xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: uipc_socket2.c,v 1.89 2008/02/07 12:14:43 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.89 2008/02/07 12:14:43 ad Exp $");
36 
37 #include "opt_mbuftrace.h"
38 #include "opt_sb_max.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/file.h>
44 #include <sys/buf.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/protosw.h>
48 #include <sys/poll.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/signalvar.h>
52 #include <sys/kauth.h>
53 
54 /*
55  * Primitive routines for operating on sockets and socket buffers
56  */
57 
58 /* strings for sleep message: */
59 const char	netcon[] = "netcon";
60 const char	netcls[] = "netcls";
61 const char	netio[] = "netio";
62 const char	netlck[] = "netlck";
63 
64 u_long	sb_max = SB_MAX;	/* maximum socket buffer size */
65 static u_long sb_max_adj;	/* adjusted sb_max */
66 
67 /*
68  * Procedures to manipulate state flags of socket
69  * and do appropriate wakeups.  Normal sequence from the
70  * active (originating) side is that soisconnecting() is
71  * called during processing of connect() call,
72  * resulting in an eventual call to soisconnected() if/when the
73  * connection is established.  When the connection is torn down
74  * soisdisconnecting() is called during processing of disconnect() call,
75  * and soisdisconnected() is called when the connection to the peer
76  * is totally severed.  The semantics of these routines are such that
77  * connectionless protocols can call soisconnected() and soisdisconnected()
78  * only, bypassing the in-progress calls when setting up a ``connection''
79  * takes no time.
80  *
81  * From the passive side, a socket is created with
82  * two queues of sockets: so_q0 for connections in progress
83  * and so_q for connections already made and awaiting user acceptance.
84  * As a protocol is preparing incoming connections, it creates a socket
85  * structure queued on so_q0 by calling sonewconn().  When the connection
86  * is established, soisconnected() is called, and transfers the
87  * socket structure to so_q, making it available to accept().
88  *
89  * If a socket is closed with sockets on either
90  * so_q0 or so_q, these sockets are dropped.
91  *
92  * If higher level protocols are implemented in
93  * the kernel, the wakeups done here will sometimes
94  * cause software-interrupt process scheduling.
95  */
96 
97 void
98 soisconnecting(struct socket *so)
99 {
100 
101 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
102 	so->so_state |= SS_ISCONNECTING;
103 }
104 
105 void
106 soisconnected(struct socket *so)
107 {
108 	struct socket	*head;
109 
110 	head = so->so_head;
111 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
112 	so->so_state |= SS_ISCONNECTED;
113 	if (head && soqremque(so, 0)) {
114 		soqinsque(head, so, 1);
115 		sorwakeup(head);
116 		wakeup((void *)&head->so_timeo);
117 	} else {
118 		wakeup((void *)&so->so_timeo);
119 		sorwakeup(so);
120 		sowwakeup(so);
121 	}
122 }
123 
124 void
125 soisdisconnecting(struct socket *so)
126 {
127 
128 	so->so_state &= ~SS_ISCONNECTING;
129 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
130 	wakeup((void *)&so->so_timeo);
131 	sowwakeup(so);
132 	sorwakeup(so);
133 }
134 
135 void
136 soisdisconnected(struct socket *so)
137 {
138 
139 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
140 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
141 	wakeup((void *)&so->so_timeo);
142 	sowwakeup(so);
143 	sorwakeup(so);
144 }
145 
146 /*
147  * When an attempt at a new connection is noted on a socket
148  * which accepts connections, sonewconn is called.  If the
149  * connection is possible (subject to space constraints, etc.)
150  * then we allocate a new structure, propoerly linked into the
151  * data structure of the original socket, and return this.
152  * Connstatus may be 0, SS_ISCONFIRMING, or SS_ISCONNECTED.
