1 /* $NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * Copyright (c) 1982, 1986, 1988, 1990, 1993 31 * The Regents of the University of California. All rights reserved. 32 * 33 * Redistribution and use in source and binary forms, with or without 34 * modification, are permitted provided that the following conditions 35 * are met: 36 * 1. Redistributions of source code must retain the above copyright 37 * notice, this list of conditions and the following disclaimer. 38 * 2. Redistributions in binary form must reproduce the above copyright 39 * notice, this list of conditions and the following disclaimer in the 40 * documentation and/or other materials provided with the distribution. 41 * 3. Neither the name of the University nor the names of its contributors 42 * may be used to endorse or promote products derived from this software 43 * without specific prior written permission. 44 * 45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 55 * SUCH DAMAGE. 56 * 57 * @(#)uipc_socket2.c 8.2 (Berkeley) 2/14/95 58 */ 59 60 #include <sys/cdefs.h> 61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.94 2008/05/26 17:21:18 ad Exp $"); 62 63 #include "opt_mbuftrace.h" 64 #include "opt_sb_max.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/proc.h> 69 #include <sys/file.h> 70 #include <sys/buf.h> 71 #include <sys/malloc.h> 72 #include <sys/mbuf.h> 73 #include <sys/protosw.h> 74 #include <sys/domain.h> 75 #include <sys/poll.h> 76 #include <sys/socket.h> 77 #include <sys/socketvar.h> 78 #include <sys/signalvar.h> 79 #include <sys/kauth.h> 80 #include <sys/pool.h> 81 82 /* 83 * Primitive routines for operating on sockets and socket buffers. 84 * 85 * Locking rules and assumptions: 86 * 87 * o socket::so_lock can change on the fly. The low level routines used 88 * to lock sockets are aware of this. When so_lock is acquired, the 89 * routine locking must check to see if so_lock still points to the 90 * lock that was acquired. If so_lock has changed in the meantime, the 91 * now irellevant lock that was acquired must be dropped and the lock 92 * operation retried. Although not proven here, this is completely safe 93 * on a multiprocessor system, even with relaxed memory ordering, given 94 * the next two rules: 95 * 96 * o In order to mutate so_lock, the lock pointed to by the current value 97 * of so_lock must be held: i.e., the socket must be held locked by the 98 * changing thread. The thread must issue membar_exit() to prevent 99 * memory accesses being reordered, and can set so_lock to the desired 100 * value. If the lock pointed to by the new value of so_lock is not 101 * held by the changing thread, the socket must then be considered 102 * unlocked. 103 * 104 * o If so_lock is mutated, and the previous lock referred to by so_lock 105 * could still be visible to other threads in the system (e.g. via file 106 * descriptor or protocol-internal reference), then the old lock must 107 * remain valid until the socket and/or protocol control block has been 108 * torn down. 109 * 110 * o If a socket has a non-NULL so_head value (i.e. is in the process of 111 * connecting), then locking the socket must also lock the socket pointed 112 * to by so_head: their lock pointers must match. 113 * 114 * o If a socket has connections in progress (so_q, so_q0 not empty) then 115 * locking the socket must also lock the sockets attached to both queues. 116 * Again, their lock pointers must match. 117 * 118 * o Beyond the initial lock assigment in socreate(), assigning locks to 119 * sockets is the responsibility of the individual protocols / protocol 120 * domains. 121 */ 122 123 static pool_cache_t socket_cache; 124 125 u_long sb_max = SB_MAX; /* maximum socket buffer size */ 126 static u_long sb_max_adj; /* adjusted sb_max */ 127 128 /* 129 * Procedures to manipulate state flags of socket 130 * and do appropriate wakeups. Normal sequence from the 131 * active (originating) side is that soisconnecting() is 132 * called during processing of connect() call, 133 * resulting in an eventual call to soisconnected() if/when the 134 * connection is established. When the connection is torn down 135 * soisdisconnecting() is called during processing of disconnect() call, 136 * and soisdisconnected() is called when the connection to the peer 137 * is totally severed. The semantics of these routines are such that 138 * connectionless protocols can call soisconnected() and soisdisconnected() 139 * only, bypassing the in-progress calls when setting up a ``connection'' 140 * takes no time. 141 * 142 * From the passive side, a socket is created with 143 * two queues of sockets: so_q0 for connections in progress 144 * and so_q for connections already made and awaiting user acceptance. 