xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /*	$NetBSD: uipc_socket2.c,v 1.139 2021/03/04 01:35:31 msaitoh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.139 2021/03/04 01:35:31 msaitoh Exp $");
62 
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_inet.h"
66 #include "opt_mbuftrace.h"
67 #include "opt_sb_max.h"
68 #endif
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/proc.h>
73 #include <sys/file.h>
74 #include <sys/buf.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/domain.h>
78 #include <sys/poll.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/signalvar.h>
82 #include <sys/kauth.h>
83 #include <sys/pool.h>
84 #include <sys/uidinfo.h>
85 
86 #ifdef DDB
87 #include <sys/filedesc.h>
88 #endif
89 
90 /*
91  * Primitive routines for operating on sockets and socket buffers.
92  *
93  * Connection life-cycle:
94  *
95  *	Normal sequence from the active (originating) side:
96  *
97  *	- soisconnecting() is called during processing of connect() call,
98  *	- resulting in an eventual call to soisconnected() if/when the
99  *	  connection is established.
100  *
101  *	When the connection is torn down during processing of disconnect():
102  *
103  *	- soisdisconnecting() is called and,
104  *	- soisdisconnected() is called when the connection to the peer
105  *	  is totally severed.
106  *
107  *	The semantics of these routines are such that connectionless protocols
108  *	can call soisconnected() and soisdisconnected() only, bypassing the
109  *	in-progress calls when setting up a ``connection'' takes no time.
110  *
111  *	From the passive side, a socket is created with two queues of sockets:
112  *
113  *	- so_q0 (0) for partial connections (i.e. connections in progress)
114  *	- so_q (1) for connections already made and awaiting user acceptance.
115  *
116  *	As a protocol is preparing incoming connections, it creates a socket
117  *	structure queued on so_q0 by calling sonewconn().  When the connection
118  *	is established, soisconnected() is called, and transfers the
119  *	socket structure to so_q, making it available to accept().
120  *
121  *	If a socket is closed with sockets on either so_q0 or so_q, these
122  *	sockets are dropped.
123  *
124  * Locking rules and assumptions:
125  *
126  * o socket::so_lock can change on the fly.  The low level routines used
127  *   to lock sockets are aware of this.  When so_lock is acquired, the
128  *   routine locking must check to see if so_lock still points to the
129  *   lock that was acquired.  If so_lock has changed in the meantime, the
130  *   now irrelevant lock that was acquired must be dropped and the lock
131  *   operation retried.  Although not proven here, this is completely safe
132  *   on a multiprocessor system, even with relaxed memory ordering, given
133  *   the next two rules:
134  *
135  * o In order to mutate so_lock, the lock pointed to by the current value
136  *   of so_lock must be held: i.e., the socket must be held locked by the
137  *   changing thread.  The thread must issue membar_exit() to prevent
138  *   memory accesses being reordered, and can set so_lock to the desired
139  *   value.  If the lock pointed to by the new value of so_lock is not
140  *   held by the changing thread, the socket must then be considered
141  *   unlocked.
142  *
143  * o If so_lock is mutated, and the previous lock referred to by so_lock
144  *   could still be visible to other threads in the system (e.g. via file
145  *   descriptor or protocol-internal reference), then the old lock must
146  *   remain valid until the socket and/or protocol control block has been
147  *   torn down.
148  *
149  * o If a socket has a non-NULL so_head value (i.e. is in the process of
150  *   connecting), then locking the socket must also lock the socket pointed
151  *   to by so_head: their lock pointers must match.
152  *
153  * o If a socket has connections in progress (so_q, so_q0 not empty) then
154  *   locking the socket must also lock the sockets attached to both queues.
155  *   Again, their lock pointers must match.
156  *
157  * o Beyond the initial lock assignment in socreate(), assigning locks to
158  *   sockets is the responsibility of the individual protocols / protocol
159  *   domains.
160  */
161 
162 static pool_cache_t	socket_cache;
163 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
164 static u_long		sb_max_adj;	/* adjusted sb_max */
165 
166 void
167 soisconnecting(struct socket *so)
168 {
169 
170 	KASSERT(solocked(so));
171 
172 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
173 	so->so_state |= SS_ISCONNECTING;
174 }
175 
176 void
177 soisconnected(struct socket *so)
178 {
179 	struct socket	*head;
180 
181 	head = so->so_head;
182 
183 	KASSERT(solocked(so));
184 	KASSERT(head == NULL || solocked2(so, head));
185 
186 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
187 	so->so_state |= SS_ISCONNECTED;
188 	if (head && so->so_onq == &head->so_q0) {
189 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
190 			/*
191 			 * Re-enqueue and wake up any waiters, e.g.
192 			 * processes blocking on accept().
193 			 */
194 			soqremque(so, 0);
195 			soqinsque(head, so, 1);
196 			sorwakeup(head);
197 			cv_broadcast(&head->so_cv);
198 		} else {
199 			so->so_upcall =
200 			    head->so_accf->so_accept_filter->accf_callback;
201 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
202 			so->so_rcv.sb_flags |= SB_UPCALL;
203 			so->so_options &= ~SO_ACCEPTFILTER;
204 			(*so->so_upcall)(so, so->so_upcallarg,
205 					 POLLIN|POLLRDNORM, M_DONTWAIT);
206 		}
207 	} else {
208 		cv_broadcast(&so->so_cv);
209 		sorwakeup(so);
210 		sowwakeup(so);
211 	}
212 }
213 
214 void
215 soisdisconnecting(struct socket *so)
216 {
217 
218 	KASSERT(solocked(so));
219 
220 	so->so_state &= ~SS_ISCONNECTING;
221 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
222 	cv_broadcast(&so->so_cv);
223 	sowwakeup(so);
224 	sorwakeup(so);
225 }
226 
227 void
228 soisdisconnected(struct socket *so)
229 {
230 
231 	KASSERT(solocked(so));
232 
233 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
234 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
235 	cv_broadcast(&so->so_cv);
236 	sowwakeup(so);
237 	sorwakeup(so);
238 }
239 
240 void
241 soinit2(void)
242 {
243 
244 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
245 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
246 }
247 
248 /*
249  * sonewconn: accept a new connection.
250  *
251  * When an attempt at a new connection is noted on a socket which accepts
252  * connections, sonewconn(9) is called.  If the connection is possible
253  * (subject to space constraints, etc) then we allocate a new structure,
254  * properly linked into the data structure of the original socket.
255  *
256  * => If 'soready' is true, then socket will become ready for accept() i.e.
257  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
258  * => May be called from soft-interrupt context.
259  * => Listening socket should be locked.
260  * => Returns the new socket locked.
