xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 4d342c046e3288fb5a1edcd33cfec48c41c80664)
1 /*	$NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.138 2020/08/26 22:54:30 christos Exp $");
62 
63 #ifdef _KERNEL_OPT
64 #include "opt_ddb.h"
65 #include "opt_mbuftrace.h"
66 #include "opt_sb_max.h"
67 #endif
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/proc.h>
72 #include <sys/file.h>
73 #include <sys/buf.h>
74 #include <sys/mbuf.h>
75 #include <sys/protosw.h>
76 #include <sys/domain.h>
77 #include <sys/poll.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/signalvar.h>
81 #include <sys/kauth.h>
82 #include <sys/pool.h>
83 #include <sys/uidinfo.h>
84 
85 #ifdef DDB
86 #include <sys/filedesc.h>
87 #endif
88 
89 /*
90  * Primitive routines for operating on sockets and socket buffers.
91  *
92  * Connection life-cycle:
93  *
94  *	Normal sequence from the active (originating) side:
95  *
96  *	- soisconnecting() is called during processing of connect() call,
97  *	- resulting in an eventual call to soisconnected() if/when the
98  *	  connection is established.
99  *
100  *	When the connection is torn down during processing of disconnect():
101  *
102  *	- soisdisconnecting() is called and,
103  *	- soisdisconnected() is called when the connection to the peer
104  *	  is totally severed.
105  *
106  *	The semantics of these routines are such that connectionless protocols
107  *	can call soisconnected() and soisdisconnected() only, bypassing the
108  *	in-progress calls when setting up a ``connection'' takes no time.
109  *
110  *	From the passive side, a socket is created with two queues of sockets:
111  *
112  *	- so_q0 (0) for partial connections (i.e. connections in progress)
113  *	- so_q (1) for connections already made and awaiting user acceptance.
114  *
115  *	As a protocol is preparing incoming connections, it creates a socket
116  *	structure queued on so_q0 by calling sonewconn().  When the connection
117  *	is established, soisconnected() is called, and transfers the
118  *	socket structure to so_q, making it available to accept().
119  *
120  *	If a socket is closed with sockets on either so_q0 or so_q, these
121  *	sockets are dropped.
122  *
123  * Locking rules and assumptions:
124  *
125  * o socket::so_lock can change on the fly.  The low level routines used
126  *   to lock sockets are aware of this.  When so_lock is acquired, the
127  *   routine locking must check to see if so_lock still points to the
128  *   lock that was acquired.  If so_lock has changed in the meantime, the
129  *   now irrelevant lock that was acquired must be dropped and the lock
130  *   operation retried.  Although not proven here, this is completely safe
131  *   on a multiprocessor system, even with relaxed memory ordering, given
132  *   the next two rules:
133  *
134  * o In order to mutate so_lock, the lock pointed to by the current value
135  *   of so_lock must be held: i.e., the socket must be held locked by the
136  *   changing thread.  The thread must issue membar_exit() to prevent
137  *   memory accesses being reordered, and can set so_lock to the desired
138  *   value.  If the lock pointed to by the new value of so_lock is not
139  *   held by the changing thread, the socket must then be considered
140  *   unlocked.
141  *
142  * o If so_lock is mutated, and the previous lock referred to by so_lock
143  *   could still be visible to other threads in the system (e.g. via file
144  *   descriptor or protocol-internal reference), then the old lock must
145  *   remain valid until the socket and/or protocol control block has been
146  *   torn down.
147  *
148  * o If a socket has a non-NULL so_head value (i.e. is in the process of
149  *   connecting), then locking the socket must also lock the socket pointed
150  *   to by so_head: their lock pointers must match.
151  *
152  * o If a socket has connections in progress (so_q, so_q0 not empty) then
153  *   locking the socket must also lock the sockets attached to both queues.
154  *   Again, their lock pointers must match.
155  *
156  * o Beyond the initial lock assignment in socreate(), assigning locks to
157  *   sockets is the responsibility of the individual protocols / protocol
158  *   domains.
159  */
160 
161 static pool_cache_t	socket_cache;
162 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
163 static u_long		sb_max_adj;	/* adjusted sb_max */
164 
165 void
166 soisconnecting(struct socket *so)
167 {
168 
169 	KASSERT(solocked(so));
170 
171 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
172 	so->so_state |= SS_ISCONNECTING;
173 }
174 
175 void
176 soisconnected(struct socket *so)
177 {
178 	struct socket	*head;
179 
180 	head = so->so_head;
181 
182 	KASSERT(solocked(so));
183 	KASSERT(head == NULL || solocked2(so, head));
184 
185 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
186 	so->so_state |= SS_ISCONNECTED;
187 	if (head && so->so_onq == &head->so_q0) {
188 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
189 			/*
190 			 * Re-enqueue and wake up any waiters, e.g.
191 			 * processes blocking on accept().
192 			 */
193 			soqremque(so, 0);
194 			soqinsque(head, so, 1);
195 			sorwakeup(head);
196 			cv_broadcast(&head->so_cv);
197 		} else {
198 			so->so_upcall =
199 			    head->so_accf->so_accept_filter->accf_callback;
200 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
201 			so->so_rcv.sb_flags |= SB_UPCALL;
202 			so->so_options &= ~SO_ACCEPTFILTER;
203 			(*so->so_upcall)(so, so->so_upcallarg,
204 					 POLLIN|POLLRDNORM, M_DONTWAIT);
205 		}
206 	} else {
207 		cv_broadcast(&so->so_cv);
208 		sorwakeup(so);
209 		sowwakeup(so);
210 	}
211 }
212 
213 void
214 soisdisconnecting(struct socket *so)
215 {
216 
217 	KASSERT(solocked(so));
218 
219 	so->so_state &= ~SS_ISCONNECTING;
220 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
221 	cv_broadcast(&so->so_cv);
222 	sowwakeup(so);
223 	sorwakeup(so);
224 }
225 
226 void
227 soisdisconnected(struct socket *so)
228 {
229 
230 	KASSERT(solocked(so));
231 
232 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
233 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
234 	cv_broadcast(&so->so_cv);
235 	sowwakeup(so);
236 	sorwakeup(so);
237 }
238 
239 void
240 soinit2(void)
241 {
242 
243 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
244 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
245 }
246 
247 /*
248  * sonewconn: accept a new connection.
249  *
250  * When an attempt at a new connection is noted on a socket which accepts
251  * connections, sonewconn(9) is called.  If the connection is possible
252  * (subject to space constraints, etc) then we allocate a new structure,
253  * properly linked into the data structure of the original socket.
254  *
255  * => If 'soready' is true, then socket will become ready for accept() i.e.
256  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
257  * => May be called from soft-interrupt context.
258  * => Listening socket should be locked.
259  * => Returns the new socket locked.