153  */
154 struct socket *
155 sonewconn(struct socket *head, int connstatus)
156 {
157 	struct socket	*so;
158 	int		soqueue;
159 
160 	soqueue = connstatus ? 1 : 0;
161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 		return ((struct socket *)0);
163 	so = pool_get(&socket_pool, PR_NOWAIT);
164 	if (so == NULL)
165 		return (NULL);
166 	memset((void *)so, 0, sizeof(*so));
167 	so->so_type = head->so_type;
168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 	so->so_linger = head->so_linger;
170 	so->so_state = head->so_state | SS_NOFDREF;
171 	so->so_nbio = head->so_nbio;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	so->so_send = head->so_send;
176 	so->so_receive = head->so_receive;
177 	so->so_uidinfo = head->so_uidinfo;
178 #ifdef MBUFTRACE
179 	so->so_mowner = head->so_mowner;
180 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182 #endif
183 	selinit(&so->so_rcv.sb_sel);
184 	selinit(&so->so_snd.sb_sel);
185 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
186 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
187 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
188 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
189 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
190 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & SB_AUTOSIZE;
191 	so->so_snd.sb_flags |= head->so_snd.sb_flags & SB_AUTOSIZE;
192 	soqinsque(head, so, soqueue);
193 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
194 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
195 	    (struct lwp *)0)) {
196 		(void) soqremque(so, soqueue);
197 		seldestroy(&so->so_rcv.sb_sel);
198 		seldestroy(&so->so_snd.sb_sel);
199 		pool_put(&socket_pool, so);
200 		return (NULL);
201 	}
202 	if (connstatus) {
203 		sorwakeup(head);
204 		wakeup((void *)&head->so_timeo);
205 		so->so_state |= connstatus;
206 	}
207 	return (so);
208 }
209 
210 void
211 soqinsque(struct socket *head, struct socket *so, int q)
212 {
213 
214 #ifdef DIAGNOSTIC
215 	if (so->so_onq != NULL)
216 		panic("soqinsque");
217 #endif
218 
219 	so->so_head = head;
220 	if (q == 0) {
221 		head->so_q0len++;
222 		so->so_onq = &head->so_q0;
223 	} else {
224 		head->so_qlen++;
225 		so->so_onq = &head->so_q;
226 	}
227 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
228 }
229 
230 int
231 soqremque(struct socket *so, int q)
232 {
233 	struct socket	*head;
234 
235 	head = so->so_head;
236 	if (q == 0) {
237 		if (so->so_onq != &head->so_q0)
238 			return (0);
239 		head->so_q0len--;
240 	} else {
241 		if (so->so_onq != &head->so_q)
242 			return (0);
243 		head->so_qlen--;
244 	}
245 	TAILQ_REMOVE(so->so_onq, so, so_qe);
246 	so->so_onq = NULL;
247 	so->so_head = NULL;
248 	return (1);
249 }
250 
251 /*
252  * Socantsendmore indicates that no more data will be sent on the
253  * socket; it would normally be applied to a socket when the user
254  * informs the system that no more data is to be sent, by the protocol
255  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
256  * will be received, and will normally be applied to the socket by a
257  * protocol when it detects that the peer will send no more data.
258  * Data queued for reading in the socket may yet be read.
259  */
260 
261 void
262 socantsendmore(struct socket *so)
263 {
264 
265 	so->so_state |= SS_CANTSENDMORE;
266 	sowwakeup(so);
267 }
268 
269 void
270 socantrcvmore(struct socket *so)
271 {
272 
273 	so->so_state |= SS_CANTRCVMORE;
274 	sorwakeup(so);
275 }
276 
277 /*
278  * Wait for data to arrive at/drain from a socket buffer.
279  */
280 int
281 sbwait(struct sockbuf *sb)
282 {
283 
284 	sb->sb_flags |= SB_WAIT;
285 	return (tsleep((void *)&sb->sb_cc,
286 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
287 	    sb->sb_timeo));
288 }
289 
290 /*
291  * Lock a sockbuf already known to be locked;
292  * return any error returned from sleep (EINTR).
293  */
294 int
295 sb_lock(struct sockbuf *sb)
296 {
297 	int	error;
298 
299 	while (sb->sb_flags & SB_LOCK) {
300 		sb->sb_flags |= SB_WANT;
301 		error = tsleep((void *)&sb->sb_flags,
302 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
303 		    netlck, 0);
304 		if (error)
305 			return (error);
306 	}
307 	sb->sb_flags |= SB_LOCK;
308 	return (0);
309 }
310 
311 /*
312  * Wakeup processes waiting on a socket buffer.
313  * Do asynchronous notification via SIGIO
314  * if the socket buffer has the SB_ASYNC flag set.