261  */
262 struct socket *
263 sonewconn(struct socket *head, bool soready)
264 {
265 	struct socket *so;
266 	int soqueue, error;
267 
268 	KASSERT(solocked(head));
269 
270 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
271 		/*
272 		 * Listen queue overflow.  If there is an accept filter
273 		 * active, pass through the oldest cxn it's handling.
274 		 */
275 		if (head->so_accf == NULL) {
276 			return NULL;
277 		} else {
278 			struct socket *so2, *next;
279 
280 			/* Pass the oldest connection waiting in the
281 			   accept filter */
282 			for (so2 = TAILQ_FIRST(&head->so_q0);
283 			     so2 != NULL; so2 = next) {
284 				next = TAILQ_NEXT(so2, so_qe);
285 				if (so2->so_upcall == NULL) {
286 					continue;
287 				}
288 				so2->so_upcall = NULL;
289 				so2->so_upcallarg = NULL;
290 				so2->so_options &= ~SO_ACCEPTFILTER;
291 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
292 				soisconnected(so2);
293 				break;
294 			}
295 
296 			/* If nothing was nudged out of the acept filter, bail
297 			 * out; otherwise proceed allocating the socket. */
298 			if (so2 == NULL) {
299 				return NULL;
300 			}
301 		}
302 	}
303 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
304 		soready = false;
305 	}
306 	soqueue = soready ? 1 : 0;
307 
308 	if ((so = soget(false)) == NULL) {
309 		return NULL;
310 	}
311 	so->so_type = head->so_type;
312 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
313 	so->so_linger = head->so_linger;
314 	so->so_state = head->so_state | SS_NOFDREF;
315 	so->so_proto = head->so_proto;
316 	so->so_timeo = head->so_timeo;
317 	so->so_pgid = head->so_pgid;
318 	so->so_send = head->so_send;
319 	so->so_receive = head->so_receive;
320 	so->so_uidinfo = head->so_uidinfo;
321 	so->so_egid = head->so_egid;
322 	so->so_cpid = head->so_cpid;
323 
324 	/*
325 	 * Share the lock with the listening-socket, it may get unshared
326 	 * once the connection is complete.
327 	 */
328 	mutex_obj_hold(head->so_lock);
329 	so->so_lock = head->so_lock;
330 
331 	/*
332 	 * Reserve the space for socket buffers.
333 	 */
334 #ifdef MBUFTRACE
335 	so->so_mowner = head->so_mowner;
336 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
337 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
338 #endif
339 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
340 		goto out;
341 	}
342 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
343 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
344 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
345 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
346 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
348 
349 	/*
350 	 * Finally, perform the protocol attach.  Note: a new socket
351 	 * lock may be assigned at this point (if so, it will be held).
352 	 */
353 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
354 	if (error) {
355 out:
356 		KASSERT(solocked(so));
357 		KASSERT(so->so_accf == NULL);
358 		soput(so);
359 
360 		/* Note: the listening socket shall stay locked. */
361 		KASSERT(solocked(head));
362 		return NULL;
363 	}
364 	KASSERT(solocked2(head, so));
365 
366 	/*
367 	 * Insert into the queue.  If ready, update the connection status
368 	 * and wake up any waiters, e.g. processes blocking on accept().
369 	 */
370 	soqinsque(head, so, soqueue);
371 	if (soready) {
372 		so->so_state |= SS_ISCONNECTED;
373 		sorwakeup(head);
374 		cv_broadcast(&head->so_cv);
375 	}
376 	return so;
377 }
378 
379 struct socket *
380 soget(bool waitok)
381 {
382 	struct socket *so;
383 
384 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
385 	if (__predict_false(so == NULL))
386 		return (NULL);
387 	memset(so, 0, sizeof(*so));
388 	TAILQ_INIT(&so->so_q0);
389 	TAILQ_INIT(&so->so_q);
390 	cv_init(&so->so_cv, "socket");
391 	cv_init(&so->so_rcv.sb_cv, "netio");
392 	cv_init(&so->so_snd.sb_cv, "netio");
393 	selinit(&so->so_rcv.sb_sel);
394 	selinit(&so->so_snd.sb_sel);
395 	so->so_rcv.sb_so = so;
396 	so->so_snd.sb_so = so;
397 	return so;
398 }
399 
400 void
401 soput(struct socket *so)
402 {
403 
404 	KASSERT(!cv_has_waiters(&so->so_cv));
405 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
406 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
407 	seldestroy(&so->so_rcv.sb_sel);
408 	seldestroy(&so->so_snd.sb_sel);
409 	mutex_obj_free(so->so_lock);
410 	cv_destroy(&so->so_cv);
411 	cv_destroy(&so->so_rcv.sb_cv);
412 	cv_destroy(&so->so_snd.sb_cv);
413 	pool_cache_put(socket_cache, so);
414 }
415 
416 /*
417  * soqinsque: insert socket of a new connection into the specified
418  * accept queue of the listening socket (head).
419  *
420  *	q = 0: queue of partial connections
421  *	q = 1: queue of incoming connections
422  */
423 void
424 soqinsque(struct socket *head, struct socket *so, int q)
425 {
426 	KASSERT(q == 0 || q == 1);
427 	KASSERT(solocked2(head, so));
428 	KASSERT(so->so_onq == NULL);
429 	KASSERT(so->so_head == NULL);
430 
431 	so->so_head = head;
432 	if (q == 0) {
433 		head->so_q0len++;
434 		so->so_onq = &head->so_q0;
435 	} else {
436 		head->so_qlen++;
437 		so->so_onq = &head->so_q;
438 	}
439 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
440 }
441 
442 /*
443  * soqremque: remove socket from the specified queue.
444  *
445  * => Returns true if socket was removed from the specified queue.
446  * => False if socket was not removed (because it was in other queue).
447  */
448 bool
449 soqremque(struct socket *so, int q)
450 {
451 	struct socket *head = so->so_head;
452 
453 	KASSERT(q == 0 || q == 1);
454 	KASSERT(solocked(so));
455 	KASSERT(so->so_onq != NULL);
456 	KASSERT(head != NULL);
457 
458 	if (q == 0) {
459 		if (so->so_onq != &head->so_q0)
460 			return false;
461 		head->so_q0len--;
462 	} else {
463 		if (so->so_onq != &head->so_q)
464 			return false;
465 		head->so_qlen--;
466 	}
467 	KASSERT(solocked2(so, head));
468 	TAILQ_REMOVE(so->so_onq, so, so_qe);
469 	so->so_onq = NULL;
470 	so->so_head = NULL;
471 	return true;
472 }
473 
474 /*
475  * socantsendmore: indicates that no more data will be sent on the
476  * socket; it would normally be applied to a socket when the user
477  * informs the system that no more data is to be sent, by the protocol
478  * code (in case pr_shutdown()).