145 * As a protocol is preparing incoming connections, it creates a socket 146 * structure queued on so_q0 by calling sonewconn(). When the connection 147 * is established, soisconnected() is called, and transfers the 148 * socket structure to so_q, making it available to accept(). 149 * 150 * If a socket is closed with sockets on either 151 * so_q0 or so_q, these sockets are dropped. 152 * 153 * If higher level protocols are implemented in 154 * the kernel, the wakeups done here will sometimes 155 * cause software-interrupt process scheduling. 156 */ 157 158 void 159 soisconnecting(struct socket *so) 160 { 161 162 KASSERT(solocked(so)); 163 164 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING); 165 so->so_state |= SS_ISCONNECTING; 166 } 167 168 void 169 soisconnected(struct socket *so) 170 { 171 struct socket *head; 172 173 head = so->so_head; 174 175 KASSERT(solocked(so)); 176 KASSERT(head == NULL || solocked2(so, head)); 177 178 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING); 179 so->so_state |= SS_ISCONNECTED; 180 if (head && soqremque(so, 0)) { 181 soqinsque(head, so, 1); 182 sorwakeup(head); 183 cv_broadcast(&head->so_cv); 184 } else { 185 cv_broadcast(&so->so_cv); 186 sorwakeup(so); 187 sowwakeup(so); 188 } 189 } 190 191 void 192 soisdisconnecting(struct socket *so) 193 { 194 195 KASSERT(solocked(so)); 196 197 so->so_state &= ~SS_ISCONNECTING; 198 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE); 199 cv_broadcast(&so->so_cv); 200 sowwakeup(so); 201 sorwakeup(so); 202 } 203 204 void 205 soisdisconnected(struct socket *so) 206 { 207 208 KASSERT(solocked(so)); 209 210 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING); 211 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED); 212 cv_broadcast(&so->so_cv); 213 sowwakeup(so); 214 sorwakeup(so); 215 } 216 217 void 218 soinit2(void) 219 { 220 221 socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0, 222 "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL); 223 } 224 225 /* 226 * When an attempt at a new connection is noted on a socket 227 * which accepts connections, sonewconn is called. If the 228 * connection is possible (subject to space constraints, etc.) 229 * then we allocate a new structure, propoerly linked into the 230 * data structure of the original socket, and return this. 231 * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED. 232 */ 233 struct socket * 234 sonewconn(struct socket *head, int connstatus) 235 { 236 struct socket *so; 237 int soqueue, error; 238 239 KASSERT(solocked(head)); 240 241 soqueue = connstatus ? 1 : 0; 242 if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) 243 return ((struct socket *)0); 244 so = soget(false); 245 if (so == NULL) 246 return (NULL); 247 mutex_obj_hold(head->so_lock); 248 so->so_lock = head->so_lock; 249 so->so_type = head->so_type; 250 so->so_options = head->so_options &~ SO_ACCEPTCONN; 251 so->so_linger = head->so_linger; 252 so->so_state = head->so_state | SS_NOFDREF; 253 so->so_nbio = head->so_nbio; 254 so->so_proto = head->so_proto; 255 so->so_timeo = head->so_timeo; 256 so->so_pgid = head->so_pgid; 257 so->so_send = head->so_send; 258 so->so_receive = head->so_receive; 259 so->so_uidinfo = head->so_uidinfo; 260 #ifdef MBUFTRACE 261 so->so_mowner = head->so_mowner; 262 so->so_rcv.sb_mowner = head->so_rcv.sb_mowner; 263 so->so_snd.sb_mowner = head->so_snd.sb_mowner; 264 #endif 265 (void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat); 266 so->so_snd.sb_lowat = head->so_snd.sb_lowat; 267 so->so_rcv.sb_lowat = head->so_rcv.sb_lowat; 268 so->so_rcv.sb_timeo = head->so_rcv.sb_timeo; 269 so->so_snd.sb_timeo = head->so_snd.sb_timeo; 270 so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE; 271 so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE; 272 soqinsque(head, so, soqueue); 273 error = (*so->so_proto->pr_usrreq)(so, PRU_ATTACH, NULL, NULL, 274 NULL, NULL); 275 KASSERT(solocked(so)); 276 if (error != 0) { 277 (void) soqremque(so, soqueue); 278 soput(so); 279 return (NULL); 280 } 281 if (connstatus) { 282 sorwakeup(head); 283 cv_broadcast(&head->so_cv); 284 so->so_state |= connstatus; 285 } 286 return (so); 287 } 288 289 struct socket * 290 soget(bool waitok) 291 { 292 struct socket *so; 293 294 so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT)); 295 if (__predict_false(so == NULL)) 296 return (NULL); 297 memset(so, 0, sizeof(*so)); 298 TAILQ_INIT(&so->so_q0); 299 TAILQ_INIT(&so->so_q); 300 cv_init(&so->so_cv, "socket"); 301 cv_init(&so->so_rcv.sb_cv, "netio"); 302 cv_init(&so->so_snd.sb_cv, "netio"); 303 selinit(&so->so_rcv.sb_sel); 304 selinit(&so->so_snd.sb_sel); 