315  */
316 void
317 sowakeup(struct socket *so, struct sockbuf *sb, int code)
318 {
319 	selnotify(&sb->sb_sel, 0);
320 	sb->sb_flags &= ~SB_SEL;
321 	if (sb->sb_flags & SB_WAIT) {
322 		sb->sb_flags &= ~SB_WAIT;
323 		wakeup((void *)&sb->sb_cc);
324 	}
325 	if (sb->sb_flags & SB_ASYNC) {
326 		int band;
327 		if (code == POLL_IN)
328 			band = POLLIN|POLLRDNORM;
329 		else
330 			band = POLLOUT|POLLWRNORM;
331 		fownsignal(so->so_pgid, SIGIO, code, band, so);
332 	}
333 	if (sb->sb_flags & SB_UPCALL)
334 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
335 }
336 
337 /*
338  * Socket buffer (struct sockbuf) utility routines.
339  *
340  * Each socket contains two socket buffers: one for sending data and
341  * one for receiving data.  Each buffer contains a queue of mbufs,
342  * information about the number of mbufs and amount of data in the
343  * queue, and other fields allowing poll() statements and notification
344  * on data availability to be implemented.
345  *
346  * Data stored in a socket buffer is maintained as a list of records.
347  * Each record is a list of mbufs chained together with the m_next
348  * field.  Records are chained together with the m_nextpkt field. The upper
349  * level routine soreceive() expects the following conventions to be
350  * observed when placing information in the receive buffer:
351  *
352  * 1. If the protocol requires each message be preceded by the sender's
353  *    name, then a record containing that name must be present before
354  *    any associated data (mbuf's must be of type MT_SONAME).
355  * 2. If the protocol supports the exchange of ``access rights'' (really
356  *    just additional data associated with the message), and there are
357  *    ``rights'' to be received, then a record containing this data
358  *    should be present (mbuf's must be of type MT_CONTROL).
359  * 3. If a name or rights record exists, then it must be followed by
360  *    a data record, perhaps of zero length.
361  *
362  * Before using a new socket structure it is first necessary to reserve
363  * buffer space to the socket, by calling sbreserve().  This should commit
364  * some of the available buffer space in the system buffer pool for the
365  * socket (currently, it does nothing but enforce limits).  The space
366  * should be released by calling sbrelease() when the socket is destroyed.
367  */
368 
369 int
370 sb_max_set(u_long new_sbmax)
371 {
372 	int s;
373 
374 	if (new_sbmax < (16 * 1024))
375 		return (EINVAL);
376 
377 	s = splsoftnet();
378 	sb_max = new_sbmax;
379 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
380 	splx(s);
381 
382 	return (0);
383 }
384 
385 int
386 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
387 {
388 	/*
389 	 * there's at least one application (a configure script of screen)
390 	 * which expects a fifo is writable even if it has "some" bytes
391 	 * in its buffer.
392 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
393 	 *
394 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
395 	 * we expect it's large enough for such applications.
396 	 */
397 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
398 	u_long  hiwat = lowat + PIPE_BUF;
399 
400 	if (sndcc < hiwat)
401 		sndcc = hiwat;
402 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
403 		goto bad;
404 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
405 		goto bad2;
406 	if (so->so_rcv.sb_lowat == 0)
407 		so->so_rcv.sb_lowat = 1;
408 	if (so->so_snd.sb_lowat == 0)
409 		so->so_snd.sb_lowat = lowat;
410 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
411 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
412 	return (0);
413  bad2:
414 	sbrelease(&so->so_snd, so);
415  bad:
416 	return (ENOBUFS);
417 }
418 
419 /*
420  * Allot mbufs to a sockbuf.
421  * Attempt to scale mbmax so that mbcnt doesn't become limiting
422  * if buffering efficiency is near the normal case.
423  */
424 int
425 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
426 {
427 	struct lwp *l = curlwp; /* XXX */
428 	rlim_t maxcc;
429 	struct uidinfo *uidinfo;
430 
431 	KDASSERT(sb_max_adj != 0);
432 	if (cc == 0 || cc > sb_max_adj)
433 		return (0);
434 	if (so) {
435 		if (kauth_cred_geteuid(l->l_cred) == so->so_uidinfo->ui_uid)
436 			maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
437 		else
438 			maxcc = RLIM_INFINITY;
439 		uidinfo = so->so_uidinfo;
440 	} else {
441 		uidinfo = uid_find(0);	/* XXX: nothing better */
442 		maxcc = RLIM_INFINITY;
443 	}
444 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
445 		return 0;
446 	sb->sb_mbmax = min(cc * 2, sb_max);
447 	if (sb->sb_lowat > sb->sb_hiwat)
448 		sb->sb_lowat = sb->sb_hiwat;
449 	return (1);
450 }
451 
452 /*
453  * Free mbufs held by a socket, and reserved mbuf space.