479  */
480 void
481 socantsendmore(struct socket *so)
482 {
483 	KASSERT(solocked(so));
484 
485 	so->so_state |= SS_CANTSENDMORE;
486 	sowwakeup(so);
487 }
488 
489 /*
490  * socantrcvmore(): indicates that no more data will be received and
491  * will normally be applied to the socket by a protocol when it detects
492  * that the peer will send no more data.  Data queued for reading in
493  * the socket may yet be read.
494  */
495 void
496 socantrcvmore(struct socket *so)
497 {
498 	KASSERT(solocked(so));
499 
500 	so->so_state |= SS_CANTRCVMORE;
501 	sorwakeup(so);
502 }
503 
504 /*
505  * soroverflow(): indicates that data was attempted to be sent
506  * but the receiving buffer overflowed.
507  */
508 void
509 soroverflow(struct socket *so)
510 {
511 	KASSERT(solocked(so));
512 
513 	so->so_rcv.sb_overflowed++;
514 	if (so->so_options & SO_RERROR)  {
515 		so->so_rerror = ENOBUFS;
516 		sorwakeup(so);
517 	}
518 }
519 
520 /*
521  * Wait for data to arrive at/drain from a socket buffer.
522  */
523 int
524 sbwait(struct sockbuf *sb)
525 {
526 	struct socket *so;
527 	kmutex_t *lock;
528 	int error;
529 
530 	so = sb->sb_so;
531 
532 	KASSERT(solocked(so));
533 
534 	sb->sb_flags |= SB_NOTIFY;
535 	lock = so->so_lock;
536 	if ((sb->sb_flags & SB_NOINTR) != 0)
537 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
538 	else
539 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
540 	if (__predict_false(lock != so->so_lock))
541 		solockretry(so, lock);
542 	return error;
543 }
544 
545 /*
546  * Wakeup processes waiting on a socket buffer.
547  * Do asynchronous notification via SIGIO
548  * if the socket buffer has the SB_ASYNC flag set.
549  */
550 void
551 sowakeup(struct socket *so, struct sockbuf *sb, int code)
552 {
553 	int band;
554 
555 	KASSERT(solocked(so));
556 	KASSERT(sb->sb_so == so);
557 
558 	if (code == POLL_IN)
559 		band = POLLIN|POLLRDNORM;
560 	else
561 		band = POLLOUT|POLLWRNORM;
562 	sb->sb_flags &= ~SB_NOTIFY;
563 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
564 	cv_broadcast(&sb->sb_cv);
565 	if (sb->sb_flags & SB_ASYNC)
566 		fownsignal(so->so_pgid, SIGIO, code, band, so);
567 	if (sb->sb_flags & SB_UPCALL)
568 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
569 }
570 
571 /*
572  * Reset a socket's lock pointer.  Wake all threads waiting on the
573  * socket's condition variables so that they can restart their waits
574  * using the new lock.  The existing lock must be held.
575  */
576 void
577 solockreset(struct socket *so, kmutex_t *lock)
578 {
579 
580 	KASSERT(solocked(so));
581 
582 	so->so_lock = lock;
583 	cv_broadcast(&so->so_snd.sb_cv);
584 	cv_broadcast(&so->so_rcv.sb_cv);
585 	cv_broadcast(&so->so_cv);
586 }
587 
588 /*
589  * Socket buffer (struct sockbuf) utility routines.
590  *
591  * Each socket contains two socket buffers: one for sending data and
592  * one for receiving data.  Each buffer contains a queue of mbufs,
593  * information about the number of mbufs and amount of data in the
594  * queue, and other fields allowing poll() statements and notification
595  * on data availability to be implemented.
596  *
597  * Data stored in a socket buffer is maintained as a list of records.
598  * Each record is a list of mbufs chained together with the m_next
599  * field.  Records are chained together with the m_nextpkt field. The upper
600  * level routine soreceive() expects the following conventions to be
601  * observed when placing information in the receive buffer:
602  *
603  * 1. If the protocol requires each message be preceded by the sender's
604  *    name, then a record containing that name must be present before
605  *    any associated data (mbuf's must be of type MT_SONAME).
606  * 2. If the protocol supports the exchange of ``access rights'' (really
607  *    just additional data associated with the message), and there are
608  *    ``rights'' to be received, then a record containing this data
609  *    should be present (mbuf's must be of type MT_CONTROL).
610  * 3. If a name or rights record exists, then it must be followed by
611  *    a data record, perhaps of zero length.
612  *
613  * Before using a new socket structure it is first necessary to reserve
614  * buffer space to the socket, by calling sbreserve().  This should commit
615  * some of the available buffer space in the system buffer pool for the
616  * socket (currently, it does nothing but enforce limits).  The space
617  * should be released by calling sbrelease() when the socket is destroyed.
618  */
619 
620 int
621 sb_max_set(u_long new_sbmax)
622 {
623 	int s;
624 
625 	if (new_sbmax < (16 * 1024))
626 		return (EINVAL);
627 
628 	s = splsoftnet();
629 	sb_max = new_sbmax;
630 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
631 	splx(s);
632 
633 	return (0);
634 }
635 
636 int
637 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
638 {
639 	KASSERT(so->so_pcb == NULL || solocked(so));
640 
641 	/*
642 	 * there's at least one application (a configure script of screen)
643 	 * which expects a fifo is writable even if it has "some" bytes
644 	 * in its buffer.
645 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
646 	 *
647 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
648 	 * we expect it's large enough for such applications.
649 	 */
650 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
651 	u_long  hiwat = lowat + PIPE_BUF;
652 
653 	if (sndcc < hiwat)
654 		sndcc = hiwat;
655 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
656 		goto bad;
657 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
658 		goto bad2;
659 	if (so->so_rcv.sb_lowat == 0)
660 		so->so_rcv.sb_lowat = 1;
661 	if (so->so_snd.sb_lowat == 0)
662 		so->so_snd.sb_lowat = lowat;
663 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
664 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
665 	return (0);
666  bad2:
667 	sbrelease(&so->so_snd, so);
668  bad:
669 	return (ENOBUFS);
670 }
671 
672 /*
673  * Allot mbufs to a sockbuf.
674  * Attempt to scale mbmax so that mbcnt doesn't become limiting
675  * if buffering efficiency is near the normal case.
