xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: uipc_socket2.c,v 1.115 2013/10/08 19:58:25 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.115 2013/10/08 19:58:25 christos Exp $");
62 
63 #include "opt_mbuftrace.h"
64 #include "opt_sb_max.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/proc.h>
69 #include <sys/file.h>
70 #include <sys/buf.h>
71 #include <sys/mbuf.h>
72 #include <sys/protosw.h>
73 #include <sys/domain.h>
74 #include <sys/poll.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/signalvar.h>
78 #include <sys/kauth.h>
79 #include <sys/pool.h>
80 #include <sys/uidinfo.h>
81 
82 /*
83  * Primitive routines for operating on sockets and socket buffers.
84  *
85  * Locking rules and assumptions:
86  *
87  * o socket::so_lock can change on the fly.  The low level routines used
88  *   to lock sockets are aware of this.  When so_lock is acquired, the
89  *   routine locking must check to see if so_lock still points to the
90  *   lock that was acquired.  If so_lock has changed in the meantime, the
91  *   now irellevant lock that was acquired must be dropped and the lock
92  *   operation retried.  Although not proven here, this is completely safe
93  *   on a multiprocessor system, even with relaxed memory ordering, given
94  *   the next two rules:
95  *
96  * o In order to mutate so_lock, the lock pointed to by the current value
97  *   of so_lock must be held: i.e., the socket must be held locked by the
98  *   changing thread.  The thread must issue membar_exit() to prevent
99  *   memory accesses being reordered, and can set so_lock to the desired
100  *   value.  If the lock pointed to by the new value of so_lock is not
101  *   held by the changing thread, the socket must then be considered
102  *   unlocked.
103  *
104  * o If so_lock is mutated, and the previous lock referred to by so_lock
105  *   could still be visible to other threads in the system (e.g. via file
106  *   descriptor or protocol-internal reference), then the old lock must
107  *   remain valid until the socket and/or protocol control block has been
108  *   torn down.
109  *
110  * o If a socket has a non-NULL so_head value (i.e. is in the process of
111  *   connecting), then locking the socket must also lock the socket pointed
112  *   to by so_head: their lock pointers must match.
113  *
114  * o If a socket has connections in progress (so_q, so_q0 not empty) then
115  *   locking the socket must also lock the sockets attached to both queues.
116  *   Again, their lock pointers must match.
117  *
118  * o Beyond the initial lock assigment in socreate(), assigning locks to
119  *   sockets is the responsibility of the individual protocols / protocol
120  *   domains.
121  */
122 
123 static pool_cache_t socket_cache;
124 
125 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
126 static u_long sb_max_adj;	/* adjusted sb_max */
127 
128 /*
129  * Procedures to manipulate state flags of socket
130  * and do appropriate wakeups.  Normal sequence from the
131  * active (originating) side is that soisconnecting() is
132  * called during processing of connect() call,
133  * resulting in an eventual call to soisconnected() if/when the
134  * connection is established.  When the connection is torn down
135  * soisdisconnecting() is called during processing of disconnect() call,
136  * and soisdisconnected() is called when the connection to the peer
137  * is totally severed.  The semantics of these routines are such that
138  * connectionless protocols can call soisconnected() and soisdisconnected()
139  * only, bypassing the in-progress calls when setting up a ``connection''
140  * takes no time.
141  *
142  * From the passive side, a socket is created with
143  * two queues of sockets: so_q0 for connections in progress
144  * and so_q for connections already made and awaiting user acceptance.
145  * As a protocol is preparing incoming connections, it creates a socket
146  * structure queued on so_q0 by calling sonewconn().  When the connection
147  * is established, soisconnected() is called, and transfers the
148  * socket structure to so_q, making it available to accept().
149  *
150  * If a socket is closed with sockets on either
151  * so_q0 or so_q, these sockets are dropped.
152  *
153  * If higher level protocols are implemented in
154  * the kernel, the wakeups done here will sometimes
155  * cause software-interrupt process scheduling.
156  */
157 
158 void
159 soisconnecting(struct socket *so)
160 {
161 
162 	KASSERT(solocked(so));
163 
164 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
165 	so->so_state |= SS_ISCONNECTING;
166 }
167 
168 void
169 soisconnected(struct socket *so)
170 {
171 	struct socket	*head;
172 
173 	head = so->so_head;
174 
175 	KASSERT(solocked(so));
176 	KASSERT(head == NULL || solocked2(so, head));
177 
178 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
179 	so->so_state |= SS_ISCONNECTED;
180 	if (head && so->so_onq == &head->so_q0) {
181 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
182 			soqremque(so, 0);
183 			soqinsque(head, so, 1);
184 			sorwakeup(head);
185 			cv_broadcast(&head->so_cv);
186 		} else {
187 			so->so_upcall =
188 			    head->so_accf->so_accept_filter->accf_callback;
189 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
190 			so->so_rcv.sb_flags |= SB_UPCALL;
191 			so->so_options &= ~SO_ACCEPTFILTER;
192 			(*so->so_upcall)(so, so->so_upcallarg,
193 					 POLLIN|POLLRDNORM, M_DONTWAIT);
194 		}
195 	} else {
196 		cv_broadcast(&so->so_cv);
197 		sorwakeup(so);
198 		sowwakeup(so);
199 	}
200 }
201 
202 void
203 soisdisconnecting(struct socket *so)
204 {
205 
206 	KASSERT(solocked(so));
207 
208 	so->so_state &= ~SS_ISCONNECTING;
209 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
210 	cv_broadcast(&so->so_cv);
211 	sowwakeup(so);
212 	sorwakeup(so);
213 }
214 
215 void
216 soisdisconnected(struct socket *so)
217 {
218 
219 	KASSERT(solocked(so));
220 
221 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
222 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
223 	cv_broadcast(&so->so_cv);
224 	sowwakeup(so);
225 	sorwakeup(so);
226 }
227 
228 void
229 soinit2(void)
230 {
231 
232 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
233 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
234 }
235 
236 /*
237  * When an attempt at a new connection is noted on a socket
238  * which accepts connections, sonewconn is called.  If the
239  * connection is possible (subject to space constraints, etc.)