260  */
261 struct socket *
262 sonewconn(struct socket *head, bool soready)
263 {
264 	struct socket *so;
265 	int soqueue, error;
266 
267 	KASSERT(solocked(head));
268 
269 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
270 		/*
271 		 * Listen queue overflow.  If there is an accept filter
272 		 * active, pass through the oldest cxn it's handling.
273 		 */
274 		if (head->so_accf == NULL) {
275 			return NULL;
276 		} else {
277 			struct socket *so2, *next;
278 
279 			/* Pass the oldest connection waiting in the
280 			   accept filter */
281 			for (so2 = TAILQ_FIRST(&head->so_q0);
282 			     so2 != NULL; so2 = next) {
283 				next = TAILQ_NEXT(so2, so_qe);
284 				if (so2->so_upcall == NULL) {
285 					continue;
286 				}
287 				so2->so_upcall = NULL;
288 				so2->so_upcallarg = NULL;
289 				so2->so_options &= ~SO_ACCEPTFILTER;
290 				so2->so_rcv.sb_flags &= ~SB_UPCALL;
291 				soisconnected(so2);
292 				break;
293 			}
294 
295 			/* If nothing was nudged out of the acept filter, bail
296 			 * out; otherwise proceed allocating the socket. */
297 			if (so2 == NULL) {
298 				return NULL;
299 			}
300 		}
301 	}
302 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
303 		soready = false;
304 	}
305 	soqueue = soready ? 1 : 0;
306 
307 	if ((so = soget(false)) == NULL) {
308 		return NULL;
309 	}
310 	so->so_type = head->so_type;
311 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
312 	so->so_linger = head->so_linger;
313 	so->so_state = head->so_state | SS_NOFDREF;
314 	so->so_proto = head->so_proto;
315 	so->so_timeo = head->so_timeo;
316 	so->so_pgid = head->so_pgid;
317 	so->so_send = head->so_send;
318 	so->so_receive = head->so_receive;
319 	so->so_uidinfo = head->so_uidinfo;
320 	so->so_egid = head->so_egid;
321 	so->so_cpid = head->so_cpid;
322 
323 	/*
324 	 * Share the lock with the listening-socket, it may get unshared
325 	 * once the connection is complete.
326 	 */
327 	mutex_obj_hold(head->so_lock);
328 	so->so_lock = head->so_lock;
329 
330 	/*
331 	 * Reserve the space for socket buffers.
332 	 */
333 #ifdef MBUFTRACE
334 	so->so_mowner = head->so_mowner;
335 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
336 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
337 #endif
338 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
339 		goto out;
340 	}
341 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
342 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
343 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
344 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
345 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
346 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
347 
348 	/*
349 	 * Finally, perform the protocol attach.  Note: a new socket
350 	 * lock may be assigned at this point (if so, it will be held).
351 	 */
352 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
353 	if (error) {
354 out:
355 		KASSERT(solocked(so));
356 		KASSERT(so->so_accf == NULL);
357 		soput(so);
358 
359 		/* Note: the listening socket shall stay locked. */
360 		KASSERT(solocked(head));
361 		return NULL;
362 	}
363 	KASSERT(solocked2(head, so));
364 
365 	/*
366 	 * Insert into the queue.  If ready, update the connection status
367 	 * and wake up any waiters, e.g. processes blocking on accept().
368 	 */
369 	soqinsque(head, so, soqueue);
370 	if (soready) {
371 		so->so_state |= SS_ISCONNECTED;
372 		sorwakeup(head);
373 		cv_broadcast(&head->so_cv);
374 	}
375 	return so;
376 }
377 
378 struct socket *
379 soget(bool waitok)
380 {
381 	struct socket *so;
382 
383 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
384 	if (__predict_false(so == NULL))
385 		return (NULL);
386 	memset(so, 0, sizeof(*so));
387 	TAILQ_INIT(&so->so_q0);
388 	TAILQ_INIT(&so->so_q);
389 	cv_init(&so->so_cv, "socket");
390 	cv_init(&so->so_rcv.sb_cv, "netio");
391 	cv_init(&so->so_snd.sb_cv, "netio");
392 	selinit(&so->so_rcv.sb_sel);
393 	selinit(&so->so_snd.sb_sel);
394 	so->so_rcv.sb_so = so;
395 	so->so_snd.sb_so = so;
396 	return so;
397 }
398 
399 void
400 soput(struct socket *so)
401 {
402 
403 	KASSERT(!cv_has_waiters(&so->so_cv));
404 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
405 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
406 	seldestroy(&so->so_rcv.sb_sel);
407 	seldestroy(&so->so_snd.sb_sel);
408 	mutex_obj_free(so->so_lock);
409 	cv_destroy(&so->so_cv);
410 	cv_destroy(&so->so_rcv.sb_cv);
411 	cv_destroy(&so->so_snd.sb_cv);
412 	pool_cache_put(socket_cache, so);
413 }
414 
415 /*
416  * soqinsque: insert socket of a new connection into the specified
417  * accept queue of the listening socket (head).
418  *
419  *	q = 0: queue of partial connections
420  *	q = 1: queue of incoming connections
421  */
422 void
423 soqinsque(struct socket *head, struct socket *so, int q)
424 {
425 	KASSERT(q == 0 || q == 1);
426 	KASSERT(solocked2(head, so));
427 	KASSERT(so->so_onq == NULL);
428 	KASSERT(so->so_head == NULL);
429 
430 	so->so_head = head;
431 	if (q == 0) {
432 		head->so_q0len++;
433 		so->so_onq = &head->so_q0;
434 	} else {
435 		head->so_qlen++;
436 		so->so_onq = &head->so_q;
437 	}
438 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
439 }
440 
441 /*
442  * soqremque: remove socket from the specified queue.
443  *
444  * => Returns true if socket was removed from the specified queue.
445  * => False if socket was not removed (because it was in other queue).
446  */
447 bool
448 soqremque(struct socket *so, int q)
449 {
450 	struct socket *head = so->so_head;
451 
452 	KASSERT(q == 0 || q == 1);
453 	KASSERT(solocked(so));
454 	KASSERT(so->so_onq != NULL);
455 	KASSERT(head != NULL);
456 
457 	if (q == 0) {
458 		if (so->so_onq != &head->so_q0)
459 			return false;
460 		head->so_q0len--;
461 	} else {
462 		if (so->so_onq != &head->so_q)
463 			return false;
464 		head->so_qlen--;
465 	}
466 	KASSERT(solocked2(so, head));
467 	TAILQ_REMOVE(so->so_onq, so, so_qe);
468 	so->so_onq = NULL;
469 	so->so_head = NULL;
470 	return true;
471 }
472 
473 /*
474  * socantsendmore: indicates that no more data will be sent on the
475  * socket; it would normally be applied to a socket when the user
476  * informs the system that no more data is to be sent, by the protocol
477  * code (in case pr_shutdown()).