676  */
677 int
678 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
679 {
680 	struct lwp *l = curlwp; /* XXX */
681 	rlim_t maxcc;
682 	struct uidinfo *uidinfo;
683 
684 	KASSERT(so->so_pcb == NULL || solocked(so));
685 	KASSERT(sb->sb_so == so);
686 	KASSERT(sb_max_adj != 0);
687 
688 	if (cc == 0 || cc > sb_max_adj)
689 		return (0);
690 
691 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
692 
693 	uidinfo = so->so_uidinfo;
694 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
695 		return 0;
696 	sb->sb_mbmax = uimin(cc * 2, sb_max);
697 	if (sb->sb_lowat > sb->sb_hiwat)
698 		sb->sb_lowat = sb->sb_hiwat;
699 
700 	return (1);
701 }
702 
703 /*
704  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
705  * that the socket is held locked here: see sorflush().
706  */
707 void
708 sbrelease(struct sockbuf *sb, struct socket *so)
709 {
710 
711 	KASSERT(sb->sb_so == so);
712 
713 	sbflush(sb);
714 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
715 	sb->sb_mbmax = 0;
716 }
717 
718 /*
719  * Routines to add and remove
720  * data from an mbuf queue.
721  *
722  * The routines sbappend() or sbappendrecord() are normally called to
723  * append new mbufs to a socket buffer, after checking that adequate
724  * space is available, comparing the function sbspace() with the amount
725  * of data to be added.  sbappendrecord() differs from sbappend() in
726  * that data supplied is treated as the beginning of a new record.
727  * To place a sender's address, optional access rights, and data in a
728  * socket receive buffer, sbappendaddr() should be used.  To place
729  * access rights and data in a socket receive buffer, sbappendrights()
730  * should be used.  In either case, the new data begins a new record.
731  * Note that unlike sbappend() and sbappendrecord(), these routines check
732  * for the caller that there will be enough space to store the data.
733  * Each fails if there is not enough space, or if it cannot find mbufs
734  * to store additional information in.
735  *
736  * Reliable protocols may use the socket send buffer to hold data
737  * awaiting acknowledgement.  Data is normally copied from a socket
738  * send buffer in a protocol with m_copym for output to a peer,
739  * and then removing the data from the socket buffer with sbdrop()
740  * or sbdroprecord() when the data is acknowledged by the peer.
741  */
742 
743 #ifdef SOCKBUF_DEBUG
744 void
745 sblastrecordchk(struct sockbuf *sb, const char *where)
746 {
747 	struct mbuf *m = sb->sb_mb;
748 
749 	KASSERT(solocked(sb->sb_so));
750 
751 	while (m && m->m_nextpkt)
752 		m = m->m_nextpkt;
753 
754 	if (m != sb->sb_lastrecord) {
755 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
756 		    sb->sb_mb, sb->sb_lastrecord, m);
757 		printf("packet chain:\n");
758 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
759 			printf("\t%p\n", m);
760 		panic("sblastrecordchk from %s", where);
761 	}
762 }
763 
764 void
765 sblastmbufchk(struct sockbuf *sb, const char *where)
766 {
767 	struct mbuf *m = sb->sb_mb;
768 	struct mbuf *n;
769 
770 	KASSERT(solocked(sb->sb_so));
771 
772 	while (m && m->m_nextpkt)
773 		m = m->m_nextpkt;
774 
775 	while (m && m->m_next)
776 		m = m->m_next;
777 
778 	if (m != sb->sb_mbtail) {
779 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
780 		    sb->sb_mb, sb->sb_mbtail, m);
781 		printf("packet tree:\n");
782 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
783 			printf("\t");
784 			for (n = m; n != NULL; n = n->m_next)
785 				printf("%p ", n);
786 			printf("\n");
787 		}
788 		panic("sblastmbufchk from %s", where);
789 	}
790 }
791 #endif /* SOCKBUF_DEBUG */
792 
793 /*
794  * Link a chain of records onto a socket buffer
795  */
796 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
797 do {									\
798 	if ((sb)->sb_lastrecord != NULL)				\
799 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
800 	else								\
801 		(sb)->sb_mb = (m0);					\
802 	(sb)->sb_lastrecord = (mlast);					\
803 } while (/*CONSTCOND*/0)
804 
805 
806 #define	SBLINKRECORD(sb, m0)						\
807     SBLINKRECORDCHAIN(sb, m0, m0)
808 
809 /*
810  * Append mbuf chain m to the last record in the
811  * socket buffer sb.  The additional space associated
812  * the mbuf chain is recorded in sb.  Empty mbufs are
813  * discarded and mbufs are compacted where possible.
814  */
815 void
816 sbappend(struct sockbuf *sb, struct mbuf *m)
817 {
818 	struct mbuf	*n;
819 
820 	KASSERT(solocked(sb->sb_so));
821 
822 	if (m == NULL)
823 		return;
824 
825 #ifdef MBUFTRACE
826 	m_claimm(m, sb->sb_mowner);
827 #endif
828 
829 	SBLASTRECORDCHK(sb, "sbappend 1");
830 
831 	if ((n = sb->sb_lastrecord) != NULL) {
832 		/*
833 		 * XXX Would like to simply use sb_mbtail here, but
834 		 * XXX I need to verify that I won't miss an EOR that
835 		 * XXX way.
836 		 */
837 		do {
838 			if (n->m_flags & M_EOR) {
839 				sbappendrecord(sb, m); /* XXXXXX!!!! */
840 				return;
841 			}
842 		} while (n->m_next && (n = n->m_next));
843 	} else {
844 		/*
845 		 * If this is the first record in the socket buffer, it's
846 		 * also the last record.
847 		 */
848 		sb->sb_lastrecord = m;
849 	}
850 	sbcompress(sb, m, n);
851 	SBLASTRECORDCHK(sb, "sbappend 2");
852 }
853 
854 /*
855  * This version of sbappend() should only be used when the caller
856  * absolutely knows that there will never be more than one record
857  * in the socket buffer, that is, a stream protocol (such as TCP).
858  */
859 void
860 sbappendstream(struct sockbuf *sb, struct mbuf *m)
861 {
862 
863 	KASSERT(solocked(sb->sb_so));
864 	KDASSERT(m->m_nextpkt == NULL);
865 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
866 
867 	SBLASTMBUFCHK(sb, __func__);
868 
869 #ifdef MBUFTRACE
870 	m_claimm(m, sb->sb_mowner);
871 #endif
872 
873 	sbcompress(sb, m, sb->sb_mbtail);
874 
875 	sb->sb_lastrecord = sb->sb_mb;
876 	SBLASTRECORDCHK(sb, __func__);
877 }
878 
879 #ifdef SOCKBUF_DEBUG
880 void
881 sbcheck(struct sockbuf *sb)
882 {
883 	struct mbuf	*m, *m2;
884 	u_long		len, mbcnt;
885 
886 	KASSERT(solocked(sb->sb_so));
887 
888 	len = 0;
889 	mbcnt = 0;
890 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
891 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
892 			len += m2->m_len;
893 			mbcnt += MSIZE;
894 			if (m2->m_flags & M_EXT)
895 				mbcnt += m2->m_ext.ext_size;
896 			if (m2->m_nextpkt != NULL)
897 				panic("sbcheck nextpkt");
898 		}
899 	}
900 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
901 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
902 		    mbcnt, sb->sb_mbcnt);
903 		panic("sbcheck");
904 	}
905 }
906 #endif
907 
908 /*
909  * As above, except the mbuf chain
910  * begins a new record.