454  */
455 void
456 sbrelease(struct sockbuf *sb, struct socket *so)
457 {
458 
459 	sbflush(sb);
460 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
461 	sb->sb_mbmax = 0;
462 }
463 
464 /*
465  * Routines to add and remove
466  * data from an mbuf queue.
467  *
468  * The routines sbappend() or sbappendrecord() are normally called to
469  * append new mbufs to a socket buffer, after checking that adequate
470  * space is available, comparing the function sbspace() with the amount
471  * of data to be added.  sbappendrecord() differs from sbappend() in
472  * that data supplied is treated as the beginning of a new record.
473  * To place a sender's address, optional access rights, and data in a
474  * socket receive buffer, sbappendaddr() should be used.  To place
475  * access rights and data in a socket receive buffer, sbappendrights()
476  * should be used.  In either case, the new data begins a new record.
477  * Note that unlike sbappend() and sbappendrecord(), these routines check
478  * for the caller that there will be enough space to store the data.
479  * Each fails if there is not enough space, or if it cannot find mbufs
480  * to store additional information in.
481  *
482  * Reliable protocols may use the socket send buffer to hold data
483  * awaiting acknowledgement.  Data is normally copied from a socket
484  * send buffer in a protocol with m_copy for output to a peer,
485  * and then removing the data from the socket buffer with sbdrop()
486  * or sbdroprecord() when the data is acknowledged by the peer.
487  */
488 
489 #ifdef SOCKBUF_DEBUG
490 void
491 sblastrecordchk(struct sockbuf *sb, const char *where)
492 {
493 	struct mbuf *m = sb->sb_mb;
494 
495 	while (m && m->m_nextpkt)
496 		m = m->m_nextpkt;
497 
498 	if (m != sb->sb_lastrecord) {
499 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
500 		    sb->sb_mb, sb->sb_lastrecord, m);
501 		printf("packet chain:\n");
502 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
503 			printf("\t%p\n", m);
504 		panic("sblastrecordchk from %s", where);
505 	}
506 }
507 
508 void
509 sblastmbufchk(struct sockbuf *sb, const char *where)
510 {
511 	struct mbuf *m = sb->sb_mb;
512 	struct mbuf *n;
513 
514 	while (m && m->m_nextpkt)
515 		m = m->m_nextpkt;
516 
517 	while (m && m->m_next)
518 		m = m->m_next;
519 
520 	if (m != sb->sb_mbtail) {
521 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
522 		    sb->sb_mb, sb->sb_mbtail, m);
523 		printf("packet tree:\n");
524 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
525 			printf("\t");
526 			for (n = m; n != NULL; n = n->m_next)
527 				printf("%p ", n);
528 			printf("\n");
529 		}
530 		panic("sblastmbufchk from %s", where);
531 	}
532 }
533 #endif /* SOCKBUF_DEBUG */
534 
535 /*
536  * Link a chain of records onto a socket buffer
537  */
538 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
539 do {									\
540 	if ((sb)->sb_lastrecord != NULL)				\
541 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
542 	else								\
543 		(sb)->sb_mb = (m0);					\
544 	(sb)->sb_lastrecord = (mlast);					\
545 } while (/*CONSTCOND*/0)
546 
547 
548 #define	SBLINKRECORD(sb, m0)						\
549     SBLINKRECORDCHAIN(sb, m0, m0)
550 
551 /*
552  * Append mbuf chain m to the last record in the
553  * socket buffer sb.  The additional space associated
554  * the mbuf chain is recorded in sb.  Empty mbufs are
555  * discarded and mbufs are compacted where possible.
556  */
557 void
558 sbappend(struct sockbuf *sb, struct mbuf *m)
559 {
560 	struct mbuf	*n;
561 
562 	if (m == 0)
563 		return;
564 
565 #ifdef MBUFTRACE
566 	m_claimm(m, sb->sb_mowner);
567 #endif
568 
569 	SBLASTRECORDCHK(sb, "sbappend 1");
570 
571 	if ((n = sb->sb_lastrecord) != NULL) {
572 		/*
573 		 * XXX Would like to simply use sb_mbtail here, but
574 		 * XXX I need to verify that I won't miss an EOR that
575 		 * XXX way.