240  * then we allocate a new structure, propoerly linked into the
241  * data structure of the original socket, and return this.
242  */
243 struct socket *
244 sonewconn(struct socket *head, bool conncomplete)
245 {
246 	struct socket	*so;
247 	int		soqueue, error;
248 
249 	KASSERT(solocked(head));
250 
251 	if ((head->so_options & SO_ACCEPTFILTER) != 0)
252 		conncomplete = false;
253 	soqueue = conncomplete ? 1 : 0;
254 
255 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
256 		return NULL;
257 	so = soget(false);
258 	if (so == NULL)
259 		return NULL;
260 	mutex_obj_hold(head->so_lock);
261 	so->so_lock = head->so_lock;
262 	so->so_type = head->so_type;
263 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
264 	so->so_linger = head->so_linger;
265 	so->so_state = head->so_state | SS_NOFDREF;
266 	so->so_proto = head->so_proto;
267 	so->so_timeo = head->so_timeo;
268 	so->so_pgid = head->so_pgid;
269 	so->so_send = head->so_send;
270 	so->so_receive = head->so_receive;
271 	so->so_uidinfo = head->so_uidinfo;
272 	so->so_cpid = head->so_cpid;
273 #ifdef MBUFTRACE
274 	so->so_mowner = head->so_mowner;
275 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
276 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
277 #endif
278 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat) != 0)
279 		goto out;
280 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
281 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
282 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
283 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
284 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
285 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
286 	soqinsque(head, so, soqueue);
287 	error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL,
288 	    NULL, NULL);
289 	KASSERT(solocked(so));
290 	if (error != 0) {
291 		(void) soqremque(so, soqueue);
292 out:
293 		/*
294 		 * Remove acccept filter if one is present.
295 		 * XXX Is this really needed?
296 		 */
297 		if (so->so_accf != NULL)
298 			(void)accept_filt_clear(so);
299 		soput(so);
300 		return NULL;
301 	}
302 	if (conncomplete) {
303 		sorwakeup(head);
304 		cv_broadcast(&head->so_cv);
305 		so->so_state |= SS_ISCONNECTED;
306 	}
307 	return so;
308 }
309 
310 struct socket *
311 soget(bool waitok)
312 {
313 	struct socket *so;
314 
315 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
316 	if (__predict_false(so == NULL))
317 		return (NULL);
318 	memset(so, 0, sizeof(*so));
319 	TAILQ_INIT(&so->so_q0);
320 	TAILQ_INIT(&so->so_q);
321 	cv_init(&so->so_cv, "socket");
322 	cv_init(&so->so_rcv.sb_cv, "netio");
323 	cv_init(&so->so_snd.sb_cv, "netio");
324 	selinit(&so->so_rcv.sb_sel);
325 	selinit(&so->so_snd.sb_sel);
326 	so->so_rcv.sb_so = so;
327 	so->so_snd.sb_so = so;
328 	return so;
329 }
330 
331 void
332 soput(struct socket *so)
333 {
334 
335 	KASSERT(!cv_has_waiters(&so->so_cv));
336 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
337 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
338 	seldestroy(&so->so_rcv.sb_sel);
339 	seldestroy(&so->so_snd.sb_sel);
340 	mutex_obj_free(so->so_lock);
341 	cv_destroy(&so->so_cv);
342 	cv_destroy(&so->so_rcv.sb_cv);
343 	cv_destroy(&so->so_snd.sb_cv);
344 	pool_cache_put(socket_cache, so);
345 }
346 
347 void
348 soqinsque(struct socket *head, struct socket *so, int q)
349 {
350 
351 	KASSERT(solocked2(head, so));
352 
353 #ifdef DIAGNOSTIC
354 	if (so->so_onq != NULL)
355 		panic("soqinsque");
356 #endif
357 
358 	so->so_head = head;
359 	if (q == 0) {
360 		head->so_q0len++;
361 		so->so_onq = &head->so_q0;
362 	} else {
363 		head->so_qlen++;
364 		so->so_onq = &head->so_q;
365 	}
366 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
367 }
368 
369 int
370 soqremque(struct socket *so, int q)
371 {
372 	struct socket	*head;
373 
374 	head = so->so_head;
375 
376 	KASSERT(solocked(so));
377 	if (q == 0) {
378 		if (so->so_onq != &head->so_q0)
379 			return (0);
380 		head->so_q0len--;
381 	} else {
382 		if (so->so_onq != &head->so_q)
383 			return (0);
384 		head->so_qlen--;
385 	}
386 	KASSERT(solocked2(so, head));
387 	TAILQ_REMOVE(so->so_onq, so, so_qe);
388 	so->so_onq = NULL;
389 	so->so_head = NULL;
390 	return (1);
391 }
392 
393 /*
394  * Socantsendmore indicates that no more data will be sent on the
395  * socket; it would normally be applied to a socket when the user
396  * informs the system that no more data is to be sent, by the protocol
397  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
398  * will be received, and will normally be applied to the socket by a
399  * protocol when it detects that the peer will send no more data.