478  */
479 void
480 socantsendmore(struct socket *so)
481 {
482 	KASSERT(solocked(so));
483 
484 	so->so_state |= SS_CANTSENDMORE;
485 	sowwakeup(so);
486 }
487 
488 /*
489  * socantrcvmore(): indicates that no more data will be received and
490  * will normally be applied to the socket by a protocol when it detects
491  * that the peer will send no more data.  Data queued for reading in
492  * the socket may yet be read.
493  */
494 void
495 socantrcvmore(struct socket *so)
496 {
497 	KASSERT(solocked(so));
498 
499 	so->so_state |= SS_CANTRCVMORE;
500 	sorwakeup(so);
501 }
502 
503 /*
504  * soroverflow(): indicates that data was attempted to be sent
505  * but the receiving buffer overflowed.
506  */
507 void
508 soroverflow(struct socket *so)
509 {
510 	KASSERT(solocked(so));
511 
512 	so->so_rcv.sb_overflowed++;
513 	if (so->so_options & SO_RERROR)  {
514 		so->so_rerror = ENOBUFS;
515 		sorwakeup(so);
516 	}
517 }
518 
519 /*
520  * Wait for data to arrive at/drain from a socket buffer.
521  */
522 int
523 sbwait(struct sockbuf *sb)
524 {
525 	struct socket *so;
526 	kmutex_t *lock;
527 	int error;
528 
529 	so = sb->sb_so;
530 
531 	KASSERT(solocked(so));
532 
533 	sb->sb_flags |= SB_NOTIFY;
534 	lock = so->so_lock;
535 	if ((sb->sb_flags & SB_NOINTR) != 0)
536 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
537 	else
538 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
539 	if (__predict_false(lock != so->so_lock))
540 		solockretry(so, lock);
541 	return error;
542 }
543 
544 /*
545  * Wakeup processes waiting on a socket buffer.
546  * Do asynchronous notification via SIGIO
547  * if the socket buffer has the SB_ASYNC flag set.
548  */
549 void
550 sowakeup(struct socket *so, struct sockbuf *sb, int code)
551 {
552 	int band;
553 
554 	KASSERT(solocked(so));
555 	KASSERT(sb->sb_so == so);
556 
557 	if (code == POLL_IN)
558 		band = POLLIN|POLLRDNORM;
559 	else
560 		band = POLLOUT|POLLWRNORM;
561 	sb->sb_flags &= ~SB_NOTIFY;
562 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
563 	cv_broadcast(&sb->sb_cv);
564 	if (sb->sb_flags & SB_ASYNC)
565 		fownsignal(so->so_pgid, SIGIO, code, band, so);
566 	if (sb->sb_flags & SB_UPCALL)
567 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
568 }
569 
570 /*
571  * Reset a socket's lock pointer.  Wake all threads waiting on the
572  * socket's condition variables so that they can restart their waits
573  * using the new lock.  The existing lock must be held.
574  */
575 void
576 solockreset(struct socket *so, kmutex_t *lock)
577 {
578 
579 	KASSERT(solocked(so));
580 
581 	so->so_lock = lock;
582 	cv_broadcast(&so->so_snd.sb_cv);
583 	cv_broadcast(&so->so_rcv.sb_cv);
584 	cv_broadcast(&so->so_cv);
585 }
586 
587 /*
588  * Socket buffer (struct sockbuf) utility routines.
589  *
590  * Each socket contains two socket buffers: one for sending data and
591  * one for receiving data.  Each buffer contains a queue of mbufs,
592  * information about the number of mbufs and amount of data in the
593  * queue, and other fields allowing poll() statements and notification
594  * on data availability to be implemented.
595  *
596  * Data stored in a socket buffer is maintained as a list of records.
597  * Each record is a list of mbufs chained together with the m_next
598  * field.  Records are chained together with the m_nextpkt field. The upper
599  * level routine soreceive() expects the following conventions to be
600  * observed when placing information in the receive buffer:
601  *
602  * 1. If the protocol requires each message be preceded by the sender's
603  *    name, then a record containing that name must be present before
604  *    any associated data (mbuf's must be of type MT_SONAME).
605  * 2. If the protocol supports the exchange of ``access rights'' (really
606  *    just additional data associated with the message), and there are
607  *    ``rights'' to be received, then a record containing this data
608  *    should be present (mbuf's must be of type MT_CONTROL).
609  * 3. If a name or rights record exists, then it must be followed by
610  *    a data record, perhaps of zero length.
611  *
612  * Before using a new socket structure it is first necessary to reserve
613  * buffer space to the socket, by calling sbreserve().  This should commit
614  * some of the available buffer space in the system buffer pool for the
615  * socket (currently, it does nothing but enforce limits).  The space
616  * should be released by calling sbrelease() when the socket is destroyed.
617  */
618 
619 int
620 sb_max_set(u_long new_sbmax)
621 {
622 	int s;
623 
624 	if (new_sbmax < (16 * 1024))
625 		return (EINVAL);
626 
627 	s = splsoftnet();
628 	sb_max = new_sbmax;
629 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
630 	splx(s);
631 
632 	return (0);
633 }
634 
635 int
636 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
637 {
638 	KASSERT(so->so_pcb == NULL || solocked(so));
639 
640 	/*
641 	 * there's at least one application (a configure script of screen)
642 	 * which expects a fifo is writable even if it has "some" bytes
643 	 * in its buffer.
644 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
645 	 *
646 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
647 	 * we expect it's large enough for such applications.
648 	 */
649 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
650 	u_long  hiwat = lowat + PIPE_BUF;
651 
652 	if (sndcc < hiwat)
653 		sndcc = hiwat;
654 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
655 		goto bad;
656 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
657 		goto bad2;
658 	if (so->so_rcv.sb_lowat == 0)
659 		so->so_rcv.sb_lowat = 1;
660 	if (so->so_snd.sb_lowat == 0)
661 		so->so_snd.sb_lowat = lowat;
662 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
663 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
664 	return (0);
665  bad2:
666 	sbrelease(&so->so_snd, so);
667  bad:
668 	return (ENOBUFS);
669 }
670 
671 /*
672  * Allot mbufs to a sockbuf.
673  * Attempt to scale mbmax so that mbcnt doesn't become limiting
674  * if buffering efficiency is near the normal case.