305 so->so_rcv.sb_so = so; 306 so->so_snd.sb_so = so; 307 return so; 308 } 309 310 void 311 soput(struct socket *so) 312 { 313 314 KASSERT(!cv_has_waiters(&so->so_cv)); 315 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 316 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 317 seldestroy(&so->so_rcv.sb_sel); 318 seldestroy(&so->so_snd.sb_sel); 319 mutex_obj_free(so->so_lock); 320 cv_destroy(&so->so_cv); 321 cv_destroy(&so->so_rcv.sb_cv); 322 cv_destroy(&so->so_snd.sb_cv); 323 pool_cache_put(socket_cache, so); 324 } 325 326 void 327 soqinsque(struct socket *head, struct socket *so, int q) 328 { 329 330 KASSERT(solocked2(head, so)); 331 332 #ifdef DIAGNOSTIC 333 if (so->so_onq != NULL) 334 panic("soqinsque"); 335 #endif 336 337 so->so_head = head; 338 if (q == 0) { 339 head->so_q0len++; 340 so->so_onq = &head->so_q0; 341 } else { 342 head->so_qlen++; 343 so->so_onq = &head->so_q; 344 } 345 TAILQ_INSERT_TAIL(so->so_onq, so, so_qe); 346 } 347 348 int 349 soqremque(struct socket *so, int q) 350 { 351 struct socket *head; 352 353 head = so->so_head; 354 355 KASSERT(solocked(so)); 356 if (q == 0) { 357 if (so->so_onq != &head->so_q0) 358 return (0); 359 head->so_q0len--; 360 } else { 361 if (so->so_onq != &head->so_q) 362 return (0); 363 head->so_qlen--; 364 } 365 KASSERT(solocked2(so, head)); 366 TAILQ_REMOVE(so->so_onq, so, so_qe); 367 so->so_onq = NULL; 368 so->so_head = NULL; 369 return (1); 370 } 371 372 /* 373 * Socantsendmore indicates that no more data will be sent on the 374 * socket; it would normally be applied to a socket when the user 375 * informs the system that no more data is to be sent, by the protocol 376 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data 377 * will be received, and will normally be applied to the socket by a 378 * protocol when it detects that the peer will send no more data. 379 * Data queued for reading in the socket may yet be read. 380 */ 381 382 void 383 socantsendmore(struct socket *so) 384 { 385 386 KASSERT(solocked(so)); 387 388 so->so_state |= SS_CANTSENDMORE; 389 sowwakeup(so); 390 } 391 392 void 393 socantrcvmore(struct socket *so) 394 { 395 396 KASSERT(solocked(so)); 397 398 so->so_state |= SS_CANTRCVMORE; 399 sorwakeup(so); 400 } 401 402 /* 403 * Wait for data to arrive at/drain from a socket buffer. 404 */ 405 int 406 sbwait(struct sockbuf *sb) 407 { 408 struct socket *so; 409 kmutex_t *lock; 410 int error; 411 412 so = sb->sb_so; 413 414 KASSERT(solocked(so)); 415 416 sb->sb_flags |= SB_NOTIFY; 417 lock = so->so_lock; 418 if ((sb->sb_flags & SB_NOINTR) != 0) 419 error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo); 420 else 421 error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo); 422 if (__predict_false(lock != so->so_lock)) 423 solockretry(so, lock); 424 return error; 425 } 426 427 /* 428 * Wakeup processes waiting on a socket buffer. 429 * Do asynchronous notification via SIGIO 430 * if the socket buffer has the SB_ASYNC flag set. 431 */ 432 void 433 sowakeup(struct socket *so, struct sockbuf *sb, int code) 434 { 435 int band; 436 437 KASSERT(solocked(so)); 438 KASSERT(sb->sb_so == so); 439 440 if (code == POLL_IN) 441 band = POLLIN|POLLRDNORM; 442 else 443 band = POLLOUT|POLLWRNORM; 444 sb->sb_flags &= ~SB_NOTIFY; 445 selnotify(&sb->sb_sel, band, NOTE_SUBMIT); 446 cv_broadcast(&sb->sb_cv); 447 if (sb->sb_flags & SB_ASYNC) 448 fownsignal(so->so_pgid, SIGIO, code, band, so); 449 if (sb->sb_flags & SB_UPCALL) 450 (*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT); 451 } 452 453 /* 454 * Socket buffer (struct sockbuf) utility routines. 455 * 456 * Each socket contains two socket buffers: one for sending data and 457 * one for receiving data. Each buffer contains a queue of mbufs, 458 * information about the number of mbufs and amount of data in the 459 * queue, and other fields allowing poll() statements and notification 460 * on data availability to be implemented. 461 * 462 * Data stored in a socket buffer is maintained as a list of records. 463 * Each record is a list of mbufs chained together with the m_next 464 * field. Records are chained together with the m_nextpkt field. The upper 465 * level routine soreceive() expects the following conventions to be 466 * observed when placing information in the receive buffer: 467 * 468 * 1. If the protocol requires each message be preceded by the sender's 469 * name, then a record containing that name must be present before 470 * any associated data (mbuf's must be of type MT_SONAME). 471 * 2. If the protocol supports the exchange of ``access rights'' (really 472 * just additional data associated with the message), and there are 473 * ``rights'' to be received, then a record containing this data 474 * should be present (mbuf's must be of type MT_CONTROL). 