400  * Data queued for reading in the socket may yet be read.
401  */
402 
403 void
404 socantsendmore(struct socket *so)
405 {
406 
407 	KASSERT(solocked(so));
408 
409 	so->so_state |= SS_CANTSENDMORE;
410 	sowwakeup(so);
411 }
412 
413 void
414 socantrcvmore(struct socket *so)
415 {
416 
417 	KASSERT(solocked(so));
418 
419 	so->so_state |= SS_CANTRCVMORE;
420 	sorwakeup(so);
421 }
422 
423 /*
424  * Wait for data to arrive at/drain from a socket buffer.
425  */
426 int
427 sbwait(struct sockbuf *sb)
428 {
429 	struct socket *so;
430 	kmutex_t *lock;
431 	int error;
432 
433 	so = sb->sb_so;
434 
435 	KASSERT(solocked(so));
436 
437 	sb->sb_flags |= SB_NOTIFY;
438 	lock = so->so_lock;
439 	if ((sb->sb_flags & SB_NOINTR) != 0)
440 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
441 	else
442 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
443 	if (__predict_false(lock != so->so_lock))
444 		solockretry(so, lock);
445 	return error;
446 }
447 
448 /*
449  * Wakeup processes waiting on a socket buffer.
450  * Do asynchronous notification via SIGIO
451  * if the socket buffer has the SB_ASYNC flag set.
452  */
453 void
454 sowakeup(struct socket *so, struct sockbuf *sb, int code)
455 {
456 	int band;
457 
458 	KASSERT(solocked(so));
459 	KASSERT(sb->sb_so == so);
460 
461 	if (code == POLL_IN)
462 		band = POLLIN|POLLRDNORM;
463 	else
464 		band = POLLOUT|POLLWRNORM;
465 	sb->sb_flags &= ~SB_NOTIFY;
466 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
467 	cv_broadcast(&sb->sb_cv);
468 	if (sb->sb_flags & SB_ASYNC)
469 		fownsignal(so->so_pgid, SIGIO, code, band, so);
470 	if (sb->sb_flags & SB_UPCALL)
471 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
472 }
473 
474 /*
475  * Reset a socket's lock pointer.  Wake all threads waiting on the
476  * socket's condition variables so that they can restart their waits
477  * using the new lock.  The existing lock must be held.
478  */
479 void
480 solockreset(struct socket *so, kmutex_t *lock)
481 {
482 
483 	KASSERT(solocked(so));
484 
485 	so->so_lock = lock;
486 	cv_broadcast(&so->so_snd.sb_cv);
487 	cv_broadcast(&so->so_rcv.sb_cv);
488 	cv_broadcast(&so->so_cv);
489 }
490 
491 /*
492  * Socket buffer (struct sockbuf) utility routines.
493  *
494  * Each socket contains two socket buffers: one for sending data and
495  * one for receiving data.  Each buffer contains a queue of mbufs,
496  * information about the number of mbufs and amount of data in the
497  * queue, and other fields allowing poll() statements and notification
498  * on data availability to be implemented.
499  *
500  * Data stored in a socket buffer is maintained as a list of records.
501  * Each record is a list of mbufs chained together with the m_next
502  * field.  Records are chained together with the m_nextpkt field. The upper
503  * level routine soreceive() expects the following conventions to be
504  * observed when placing information in the receive buffer:
505  *
506  * 1. If the protocol requires each message be preceded by the sender's
507  *    name, then a record containing that name must be present before
508  *    any associated data (mbuf's must be of type MT_SONAME).
509  * 2. If the protocol supports the exchange of ``access rights'' (really
510  *    just additional data associated with the message), and there are
511  *    ``rights'' to be received, then a record containing this data
512  *    should be present (mbuf's must be of type MT_CONTROL).
513  * 3. If a name or rights record exists, then it must be followed by
514  *    a data record, perhaps of zero length.
515  *
516  * Before using a new socket structure it is first necessary to reserve
517  * buffer space to the socket, by calling sbreserve().  This should commit
518  * some of the available buffer space in the system buffer pool for the
519  * socket (currently, it does nothing but enforce limits).  The space
520  * should be released by calling sbrelease() when the socket is destroyed.
521  */
522 
523 int
524 sb_max_set(u_long new_sbmax)
525 {
526 	int s;
527 
528 	if (new_sbmax < (16 * 1024))
529 		return (EINVAL);
530 
531 	s = splsoftnet();
532 	sb_max = new_sbmax;
533 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
534 	splx(s);
535 
536 	return (0);
537 }
538 
539 int
540 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
541 {
542 
543 	KASSERT(so->so_lock == NULL || solocked(so));
544 
545 	/*
546 	 * there's at least one application (a configure script of screen)
547 	 * which expects a fifo is writable even if it has "some" bytes
548 	 * in its buffer.
549 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
550 	 *
551 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
552 	 * we expect it's large enough for such applications.
553 	 */
554 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
555 	u_long  hiwat = lowat + PIPE_BUF;
556 
557 	if (sndcc < hiwat)
558 		sndcc = hiwat;
559 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
560 		goto bad;
561 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
562 		goto bad2;
563 	if (so->so_rcv.sb_lowat == 0)
564 		so->so_rcv.sb_lowat = 1;
565 	if (so->so_snd.sb_lowat == 0)
566 		so->so_snd.sb_lowat = lowat;
567 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
568 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
569 	return (0);
570  bad2:
571 	sbrelease(&so->so_snd, so);
572  bad:
573 	return (ENOBUFS);
574 }
575 
576 /*
577  * Allot mbufs to a sockbuf.