675  */
676 int
677 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
678 {
679 	struct lwp *l = curlwp; /* XXX */
680 	rlim_t maxcc;
681 	struct uidinfo *uidinfo;
682 
683 	KASSERT(so->so_pcb == NULL || solocked(so));
684 	KASSERT(sb->sb_so == so);
685 	KASSERT(sb_max_adj != 0);
686 
687 	if (cc == 0 || cc > sb_max_adj)
688 		return (0);
689 
690 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
691 
692 	uidinfo = so->so_uidinfo;
693 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
694 		return 0;
695 	sb->sb_mbmax = uimin(cc * 2, sb_max);
696 	if (sb->sb_lowat > sb->sb_hiwat)
697 		sb->sb_lowat = sb->sb_hiwat;
698 
699 	return (1);
700 }
701 
702 /*
703  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
704  * that the socket is held locked here: see sorflush().
705  */
706 void
707 sbrelease(struct sockbuf *sb, struct socket *so)
708 {
709 
710 	KASSERT(sb->sb_so == so);
711 
712 	sbflush(sb);
713 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
714 	sb->sb_mbmax = 0;
715 }
716 
717 /*
718  * Routines to add and remove
719  * data from an mbuf queue.
720  *
721  * The routines sbappend() or sbappendrecord() are normally called to
722  * append new mbufs to a socket buffer, after checking that adequate
723  * space is available, comparing the function sbspace() with the amount
724  * of data to be added.  sbappendrecord() differs from sbappend() in
725  * that data supplied is treated as the beginning of a new record.
726  * To place a sender's address, optional access rights, and data in a
727  * socket receive buffer, sbappendaddr() should be used.  To place
728  * access rights and data in a socket receive buffer, sbappendrights()
729  * should be used.  In either case, the new data begins a new record.
730  * Note that unlike sbappend() and sbappendrecord(), these routines check
731  * for the caller that there will be enough space to store the data.
732  * Each fails if there is not enough space, or if it cannot find mbufs
733  * to store additional information in.
734  *
735  * Reliable protocols may use the socket send buffer to hold data
736  * awaiting acknowledgement.  Data is normally copied from a socket
737  * send buffer in a protocol with m_copym for output to a peer,
738  * and then removing the data from the socket buffer with sbdrop()
739  * or sbdroprecord() when the data is acknowledged by the peer.
740  */
741 
742 #ifdef SOCKBUF_DEBUG
743 void
744 sblastrecordchk(struct sockbuf *sb, const char *where)
745 {
746 	struct mbuf *m = sb->sb_mb;
747 
748 	KASSERT(solocked(sb->sb_so));
749 
750 	while (m && m->m_nextpkt)
751 		m = m->m_nextpkt;
752 
753 	if (m != sb->sb_lastrecord) {
754 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
755 		    sb->sb_mb, sb->sb_lastrecord, m);
756 		printf("packet chain:\n");
757 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
758 			printf("\t%p\n", m);
759 		panic("sblastrecordchk from %s", where);
760 	}
761 }
762 
763 void
764 sblastmbufchk(struct sockbuf *sb, const char *where)
765 {
766 	struct mbuf *m = sb->sb_mb;
767 	struct mbuf *n;
768 
769 	KASSERT(solocked(sb->sb_so));
770 
771 	while (m && m->m_nextpkt)
772 		m = m->m_nextpkt;
773 
774 	while (m && m->m_next)
775 		m = m->m_next;
776 
777 	if (m != sb->sb_mbtail) {
778 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
779 		    sb->sb_mb, sb->sb_mbtail, m);
780 		printf("packet tree:\n");
781 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
782 			printf("\t");
783 			for (n = m; n != NULL; n = n->m_next)
784 				printf("%p ", n);
785 			printf("\n");
786 		}
787 		panic("sblastmbufchk from %s", where);
788 	}
789 }
790 #endif /* SOCKBUF_DEBUG */
791 
792 /*
793  * Link a chain of records onto a socket buffer
794  */
795 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
796 do {									\
797 	if ((sb)->sb_lastrecord != NULL)				\
798 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
799 	else								\
800 		(sb)->sb_mb = (m0);					\
801 	(sb)->sb_lastrecord = (mlast);					\
802 } while (/*CONSTCOND*/0)
803 
804 
805 #define	SBLINKRECORD(sb, m0)						\
806     SBLINKRECORDCHAIN(sb, m0, m0)
807 
808 /*
809  * Append mbuf chain m to the last record in the
810  * socket buffer sb.  The additional space associated
811  * the mbuf chain is recorded in sb.  Empty mbufs are
812  * discarded and mbufs are compacted where possible.
813  */
814 void
815 sbappend(struct sockbuf *sb, struct mbuf *m)
816 {
817 	struct mbuf	*n;
818 
819 	KASSERT(solocked(sb->sb_so));
820 
821 	if (m == NULL)
822 		return;
823 
824 #ifdef MBUFTRACE
825 	m_claimm(m, sb->sb_mowner);
826 #endif
827 
828 	SBLASTRECORDCHK(sb, "sbappend 1");
829 
830 	if ((n = sb->sb_lastrecord) != NULL) {
831 		/*
832 		 * XXX Would like to simply use sb_mbtail here, but
833 		 * XXX I need to verify that I won't miss an EOR that
834 		 * XXX way.
835 		 */
836 		do {
837 			if (n->m_flags & M_EOR) {
838 				sbappendrecord(sb, m); /* XXXXXX!!!! */
839 				return;
840 			}
841 		} while (n->m_next && (n = n->m_next));
842 	} else {
843 		/*
844 		 * If this is the first record in the socket buffer, it's
845 		 * also the last record.
846 		 */
847 		sb->sb_lastrecord = m;
848 	}
849 	sbcompress(sb, m, n);
850 	SBLASTRECORDCHK(sb, "sbappend 2");
851 }
852 
853 /*
854  * This version of sbappend() should only be used when the caller
855  * absolutely knows that there will never be more than one record
856  * in the socket buffer, that is, a stream protocol (such as TCP).
857  */
858 void
859 sbappendstream(struct sockbuf *sb, struct mbuf *m)
860 {
861 
862 	KASSERT(solocked(sb->sb_so));
863 	KDASSERT(m->m_nextpkt == NULL);
864 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
865 
866 	SBLASTMBUFCHK(sb, __func__);
867 
868 #ifdef MBUFTRACE
869 	m_claimm(m, sb->sb_mowner);
870 #endif
871 
872 	sbcompress(sb, m, sb->sb_mbtail);
873 
874 	sb->sb_lastrecord = sb->sb_mb;
875 	SBLASTRECORDCHK(sb, __func__);
876 }
877 
878 #ifdef SOCKBUF_DEBUG
879 void
880 sbcheck(struct sockbuf *sb)
881 {
882 	struct mbuf	*m, *m2;
883 	u_long		len, mbcnt;
884 
885 	KASSERT(solocked(sb->sb_so));
886 
887 	len = 0;
888 	mbcnt = 0;
889 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
890 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
891 			len += m2->m_len;
892 			mbcnt += MSIZE;
893 			if (m2->m_flags & M_EXT)
894 				mbcnt += m2->m_ext.ext_size;
895 			if (m2->m_nextpkt != NULL)
896 				panic("sbcheck nextpkt");
897 		}
898 	}
899 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
900 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
901 		    mbcnt, sb->sb_mbcnt);
902 		panic("sbcheck");
903 	}
904 }
905 #endif
906 
907 /*
908  * As above, except the mbuf chain
909  * begins a new record.