576 		 */
577 		do {
578 			if (n->m_flags & M_EOR) {
579 				sbappendrecord(sb, m); /* XXXXXX!!!! */
580 				return;
581 			}
582 		} while (n->m_next && (n = n->m_next));
583 	} else {
584 		/*
585 		 * If this is the first record in the socket buffer, it's
586 		 * also the last record.
587 		 */
588 		sb->sb_lastrecord = m;
589 	}
590 	sbcompress(sb, m, n);
591 	SBLASTRECORDCHK(sb, "sbappend 2");
592 }
593 
594 /*
595  * This version of sbappend() should only be used when the caller
596  * absolutely knows that there will never be more than one record
597  * in the socket buffer, that is, a stream protocol (such as TCP).
598  */
599 void
600 sbappendstream(struct sockbuf *sb, struct mbuf *m)
601 {
602 
603 	KDASSERT(m->m_nextpkt == NULL);
604 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
605 
606 	SBLASTMBUFCHK(sb, __func__);
607 
608 #ifdef MBUFTRACE
609 	m_claimm(m, sb->sb_mowner);
610 #endif
611 
612 	sbcompress(sb, m, sb->sb_mbtail);
613 
614 	sb->sb_lastrecord = sb->sb_mb;
615 	SBLASTRECORDCHK(sb, __func__);
616 }
617 
618 #ifdef SOCKBUF_DEBUG
619 void
620 sbcheck(struct sockbuf *sb)
621 {
622 	struct mbuf	*m;
623 	u_long		len, mbcnt;
624 
625 	len = 0;
626 	mbcnt = 0;
627 	for (m = sb->sb_mb; m; m = m->m_next) {
628 		len += m->m_len;
629 		mbcnt += MSIZE;
630 		if (m->m_flags & M_EXT)
631 			mbcnt += m->m_ext.ext_size;
632 		if (m->m_nextpkt)
633 			panic("sbcheck nextpkt");
634 	}
635 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
636 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
637 		    mbcnt, sb->sb_mbcnt);
638 		panic("sbcheck");
639 	}
640 }
641 #endif
642 
643 /*
644  * As above, except the mbuf chain
645  * begins a new record.
646  */
647 void
648 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
649 {
650 	struct mbuf	*m;
651 
652 	if (m0 == 0)
653 		return;
654 
655 #ifdef MBUFTRACE
656 	m_claimm(m0, sb->sb_mowner);
657 #endif
658 	/*
659 	 * Put the first mbuf on the queue.
660 	 * Note this permits zero length records.
661 	 */
662 	sballoc(sb, m0);
663 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
664 	SBLINKRECORD(sb, m0);
665 	m = m0->m_next;
666 	m0->m_next = 0;
667 	if (m && (m0->m_flags & M_EOR)) {
668 		m0->m_flags &= ~M_EOR;
669 		m->m_flags |= M_EOR;
670 	}
671 	sbcompress(sb, m, m0);
672 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
673 }
674 
675 /*
676  * As above except that OOB data
677  * is inserted at the beginning of the sockbuf,
678  * but after any other OOB data.
679  */
680 void
681 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
682 {
683 	struct mbuf	*m, **mp;
684 
685 	if (m0 == 0)
686 		return;
687 
688 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
689 
690 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
691 	    again:
692 		switch (m->m_type) {
693 
694 		case MT_OOBDATA:
695 			continue;		/* WANT next train */
696 
697 		case MT_CONTROL:
698 			if ((m = m->m_next) != NULL)
699 				goto again;	/* inspect THIS train further */
700 		}
701 		break;
702 	}
703 	/*
704 	 * Put the first mbuf on the queue.
705 	 * Note this permits zero length records.
706 	 */
707 	sballoc(sb, m0);
708 	m0->m_nextpkt = *mp;
709 	if (*mp == NULL) {
710 		/* m0 is actually the new tail */
711 		sb->sb_lastrecord = m0;
712 	}
713 	*mp = m0;
714 	m = m0->m_next;
715 	m0->m_next = 0;
716 	if (m && (m0->m_flags & M_EOR)) {
717 		m0->m_flags &= ~M_EOR;
718 		m->m_flags |= M_EOR;
719 	}
720 	sbcompress(sb, m, m0);
721 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
722 }
723 
724 /*
725  * Append address and data, and optionally, control (ancillary) data
726  * to the receive queue of a socket.  If present,
727  * m0 must include a packet header with total length.