475 * 3. If a name or rights record exists, then it must be followed by 476 * a data record, perhaps of zero length. 477 * 478 * Before using a new socket structure it is first necessary to reserve 479 * buffer space to the socket, by calling sbreserve(). This should commit 480 * some of the available buffer space in the system buffer pool for the 481 * socket (currently, it does nothing but enforce limits). The space 482 * should be released by calling sbrelease() when the socket is destroyed. 483 */ 484 485 int 486 sb_max_set(u_long new_sbmax) 487 { 488 int s; 489 490 if (new_sbmax < (16 * 1024)) 491 return (EINVAL); 492 493 s = splsoftnet(); 494 sb_max = new_sbmax; 495 sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES); 496 splx(s); 497 498 return (0); 499 } 500 501 int 502 soreserve(struct socket *so, u_long sndcc, u_long rcvcc) 503 { 504 505 KASSERT(so->so_lock == NULL || solocked(so)); 506 507 /* 508 * there's at least one application (a configure script of screen) 509 * which expects a fifo is writable even if it has "some" bytes 510 * in its buffer. 511 * so we want to make sure (hiwat - lowat) >= (some bytes). 512 * 513 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above. 514 * we expect it's large enough for such applications. 515 */ 516 u_long lowat = MAX(sock_loan_thresh, MCLBYTES); 517 u_long hiwat = lowat + PIPE_BUF; 518 519 if (sndcc < hiwat) 520 sndcc = hiwat; 521 if (sbreserve(&so->so_snd, sndcc, so) == 0) 522 goto bad; 523 if (sbreserve(&so->so_rcv, rcvcc, so) == 0) 524 goto bad2; 525 if (so->so_rcv.sb_lowat == 0) 526 so->so_rcv.sb_lowat = 1; 527 if (so->so_snd.sb_lowat == 0) 528 so->so_snd.sb_lowat = lowat; 529 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat) 530 so->so_snd.sb_lowat = so->so_snd.sb_hiwat; 531 return (0); 532 bad2: 533 sbrelease(&so->so_snd, so); 534 bad: 535 return (ENOBUFS); 536 } 537 538 /* 539 * Allot mbufs to a sockbuf. 540 * Attempt to scale mbmax so that mbcnt doesn't become limiting 541 * if buffering efficiency is near the normal case. 542 */ 543 int 544 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so) 545 { 546 struct lwp *l = curlwp; /* XXX */ 547 rlim_t maxcc; 548 struct uidinfo *uidinfo; 549 550 KASSERT(so->so_lock == NULL || solocked(so)); 551 KASSERT(sb->sb_so == so); 552 KASSERT(sb_max_adj != 0); 553 554 if (cc == 0 || cc > sb_max_adj) 555 return (0); 556 557 if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid) 558 maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur; 559 else 560 maxcc = RLIM_INFINITY; 561 562 uidinfo = so->so_uidinfo; 563 if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc)) 564 return 0; 565 sb->sb_mbmax = min(cc * 2, sb_max); 566 if (sb->sb_lowat > sb->sb_hiwat) 567 sb->sb_lowat = sb->sb_hiwat; 568 return (1); 569 } 570 571 /* 572 * Free mbufs held by a socket, and reserved mbuf space. We do not assert 573 * that the socket is held locked here: see sorflush(). 574 */ 575 void 576 sbrelease(struct sockbuf *sb, struct socket *so) 577 { 578 579 KASSERT(sb->sb_so == so); 580 581 sbflush(sb); 582 (void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY); 583 sb->sb_mbmax = 0; 584 } 585 586 /* 587 * Routines to add and remove 588 * data from an mbuf queue. 589 * 590 * The routines sbappend() or sbappendrecord() are normally called to 591 * append new mbufs to a socket buffer, after checking that adequate 592 * space is available, comparing the function sbspace() with the amount 593 * of data to be added. sbappendrecord() differs from sbappend() in 594 * that data supplied is treated as the beginning of a new record. 595 * To place a sender's address, optional access rights, and data in a 596 * socket receive buffer, sbappendaddr() should be used. To place 597 * access rights and data in a socket receive buffer, sbappendrights() 598 * should be used. In either case, the new data begins a new record. 