910  */
911 void
912 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
913 {
914 	struct mbuf	*m;
915 
916 	KASSERT(solocked(sb->sb_so));
917 
918 	if (m0 == NULL)
919 		return;
920 
921 #ifdef MBUFTRACE
922 	m_claimm(m0, sb->sb_mowner);
923 #endif
924 	/*
925 	 * Put the first mbuf on the queue.
926 	 * Note this permits zero length records.
927 	 */
928 	sballoc(sb, m0);
929 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
930 	SBLINKRECORD(sb, m0);
931 	m = m0->m_next;
932 	m0->m_next = 0;
933 	if (m && (m0->m_flags & M_EOR)) {
934 		m0->m_flags &= ~M_EOR;
935 		m->m_flags |= M_EOR;
936 	}
937 	sbcompress(sb, m, m0);
938 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
939 }
940 
941 /*
942  * As above except that OOB data
943  * is inserted at the beginning of the sockbuf,
944  * but after any other OOB data.
945  */
946 void
947 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
948 {
949 	struct mbuf	*m, **mp;
950 
951 	KASSERT(solocked(sb->sb_so));
952 
953 	if (m0 == NULL)
954 		return;
955 
956 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
957 
958 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
959 	    again:
960 		switch (m->m_type) {
961 
962 		case MT_OOBDATA:
963 			continue;		/* WANT next train */
964 
965 		case MT_CONTROL:
966 			if ((m = m->m_next) != NULL)
967 				goto again;	/* inspect THIS train further */
968 		}
969 		break;
970 	}
971 	/*
972 	 * Put the first mbuf on the queue.
973 	 * Note this permits zero length records.
974 	 */
975 	sballoc(sb, m0);
976 	m0->m_nextpkt = *mp;
977 	if (*mp == NULL) {
978 		/* m0 is actually the new tail */
979 		sb->sb_lastrecord = m0;
980 	}
981 	*mp = m0;
982 	m = m0->m_next;
983 	m0->m_next = 0;
984 	if (m && (m0->m_flags & M_EOR)) {
985 		m0->m_flags &= ~M_EOR;
986 		m->m_flags |= M_EOR;
987 	}
988 	sbcompress(sb, m, m0);
989 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
990 }
991 
992 /*
993  * Append address and data, and optionally, control (ancillary) data
994  * to the receive queue of a socket.  If present,
995  * m0 must include a packet header with total length.
996  * Returns 0 if no space in sockbuf or insufficient mbufs.
997  */
998 int
999 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
1000 	struct mbuf *control)
1001 {
1002 	struct mbuf	*m, *n, *nlast;
1003 	int		space, len;
1004 
1005 	KASSERT(solocked(sb->sb_so));
1006 
1007 	space = asa->sa_len;
1008 
1009 	if (m0 != NULL) {
1010 		if ((m0->m_flags & M_PKTHDR) == 0)
1011 			panic("sbappendaddr");
1012 		space += m0->m_pkthdr.len;
1013 #ifdef MBUFTRACE
1014 		m_claimm(m0, sb->sb_mowner);
1015 #endif
1016 	}
1017 	for (n = control; n; n = n->m_next) {
1018 		space += n->m_len;
1019 		MCLAIM(n, sb->sb_mowner);
1020 		if (n->m_next == NULL)	/* keep pointer to last control buf */
1021 			break;
1022 	}
1023 	if (space > sbspace(sb))
1024 		return (0);
1025 	m = m_get(M_DONTWAIT, MT_SONAME);
1026 	if (m == NULL)
1027 		return (0);
1028 	MCLAIM(m, sb->sb_mowner);
1029 	/*
1030 	 * XXX avoid 'comparison always true' warning which isn't easily
1031 	 * avoided.
1032 	 */
1033 	len = asa->sa_len;
1034 	if (len > MLEN) {
1035 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
1036 		if ((m->m_flags & M_EXT) == 0) {
1037 			m_free(m);
1038 			return (0);
1039 		}
1040 	}
1041 	m->m_len = asa->sa_len;
1042 	memcpy(mtod(m, void *), asa, asa->sa_len);
1043 	if (n)
1044 		n->m_next = m0;		/* concatenate data to control */
1045 	else
1046 		control = m0;
1047 	m->m_next = control;
1048 
1049 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
1050 
1051 	for (n = m; n->m_next != NULL; n = n->m_next)
1052 		sballoc(sb, n);
1053 	sballoc(sb, n);
1054 	nlast = n;
1055 	SBLINKRECORD(sb, m);
1056 
1057 	sb->sb_mbtail = nlast;
1058 	SBLASTMBUFCHK(sb, "sbappendaddr");
1059 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1060 
1061 	return (1);
1062 }
1063 
1064 /*
1065  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1066  * an mbuf chain.
1067  */
1068 static inline struct mbuf *
1069 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1070 		   const struct sockaddr *asa)
1071 {
1072 	struct mbuf *m;
1073 	const int salen = asa->sa_len;
1074 
1075 	KASSERT(solocked(sb->sb_so));
1076 
1077 	/* only the first in each chain need be a pkthdr */
1078 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1079 	if (m == NULL)
1080 		return NULL;
1081 	MCLAIM(m, sb->sb_mowner);
1082 #ifdef notyet
1083 	if (salen > MHLEN) {
1084 		MEXTMALLOC(m, salen, M_NOWAIT);
1085 		if ((m->m_flags & M_EXT) == 0) {
1086 			m_free(m);
1087 			return NULL;
1088 		}
1089 	}
1090 #else
1091 	KASSERT(salen <= MHLEN);
1092 #endif
1093 	m->m_len = salen;
1094 	memcpy(mtod(m, void *), asa, salen);
1095 	m->m_next = m0;
1096 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1097 
1098 	return m;
1099 }
1100 
1101 int
1102 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1103 		  struct mbuf *m0, int sbprio)
1104 {
1105 	struct mbuf *m, *n, *n0, *nlast;
1106 	int error;
1107 
1108 	KASSERT(solocked(sb->sb_so));
1109 
1110 	/*
1111 	 * XXX sbprio reserved for encoding priority of this* request:
1112 	 *  SB_PRIO_NONE --> honour normal sb limits
1113 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1114 	 *	take whole chain. Intended for large requests
1115 	 *      that should be delivered atomically (all, or none).