728  * Returns 0 if no space in sockbuf or insufficient mbufs.
729  */
730 int
731 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
732 	struct mbuf *control)
733 {
734 	struct mbuf	*m, *n, *nlast;
735 	int		space, len;
736 
737 	space = asa->sa_len;
738 
739 	if (m0 != NULL) {
740 		if ((m0->m_flags & M_PKTHDR) == 0)
741 			panic("sbappendaddr");
742 		space += m0->m_pkthdr.len;
743 #ifdef MBUFTRACE
744 		m_claimm(m0, sb->sb_mowner);
745 #endif
746 	}
747 	for (n = control; n; n = n->m_next) {
748 		space += n->m_len;
749 		MCLAIM(n, sb->sb_mowner);
750 		if (n->m_next == 0)	/* keep pointer to last control buf */
751 			break;
752 	}
753 	if (space > sbspace(sb))
754 		return (0);
755 	MGET(m, M_DONTWAIT, MT_SONAME);
756 	if (m == 0)
757 		return (0);
758 	MCLAIM(m, sb->sb_mowner);
759 	/*
760 	 * XXX avoid 'comparison always true' warning which isn't easily
761 	 * avoided.
762 	 */
763 	len = asa->sa_len;
764 	if (len > MLEN) {
765 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
766 		if ((m->m_flags & M_EXT) == 0) {
767 			m_free(m);
768 			return (0);
769 		}
770 	}
771 	m->m_len = asa->sa_len;
772 	memcpy(mtod(m, void *), asa, asa->sa_len);
773 	if (n)
774 		n->m_next = m0;		/* concatenate data to control */
775 	else
776 		control = m0;
777 	m->m_next = control;
778 
779 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
780 
781 	for (n = m; n->m_next != NULL; n = n->m_next)
782 		sballoc(sb, n);
783 	sballoc(sb, n);
784 	nlast = n;
785 	SBLINKRECORD(sb, m);
786 
787 	sb->sb_mbtail = nlast;
788 	SBLASTMBUFCHK(sb, "sbappendaddr");
789 
790 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
791 
792 	return (1);
793 }
794 
795 /*
796  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
797  * an mbuf chain.
798  */
799 static inline struct mbuf *
800 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
801 		   const struct sockaddr *asa)
802 {
803 	struct mbuf *m;
804 	const int salen = asa->sa_len;
805 
806 	/* only the first in each chain need be a pkthdr */
807 	MGETHDR(m, M_DONTWAIT, MT_SONAME);
808 	if (m == 0)
809 		return (0);
810 	MCLAIM(m, sb->sb_mowner);
811 #ifdef notyet
812 	if (salen > MHLEN) {
813 		MEXTMALLOC(m, salen, M_NOWAIT);
814 		if ((m->m_flags & M_EXT) == 0) {
815 			m_free(m);
816 			return (0);
817 		}
818 	}
819 #else
820 	KASSERT(salen <= MHLEN);
821 #endif
822 	m->m_len = salen;
823 	memcpy(mtod(m, void *), asa, salen);
824 	m->m_next = m0;
825 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
826 
827 	return m;
828 }
829 
830 int
831 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
832 		  struct mbuf *m0, int sbprio)
833 {
834 	int space;
835 	struct mbuf *m, *n, *n0, *nlast;
836 	int error;
837 
838 	/*
839 	 * XXX sbprio reserved for encoding priority of this* request:
840 	 *  SB_PRIO_NONE --> honour normal sb limits
841 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
842 	 *	take whole chain. Intended for large requests
843 	 *      that should be delivered atomically (all, or none).
844 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
845 	 *       over normal socket limits, for messages indicating
846 	 *       buffer overflow in earlier normal/lower-priority messages
847 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
848 	 *       Intended for  kernel-generated messages only.
849 	 *        Up to generator to avoid total mbuf resource exhaustion.
850 	 */
851 	(void)sbprio;
852 
853 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
854 		panic("sbappendaddrchain");
855 
856 	space = sbspace(sb);
857 
858 #ifdef notyet
859 	/*
860 	 * Enforce SB_PRIO_* limits as described above.