599 * Note that unlike sbappend() and sbappendrecord(), these routines check 600 * for the caller that there will be enough space to store the data. 601 * Each fails if there is not enough space, or if it cannot find mbufs 602 * to store additional information in. 603 * 604 * Reliable protocols may use the socket send buffer to hold data 605 * awaiting acknowledgement. Data is normally copied from a socket 606 * send buffer in a protocol with m_copy for output to a peer, 607 * and then removing the data from the socket buffer with sbdrop() 608 * or sbdroprecord() when the data is acknowledged by the peer. 609 */ 610 611 #ifdef SOCKBUF_DEBUG 612 void 613 sblastrecordchk(struct sockbuf *sb, const char *where) 614 { 615 struct mbuf *m = sb->sb_mb; 616 617 KASSERT(solocked(sb->sb_so)); 618 619 while (m && m->m_nextpkt) 620 m = m->m_nextpkt; 621 622 if (m != sb->sb_lastrecord) { 623 printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n", 624 sb->sb_mb, sb->sb_lastrecord, m); 625 printf("packet chain:\n"); 626 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) 627 printf("\t%p\n", m); 628 panic("sblastrecordchk from %s", where); 629 } 630 } 631 632 void 633 sblastmbufchk(struct sockbuf *sb, const char *where) 634 { 635 struct mbuf *m = sb->sb_mb; 636 struct mbuf *n; 637 638 KASSERT(solocked(sb->sb_so)); 639 640 while (m && m->m_nextpkt) 641 m = m->m_nextpkt; 642 643 while (m && m->m_next) 644 m = m->m_next; 645 646 if (m != sb->sb_mbtail) { 647 printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n", 648 sb->sb_mb, sb->sb_mbtail, m); 649 printf("packet tree:\n"); 650 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) { 651 printf("\t"); 652 for (n = m; n != NULL; n = n->m_next) 653 printf("%p ", n); 654 printf("\n"); 655 } 656 panic("sblastmbufchk from %s", where); 657 } 658 } 659 #endif /* SOCKBUF_DEBUG */ 660 661 /* 662 * Link a chain of records onto a socket buffer 663 */ 664 #define SBLINKRECORDCHAIN(sb, m0, mlast) \ 665 do { \ 666 if ((sb)->sb_lastrecord != NULL) \ 667 (sb)->sb_lastrecord->m_nextpkt = (m0); \ 668 else \ 669 (sb)->sb_mb = (m0); \ 670 (sb)->sb_lastrecord = (mlast); \ 671 } while (/*CONSTCOND*/0) 672 673 674 #define SBLINKRECORD(sb, m0) \ 675 SBLINKRECORDCHAIN(sb, m0, m0) 676 677 /* 678 * Append mbuf chain m to the last record in the 679 * socket buffer sb. The additional space associated 680 * the mbuf chain is recorded in sb. Empty mbufs are 681 * discarded and mbufs are compacted where possible. 682 */ 683 void 684 sbappend(struct sockbuf *sb, struct mbuf *m) 685 { 686 struct mbuf *n; 687 688 KASSERT(solocked(sb->sb_so)); 689 690 if (m == 0) 691 return; 692 693 #ifdef MBUFTRACE 694 m_claimm(m, sb->sb_mowner); 695 #endif 696 697 SBLASTRECORDCHK(sb, "sbappend 1"); 698 699 if ((n = sb->sb_lastrecord) != NULL) { 700 /* 701 * XXX Would like to simply use sb_mbtail here, but 702 * XXX I need to verify that I won't miss an EOR that 703 * XXX way. 704 */ 705 do { 706 if (n->m_flags & M_EOR) { 707 sbappendrecord(sb, m); /* XXXXXX!!!! */ 708 return; 709 } 710 } while (n->m_next && (n = n->m_next)); 711 } else { 712 /* 713 * If this is the first record in the socket buffer, it's 714 * also the last record. 715 */ 716 sb->sb_lastrecord = m; 717 } 718 sbcompress(sb, m, n); 719 SBLASTRECORDCHK(sb, "sbappend 2"); 720 } 721 722 /* 723 * This version of sbappend() should only be used when the caller 724 * absolutely knows that there will never be more than one record 725 * in the socket buffer, that is, a stream protocol (such as TCP). 726 */ 727 void 728 sbappendstream(struct sockbuf *sb, struct mbuf *m) 729 { 730 731 KASSERT(solocked(sb->sb_so)); 732 KDASSERT(m->m_nextpkt == NULL); 733 KASSERT(sb->sb_mb == sb->sb_lastrecord); 734 735 SBLASTMBUFCHK(sb, __func__); 736 737 #ifdef MBUFTRACE 738 m_claimm(m, sb->sb_mowner); 739 #endif 740 741 sbcompress(sb, m, sb->sb_mbtail); 742 743 sb->sb_lastrecord = sb->sb_mb; 744 SBLASTRECORDCHK(sb, __func__); 745 } 746 747 #ifdef SOCKBUF_DEBUG 748 void 749 sbcheck(struct sockbuf *sb) 750 { 751 struct mbuf *m, *m2; 752 u_long len, mbcnt; 753 754 KASSERT(solocked(sb->sb_so)); 755 756 len = 0; 757 mbcnt = 0; 758 for (m = sb->sb_mb; m; m = m->m_nextpkt) { 759 for (m2 = m; m2 != NULL; m2 = m2->m_next) { 760 len += m2->m_len; 761 mbcnt += MSIZE; 762 if (m2->m_flags & M_EXT) 763 mbcnt += m2->m_ext.ext_size; 764 if (m2->m_nextpkt != NULL) 765 panic("sbcheck nextpkt"); 766 } 767 } 768 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) { 769 printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc, 770 mbcnt, sb->sb_mbcnt); 771 panic("sbcheck"); 772 } 773 } 774 #endif 775 776 /* 777 * As above, except the mbuf chain 778 * begins a new record. 779 */ 780 void 781 sbappendrecord(struct sockbuf *sb, struct mbuf *m0) 782 { 783 struct mbuf *m; 784 785 KASSERT(solocked(sb->sb_so)); 786 787 if (m0 == 0) 788 return; 789 790 #ifdef MBUFTRACE 791 m_claimm(m0, sb->sb_mowner); 792 #endif 793 /* 794 * Put the first mbuf on the queue. 795 * Note this permits zero length records. 