undo the sballoc() of this record */
1135 		for (np = n; np; np = np->m_next)
1136 			sbfree(sb, np);
1137 
1138 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1139 		MFREE(n, np);		/* free prepended address (not data) */
1140 	}
1141 	return error;
1142 }
1143 
1144 
1145 int
1146 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1147 {
1148 	struct mbuf	*m, *mlast, *n;
1149 	int		space;
1150 
1151 	KASSERT(solocked(sb->sb_so));
1152 
1153 	space = 0;
1154 	if (control == NULL)
1155 		panic("sbappendcontrol");
1156 	for (m = control; ; m = m->m_next) {
1157 		space += m->m_len;
1158 		MCLAIM(m, sb->sb_mowner);
1159 		if (m->m_next == NULL)
1160 			break;
1161 	}
1162 	n = m;			/* save pointer to last control buffer */
1163 	for (m = m0; m; m = m->m_next) {
1164 		MCLAIM(m, sb->sb_mowner);
1165 		space += m->m_len;
1166 	}
1167 	if (space > sbspace(sb))
1168 		return (0);
1169 	n->m_next = m0;			/* concatenate data to control */
1170 
1171 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1172 
1173 	for (m = control; m->m_next != NULL; m = m->m_next)
1174 		sballoc(sb, m);
1175 	sballoc(sb, m);
1176 	mlast = m;
1177 	SBLINKRECORD(sb, control);
1178 
1179 	sb->sb_mbtail = mlast;
1180 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1181 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1182 
1183 	return (1);
1184 }
1185 
1186 /*
1187  * Compress mbuf chain m into the socket
1188  * buffer sb following mbuf n.  If n
1189  * is null, the buffer is presumed empty.
1190  */
1191 void
1192 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1193 {
1194 	int		eor;
1195 	struct mbuf	*o;
1196 
1197 	KASSERT(solocked(sb->sb_so));
1198 
1199 	eor = 0;
1200 	while (m) {
1201 		eor |= m->m_flags & M_EOR;
1202 		if (m->m_len == 0 &&
1203 		    (eor == 0 ||
1204 		     (((o = m->m_next) || (o = n)) &&
1205 		      o->m_type == m->m_type))) {
1206 			if (sb->sb_lastrecord == m)
1207 				sb->sb_lastrecord = m->m_next;
1208 			m = m_free(m);
1209 			continue;
1210 		}
1211 		if (n && (n->m_flags & M_EOR) == 0 &&
1212 		    /* M_TRAILINGSPACE() checks buffer writeability */
1213 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1214 		    m->m_len <= M_TRAILINGSPACE(n) &&
1215 		    n->m_type == m->m_type) {
1216 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1217 			    (unsigned)m->m_len);
1218 			n->m_len += m->m_len;
1219 			sb->sb_cc += m->m_len;
1220 			m = m_free(m);
1221 			continue;
1222 		}
1223 		if (n)
1224 			n->m_next = m;
1225 		else
1226 			sb->sb_mb = m;
1227 		sb->sb_mbtail = m;
1228 		sballoc(sb, m);
1229 		n = m;
1230 		m->m_flags &= ~M_EOR;
1231 		m = m->m_next;
1232 		n->m_next = 0;
1233 	}
1234 	if (eor) {
1235 		if (n)
1236 			n->m_flags |= eor;
1237 		else
1238 			printf("semi-panic: sbcompress\n");
1239 	}
1240 	SBLASTMBUFCHK(sb, __func__);
1241 }
1242 
1243 /*
1244  * Free all mbufs in a sockbuf.
1245  * Check that all resources are reclaimed.
1246  */
1247 void
1248 sbflush(struct sockbuf *sb)
1249 {
1250 
1251 	KASSERT(solocked(sb->sb_so));
1252 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1253 
1254 	while (sb->sb_mbcnt)
1255 		sbdrop(sb, (int)sb->sb_cc);
1256 
1257 	KASSERT(sb->sb_cc == 0);
1258 	KASSERT(sb->sb_mb == NULL);
1259 	KASSERT(sb->sb_mbtail == NULL);
1260 	KASSERT(sb->sb_lastrecord == NULL);
1261 }
1262 
1263 /*
1264  * Drop data from (the front of) a sockbuf.
1265  */
1266 void
1267 sbdrop(struct sockbuf *sb, int len)
1268 {
1269 	struct mbuf	*m, *mn, *next;
1270 
1271 	KASSERT(solocked(sb->sb_so));
1272 
1273 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1274 	while (len > 0) {
1275 		if (m == NULL) {
1276 			if (next == NULL)
1277 				panic("sbdrop(%p,%d): cc=%lu",
1278 				    sb, len, sb->sb_cc);
1279 			m = next;
1280 			next = m->m_nextpkt;
1281 			continue;
1282 		}
1283 		if (m->m_len > len) {
1284 			m->m_len -= len;
1285 			m->m_data += len;
1286 			sb->sb_cc -= len;
1287 			break;
1288 		}
1289 		len -= m->m_len;
1290 		sbfree(sb, m);
1291 		MFREE(m, mn);
1292 		m = mn;
1293 	}
1294 	while (m && m->m_len == 0) {
1295 		sbfree(sb, m);
1296 		MFREE(m, mn);
1297 		m = mn;
1298 	}
1299 	if (m) {
1300 		sb->sb_mb = m;
1301 		m->m_nextpkt = next;
1302 	} else
1303 		sb->sb_mb = next;
1304 	/*
1305 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1306 	 * makes sure sb_lastrecord is up-to-date if we dropped
1307 	 * part of the last record.