578  * Attempt to scale mbmax so that mbcnt doesn't become limiting
579  * if buffering efficiency is near the normal case.
580  */
581 int
582 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
583 {
584 	struct lwp *l = curlwp; /* XXX */
585 	rlim_t maxcc;
586 	struct uidinfo *uidinfo;
587 
588 	KASSERT(so->so_lock == NULL || solocked(so));
589 	KASSERT(sb->sb_so == so);
590 	KASSERT(sb_max_adj != 0);
591 
592 	if (cc == 0 || cc > sb_max_adj)
593 		return (0);
594 
595 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
596 
597 	uidinfo = so->so_uidinfo;
598 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
599 		return 0;
600 	sb->sb_mbmax = min(cc * 2, sb_max);
601 	if (sb->sb_lowat > sb->sb_hiwat)
602 		sb->sb_lowat = sb->sb_hiwat;
603 	return (1);
604 }
605 
606 /*
607  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
608  * that the socket is held locked here: see sorflush().
609  */
610 void
611 sbrelease(struct sockbuf *sb, struct socket *so)
612 {
613 
614 	KASSERT(sb->sb_so == so);
615 
616 	sbflush(sb);
617 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
618 	sb->sb_mbmax = 0;
619 }
620 
621 /*
622  * Routines to add and remove
623  * data from an mbuf queue.
624  *
625  * The routines sbappend() or sbappendrecord() are normally called to
626  * append new mbufs to a socket buffer, after checking that adequate
627  * space is available, comparing the function sbspace() with the amount
628  * of data to be added.  sbappendrecord() differs from sbappend() in
629  * that data supplied is treated as the beginning of a new record.
630  * To place a sender's address, optional access rights, and data in a
631  * socket receive buffer, sbappendaddr() should be used.  To place
632  * access rights and data in a socket receive buffer, sbappendrights()
633  * should be used.  In either case, the new data begins a new record.
634  * Note that unlike sbappend() and sbappendrecord(), these routines check
635  * for the caller that there will be enough space to store the data.
636  * Each fails if there is not enough space, or if it cannot find mbufs
637  * to store additional information in.
638  *
639  * Reliable protocols may use the socket send buffer to hold data
640  * awaiting acknowledgement.  Data is normally copied from a socket
641  * send buffer in a protocol with m_copy for output to a peer,
642  * and then removing the data from the socket buffer with sbdrop()
643  * or sbdroprecord() when the data is acknowledged by the peer.
644  */
645 
646 #ifdef SOCKBUF_DEBUG
647 void
648 sblastrecordchk(struct sockbuf *sb, const char *where)
649 {
650 	struct mbuf *m = sb->sb_mb;
651 
652 	KASSERT(solocked(sb->sb_so));
653 
654 	while (m && m->m_nextpkt)
655 		m = m->m_nextpkt;
656 
657 	if (m != sb->sb_lastrecord) {
658 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
659 		    sb->sb_mb, sb->sb_lastrecord, m);
660 		printf("packet chain:\n");
661 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
662 			printf("\t%p\n", m);
663 		panic("sblastrecordchk from %s", where);
664 	}
665 }
666 
667 void
668 sblastmbufchk(struct sockbuf *sb, const char *where)
669 {
670 	struct mbuf *m = sb->sb_mb;
671 	struct mbuf *n;
672 
673 	KASSERT(solocked(sb->sb_so));
674 
675 	while (m && m->m_nextpkt)
676 		m = m->m_nextpkt;
677 
678 	while (m && m->m_next)
679 		m = m->m_next;
680 
681 	if (m != sb->sb_mbtail) {
682 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
683 		    sb->sb_mb, sb->sb_mbtail, m);
684 		printf("packet tree:\n");
685 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
686 			printf("\t");
687 			for (n = m; n != NULL; n = n->m_next)
688 				printf("%p ", n);
689 			printf("\n");
690 		}
691 		panic("sblastmbufchk from %s", where);
692 	}
693 }
694 #endif /* SOCKBUF_DEBUG */
695 
696 /*
697  * Link a chain of records onto a socket buffer
698  */
699 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
700 do {									\
701 	if ((sb)->sb_lastrecord != NULL)				\
702 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
703 	else								\
704 		(sb)->sb_mb = (m0);					\
705 	(sb)->sb_lastrecord = (mlast);					\
706 } while (/*CONSTCOND*/0)
707 
708 
709 #define	SBLINKRECORD(sb, m0)						\
710     SBLINKRECORDCHAIN(sb, m0, m0)
711 
712 /*
713  * Append mbuf chain m to the last record in the
714  * socket buffer sb.  The additional space associated
715  * the mbuf chain is recorded in sb.  Empty mbufs are
716  * discarded and mbufs are compacted where possible.
717  */
718 void
719 sbappend(struct sockbuf *sb, struct mbuf *m)
720 {
721 	struct mbuf	*n;
722 
723 	KASSERT(solocked(sb->sb_so));
724 
725 	if (m == NULL)
726 		return;
727 
728 #ifdef MBUFTRACE
729 	m_claimm(m, sb->sb_mowner);
730 #endif
731 
732 	SBLASTRECORDCHK(sb, "sbappend 1");
733 
734 	if ((n = sb->sb_lastrecord) != NULL) {
735 		/*
736 		 * XXX Would like to simply use sb_mbtail here, but
737 		 * XXX I need to verify that I won't miss an EOR that
738 		 * XXX way.