796 */ 797 sballoc(sb, m0); 798 SBLASTRECORDCHK(sb, "sbappendrecord 1"); 799 SBLINKRECORD(sb, m0); 800 m = m0->m_next; 801 m0->m_next = 0; 802 if (m && (m0->m_flags & M_EOR)) { 803 m0->m_flags &= ~M_EOR; 804 m->m_flags |= M_EOR; 805 } 806 sbcompress(sb, m, m0); 807 SBLASTRECORDCHK(sb, "sbappendrecord 2"); 808 } 809 810 /* 811 * As above except that OOB data 812 * is inserted at the beginning of the sockbuf, 813 * but after any other OOB data. 814 */ 815 void 816 sbinsertoob(struct sockbuf *sb, struct mbuf *m0) 817 { 818 struct mbuf *m, **mp; 819 820 KASSERT(solocked(sb->sb_so)); 821 822 if (m0 == 0) 823 return; 824 825 SBLASTRECORDCHK(sb, "sbinsertoob 1"); 826 827 for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) { 828 again: 829 switch (m->m_type) { 830 831 case MT_OOBDATA: 832 continue; /* WANT next train */ 833 834 case MT_CONTROL: 835 if ((m = m->m_next) != NULL) 836 goto again; /* inspect THIS train further */ 837 } 838 break; 839 } 840 /* 841 * Put the first mbuf on the queue. 842 * Note this permits zero length records. 843 */ 844 sballoc(sb, m0); 845 m0->m_nextpkt = *mp; 846 if (*mp == NULL) { 847 /* m0 is actually the new tail */ 848 sb->sb_lastrecord = m0; 849 } 850 *mp = m0; 851 m = m0->m_next; 852 m0->m_next = 0; 853 if (m && (m0->m_flags & M_EOR)) { 854 m0->m_flags &= ~M_EOR; 855 m->m_flags |= M_EOR; 856 } 857 sbcompress(sb, m, m0); 858 SBLASTRECORDCHK(sb, "sbinsertoob 2"); 859 } 860 861 /* 862 * Append address and data, and optionally, control (ancillary) data 863 * to the receive queue of a socket. If present, 864 * m0 must include a packet header with total length. 865 * Returns 0 if no space in sockbuf or insufficient mbufs. 866 */ 867 int 868 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0, 869 struct mbuf *control) 870 { 871 struct mbuf *m, *n, *nlast; 872 int space, len; 873 874 KASSERT(solocked(sb->sb_so)); 875 876 space = asa->sa_len; 877 878 if (m0 != NULL) { 879 if ((m0->m_flags & M_PKTHDR) == 0) 880 panic("sbappendaddr"); 881 space += m0->m_pkthdr.len; 882 #ifdef MBUFTRACE 883 m_claimm(m0, sb->sb_mowner); 884 #endif 885 } 886 for (n = control; n; n = n->m_next) { 887 space += n->m_len; 888 MCLAIM(n, sb->sb_mowner); 889 if (n->m_next == 0) /* keep pointer to last control buf */ 890 break; 891 } 892 if (space > sbspace(sb)) 893 return (0); 894 MGET(m, M_DONTWAIT, MT_SONAME); 895 if (m == 0) 896 return (0); 897 MCLAIM(m, sb->sb_mowner); 898 /* 899 * XXX avoid 'comparison always true' warning which isn't easily 900 * avoided. 901 */ 902 len = asa->sa_len; 903 if (len > MLEN) { 904 MEXTMALLOC(m, asa->sa_len, M_NOWAIT); 905 if ((m->m_flags & M_EXT) == 0) { 906 m_free(m); 907 return (0); 908 } 909 } 910 m->m_len = asa->sa_len; 911 memcpy(mtod(m, void *), asa, asa->sa_len); 912 if (n) 913 n->m_next = m0; /* concatenate data to control */ 914 else 915 control = m0; 916 m->m_next = control; 917 918 SBLASTRECORDCHK(sb, "sbappendaddr 1"); 919 920 for (n = m; n->m_next != NULL; n = n->m_next) 921 sballoc(sb, n); 922 sballoc(sb, n); 923 nlast = n; 924 SBLINKRECORD(sb, m); 925 926 sb->sb_mbtail = nlast; 927 SBLASTMBUFCHK(sb, "sbappendaddr"); 928 SBLASTRECORDCHK(sb, "sbappendaddr 2"); 929 930 return (1); 931 } 932 933 /* 934 * Helper for sbappendchainaddr: prepend a struct sockaddr* to 935 * an mbuf chain. 936 */ 937 static inline struct mbuf * 938 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0, 939 const struct sockaddr *asa) 940 { 941 struct mbuf *m; 942 const int salen = asa->sa_len; 943 944 KASSERT(solocked(sb->sb_so)); 945 946 /* only the first in each chain need be a pkthdr */ 947 MGETHDR(m, M_DONTWAIT, MT_SONAME); 948 if (m == 0) 949 return (0); 950 MCLAIM(m, sb->sb_mowner); 951 #ifdef notyet 952 if (salen > MHLEN) { 953 MEXTMALLOC(m, salen, M_NOWAIT); 954 if ((m->m_flags & M_EXT) == 0) { 955 m_free(m); 956 return (0); 957 } 958 } 959 #else 960 KASSERT(salen <= MHLEN); 961 #endif 962 m->m_len = salen; 963 memcpy(mtod(m, void *), asa, salen); 964 m->m_next = m0; 965 m->m_pkthdr.len = salen + m0->m_pkthdr.len; 966 967 return m; 968 } 969 970 int 971 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa, 972 struct mbuf *m0, int sbprio) 973 { 974 int space; 975 struct mbuf *m, *n, *n0, *nlast; 976 int error; 977 978 KASSERT(solocked(sb->sb_so)); 979 980 /* 981 * XXX sbprio reserved for encoding priority of this* request: 982 * SB_PRIO_NONE --> honour normal sb limits 983 * SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space, 984 * take whole chain. Intended for large requests 985 * that should be delivered atomically (all, or none). 986 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow 987 * over normal socket limits, for messages indicating 988 * buffer overflow in earlier normal/lower-priority messages 989 * SB_PRIO_BESTEFFORT --> ignore limits entirely. 990 * Intended for kernel-generated messages only. 991 * Up to generator to avoid total mbuf resource exhaustion. 992 */ 993 (void)sbprio; 994 995 if (m0 && (m0->m_flags & M_PKTHDR) == 0) 996 panic("sbappendaddrchain"); 997 998 space = sbspace(sb); 999 1000 #ifdef notyet 1001 /* 1002 * Enforce SB_PRIO_* limits as described above. 