1116 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1117 	 *       over normal socket limits, for messages indicating
1118 	 *       buffer overflow in earlier normal/lower-priority messages
1119 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1120 	 *       Intended for  kernel-generated messages only.
1121 	 *        Up to generator to avoid total mbuf resource exhaustion.
1122 	 */
1123 	(void)sbprio;
1124 
1125 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1126 		panic("sbappendaddrchain");
1127 
1128 #ifdef notyet
1129 	space = sbspace(sb);
1130 
1131 	/*
1132 	 * Enforce SB_PRIO_* limits as described above.
1133 	 */
1134 #endif
1135 
1136 	n0 = NULL;
1137 	nlast = NULL;
1138 	for (m = m0; m; m = m->m_nextpkt) {
1139 		struct mbuf *np;
1140 
1141 #ifdef MBUFTRACE
1142 		m_claimm(m, sb->sb_mowner);
1143 #endif
1144 
1145 		/* Prepend sockaddr to this record (m) of input chain m0 */
1146 	  	n = m_prepend_sockaddr(sb, m, asa);
1147 		if (n == NULL) {
1148 			error = ENOBUFS;
1149 			goto bad;
1150 		}
1151 
1152 		/* Append record (asa+m) to end of new chain n0 */
1153 		if (n0 == NULL) {
1154 			n0 = n;
1155 		} else {
1156 			nlast->m_nextpkt = n;
1157 		}
1158 		/* Keep track of last record on new chain */
1159 		nlast = n;
1160 
1161 		for (np = n; np; np = np->m_next)
1162 			sballoc(sb, np);
1163 	}
1164 
1165 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1166 
1167 	/* Drop the entire chain of (asa+m) records onto the socket */
1168 	SBLINKRECORDCHAIN(sb, n0, nlast);
1169 
1170 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1171 
1172 	for (m = nlast; m->m_next; m = m->m_next)
1173 		;
1174 	sb->sb_mbtail = m;
1175 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1176 
1177 	return (1);
1178 
1179 bad:
1180 	/*
1181 	 * On error, free the prepended addreseses. For consistency
1182 	 * with sbappendaddr(), leave it to our caller to free
1183 	 * the input record chain passed to us as m0.
1184 	 */
1185 	while ((n = n0) != NULL) {
1186 	  	struct mbuf *np;
1187 
1188 		/* Undo the sballoc() of this record */
1189 		for (np = n; np; np = np->m_next)
1190 			sbfree(sb, np);
1191 
1192 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1193 		np = m_free(n);		/* free prepended address (not data) */
1194 	}
1195 	return error;
1196 }
1197 
1198 
1199 int
1200 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1201 {
1202 	struct mbuf	*m, *mlast, *n;
1203 	int		space;
1204 
1205 	KASSERT(solocked(sb->sb_so));
1206 
1207 	space = 0;
1208 	if (control == NULL)
1209 		panic("sbappendcontrol");
1210 	for (m = control; ; m = m->m_next) {
1211 		space += m->m_len;
1212 		MCLAIM(m, sb->sb_mowner);
1213 		if (m->m_next == NULL)
1214 			break;
1215 	}
1216 	n = m;			/* save pointer to last control buffer */
1217 	for (m = m0; m; m = m->m_next) {
1218 		MCLAIM(m, sb->sb_mowner);
1219 		space += m->m_len;
1220 	}
1221 	if (space > sbspace(sb))
1222 		return (0);
1223 	n->m_next = m0;			/* concatenate data to control */
1224 
1225 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1226 
1227 	for (m = control; m->m_next != NULL; m = m->m_next)
1228 		sballoc(sb, m);
1229 	sballoc(sb, m);
1230 	mlast = m;
1231 	SBLINKRECORD(sb, control);
1232 
1233 	sb->sb_mbtail = mlast;
1234 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1235 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1236 
1237 	return (1);
1238 }
1239 
1240 /*
1241  * Compress mbuf chain m into the socket
1242  * buffer sb following mbuf n.  If n
1243  * is null, the buffer is presumed empty.
1244  */
1245 void
1246 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1247 {
1248 	int		eor;
1249 	struct mbuf	*o;
1250 
1251 	KASSERT(solocked(sb->sb_so));
1252 
1253 	eor = 0;
1254 	while (m) {
1255 		eor |= m->m_flags & M_EOR;
1256 		if (m->m_len == 0 &&
1257 		    (eor == 0 ||
1258 		     (((o = m->m_next) || (o = n)) &&
1259 		      o->m_type == m->m_type))) {
1260 			if (sb->sb_lastrecord == m)
1261 				sb->sb_lastrecord = m->m_next;
1262 			m = m_free(m);
1263 			continue;
1264 		}
1265 		if (n && (n->m_flags & M_EOR) == 0 &&
1266 		    /* M_TRAILINGSPACE() checks buffer writeability */
1267 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1268 		    m->m_len <= M_TRAILINGSPACE(n) &&
1269 		    n->m_type == m->m_type) {
1270 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1271 			    (unsigned)m->m_len);
1272 			n->m_len += m->m_len;
1273 			sb->sb_cc += m->m_len;
1274 			m = m_free(m);
1275 			continue;
1276 		}
1277 		if (n)
1278 			n->m_next = m;
1279 		else
1280 			sb->sb_mb = m;
1281 		sb->sb_mbtail = m;
1282 		sballoc(sb, m);
1283 		n = m;
1284 		m->m_flags &= ~M_EOR;
1285 		m = m->m_next;
1286 		n->m_next = 0;
1287 	}
1288 	if (eor) {
1289 		if (n)
1290 			n->m_flags |= eor;
1291 		else
1292 			printf("semi-panic: sbcompress\n");
1293 	}
1294 	SBLASTMBUFCHK(sb, __func__);
1295 }
1296 
1297 /*
1298  * Free all mbufs in a sockbuf.
1299  * Check that all resources are reclaimed.
1300  */
1301 void
1302 sbflush(struct sockbuf *sb)
1303 {
1304 
1305 	KASSERT(solocked(sb->sb_so));
1306 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1307 
1308 	while (sb->sb_mbcnt)
1309 		sbdrop(sb, (int)sb->sb_cc);
1310 
1311 	KASSERT(sb->sb_cc == 0);
1312 	KASSERT(sb->sb_mb == NULL);
1313 	KASSERT(sb->sb_mbtail == NULL);
1314 	KASSERT(sb->sb_lastrecord == NULL);
1315 }
1316 
1317 /*
1318  * Drop data from (the front of) a sockbuf.