911  */
912 void
913 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
914 {
915 	struct mbuf	*m;
916 
917 	KASSERT(solocked(sb->sb_so));
918 
919 	if (m0 == NULL)
920 		return;
921 
922 #ifdef MBUFTRACE
923 	m_claimm(m0, sb->sb_mowner);
924 #endif
925 	/*
926 	 * Put the first mbuf on the queue.
927 	 * Note this permits zero length records.
928 	 */
929 	sballoc(sb, m0);
930 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
931 	SBLINKRECORD(sb, m0);
932 	m = m0->m_next;
933 	m0->m_next = 0;
934 	if (m && (m0->m_flags & M_EOR)) {
935 		m0->m_flags &= ~M_EOR;
936 		m->m_flags |= M_EOR;
937 	}
938 	sbcompress(sb, m, m0);
939 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
940 }
941 
942 /*
943  * As above except that OOB data
944  * is inserted at the beginning of the sockbuf,
945  * but after any other OOB data.
946  */
947 void
948 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
949 {
950 	struct mbuf	*m, **mp;
951 
952 	KASSERT(solocked(sb->sb_so));
953 
954 	if (m0 == NULL)
955 		return;
956 
957 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
958 
959 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
960 	    again:
961 		switch (m->m_type) {
962 
963 		case MT_OOBDATA:
964 			continue;		/* WANT next train */
965 
966 		case MT_CONTROL:
967 			if ((m = m->m_next) != NULL)
968 				goto again;	/* inspect THIS train further */
969 		}
970 		break;
971 	}
972 	/*
973 	 * Put the first mbuf on the queue.
974 	 * Note this permits zero length records.
975 	 */
976 	sballoc(sb, m0);
977 	m0->m_nextpkt = *mp;
978 	if (*mp == NULL) {
979 		/* m0 is actually the new tail */
980 		sb->sb_lastrecord = m0;
981 	}
982 	*mp = m0;
983 	m = m0->m_next;
984 	m0->m_next = 0;
985 	if (m && (m0->m_flags & M_EOR)) {
986 		m0->m_flags &= ~M_EOR;
987 		m->m_flags |= M_EOR;
988 	}
989 	sbcompress(sb, m, m0);
990 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
991 }
992 
993 /*
994  * Append address and data, and optionally, control (ancillary) data
995  * to the receive queue of a socket.  If present,
996  * m0 must include a packet header with total length.
997  * Returns 0 if no space in sockbuf or insufficient mbufs.
998  */
999 int
1000 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1001 	struct mbuf *control)
1002 {
1003 	struct mbuf	*m, *n, *nlast;
1004 	int		space, len;
1005 
1006 	KASSERT(solocked(sb->sb_so));
1007 
1008 	space = asa->sa_len;
1009 
1010 	if (m0 != NULL) {
1011 		if ((m0->m_flags & M_PKTHDR) == 0)
1012 			panic("sbappendaddr");
1013 		space += m0->m_pkthdr.len;
1014 #ifdef MBUFTRACE
1015 		m_claimm(m0, sb->sb_mowner);
1016 #endif
1017 	}
1018 	for (n = control; n; n = n->m_next) {
1019 		space += n->m_len;
1020 		MCLAIM(n, sb->sb_mowner);
1021 		if (n->m_next == NULL)	/* keep pointer to last control buf */
1022 			break;
1023 	}
1024 	if (space > sbspace(sb))
1025 		return (0);
1026 	m = m_get(M_DONTWAIT, MT_SONAME);
1027 	if (m == NULL)
1028 		return (0);
1029 	MCLAIM(m, sb->sb_mowner);
1030 	/*
1031 	 * XXX avoid 'comparison always true' warning which isn't easily
1032 	 * avoided.
1033 	 */
1034 	len = asa->sa_len;
1035 	if (len > MLEN) {
1036 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1037 		if ((m->m_flags & M_EXT) == 0) {
1038 			m_free(m);
1039 			return (0);
1040 		}
1041 	}
1042 	m->m_len = asa->sa_len;
1043 	memcpy(mtod(m, void *), asa, asa->sa_len);
1044 	if (n)
1045 		n->m_next = m0;		/* concatenate data to control */
1046 	else
1047 		control = m0;
1048 	m->m_next = control;
1049 
1050 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1051 
1052 	for (n = m; n->m_next != NULL; n = n->m_next)
1053 		sballoc(sb, n);
1054 	sballoc(sb, n);
1055 	nlast = n;
1056 	SBLINKRECORD(sb, m);
1057 
1058 	sb->sb_mbtail = nlast;
1059 	SBLASTMBUFCHK(sb, "sbappendaddr");
1060 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1061 
1062 	return (1);
1063 }
1064 
1065 /*
1066  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1067  * an mbuf chain.
1068  */
1069 static inline struct mbuf *
1070 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1071 		   const struct sockaddr *asa)
1072 {
1073 	struct mbuf *m;
1074 	const int salen = asa->sa_len;
1075 
1076 	KASSERT(solocked(sb->sb_so));
1077 
1078 	/* only the first in each chain need be a pkthdr */
1079 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1080 	if (m == NULL)
1081 		return NULL;
1082 	MCLAIM(m, sb->sb_mowner);
1083 #ifdef notyet
1084 	if (salen > MHLEN) {
1085 		MEXTMALLOC(m, salen, M_NOWAIT);
1086 		if ((m->m_flags & M_EXT) == 0) {
1087 			m_free(m);
1088 			return NULL;
1089 		}
1090 	}
1091 #else
1092 	KASSERT(salen <= MHLEN);
1093 #endif
1094 	m->m_len = salen;
1095 	memcpy(mtod(m, void *), asa, salen);
1096 	m->m_next = m0;
1097 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1098 
1099 	return m;
1100 }
1101 
1102 int
1103 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1104 		  struct mbuf *m0, int sbprio)
1105 {
1106 	struct mbuf *m, *n, *n0, *nlast;
1107 	int error;
1108 
1109 	KASSERT(solocked(sb->sb_so));
1110 
1111 	/*
1112 	 * XXX sbprio reserved for encoding priority of this* request:
1113 	 *  SB_PRIO_NONE --> honour normal sb limits
1114 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1115 	 *	take whole chain. Intended for large requests
1116 	 *      that should be delivered atomically (all, or none).