1003 */ 1004 #endif 1005 1006 n0 = NULL; 1007 nlast = NULL; 1008 for (m = m0; m; m = m->m_nextpkt) { 1009 struct mbuf *np; 1010 1011 #ifdef MBUFTRACE 1012 m_claimm(m, sb->sb_mowner); 1013 #endif 1014 1015 /* Prepend sockaddr to this record (m) of input chain m0 */ 1016 n = m_prepend_sockaddr(sb, m, asa); 1017 if (n == NULL) { 1018 error = ENOBUFS; 1019 goto bad; 1020 } 1021 1022 /* Append record (asa+m) to end of new chain n0 */ 1023 if (n0 == NULL) { 1024 n0 = n; 1025 } else { 1026 nlast->m_nextpkt = n; 1027 } 1028 /* Keep track of last record on new chain */ 1029 nlast = n; 1030 1031 for (np = n; np; np = np->m_next) 1032 sballoc(sb, np); 1033 } 1034 1035 SBLASTRECORDCHK(sb, "sbappendaddrchain 1"); 1036 1037 /* Drop the entire chain of (asa+m) records onto the socket */ 1038 SBLINKRECORDCHAIN(sb, n0, nlast); 1039 1040 SBLASTRECORDCHK(sb, "sbappendaddrchain 2"); 1041 1042 for (m = nlast; m->m_next; m = m->m_next) 1043 ; 1044 sb->sb_mbtail = m; 1045 SBLASTMBUFCHK(sb, "sbappendaddrchain"); 1046 1047 return (1); 1048 1049 bad: 1050 /* 1051 * On error, free the prepended addreseses. For consistency 1052 * with sbappendaddr(), leave it to our caller to free 1053 * the input record chain passed to us as m0. 1054 */ 1055 while ((n = n0) != NULL) { 1056 struct mbuf *np; 1057 1058 /* Undo the sballoc() of this record */ 1059 for (np = n; np; np = np->m_next) 1060 sbfree(sb, np); 1061 1062 n0 = n->m_nextpkt; /* iterate at next prepended address */ 1063 MFREE(n, np); /* free prepended address (not data) */ 1064 } 1065 return 0; 1066 } 1067 1068 1069 int 1070 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control) 1071 { 1072 struct mbuf *m, *mlast, *n; 1073 int space; 1074 1075 KASSERT(solocked(sb->sb_so)); 1076 1077 space = 0; 1078 if (control == 0) 1079 panic("sbappendcontrol"); 1080 for (m = control; ; m = m->m_next) { 1081 space += m->m_len; 1082 MCLAIM(m, sb->sb_mowner); 1083 if (m->m_next == 0) 1084 break; 1085 } 1086 n = m; /* save pointer to last control buffer */ 1087 for (m = m0; m; m = m->m_next) { 1088 MCLAIM(m, sb->sb_mowner); 1089 space += m->m_len; 1090 } 1091 if (space > sbspace(sb)) 1092 return (0); 1093 n->m_next = m0; /* concatenate data to control */ 1094 1095 SBLASTRECORDCHK(sb, "sbappendcontrol 1"); 1096 1097 for (m = control; m->m_next != NULL; m = m->m_next) 1098 sballoc(sb, m); 1099 sballoc(sb, m); 1100 mlast = m; 1101 SBLINKRECORD(sb, control); 1102 1103 sb->sb_mbtail = mlast; 1104 SBLASTMBUFCHK(sb, "sbappendcontrol"); 1105 SBLASTRECORDCHK(sb, "sbappendcontrol 2"); 1106 1107 return (1); 1108 } 1109 1110 /* 1111 * Compress mbuf chain m into the socket 1112 * buffer sb following mbuf n. If n 1113 * is null, the buffer is presumed empty. 1114 */ 1115 void 1116 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n) 1117 { 1118 int eor; 1119 struct mbuf *o; 1120 1121 KASSERT(solocked(sb->sb_so)); 1122 1123 eor = 0; 1124 while (m) { 1125 eor |= m->m_flags & M_EOR; 1126 if (m->m_len == 0 && 1127 (eor == 0 || 1128 (((o = m->m_next) || (o = n)) && 1129 o->m_type == m->m_type))) { 1130 if (sb->sb_lastrecord == m) 1131 sb->sb_lastrecord = m->m_next; 1132 m = m_free(m); 1133 continue; 1134 } 1135 if (n && (n->m_flags & M_EOR) == 0 && 1136 /* M_TRAILINGSPACE() checks buffer writeability */ 1137 m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */ 1138 m->m_len <= M_TRAILINGSPACE(n) && 1139 n->m_type == m->m_type) { 1140 memcpy(mtod(n, char *) + n->m_len, mtod(m, void *), 1141 (unsigned)m->m_len); 1142 n->m_len += m->m_len; 1143 sb->sb_cc += m->m_len; 1144 m = m_free(m); 1145 continue; 1146 } 1147 if (n) 1148 n->m_next = m; 1149 else 1150 sb->sb_mb = m; 1151 sb->sb_mbtail = m; 1152 sballoc(sb, m); 1153 n = m; 1154 m->m_flags &= ~M_EOR; 1155 m = m->m_next; 1156 n->m_next = 0; 1157 } 1158 if (eor) { 1159 if (n) 1160 n->m_flags |= eor; 1161 else 1162 printf("semi-panic: sbcompress\n"); 1163 } 1164 SBLASTMBUFCHK(sb, __func__); 1165 } 1166 1167 /* 1168 * Free all mbufs in a sockbuf. 1169 * Check that all resources are reclaimed. 1170 */ 1171 void 1172 sbflush(struct sockbuf *sb) 1173 { 1174 1175 KASSERT(solocked(sb->sb_so)); 1176 KASSERT((sb->sb_flags & SB_LOCK) == 0); 1177 1178 while (sb->sb_mbcnt) 1179 sbdrop(sb, (int)sb->sb_cc); 1180 1181 KASSERT(sb->sb_cc == 0); 1182 KASSERT(sb->sb_mb == NULL); 1183 KASSERT(sb->sb_mbtail == NULL); 1184 KASSERT(sb->sb_lastrecord == NULL); 1185 } 1186 1187 /* 1188 * Drop data from (the front of) a sockbuf. 