1319  */
1320 void
1321 sbdrop(struct sockbuf *sb, int len)
1322 {
1323 	struct mbuf	*m, *next;
1324 
1325 	KASSERT(solocked(sb->sb_so));
1326 
1327 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1328 	while (len > 0) {
1329 		if (m == NULL) {
1330 			if (next == NULL)
1331 				panic("sbdrop(%p,%d): cc=%lu",
1332 				    sb, len, sb->sb_cc);
1333 			m = next;
1334 			next = m->m_nextpkt;
1335 			continue;
1336 		}
1337 		if (m->m_len > len) {
1338 			m->m_len -= len;
1339 			m->m_data += len;
1340 			sb->sb_cc -= len;
1341 			break;
1342 		}
1343 		len -= m->m_len;
1344 		sbfree(sb, m);
1345 		m = m_free(m);
1346 	}
1347 	while (m && m->m_len == 0) {
1348 		sbfree(sb, m);
1349 		m = m_free(m);
1350 	}
1351 	if (m) {
1352 		sb->sb_mb = m;
1353 		m->m_nextpkt = next;
1354 	} else
1355 		sb->sb_mb = next;
1356 	/*
1357 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1358 	 * makes sure sb_lastrecord is up-to-date if we dropped
1359 	 * part of the last record.
1360 	 */
1361 	m = sb->sb_mb;
1362 	if (m == NULL) {
1363 		sb->sb_mbtail = NULL;
1364 		sb->sb_lastrecord = NULL;
1365 	} else if (m->m_nextpkt == NULL)
1366 		sb->sb_lastrecord = m;
1367 }
1368 
1369 /*
1370  * Drop a record off the front of a sockbuf
1371  * and move the next record to the front.
1372  */
1373 void
1374 sbdroprecord(struct sockbuf *sb)
1375 {
1376 	struct mbuf	*m, *mn;
1377 
1378 	KASSERT(solocked(sb->sb_so));
1379 
1380 	m = sb->sb_mb;
1381 	if (m) {
1382 		sb->sb_mb = m->m_nextpkt;
1383 		do {
1384 			sbfree(sb, m);
1385 			mn = m_free(m);
1386 		} while ((m = mn) != NULL);
1387 	}
1388 	SB_EMPTY_FIXUP(sb);
1389 }
1390 
1391 /*
1392  * Create a "control" mbuf containing the specified data
1393  * with the specified type for presentation on a socket buffer.
1394  */
1395 struct mbuf *
1396 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1397 {
1398 	struct cmsghdr	*cp;
1399 	struct mbuf	*m;
1400 	int space = CMSG_SPACE(size);
1401 
1402 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1403 		printf("%s: message too large %d\n", __func__, space);
1404 		return NULL;
1405 	}
1406 
1407 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1408 		return NULL;
1409 	if (space > MLEN) {
1410 		if (space > MCLBYTES)
1411 			MEXTMALLOC(m, space, M_WAITOK);
1412 		else
1413 			MCLGET(m, flags);
1414 		if ((m->m_flags & M_EXT) == 0) {
1415 			m_free(m);
1416 			return NULL;
1417 		}
1418 	}
1419 	cp = mtod(m, struct cmsghdr *);
1420 	*p = CMSG_DATA(cp);
1421 	m->m_len = space;
1422 	cp->cmsg_len = CMSG_LEN(size);
1423 	cp->cmsg_level = level;
1424 	cp->cmsg_type = type;
1425 
1426 	memset(cp + 1, 0, CMSG_LEN(0) - sizeof(*cp));
1427 	memset((uint8_t *)*p + size, 0, CMSG_ALIGN(size) - size);
1428 
1429 	return m;
1430 }
1431 
1432 struct mbuf *
1433 sbcreatecontrol(void *p, int size, int type, int level)
1434 {
1435 	struct mbuf *m;
1436 	void *v;
1437 
1438 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1439 	if (m == NULL)
1440 		return NULL;
1441 	memcpy(v, p, size);
1442 	return m;
1443 }
1444 
1445 void
1446 solockretry(struct socket *so, kmutex_t *lock)
1447 {
1448 
1449 	while (lock != so->so_lock) {
1450 		mutex_exit(lock);
1451 		lock = so->so_lock;
1452 		mutex_enter(lock);
1453 	}
1454 }
1455 
1456 bool
1457 solocked(const struct socket *so)
1458 {
1459 
1460 	return mutex_owned(so->so_lock);
1461 }
1462 
1463 bool
1464 solocked2(const struct socket *so1, const struct socket *so2)
1465 {
1466 	const kmutex_t *lock;
1467 
1468 	lock = so1->so_lock;
1469 	if (lock != so2->so_lock)
1470 		return false;
1471 	return mutex_owned(lock);
1472 }
1473 
1474 /*
1475  * sosetlock: assign a default lock to a new socket.
1476  */
1477 void
1478 sosetlock(struct socket *so)
1479 {
1480 	if (so->so_lock == NULL) {
1481 		kmutex_t *lock = softnet_lock;
1482 
1483 		so->so_lock = lock;
1484 		mutex_obj_hold(lock);
1485 		mutex_enter(lock);
1486 	}
1487 	KASSERT(solocked(so));
1488 }
1489 
1490 /*
1491  * Set lock on sockbuf sb; sleep if lock is already held.
1492  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1493  * Returns error without lock if sleep is interrupted.
1494  */
1495 int
1496 sblock(struct sockbuf *sb, int wf)
1497 {
1498 	struct socket *so;
1499 	kmutex_t *lock;
1500 	int error;
1501 
1502 	KASSERT(solocked(sb->sb_so));
1503 
1504 	for (;;) {
1505 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1506 			sb->sb_flags |= SB_LOCK;
1507 			return 0;
1508 		}
1509 		if (wf != M_WAITOK)
1510 			return EWOULDBLOCK;
1511 		so = sb->sb_so;
1512 		lock = so->so_lock;
1513 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1514 			cv_wait(&so->so_cv, lock);
1515 			error = 0;
1516 		} else
1517 			error = cv_wait_sig(&so->so_cv, lock);
1518 		if (__predict_false(lock != so->so_lock))
1519 			solockretry(so, lock);
1520 		if (error != 0)
1521 			return error;
1522 	}
1523 }
1524 
1525 void
1526 sbunlock(struct sockbuf *sb)
1527 {
1528 	struct socket *so;
1529 
1530 	so = sb->sb_so;
1531 
1532 	KASSERT(solocked(so));
1533 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1534 
1535 	sb->sb_flags &= ~SB_LOCK;
1536 	cv_broadcast(&so->so_cv);
1537 }
1538 
1539 int
1540 sowait(struct socket *so, bool catch_p, int timo)
1541 {
1542 	kmutex_t *lock;
1543 	int error;
1544 
1545 	KASSERT(solocked(so));
1546 	KASSERT(catch_p || timo != 0);
1547 
1548 	lock = so->so_lock;
1549 	if (catch_p)
1550 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1551 	else
1552 		error = cv_timedwait(&so->so_cv, lock, timo);
1553 	if (__predict_false(lock != so->so_lock))
1554 		solockretry(so, lock);
1555 	return error;
1556 }
1557 
1558 #ifdef DDB
1559 
1560 /*
1561  * Currently, sofindproc() is used only from DDB. It could be used from others
1562  * by using db_mutex_enter()
1563  */
1564 
1565 static inline int
1566 db_mutex_enter(kmutex_t *mtx)
1567 {
1568 	extern int db_active;
1569 	int rv;
1570 
1571 	if (!db_active) {
1572 		mutex_enter(mtx);
1573 		rv = 1;
1574 	} else
1575 		rv = mutex_tryenter(mtx);
1576 
1577 	return rv;
1578 }
1579 
1580 int
1581 sofindproc(struct socket *so, int all, void (*pr)(const char *, ...))