1308 	 */
1309 	m = sb->sb_mb;
1310 	if (m == NULL) {
1311 		sb->sb_mbtail = NULL;
1312 		sb->sb_lastrecord = NULL;
1313 	} else if (m->m_nextpkt == NULL)
1314 		sb->sb_lastrecord = m;
1315 }
1316 
1317 /*
1318  * Drop a record off the front of a sockbuf
1319  * and move the next record to the front.
1320  */
1321 void
1322 sbdroprecord(struct sockbuf *sb)
1323 {
1324 	struct mbuf	*m, *mn;
1325 
1326 	KASSERT(solocked(sb->sb_so));
1327 
1328 	m = sb->sb_mb;
1329 	if (m) {
1330 		sb->sb_mb = m->m_nextpkt;
1331 		do {
1332 			sbfree(sb, m);
1333 			MFREE(m, mn);
1334 		} while ((m = mn) != NULL);
1335 	}
1336 	SB_EMPTY_FIXUP(sb);
1337 }
1338 
1339 /*
1340  * Create a "control" mbuf containing the specified data
1341  * with the specified type for presentation on a socket buffer.
1342  */
1343 struct mbuf *
1344 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1345 {
1346 	struct cmsghdr	*cp;
1347 	struct mbuf	*m;
1348 	int space = CMSG_SPACE(size);
1349 
1350 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1351 		printf("%s: message too large %d\n", __func__, space);
1352 		return NULL;
1353 	}
1354 
1355 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1356 		return NULL;
1357 	if (space > MLEN) {
1358 		if (space > MCLBYTES)
1359 			MEXTMALLOC(m, space, M_WAITOK);
1360 		else
1361 			MCLGET(m, flags);
1362 		if ((m->m_flags & M_EXT) == 0) {
1363 			m_free(m);
1364 			return NULL;
1365 		}
1366 	}
1367 	cp = mtod(m, struct cmsghdr *);
1368 	*p = CMSG_DATA(cp);
1369 	m->m_len = space;
1370 	cp->cmsg_len = CMSG_LEN(size);
1371 	cp->cmsg_level = level;
1372 	cp->cmsg_type = type;
1373 	return m;
1374 }
1375 
1376 struct mbuf *
1377 sbcreatecontrol(void *p, int size, int type, int level)
1378 {
1379 	struct mbuf *m;
1380 	void *v;
1381 
1382 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1383 	if (m == NULL)
1384 		return NULL;
1385 	memcpy(v, p, size);
1386 	return m;
1387 }
1388 
1389 void
1390 solockretry(struct socket *so, kmutex_t *lock)
1391 {
1392 
1393 	while (lock != so->so_lock) {
1394 		mutex_exit(lock);
1395 		lock = so->so_lock;
1396 		mutex_enter(lock);
1397 	}
1398 }
1399 
1400 bool
1401 solocked(struct socket *so)
1402 {
1403 
1404 	return mutex_owned(so->so_lock);
1405 }
1406 
1407 bool
1408 solocked2(struct socket *so1, struct socket *so2)
1409 {
1410 	kmutex_t *lock;
1411 
1412 	lock = so1->so_lock;
1413 	if (lock != so2->so_lock)
1414 		return false;
1415 	return mutex_owned(lock);
1416 }
1417 
1418 /*
1419  * sosetlock: assign a default lock to a new socket.
1420  */
1421 void
1422 sosetlock(struct socket *so)
1423 {
1424 	if (so->so_lock == NULL) {
1425 		kmutex_t *lock = softnet_lock;
1426 
1427 		so->so_lock = lock;
1428 		mutex_obj_hold(lock);
1429 		mutex_enter(lock);
1430 	}
1431 	KASSERT(solocked(so));
1432 }
1433 
1434 /*
1435  * Set lock on sockbuf sb; sleep if lock is already held.
1436  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1437  * Returns error without lock if sleep is interrupted.
1438  */
1439 int
1440 sblock(struct sockbuf *sb, int wf)
1441 {
1442 	struct socket *so;
1443 	kmutex_t *lock;
1444 	int error;
1445 
1446 	KASSERT(solocked(sb->sb_so));
1447 
1448 	for (;;) {
1449 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1450 			sb->sb_flags |= SB_LOCK;
1451 			return 0;
1452 		}
1453 		if (wf != M_WAITOK)
1454 			return EWOULDBLOCK;
1455 		so = sb->sb_so;
1456 		lock = so->so_lock;
1457 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1458 			cv_wait(&so->so_cv, lock);
1459 			error = 0;
1460 		} else
1461 			error = cv_wait_sig(&so->so_cv, lock);
1462 		if (__predict_false(lock != so->so_lock))
1463 			solockretry(so, lock);
1464 		if (error != 0)
1465 			return error;
1466 	}
1467 }
1468 
1469 void
1470 sbunlock(struct sockbuf *sb)
1471 {
1472 	struct socket *so;
1473 
1474 	so = sb->sb_so;
1475 
1476 	KASSERT(solocked(so));
1477 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1478 
1479 	sb->sb_flags &= ~SB_LOCK;
1480 	cv_broadcast(&so->so_cv);
1481 }
1482 
1483 int
1484 sowait(struct socket *so, bool catch_p, int timo)
1485 {
1486 	kmutex_t *lock;
1487 	int error;
1488 
1489 	KASSERT(solocked(so));
1490 	KASSERT(catch_p || timo != 0);
1491 
1492 	lock = so->so_lock;
1493 	if (catch_p)
1494 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1495 	else
1496 		error = cv_timedwait(&so->so_cv, lock, timo);
1497 	if (__predict_false(lock != so->so_lock))
1498 		solockretry(so, lock);
1499 	return error;
1500 }
1501