1189 */ 1190 void 1191 sbdrop(struct sockbuf *sb, int len) 1192 { 1193 struct mbuf *m, *mn, *next; 1194 1195 KASSERT(solocked(sb->sb_so)); 1196 1197 next = (m = sb->sb_mb) ? m->m_nextpkt : 0; 1198 while (len > 0) { 1199 if (m == 0) { 1200 if (next == 0) 1201 panic("sbdrop"); 1202 m = next; 1203 next = m->m_nextpkt; 1204 continue; 1205 } 1206 if (m->m_len > len) { 1207 m->m_len -= len; 1208 m->m_data += len; 1209 sb->sb_cc -= len; 1210 break; 1211 } 1212 len -= m->m_len; 1213 sbfree(sb, m); 1214 MFREE(m, mn); 1215 m = mn; 1216 } 1217 while (m && m->m_len == 0) { 1218 sbfree(sb, m); 1219 MFREE(m, mn); 1220 m = mn; 1221 } 1222 if (m) { 1223 sb->sb_mb = m; 1224 m->m_nextpkt = next; 1225 } else 1226 sb->sb_mb = next; 1227 /* 1228 * First part is an inline SB_EMPTY_FIXUP(). Second part 1229 * makes sure sb_lastrecord is up-to-date if we dropped 1230 * part of the last record. 1231 */ 1232 m = sb->sb_mb; 1233 if (m == NULL) { 1234 sb->sb_mbtail = NULL; 1235 sb->sb_lastrecord = NULL; 1236 } else if (m->m_nextpkt == NULL) 1237 sb->sb_lastrecord = m; 1238 } 1239 1240 /* 1241 * Drop a record off the front of a sockbuf 1242 * and move the next record to the front. 1243 */ 1244 void 1245 sbdroprecord(struct sockbuf *sb) 1246 { 1247 struct mbuf *m, *mn; 1248 1249 KASSERT(solocked(sb->sb_so)); 1250 1251 m = sb->sb_mb; 1252 if (m) { 1253 sb->sb_mb = m->m_nextpkt; 1254 do { 1255 sbfree(sb, m); 1256 MFREE(m, mn); 1257 } while ((m = mn) != NULL); 1258 } 1259 SB_EMPTY_FIXUP(sb); 1260 } 1261 1262 /* 1263 * Create a "control" mbuf containing the specified data 1264 * with the specified type for presentation on a socket buffer. 1265 */ 1266 struct mbuf * 1267 sbcreatecontrol(void *p, int size, int type, int level) 1268 { 1269 struct cmsghdr *cp; 1270 struct mbuf *m; 1271 1272 if (CMSG_SPACE(size) > MCLBYTES) { 1273 printf("sbcreatecontrol: message too large %d\n", size); 1274 return NULL; 1275 } 1276 1277 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL) 1278 return ((struct mbuf *) NULL); 1279 if (CMSG_SPACE(size) > MLEN) { 1280 MCLGET(m, M_DONTWAIT); 1281 if ((m->m_flags & M_EXT) == 0) { 1282 m_free(m); 1283 return NULL; 1284 } 1285 } 1286 cp = mtod(m, struct cmsghdr *); 1287 memcpy(CMSG_DATA(cp), p, size); 1288 m->m_len = CMSG_SPACE(size); 1289 cp->cmsg_len = CMSG_LEN(size); 1290 cp->cmsg_level = level; 1291 cp->cmsg_type = type; 1292 return (m); 1293 } 1294 1295 void 1296 solockretry(struct socket *so, kmutex_t *lock) 1297 { 1298 1299 while (lock != so->so_lock) { 1300 mutex_exit(lock); 1301 lock = so->so_lock; 1302 mutex_enter(lock); 1303 } 1304 } 1305 1306 bool 1307 solocked(struct socket *so) 1308 { 1309 1310 return mutex_owned(so->so_lock); 1311 } 1312 1313 bool 1314 solocked2(struct socket *so1, struct socket *so2) 1315 { 1316 kmutex_t *lock; 1317 1318 lock = so1->so_lock; 1319 if (lock != so2->so_lock) 1320 return false; 1321 return mutex_owned(lock); 1322 } 1323 1324 /* 1325 * Assign a default lock to a new socket. For PRU_ATTACH, and done by 1326 * protocols that do not have special locking requirements. 1327 */ 1328 void 1329 sosetlock(struct socket *so) 1330 { 1331 kmutex_t *lock; 1332 1333 if (so->so_lock == NULL) { 1334 lock = softnet_lock; 1335 so->so_lock = lock; 1336 mutex_obj_hold(lock); 1337 mutex_enter(lock); 1338 } 1339 1340 /* In all cases, lock must be held on return from PRU_ATTACH. */ 1341 KASSERT(solocked(so)); 1342 } 1343 1344 /* 1345 * Set lock on sockbuf sb; sleep if lock is already held. 1346 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible. 1347 * Returns error without lock if sleep is interrupted. 1348 */ 1349 int 1350 sblock(struct sockbuf *sb, int wf) 1351 { 1352 struct socket *so; 1353 kmutex_t *lock; 1354 int error; 1355 1356 KASSERT(solocked(sb->sb_so)); 1357 1358 for (;;) { 1359 if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) { 1360 sb->sb_flags |= SB_LOCK; 1361 return 0; 1362 } 1363 if (wf != M_WAITOK) 1364 return EWOULDBLOCK; 1365 so = sb->sb_so; 1366 lock = so->so_lock; 1367 if ((sb->sb_flags & SB_NOINTR) != 0) { 1368 cv_wait(&so->so_cv, lock); 1369 error = 0; 1370 } else 1371 error = cv_wait_sig(&so->so_cv, lock); 1372 if (__predict_false(lock != so->so_lock)) 1373 solockretry(so, lock); 1374 if (error != 0) 1375 return error; 1376 } 1377 } 1378 1379 void 1380 sbunlock(struct sockbuf *sb) 1381 { 1382 struct socket *so; 1383 1384 so = sb->sb_so; 1385 1386 KASSERT(solocked(so)); 1387 KASSERT((sb->sb_flags & SB_LOCK) != 0); 1388 1389 sb->sb_flags &= ~SB_LOCK; 1390 cv_broadcast(&so->so_cv); 1391 } 1392 1393 int 1394 sowait(struct socket *so, int timo) 1395 { 1396 kmutex_t *lock; 1397 int error; 1398 1399 KASSERT(solocked(so)); 1400 1401 lock = so->so_lock; 1402 error = cv_timedwait_sig(&so->so_cv, lock, timo); 1403 if (__predict_false(lock != so->so_lock)) 1404 solockretry(so, lock); 1405 return error; 1406 } 1407