861 	 */
862 #endif
863 
864 	n0 = NULL;
865 	nlast = NULL;
866 	for (m = m0; m; m = m->m_nextpkt) {
867 		struct mbuf *np;
868 
869 #ifdef MBUFTRACE
870 		m_claimm(m, sb->sb_mowner);
871 #endif
872 
873 		/* Prepend sockaddr to this record (m) of input chain m0 */
874 	  	n = m_prepend_sockaddr(sb, m, asa);
875 		if (n == NULL) {
876 			error = ENOBUFS;
877 			goto bad;
878 		}
879 
880 		/* Append record (asa+m) to end of new chain n0 */
881 		if (n0 == NULL) {
882 			n0 = n;
883 		} else {
884 			nlast->m_nextpkt = n;
885 		}
886 		/* Keep track of last record on new chain */
887 		nlast = n;
888 
889 		for (np = n; np; np = np->m_next)
890 			sballoc(sb, np);
891 	}
892 
893 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
894 
895 	/* Drop the entire chain of (asa+m) records onto the socket */
896 	SBLINKRECORDCHAIN(sb, n0, nlast);
897 
898 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
899 
900 	for (m = nlast; m->m_next; m = m->m_next)
901 		;
902 	sb->sb_mbtail = m;
903 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
904 
905 	return (1);
906 
907 bad:
908 	/*
909 	 * On error, free the prepended addreseses. For consistency
910 	 * with sbappendaddr(), leave it to our caller to free
911 	 * the input record chain passed to us as m0.
912 	 */
913 	while ((n = n0) != NULL) {
914 	  	struct mbuf *np;
915 
916 		/* Undo the sballoc() of this record */
917 		for (np = n; np; np = np->m_next)
918 			sbfree(sb, np);
919 
920 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
921 		MFREE(n, np);		/* free prepended address (not data) */
922 	}
923 	return 0;
924 }
925 
926 
927 int
928 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
929 {
930 	struct mbuf	*m, *mlast, *n;
931 	int		space;
932 
933 	space = 0;
934 	if (control == 0)
935 		panic("sbappendcontrol");
936 	for (m = control; ; m = m->m_next) {
937 		space += m->m_len;
938 		MCLAIM(m, sb->sb_mowner);
939 		if (m->m_next == 0)
940 			break;
941 	}
942 	n = m;			/* save pointer to last control buffer */
943 	for (m = m0; m; m = m->m_next) {
944 		MCLAIM(m, sb->sb_mowner);
945 		space += m->m_len;
946 	}
947 	if (space > sbspace(sb))
948 		return (0);
949 	n->m_next = m0;			/* concatenate data to control */
950 
951 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
952 
953 	for (m = control; m->m_next != NULL; m = m->m_next)
954 		sballoc(sb, m);
955 	sballoc(sb, m);
956 	mlast = m;
957 	SBLINKRECORD(sb, control);
958 
959 	sb->sb_mbtail = mlast;
960 	SBLASTMBUFCHK(sb, "sbappendcontrol");
961 
962 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
963 
964 	return (1);
965 }
966 
967 /*
968  * Compress mbuf chain m into the socket
969  * buffer sb following mbuf n.  If n
970  * is null, the buffer is presumed empty.
971  */
972 void
973 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
974 {
975 	int		eor;
976 	struct mbuf	*o;
977 
978 	eor = 0;
979 	while (m) {
980 		eor |= m->m_flags & M_EOR;
981 		if (m->m_len == 0 &&
982 		    (eor == 0 ||
983 		     (((o = m->m_next) || (o = n)) &&
984 		      o->m_type == m->m_type))) {
985 			if (sb->sb_lastrecord == m)
986 				sb->sb_lastrecord = m->m_next;
987 			m = m_free(m);
988 			continue;
989 		}
990 		if (n && (n->m_flags & M_EOR) == 0 &&
991 		    /* M_TRAILINGSPACE() checks buffer writeability */
992 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
993 		    m->m_len <= M_TRAILINGSPACE(n) &&
994 		    n->m_type == m->m_type) {
995 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
996 			    (unsigned)m->m_len);
997 			n->m_len += m->m_len;
998 			sb->sb_cc += m->m_len;
999 			m = m_free(m);
1000 			continue;
1001 		}
1002 		if (n)
1003 			n->m_next = m;
1004 		else
1005 			sb->sb_mb = m;
1006 		sb->sb_mbtail = m;
1007 		sballoc(sb, m);
1008 		n = m;
1009 		m->m_flags &= ~M_EOR;
1010 		m = m->m_next;
1011 		n->m_next = 0;
1012 	}
1013 	if (eor) {
1014 		if (n)
1015 			n->m_flags |= eor;
1016 		else
1017 			printf("semi-panic: sbcompress\n");
1018 	}
1019 	SBLASTMBUFCHK(sb, __func__);
1020 }
1021 
1022 /*
1023  * Free all mbufs in a sockbuf.