739 		 */
740 		do {
741 			if (n->m_flags & M_EOR) {
742 				sbappendrecord(sb, m); /* XXXXXX!!!! */
743 				return;
744 			}
745 		} while (n->m_next && (n = n->m_next));
746 	} else {
747 		/*
748 		 * If this is the first record in the socket buffer, it's
749 		 * also the last record.
750 		 */
751 		sb->sb_lastrecord = m;
752 	}
753 	sbcompress(sb, m, n);
754 	SBLASTRECORDCHK(sb, "sbappend 2");
755 }
756 
757 /*
758  * This version of sbappend() should only be used when the caller
759  * absolutely knows that there will never be more than one record
760  * in the socket buffer, that is, a stream protocol (such as TCP).
761  */
762 void
763 sbappendstream(struct sockbuf *sb, struct mbuf *m)
764 {
765 
766 	KASSERT(solocked(sb->sb_so));
767 	KDASSERT(m->m_nextpkt == NULL);
768 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
769 
770 	SBLASTMBUFCHK(sb, __func__);
771 
772 #ifdef MBUFTRACE
773 	m_claimm(m, sb->sb_mowner);
774 #endif
775 
776 	sbcompress(sb, m, sb->sb_mbtail);
777 
778 	sb->sb_lastrecord = sb->sb_mb;
779 	SBLASTRECORDCHK(sb, __func__);
780 }
781 
782 #ifdef SOCKBUF_DEBUG
783 void
784 sbcheck(struct sockbuf *sb)
785 {
786 	struct mbuf	*m, *m2;
787 	u_long		len, mbcnt;
788 
789 	KASSERT(solocked(sb->sb_so));
790 
791 	len = 0;
792 	mbcnt = 0;
793 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
794 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
795 			len += m2->m_len;
796 			mbcnt += MSIZE;
797 			if (m2->m_flags & M_EXT)
798 				mbcnt += m2->m_ext.ext_size;
799 			if (m2->m_nextpkt != NULL)
800 				panic("sbcheck nextpkt");
801 		}
802 	}
803 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
804 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
805 		    mbcnt, sb->sb_mbcnt);
806 		panic("sbcheck");
807 	}
808 }
809 #endif
810 
811 /*
812  * As above, except the mbuf chain
813  * begins a new record.
814  */
815 void
816 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
817 {
818 	struct mbuf	*m;
819 
820 	KASSERT(solocked(sb->sb_so));
821 
822 	if (m0 == NULL)
823 		return;
824 
825 #ifdef MBUFTRACE
826 	m_claimm(m0, sb->sb_mowner);
827 #endif
828 	/*
829 	 * Put the first mbuf on the queue.
830 	 * Note this permits zero length records.
831 	 */
832 	sballoc(sb, m0);
833 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
834 	SBLINKRECORD(sb, m0);
835 	m = m0->m_next;
836 	m0->m_next = 0;
837 	if (m && (m0->m_flags & M_EOR)) {
838 		m0->m_flags &= ~M_EOR;
839 		m->m_flags |= M_EOR;
840 	}
841 	sbcompress(sb, m, m0);
842 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
843 }
844 
845 /*
846  * As above except that OOB data
847  * is inserted at the beginning of the sockbuf,
848  * but after any other OOB data.
849  */
850 void
851 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
852 {
853 	struct mbuf	*m, **mp;
854 
855 	KASSERT(solocked(sb->sb_so));
856 
857 	if (m0 == NULL)
858 		return;
859 
860 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
861 
862 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
863 	    again:
864 		switch (m->m_type) {
865 
866 		case MT_OOBDATA:
867 			continue;		/* WANT next train */
868 
869 		case MT_CONTROL:
870 			if ((m = m->m_next) != NULL)
871 				goto again;	/* inspect THIS train further */
872 		}
873 		break;
874 	}
875 	/*
876 	 * Put the first mbuf on the queue.
877 	 * Note this permits zero length records.
878 	 */
879 	sballoc(sb, m0);
880 	m0->m_nextpkt = *mp;
881 	if (*mp == NULL) {
882 		/* m0 is actually the new tail */
883 		sb->sb_lastrecord = m0;
884 	}
885 	*mp = m0;
886 	m = m0->m_next;
887 	m0->m_next = 0;
888 	if (m && (m0->m_flags & M_EOR)) {
889 		m0->m_flags &= ~M_EOR;
890 		m->m_flags |= M_EOR;
891 	}
892 	sbcompress(sb, m, m0);
893 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
894 }
895 
896 /*
897  * Append address and data, and optionally, control (ancillary) data
898  * to the receive queue of a socket.  If present,
899  * m0 must include a packet header with total length.
900  * Returns 0 if no space in sockbuf or insufficient mbufs.
901  */
902 int
903 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
904 	struct mbuf *control)
905 {
906 	struct mbuf	*m, *n, *nlast;
907 	int		space, len;
908 
909 	KASSERT(solocked(sb->sb_so));
910 
911 	space = asa->sa_len;
912 
913 	if (m0 != NULL) {
914 		if ((m0->m_flags & M_PKTHDR) == 0)
915 			panic("sbappendaddr");
916 		space += m0->m_pkthdr.len;
917 #ifdef MBUFTRACE
918 		m_claimm(m0, sb->sb_mowner);
919 #endif
920 	}
921 	for (n = control; n; n = n->m_next) {
922 		space += n->m_len;
923 		MCLAIM(n, sb->sb_mowner);
924 		if (n->m_next == NULL)	/* keep pointer to last control buf */
925 			break;
926 	}
927 	if (space > sbspace(sb))
928 		return (0);
929 	m = m_get(M_DONTWAIT, MT_SONAME);
930 	if (m == NULL)
931 		return (0);
932 	MCLAIM(m, sb->sb_mowner);
933 	/*
934 	 * XXX avoid 'comparison always true' warning which isn't easily
935 	 * avoided.