1117 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1118 	 *       over normal socket limits, for messages indicating
1119 	 *       buffer overflow in earlier normal/lower-priority messages
1120 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1121 	 *       Intended for  kernel-generated messages only.
1122 	 *        Up to generator to avoid total mbuf resource exhaustion.
1123 	 */
1124 	(void)sbprio;
1125 
1126 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1127 		panic("sbappendaddrchain");
1128 
1129 #ifdef notyet
1130 	space = sbspace(sb);
1131 
1132 	/*
1133 	 * Enforce SB_PRIO_* limits as described above.
1134 	 */
1135 #endif
1136 
1137 	n0 = NULL;
1138 	nlast = NULL;
1139 	for (m = m0; m; m = m->m_nextpkt) {
1140 		struct mbuf *np;
1141 
1142 #ifdef MBUFTRACE
1143 		m_claimm(m, sb->sb_mowner);
1144 #endif
1145 
1146 		/* Prepend sockaddr to this record (m) of input chain m0 */
1147 	  	n = m_prepend_sockaddr(sb, m, asa);
1148 		if (n == NULL) {
1149 			error = ENOBUFS;
1150 			goto bad;
1151 		}
1152 
1153 		/* Append record (asa+m) to end of new chain n0 */
1154 		if (n0 == NULL) {
1155 			n0 = n;
1156 		} else {
1157 			nlast->m_nextpkt = n;
1158 		}
1159 		/* Keep track of last record on new chain */
1160 		nlast = n;
1161 
1162 		for (np = n; np; np = np->m_next)
1163 			sballoc(sb, np);
1164 	}
1165 
1166 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1167 
1168 	/* Drop the entire chain of (asa+m) records onto the socket */
1169 	SBLINKRECORDCHAIN(sb, n0, nlast);
1170 
1171 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1172 
1173 	for (m = nlast; m->m_next; m = m->m_next)
1174 		;
1175 	sb->sb_mbtail = m;
1176 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1177 
1178 	return (1);
1179 
1180 bad:
1181 	/*
1182 	 * On error, free the prepended addreseses. For consistency
1183 	 * with sbappendaddr(), leave it to our caller to free
1184 	 * the input record chain passed to us as m0.
1185 	 */
1186 	while ((n = n0) != NULL) {
1187 	  	struct mbuf *np;
1188 
1189 		/* Undo the sballoc() of this record */
1190 		for (np = n; np; np = np->m_next)
1191 			sbfree(sb, np);
1192 
1193 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1194 		np = m_free(n);		/* free prepended address (not data) */
1195 	}
1196 	return error;
1197 }
1198 
1199 
1200 int
1201 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1202 {
1203 	struct mbuf	*m, *mlast, *n;
1204 	int		space;
1205 
1206 	KASSERT(solocked(sb->sb_so));
1207 
1208 	space = 0;
1209 	if (control == NULL)
1210 		panic("sbappendcontrol");
1211 	for (m = control; ; m = m->m_next) {
1212 		space += m->m_len;
1213 		MCLAIM(m, sb->sb_mowner);
1214 		if (m->m_next == NULL)
1215 			break;
1216 	}
1217 	n = m;			/* save pointer to last control buffer */
1218 	for (m = m0; m; m = m->m_next) {
1219 		MCLAIM(m, sb->sb_mowner);
1220 		space += m->m_len;
1221 	}
1222 	if (space > sbspace(sb))
1223 		return (0);
1224 	n->m_next = m0;			/* concatenate data to control */
1225 
1226 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1227 
1228 	for (m = control; m->m_next != NULL; m = m->m_next)
1229 		sballoc(sb, m);
1230 	sballoc(sb, m);
1231 	mlast = m;
1232 	SBLINKRECORD(sb, control);
1233 
1234 	sb->sb_mbtail = mlast;
1235 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1236 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1237 
1238 	return (1);
1239 }
1240 
1241 /*
1242  * Compress mbuf chain m into the socket
1243  * buffer sb following mbuf n.  If n
1244  * is null, the buffer is presumed empty.
1245  */
1246 void
1247 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1248 {
1249 	int		eor;
1250 	struct mbuf	*o;
1251 
1252 	KASSERT(solocked(sb->sb_so));
1253 
1254 	eor = 0;
1255 	while (m) {
1256 		eor |= m->m_flags & M_EOR;
1257 		if (m->m_len == 0 &&
1258 		    (eor == 0 ||
1259 		     (((o = m->m_next) || (o = n)) &&
1260 		      o->m_type == m->m_type))) {
1261 			if (sb->sb_lastrecord == m)
1262 				sb->sb_lastrecord = m->m_next;
1263 			m = m_free(m);
1264 			continue;
1265 		}
1266 		if (n && (n->m_flags & M_EOR) == 0 &&
1267 		    /* M_TRAILINGSPACE() checks buffer writeability */
1268 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1269 		    m->m_len <= M_TRAILINGSPACE(n) &&
1270 		    n->m_type == m->m_type) {
1271 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1272 			    (unsigned)m->m_len);
1273 			n->m_len += m->m_len;
1274 			sb->sb_cc += m->m_len;
1275 			m = m_free(m);
1276 			continue;
1277 		}
1278 		if (n)
1279 			n->m_next = m;
1280 		else
1281 			sb->sb_mb = m;
1282 		sb->sb_mbtail = m;
1283 		sballoc(sb, m);
1284 		n = m;
1285 		m->m_flags &= ~M_EOR;
1286 		m = m->m_next;
1287 		n->m_next = 0;
1288 	}
1289 	if (eor) {
1290 		if (n)
1291 			n->m_flags |= eor;
1292 		else
1293 			printf("semi-panic: sbcompress\n");
1294 	}
1295 	SBLASTMBUFCHK(sb, __func__);
1296 }
1297 
1298 /*
1299  * Free all mbufs in a sockbuf.
1300  * Check that all resources are reclaimed.
1301  */
1302 void
1303 sbflush(struct sockbuf *sb)
1304 {
1305 
1306 	KASSERT(solocked(sb->sb_so));
1307 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1308 
1309 	while (sb->sb_mbcnt)
1310 		sbdrop(sb, (int)sb->sb_cc);
1311 
1312 	KASSERT(sb->sb_cc == 0);
1313 	KASSERT(sb->sb_mb == NULL);
1314 	KASSERT(sb->sb_mbtail == NULL);
1315 	KASSERT(sb->sb_lastrecord == NULL);
1316 }
1317 
1318 /*
1319  * Drop data from (the front of) a sockbuf.