1582 {
1583 	proc_t *p;
1584 	filedesc_t *fdp;
1585 	fdtab_t *dt;
1586 	fdfile_t *ff;
1587 	file_t *fp = NULL;
1588 	int found = 0;
1589 	int i, t;
1590 
1591 	if (so == NULL)
1592 		return 0;
1593 
1594 	t = db_mutex_enter(&proc_lock);
1595 	if (!t) {
1596 		pr("could not acquire proc_lock mutex\n");
1597 		return 0;
1598 	}
1599 	PROCLIST_FOREACH(p, &allproc) {
1600 		if (p->p_stat == SIDL)
1601 			continue;
1602 		fdp = p->p_fd;
1603 		t = db_mutex_enter(&fdp->fd_lock);
1604 		if (!t) {
1605 			pr("could not acquire fd_lock mutex\n");
1606 			continue;
1607 		}
1608 		dt = atomic_load_consume(&fdp->fd_dt);
1609 		for (i = 0; i < dt->dt_nfiles; i++) {
1610 			ff = dt->dt_ff[i];
1611 			if (ff == NULL)
1612 				continue;
1613 
1614 			fp = atomic_load_consume(&ff->ff_file);
1615 			if (fp == NULL)
1616 				continue;
1617 
1618 			t = db_mutex_enter(&fp->f_lock);
1619 			if (!t) {
1620 				pr("could not acquire f_lock mutex\n");
1621 				continue;
1622 			}
1623 			if ((struct socket *)fp->f_data != so) {
1624 				mutex_exit(&fp->f_lock);
1625 				continue;
1626 			}
1627 			found++;
1628 			if (pr)
1629 				pr("socket %p: owner %s(pid=%d)\n",
1630 				    so, p->p_comm, p->p_pid);
1631 			mutex_exit(&fp->f_lock);
1632 			if (all == 0)
1633 				break;
1634 		}
1635 		mutex_exit(&fdp->fd_lock);
1636 		if (all == 0 && found != 0)
1637 			break;
1638 	}
1639 	mutex_exit(&proc_lock);
1640 
1641 	return found;
1642 }
1643 
1644 void
1645 socket_print(const char *modif, void (*pr)(const char *, ...))
1646 {
1647 	file_t *fp;
1648 	struct socket *so;
1649 	struct sockbuf *sb_snd, *sb_rcv;
1650 	struct mbuf *m_rec, *m;
1651 	bool opt_v = false;
1652 	bool opt_m = false;
1653 	bool opt_a = false;
1654 	bool opt_p = false;
1655 	int nrecs, nmbufs;
1656 	char ch;
1657 	const char *family;
1658 
1659 	while ( (ch = *(modif++)) != '\0') {
1660 		switch (ch) {
1661 		case 'v':
1662 			opt_v = true;
1663 			break;
1664 		case 'm':
1665 			opt_m = true;
1666 			break;
1667 		case 'a':
1668 			opt_a = true;
1669 			break;
1670 		case 'p':
1671 			opt_p = true;
1672 			break;
1673 		}
1674 	}
1675 	if (opt_v == false && pr)
1676 		(pr)("Ignore empty sockets. use /v to print all.\n");
1677 	if (opt_p == true && pr)
1678 		(pr)("Don't search owner process.\n");
1679 
1680 	LIST_FOREACH(fp, &filehead, f_list) {
1681 		if (fp->f_type != DTYPE_SOCKET)
1682 			continue;
1683 		so = (struct socket *)fp->f_data;
1684 		if (so == NULL)
1685 			continue;
1686 
1687 		if (so->so_proto->pr_domain->dom_family == AF_INET)
1688 			family = "INET";
1689 #ifdef INET6
1690 		else if (so->so_proto->pr_domain->dom_family == AF_INET6)
1691 			family = "INET6";
1692 #endif
1693 		else if (so->so_proto->pr_domain->dom_family == pseudo_AF_KEY)
1694 			family = "KEY";
1695 		else if (so->so_proto->pr_domain->dom_family == AF_ROUTE)
1696 			family = "ROUTE";
1697 		else
1698 			continue;
1699 
1700 		sb_snd = &so->so_snd;
1701 		sb_rcv = &so->so_rcv;
1702 
1703 		if (opt_v != true &&
1704 		    sb_snd->sb_cc == 0 && sb_rcv->sb_cc == 0)
1705 			continue;
1706 
1707 		pr("---SOCKET %p: type %s\n", so, family);
1708 		if (opt_p != true)
1709 			sofindproc(so, opt_a == true ? 1 : 0, pr);
1710 		pr("Send Buffer Bytes: %d [bytes]\n", sb_snd->sb_cc);
1711 		pr("Send Buffer mbufs:\n");
1712 		m_rec = m = sb_snd->sb_mb;
1713 		nrecs = 0;
1714 		nmbufs = 0;
1715 		while (m_rec) {
1716 			nrecs++;
1717 			if (opt_m == true)
1718 				pr(" mbuf chain %p\n", m_rec);
1719 			while (m) {
1720 				nmbufs++;
1721 				m = m->m_next;
1722 			}
1723 			m_rec = m = m_rec->m_nextpkt;
1724 		}
1725 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1726 
1727 		pr("Recv Buffer Usage: %d [bytes]\n", sb_rcv->sb_cc);
1728 		pr("Recv Buffer mbufs:\n");
1729 		m_rec = m = sb_rcv->sb_mb;
1730 		nrecs = 0;
1731 		nmbufs = 0;
1732 		while (m_rec) {
1733 			nrecs++;
1734 			if (opt_m == true)
1735 				pr(" mbuf chain %p\n", m_rec);
1736 			while (m) {
1737 				nmbufs++;
1738 				m = m->m_next;
1739 			}
1740 			m_rec = m = m_rec->m_nextpkt;
1741 		}
1742 		pr(" Total %d records, %d mbufs.\n", nrecs, nmbufs);
1743 	}
1744 }
1745 #endif /* DDB */
1746