936 	 */
937 	len = asa->sa_len;
938 	if (len > MLEN) {
939 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
940 		if ((m->m_flags & M_EXT) == 0) {
941 			m_free(m);
942 			return (0);
943 		}
944 	}
945 	m->m_len = asa->sa_len;
946 	memcpy(mtod(m, void *), asa, asa->sa_len);
947 	if (n)
948 		n->m_next = m0;		/* concatenate data to control */
949 	else
950 		control = m0;
951 	m->m_next = control;
952 
953 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
954 
955 	for (n = m; n->m_next != NULL; n = n->m_next)
956 		sballoc(sb, n);
957 	sballoc(sb, n);
958 	nlast = n;
959 	SBLINKRECORD(sb, m);
960 
961 	sb->sb_mbtail = nlast;
962 	SBLASTMBUFCHK(sb, "sbappendaddr");
963 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
964 
965 	return (1);
966 }
967 
968 /*
969  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
970  * an mbuf chain.
971  */
972 static inline struct mbuf *
973 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
974 		   const struct sockaddr *asa)
975 {
976 	struct mbuf *m;
977 	const int salen = asa->sa_len;
978 
979 	KASSERT(solocked(sb->sb_so));
980 
981 	/* only the first in each chain need be a pkthdr */
982 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
983 	if (m == NULL)
984 		return NULL;
985 	MCLAIM(m, sb->sb_mowner);
986 #ifdef notyet
987 	if (salen > MHLEN) {
988 		MEXTMALLOC(m, salen, M_NOWAIT);
989 		if ((m->m_flags & M_EXT) == 0) {
990 			m_free(m);
991 			return NULL;
992 		}
993 	}
994 #else
995 	KASSERT(salen <= MHLEN);
996 #endif
997 	m->m_len = salen;
998 	memcpy(mtod(m, void *), asa, salen);
999 	m->m_next = m0;
1000 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1001 
1002 	return m;
1003 }
1004 
1005 int
1006 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1007 		  struct mbuf *m0, int sbprio)
1008 {
1009 	struct mbuf *m, *n, *n0, *nlast;
1010 	int error;
1011 
1012 	KASSERT(solocked(sb->sb_so));
1013 
1014 	/*
1015 	 * XXX sbprio reserved for encoding priority of this* request:
1016 	 *  SB_PRIO_NONE --> honour normal sb limits
1017 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1018 	 *	take whole chain. Intended for large requests
1019 	 *      that should be delivered atomically (all, or none).
1020 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1021 	 *       over normal socket limits, for messages indicating
1022 	 *       buffer overflow in earlier normal/lower-priority messages
1023 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1024 	 *       Intended for  kernel-generated messages only.
1025 	 *        Up to generator to avoid total mbuf resource exhaustion.
1026 	 */
1027 	(void)sbprio;
1028 
1029 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1030 		panic("sbappendaddrchain");
1031 
1032 #ifdef notyet
1033 	space = sbspace(sb);
1034 
1035 	/*
1036 	 * Enforce SB_PRIO_* limits as described above.
1037 	 */
1038 #endif
1039 
1040 	n0 = NULL;
1041 	nlast = NULL;
1042 	for (m = m0; m; m = m->m_nextpkt) {
1043 		struct mbuf *np;
1044 
1045 #ifdef MBUFTRACE
1046 		m_claimm(m, sb->sb_mowner);
1047 #endif
1048 
1049 		/* Prepend sockaddr to this record (m) of input chain m0 */
1050 	  	n = m_prepend_sockaddr(sb, m, asa);
1051 		if (n == NULL) {
1052 			error = ENOBUFS;
1053 			goto bad;
1054 		}
1055 
1056 		/* Append record (asa+m) to end of new chain n0 */
1057 		if (n0 == NULL) {
1058 			n0 = n;
1059 		} else {
1060 			nlast->m_nextpkt = n;
1061 		}
1062 		/* Keep track of last record on new chain */
1063 		nlast = n;
1064 
1065 		for (np = n; np; np = np->m_next)
1066 			sballoc(sb, np);
1067 	}
1068 
1069 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1070 
1071 	/* Drop the entire chain of (asa+m) records onto the socket */
1072 	SBLINKRECORDCHAIN(sb, n0, nlast);
1073 
1074 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1075 
1076 	for (m = nlast; m->m_next; m = m->m_next)
1077 		;
1078 	sb->sb_mbtail = m;
1079 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1080 
1081 	return (1);
1082 
1083 bad:
1084 	/*
1085 	 * On error, free the prepended addreseses. For consistency
1086 	 * with sbappendaddr(), leave it to our caller to free
1087 	 * the input record chain passed to us as m0.