1320  */
1321 void
1322 sbdrop(struct sockbuf *sb, int len)
1323 {
1324 	struct mbuf	*m, *next;
1325 
1326 	KASSERT(solocked(sb->sb_so));
1327 
1328 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1329 	while (len > 0) {
1330 		if (m == NULL) {
1331 			if (next == NULL)
1332 				panic("sbdrop(%p,%d): cc=%lu",
1333 				    sb, len, sb->sb_cc);
1334 			m = next;
1335 			next = m->m_nextpkt;
1336 			continue;
1337 		}
1338 		if (m->m_len > len) {
1339 			m->m_len -= len;
1340 			m->m_data += len;
1341 			sb->sb_cc -= len;
1342 			break;
1343 		}
1344 		len -= m->m_len;
1345 		sbfree(sb, m);
1346 		m = m_free(m);
1347 	}
1348 	while (m && m->m_len == 0) {
1349 		sbfree(sb, m);
1350 		m = m_free(m);
1351 	}
1352 	if (m) {
1353 		sb->sb_mb = m;
1354 		m->m_nextpkt = next;
1355 	} else
1356 		sb->sb_mb = next;
1357 	/*
1358 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1359 	 * makes sure sb_lastrecord is up-to-date if we dropped
1360 	 * part of the last record.
1361 	 */
1362 	m = sb->sb_mb;
1363 	if (m == NULL) {
1364 		sb->sb_mbtail = NULL;
1365 		sb->sb_lastrecord = NULL;
1366 	} else if (m->m_nextpkt == NULL)
1367 		sb->sb_lastrecord = m;
1368 }
1369 
1370 /*
1371  * Drop a record off the front of a sockbuf
1372  * and move the next record to the front.
1373  */
1374 void
1375 sbdroprecord(struct sockbuf *sb)
1376 {
1377 	struct mbuf	*m, *mn;
1378 
1379 	KASSERT(solocked(sb->sb_so));
1380 
1381 	m = sb->sb_mb;
1382 	if (m) {
1383 		sb->sb_mb = m->m_nextpkt;
1384 		do {
1385 			sbfree(sb, m);
1386 			mn = m_free(m);
1387 		} while ((m = mn) != NULL);
1388 	}
1389 	SB_EMPTY_FIXUP(sb);
1390 }
1391 
1392 /*
1393  * Create a "control" mbuf containing the specified data
1394  * with the specified type for presentation on a socket buffer.
1395  */
1396 struct mbuf *
1397 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1398 {
1399 	struct cmsghdr	*cp;
1400 	struct mbuf	*m;
1401 	int space = CMSG_SPACE(size);
1402 
1403 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1404 		printf("%s: message too large %d\n", __func__, space);
1405 		return NULL;
1406 	}
1407 
1408 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1409 		return NULL;
1410 	if (space > MLEN) {
1411 		if (space > MCLBYTES)
1412 			MEXTMALLOC(m, space, M_WAITOK);
1413 		else
1414 			MCLGET(m, flags);
1415 		if ((m->m_flags & M_EXT) == 0) {
1416 			m_free(m);
1417 			return NULL;
1418 		}
1419 	}
1420 	cp = mtod(m, struct cmsghdr *);
1421 	*p = CMSG_DATA(cp);
1422 	m->m_len = space;
1423 	cp->cmsg_len = CMSG_LEN(size);
1424 	cp->cmsg_level = level;
1425 	cp->cmsg_type = type;
1426 
1427 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1428 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1429 
1430 	return m;
1431 }
1432 
1433 struct mbuf *
1434 sbcreatecontrol(void *p, int size, int type, int level)
1435 {
1436 	struct mbuf *m;
1437 	void *v;
1438 
1439 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1440 	if (m == NULL)
1441 		return NULL;
1442 	memcpy(v, p, size);
1443 	return m;
1444 }
1445 
1446 void
1447 solockretry(struct socket *so, kmutex_t *lock)
1448 {
1449 
1450 	while (lock != so->so_lock) {
1451 		mutex_exit(lock);
1452 		lock = so->so_lock;
1453 		mutex_enter(lock);
1454 	}
1455 }
1456 
1457 bool
1458 solocked(const struct socket *so)
1459 {
1460 
1461 	return mutex_owned(so->so_lock);
1462 }
1463 
1464 bool
1465 solocked2(const struct socket *so1, const struct socket *so2)
1466 {
1467 	const kmutex_t *lock;
1468 
1469 	lock = so1->so_lock;
1470 	if (lock != so2->so_lock)
1471 		return false;
1472 	return mutex_owned(lock);
1473 }
1474 
1475 /*
1476  * sosetlock: assign a default lock to a new socket.
1477  */
1478 void
1479 sosetlock(struct socket *so)
1480 {
1481 	if (so->so_lock == NULL) {
1482 		kmutex_t *lock = softnet_lock;
1483 
1484 		so->so_lock = lock;
1485 		mutex_obj_hold(lock);
1486 		mutex_enter(lock);
1487 	}
1488 	KASSERT(solocked(so));
1489 }
1490 
1491 /*
1492  * Set lock on sockbuf sb; sleep if lock is already held.
1493  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1494  * Returns error without lock if sleep is interrupted.