1024  * Check that all resources are reclaimed.
1025  */
1026 void
1027 sbflush(struct sockbuf *sb)
1028 {
1029 
1030 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1031 
1032 	while (sb->sb_mbcnt)
1033 		sbdrop(sb, (int)sb->sb_cc);
1034 
1035 	KASSERT(sb->sb_cc == 0);
1036 	KASSERT(sb->sb_mb == NULL);
1037 	KASSERT(sb->sb_mbtail == NULL);
1038 	KASSERT(sb->sb_lastrecord == NULL);
1039 }
1040 
1041 /*
1042  * Drop data from (the front of) a sockbuf.
1043  */
1044 void
1045 sbdrop(struct sockbuf *sb, int len)
1046 {
1047 	struct mbuf	*m, *mn, *next;
1048 
1049 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1050 	while (len > 0) {
1051 		if (m == 0) {
1052 			if (next == 0)
1053 				panic("sbdrop");
1054 			m = next;
1055 			next = m->m_nextpkt;
1056 			continue;
1057 		}
1058 		if (m->m_len > len) {
1059 			m->m_len -= len;
1060 			m->m_data += len;
1061 			sb->sb_cc -= len;
1062 			break;
1063 		}
1064 		len -= m->m_len;
1065 		sbfree(sb, m);
1066 		MFREE(m, mn);
1067 		m = mn;
1068 	}
1069 	while (m && m->m_len == 0) {
1070 		sbfree(sb, m);
1071 		MFREE(m, mn);
1072 		m = mn;
1073 	}
1074 	if (m) {
1075 		sb->sb_mb = m;
1076 		m->m_nextpkt = next;
1077 	} else
1078 		sb->sb_mb = next;
1079 	/*
1080 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1081 	 * makes sure sb_lastrecord is up-to-date if we dropped
1082 	 * part of the last record.
1083 	 */
1084 	m = sb->sb_mb;
1085 	if (m == NULL) {
1086 		sb->sb_mbtail = NULL;
1087 		sb->sb_lastrecord = NULL;
1088 	} else if (m->m_nextpkt == NULL)
1089 		sb->sb_lastrecord = m;
1090 }
1091 
1092 /*
1093  * Drop a record off the front of a sockbuf
1094  * and move the next record to the front.
1095  */
1096 void
1097 sbdroprecord(struct sockbuf *sb)
1098 {
1099 	struct mbuf	*m, *mn;
1100 
1101 	m = sb->sb_mb;
1102 	if (m) {
1103 		sb->sb_mb = m->m_nextpkt;
1104 		do {
1105 			sbfree(sb, m);
1106 			MFREE(m, mn);
1107 		} while ((m = mn) != NULL);
1108 	}
1109 	SB_EMPTY_FIXUP(sb);
1110 }
1111 
1112 /*
1113  * Create a "control" mbuf containing the specified data
1114  * with the specified type for presentation on a socket buffer.
1115  */
1116 struct mbuf *
1117 sbcreatecontrol(void *p, int size, int type, int level)
1118 {
1119 	struct cmsghdr	*cp;
1120 	struct mbuf	*m;
1121 
1122 	if (CMSG_SPACE(size) > MCLBYTES) {
1123 		printf("sbcreatecontrol: message too large %d\n", size);
1124 		return NULL;
1125 	}
1126 
1127 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1128 		return ((struct mbuf *) NULL);
1129 	if (CMSG_SPACE(size) > MLEN) {
1130 		MCLGET(m, M_DONTWAIT);
1131 		if ((m->m_flags & M_EXT) == 0) {
1132 			m_free(m);
1133 			return NULL;
1134 		}
1135 	}
1136 	cp = mtod(m, struct cmsghdr *);
1137 	memcpy(CMSG_DATA(cp), p, size);
1138 	m->m_len = CMSG_SPACE(size);
1139 	cp->cmsg_len = CMSG_LEN(size);
1140 	cp->cmsg_level = level;
1141 	cp->cmsg_type = type;
1142 	return (m);
1143 }
1144