1088 	 */
1089 	while ((n = n0) != NULL) {
1090 	  	struct mbuf *np;
1091 
1092 		/* Undo the sballoc() of this record */
1093 		for (np = n; np; np = np->m_next)
1094 			sbfree(sb, np);
1095 
1096 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1097 		MFREE(n, np);		/* free prepended address (not data) */
1098 	}
1099 	return error;
1100 }
1101 
1102 
1103 int
1104 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1105 {
1106 	struct mbuf	*m, *mlast, *n;
1107 	int		space;
1108 
1109 	KASSERT(solocked(sb->sb_so));
1110 
1111 	space = 0;
1112 	if (control == NULL)
1113 		panic("sbappendcontrol");
1114 	for (m = control; ; m = m->m_next) {
1115 		space += m->m_len;
1116 		MCLAIM(m, sb->sb_mowner);
1117 		if (m->m_next == NULL)
1118 			break;
1119 	}
1120 	n = m;			/* save pointer to last control buffer */
1121 	for (m = m0; m; m = m->m_next) {
1122 		MCLAIM(m, sb->sb_mowner);
1123 		space += m->m_len;
1124 	}
1125 	if (space > sbspace(sb))
1126 		return (0);
1127 	n->m_next = m0;			/* concatenate data to control */
1128 
1129 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1130 
1131 	for (m = control; m->m_next != NULL; m = m->m_next)
1132 		sballoc(sb, m);
1133 	sballoc(sb, m);
1134 	mlast = m;
1135 	SBLINKRECORD(sb, control);
1136 
1137 	sb->sb_mbtail = mlast;
1138 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1139 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1140 
1141 	return (1);
1142 }
1143 
1144 /*
1145  * Compress mbuf chain m into the socket
1146  * buffer sb following mbuf n.  If n
1147  * is null, the buffer is presumed empty.
1148  */
1149 void
1150 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1151 {
1152 	int		eor;
1153 	struct mbuf	*o;
1154 
1155 	KASSERT(solocked(sb->sb_so));
1156 
1157 	eor = 0;
1158 	while (m) {
1159 		eor |= m->m_flags & M_EOR;
1160 		if (m->m_len == 0 &&
1161 		    (eor == 0 ||
1162 		     (((o = m->m_next) || (o = n)) &&
1163 		      o->m_type == m->m_type))) {
1164 			if (sb->sb_lastrecord == m)
1165 				sb->sb_lastrecord = m->m_next;
1166 			m = m_free(m);
1167 			continue;
1168 		}
1169 		if (n && (n->m_flags & M_EOR) == 0 &&
1170 		    /* M_TRAILINGSPACE() checks buffer writeability */
1171 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1172 		    m->m_len <= M_TRAILINGSPACE(n) &&
1173 		    n->m_type == m->m_type) {
1174 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1175 			    (unsigned)m->m_len);
1176 			n->m_len += m->m_len;
1177 			sb->sb_cc += m->m_len;
1178 			m = m_free(m);
1179 			continue;
1180 		}
1181 		if (n)
1182 			n->m_next = m;
1183 		else
1184 			sb->sb_mb = m;
1185 		sb->sb_mbtail = m;
1186 		sballoc(sb, m);
1187 		n = m;
1188 		m->m_flags &= ~M_EOR;
1189 		m = m->m_next;
1190 		n->m_next = 0;
1191 	}
1192 	if (eor) {
1193 		if (n)
1194 			n->m_flags |= eor;
1195 		else
1196 			printf("semi-panic: sbcompress\n");
1197 	}
1198 	SBLASTMBUFCHK(sb, __func__);
1199 }
1200 
1201 /*
1202  * Free all mbufs in a sockbuf.
1203  * Check that all resources are reclaimed.
1204  */
1205 void
1206 sbflush(struct sockbuf *sb)
1207 {
1208 
1209 	KASSERT(solocked(sb->sb_so));
1210 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1211 
1212 	while (sb->sb_mbcnt)
1213 		sbdrop(sb, (int)sb->sb_cc);
1214 
1215 	KASSERT(sb->sb_cc == 0);
1216 	KASSERT(sb->sb_mb == NULL);
1217 	KASSERT(sb->sb_mbtail == NULL);
1218 	KASSERT(sb->sb_lastrecord == NULL);
1219 }
1220 
1221 /*
1222  * Drop data from (the front of) a sockbuf.
1223  */
1224 void
1225 sbdrop(struct sockbuf *sb, int len)
1226 {
1227 	struct mbuf	*m, *mn, *next;
1228 
1229 	KASSERT(solocked(sb->sb_so));
1230 
1231 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1232 	while (len > 0) {
1233 		if (m == NULL) {
1234 			if (next == NULL)
1235 				panic("sbdrop(%p,%d): cc=%lu",
1236 				    sb, len, sb->sb_cc);
1237 			m = next;
1238 			next = m->m_nextpkt;
1239 			continue;
1240 		}
1241 		if (m->m_len > len) {
1242 			m->m_len -= len;
1243 			m->m_data += len;
1244 			sb->sb_cc -= len;
1245 			break;
1246 		}
1247 		len -= m->m_len;
1248 		sbfree(sb, m);
1249 		MFREE(m, mn);
1250 		m = mn;
1251 	}
1252 	while (m && m->m_len == 0) {
1253 		sbfree(sb, m);
1254 		MFREE(m, mn);
1255 		m = mn;
1256 	}
1257 	if (m) {
1258 		sb->sb_mb = m;
1259 		m->m_nextpkt = next;
1260 	} else
1261 		sb->sb_mb = next;
1262 	/*
1263 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1264 	 * makes sure sb_lastrecord is up-to-date if we dropped
1265 	 * part of the last record.
1266 	 */
1267 	m = sb->sb_mb;
1268 	if (m == NULL) {
1269 		sb->sb_mbtail = NULL;
1270 		sb->sb_lastrecord = NULL;
1271 	} else if (m->m_nextpkt == NULL)
1272 		sb->sb_lastrecord = m;
1273 }
1274 
1275 /*
1276  * Drop a record off the front of a sockbuf
1277  * and move the next record to the front.