1495  */
1496 int
1497 sblock(struct sockbuf *sb, int wf)
1498 {
1499 	struct socket *so;
1500 	kmutex_t *lock;
1501 	int error;
1502 
1503 	KASSERT(solocked(sb->sb_so));
1504 
1505 	for (;;) {
1506 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1507 			sb->sb_flags |= SB_LOCK;
1508 			return 0;
1509 		}
1510 		if (wf != M_WAITOK)
1511 			return EWOULDBLOCK;
1512 		so = sb->sb_so;
1513 		lock = so->so_lock;
1514 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1515 			cv_wait(&so->so_cv, lock);
1516 			error = 0;
1517 		} else
1518 			error = cv_wait_sig(&so->so_cv, lock);
1519 		if (__predict_false(lock != so->so_lock))
1520 			solockretry(so, lock);
1521 		if (error != 0)
1522 			return error;
1523 	}
1524 }
1525 
1526 void
1527 sbunlock(struct sockbuf *sb)
1528 {
1529 	struct socket *so;
1530 
1531 	so = sb->sb_so;
1532 
1533 	KASSERT(solocked(so));
1534 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1535 
1536 	sb->sb_flags &= ~SB_LOCK;
1537 	cv_broadcast(&so->so_cv);
1538 }
1539 
1540 int
1541 sowait(struct socket *so, bool catch_p, int timo)
1542 {
1543 	kmutex_t *lock;
1544 	int error;
1545 
1546 	KASSERT(solocked(so));
1547 	KASSERT(catch_p || timo != 0);
1548 
1549 	lock = so->so_lock;
1550 	if (catch_p)
1551 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1552 	else
1553 		error = cv_timedwait(&so->so_cv, lock, timo);
1554 	if (__predict_false(lock != so->so_lock))
1555 		solockretry(so, lock);
1556 	return error;
1557 }
1558 
1559 #ifdef DDB
1560 
1561 /*
1562  * Currently, sofindproc() is used only from DDB. It could be used from others
1563  * by using db_mutex_enter()
1564  */
1565 
1566 static inline int
1567 db_mutex_enter(kmutex_t *mtx)
1568 {
1569 	extern int db_active;
1570 	int rv;
1571 
1572 	if (!db_active) {
1573 		mutex_enter(mtx);
1574 		rv = 1;
1575 	} else
1576 		rv = mutex_tryenter(mtx);
1577 
1578 	return rv;
1579 }
1580 
1581 int
1582 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1583 {
1584 	proc_t *p;
1585 	filedesc_t *fdp;
1586 	fdtab_t *dt;
1587 	fdfile_t *ff;
1588 	file_t *fp = NULL;
1589 	int found = 0;
1590 	int i, t;
1591 
1592 	if (so == NULL)
1593 		return 0;
1594 
1595 	t = db_mutex_enter(&proc_lock);
1596 	if (!t) {
1597 		pr("could not acquire proc_lock mutex\n");
1598 		return 0;
1599 	}
1600 	PROCLIST_FOREACH(p, &allproc) {
1601 		if (p->p_stat == SIDL)
1602 			continue;
1603 		fdp = p->p_fd;
1604 		t = db_mutex_enter(&fdp->fd_lock);
1605 		if (!t) {
1606 			pr("could not acquire fd_lock mutex\n");
1607 			continue;
1608 		}
1609 		dt = atomic_load_consume(&fdp->fd_dt);
1610 		for (i = 0; i < dt->dt_nfiles; i++) {
1611 			ff = dt->dt_ff[i];
1612 			if (ff == NULL)
1613 				continue;
1614 
1615 			fp = atomic_load_consume(&ff->ff_file);
1616 			if (fp == NULL)
1617 				continue;
1618 
1619 			t = db_mutex_enter(&fp->f_lock);
1620 			if (!t) {
1621 				pr("could not acquire f_lock mutex\n");
1622 				continue;
1623 			}
1624 			if ((struct socket *)fp->f_data != so) {
1625 				mutex_exit(&fp->f_lock);
1626 				continue;
1627 			}
1628 			found++;
1629 			if (pr)
1630 				pr("socket %p: owner %s(pid=%d)\n",
1631 				    so, p->p_comm, p->p_pid);
1632 			mutex_exit(&fp->f_lock);
1633 			if (all == 0)
1634 				break;
1635 		}
1636 		mutex_exit(&fdp->fd_lock);
1637 		if (all == 0 && found != 0)
1638 			break;
1639 	}
1640 	mutex_exit(&proc_lock);
1641 
1642 	return found;
1643 }
1644 
1645 void
1646 socket_print(const char *modif, void (*pr)(const char *, ...))
1647 {
1648 	file_t *fp;
1649 	struct socket *so;
1650 	struct sockbuf *sb_snd, *sb_rcv;
1651 	struct mbuf *m_rec, *m;
1652 	bool opt_v = false;
1653 	bool opt_m = false;
1654 	bool opt_a = false;
1655 	bool opt_p = false;
1656 	int nrecs, nmbufs;
1657 	char ch;
1658 	const char *family;
1659 
1660 	while ( (ch = *(modif++)) != '\0') {
1661 		switch (ch) {
1662 		case 'v':
1663 			opt_v = true;
1664 			break;
1665 		case 'm':
1666 			opt_m = true;
1667 			break;
1668 		case 'a':
1669 			opt_a = true;
1670 			break;
1671 		case 'p':
1672 			opt_p = true;
1673 			break;
1674 		}
1675 	}
1676 	if (opt_v == false && pr)
1677 		(pr)("Ignore empty sockets. use /v to print all.\n");
1678 	if (opt_p == true && pr)
1679 		(pr)("Don't search owner process.\n");
1680 
1681 	LIST_FOREACH(fp, &filehead, f_list) {
1682 		if (fp->f_type != DTYPE_SOCKET)
1683 			continue;
1684 		so = (struct socket *)fp->f_data;
1685 		if (so == NULL)
1686 			continue;
1687 
1688 		if (so->so_proto->pr_domain->dom_family == AF_INET)
1689 			family = "INET";
1690 #ifdef INET6
1691 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1692 			family = "INET6";
1693 #endif
1694 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1695 			family = "KEY";
1696 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1697 			family = "ROUTE";
1698 		else
1699 			continue;
1700 
1701 		sb_snd = &so->so_snd;
1702 		sb_rcv = &so->so_rcv;
1703 
1704 		if (opt_v != true &&
1705 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1706 			continue;
1707 
1708 		pr("---SOCKET %p: type %s\n", so, family);
1709 		if (opt_p != true)
1710 			sofindproc(so, opt_a == true ? 1 : 0, pr);
1711 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1712 		pr("Send Buffer mbufs:\n");
1713 		m_rec = m = sb_snd->sb_mb;
1714 		nrecs = 0;
1715 		nmbufs = 0;
1716 		while (m_rec) {
1717 			nrecs++;
1718 			if (opt_m == true)
1719 				pr(" mbuf chain %p\n", m_rec);
1720 			while (m) {
1721 				nmbufs++;
1722 				m = m->m_next;
1723 			}
1724 			m_rec = m = m_rec->m_nextpkt;
1725 		}
1726 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1727 
1728 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1729 		pr("Recv Buffer mbufs:\n");
1730 		m_rec = m = sb_rcv->sb_mb;
1731 		nrecs = 0;
1732 		nmbufs = 0;
1733 		while (m_rec) {
1734 			nrecs++;
1735 			if (opt_m == true)
1736 				pr(" mbuf chain %p\n", m_rec);
1737 			while (m) {
1738 				nmbufs++;
1739 				m = m->m_next;
1740 			}
1741 			m_rec = m = m_rec->m_nextpkt;
1742 		}
1743 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1744 	}
1745 }
1746 #endif /* DDB */
1747