1278  */
1279 void
1280 sbdroprecord(struct sockbuf *sb)
1281 {
1282 	struct mbuf	*m, *mn;
1283 
1284 	KASSERT(solocked(sb->sb_so));
1285 
1286 	m = sb->sb_mb;
1287 	if (m) {
1288 		sb->sb_mb = m->m_nextpkt;
1289 		do {
1290 			sbfree(sb, m);
1291 			MFREE(m, mn);
1292 		} while ((m = mn) != NULL);
1293 	}
1294 	SB_EMPTY_FIXUP(sb);
1295 }
1296 
1297 /*
1298  * Create a "control" mbuf containing the specified data
1299  * with the specified type for presentation on a socket buffer.
1300  */
1301 struct mbuf *
1302 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1303 {
1304 	struct cmsghdr	*cp;
1305 	struct mbuf	*m;
1306 	int space = CMSG_SPACE(size);
1307 
1308 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1309 		printf("%s: message too large %d\n", __func__, space);
1310 		return NULL;
1311 	}
1312 
1313 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1314 		return NULL;
1315 	if (space > MLEN) {
1316 		if (space > MCLBYTES)
1317 			MEXTMALLOC(m, space, M_WAITOK);
1318 		else
1319 			MCLGET(m, flags);
1320 		if ((m->m_flags & M_EXT) == 0) {
1321 			m_free(m);
1322 			return NULL;
1323 		}
1324 	}
1325 	cp = mtod(m, struct cmsghdr *);
1326 	*p = CMSG_DATA(cp);
1327 	m->m_len = space;
1328 	cp->cmsg_len = CMSG_LEN(size);
1329 	cp->cmsg_level = level;
1330 	cp->cmsg_type = type;
1331 	return m;
1332 }
1333 
1334 struct mbuf *
1335 sbcreatecontrol(void *p, int size, int type, int level)
1336 {
1337 	struct mbuf *m;
1338 	void *v;
1339 
1340 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1341 	if (m == NULL)
1342 		return NULL;
1343 	memcpy(v, p, size);
1344 	return m;
1345 }
1346 
1347 void
1348 solockretry(struct socket *so, kmutex_t *lock)
1349 {
1350 
1351 	while (lock != so->so_lock) {
1352 		mutex_exit(lock);
1353 		lock = so->so_lock;
1354 		mutex_enter(lock);
1355 	}
1356 }
1357 
1358 bool
1359 solocked(struct socket *so)
1360 {
1361 
1362 	return mutex_owned(so->so_lock);
1363 }
1364 
1365 bool
1366 solocked2(struct socket *so1, struct socket *so2)
1367 {
1368 	kmutex_t *lock;
1369 
1370 	lock = so1->so_lock;
1371 	if (lock != so2->so_lock)
1372 		return false;
1373 	return mutex_owned(lock);
1374 }
1375 
1376 /*
1377  * Assign a default lock to a new socket.  For PRU_ATTACH, and done by
1378  * protocols that do not have special locking requirements.
1379  */
1380 void
1381 sosetlock(struct socket *so)
1382 {
1383 	kmutex_t *lock;
1384 
1385 	if (so->so_lock == NULL) {
1386 		lock = softnet_lock;
1387 		so->so_lock = lock;
1388 		mutex_obj_hold(lock);
1389 		mutex_enter(lock);
1390 	}
1391 
1392 	/* In all cases, lock must be held on return from PRU_ATTACH. */
1393 	KASSERT(solocked(so));
1394 }
1395 
1396 /*
1397  * Set lock on sockbuf sb; sleep if lock is already held.
1398  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1399  * Returns error without lock if sleep is interrupted.
1400  */
1401 int
1402 sblock(struct sockbuf *sb, int wf)
1403 {
1404 	struct socket *so;
1405 	kmutex_t *lock;
1406 	int error;
1407 
1408 	KASSERT(solocked(sb->sb_so));
1409 
1410 	for (;;) {
1411 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1412 			sb->sb_flags |= SB_LOCK;
1413 			return 0;
1414 		}
1415 		if (wf != M_WAITOK)
1416 			return EWOULDBLOCK;
1417 		so = sb->sb_so;
1418 		lock = so->so_lock;
1419 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1420 			cv_wait(&so->so_cv, lock);
1421 			error = 0;
1422 		} else
1423 			error = cv_wait_sig(&so->so_cv, lock);
1424 		if (__predict_false(lock != so->so_lock))
1425 			solockretry(so, lock);
1426 		if (error != 0)
1427 			return error;
1428 	}
1429 }
1430 
1431 void
1432 sbunlock(struct sockbuf *sb)
1433 {
1434 	struct socket *so;
1435 
1436 	so = sb->sb_so;
1437 
1438 	KASSERT(solocked(so));
1439 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1440 
1441 	sb->sb_flags &= ~SB_LOCK;
1442 	cv_broadcast(&so->so_cv);
1443 }
1444 
1445 int
1446 sowait(struct socket *so, bool catch, int timo)
1447 {
1448 	kmutex_t *lock;
1449 	int error;
1450 
1451 	KASSERT(solocked(so));
1452 	KASSERT(catch || timo != 0);
1453 
1454 	lock = so->so_lock;
1455 	if (catch)
1456 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1457 	else
1458 		error = cv_timedwait(&so->so_cv, lock, timo);
1459 	if (__predict_false(lock != so->so_lock))
1460 		solockretry(so, lock);
1461 	return error;
1462 }
1463