xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 212397c69a103ae7e5eafa8731ddfae671d2dee7)
1 /*	$NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * Copyright (c) 1982, 1986, 1988, 1990, 1993
31  *	The Regents of the University of California.  All rights reserved.
32  *
33  * Redistribution and use in source and binary forms, with or without
34  * modification, are permitted provided that the following conditions
35  * are met:
36  * 1. Redistributions of source code must retain the above copyright
37  *    notice, this list of conditions and the following disclaimer.
38  * 2. Redistributions in binary form must reproduce the above copyright
39  *    notice, this list of conditions and the following disclaimer in the
40  *    documentation and/or other materials provided with the distribution.
41  * 3. Neither the name of the University nor the names of its contributors
42  *    may be used to endorse or promote products derived from this software
43  *    without specific prior written permission.
44  *
45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55  * SUCH DAMAGE.
56  *
57  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.122 2015/08/24 22:21:26 pooka Exp $");
62 
63 #ifdef _KERNEL_OPT
64 #include "opt_mbuftrace.h"
65 #include "opt_sb_max.h"
66 #endif
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/proc.h>
71 #include <sys/file.h>
72 #include <sys/buf.h>
73 #include <sys/mbuf.h>
74 #include <sys/protosw.h>
75 #include <sys/domain.h>
76 #include <sys/poll.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/signalvar.h>
80 #include <sys/kauth.h>
81 #include <sys/pool.h>
82 #include <sys/uidinfo.h>
83 
84 /*
85  * Primitive routines for operating on sockets and socket buffers.
86  *
87  * Connection life-cycle:
88  *
89  *	Normal sequence from the active (originating) side:
90  *
91  *	- soisconnecting() is called during processing of connect() call,
92  *	- resulting in an eventual call to soisconnected() if/when the
93  *	  connection is established.
94  *
95  *	When the connection is torn down during processing of disconnect():
96  *
97  *	- soisdisconnecting() is called and,
98  *	- soisdisconnected() is called when the connection to the peer
99  *	  is totally severed.
100  *
101  *	The semantics of these routines are such that connectionless protocols
102  *	can call soisconnected() and soisdisconnected() only, bypassing the
103  *	in-progress calls when setting up a ``connection'' takes no time.
104  *
105  *	From the passive side, a socket is created with two queues of sockets:
106  *
107  *	- so_q0 (0) for partial connections (i.e. connections in progress)
108  *	- so_q (1) for connections already made and awaiting user acceptance.
109  *
110  *	As a protocol is preparing incoming connections, it creates a socket
111  *	structure queued on so_q0 by calling sonewconn().  When the connection
112  *	is established, soisconnected() is called, and transfers the
113  *	socket structure to so_q, making it available to accept().
114  *
115  *	If a socket is closed with sockets on either so_q0 or so_q, these
116  *	sockets are dropped.
117  *
118  * Locking rules and assumptions:
119  *
120  * o socket::so_lock can change on the fly.  The low level routines used
121  *   to lock sockets are aware of this.  When so_lock is acquired, the
122  *   routine locking must check to see if so_lock still points to the
123  *   lock that was acquired.  If so_lock has changed in the meantime, the
124  *   now irrelevant lock that was acquired must be dropped and the lock
125  *   operation retried.  Although not proven here, this is completely safe
126  *   on a multiprocessor system, even with relaxed memory ordering, given
127  *   the next two rules:
128  *
129  * o In order to mutate so_lock, the lock pointed to by the current value
130  *   of so_lock must be held: i.e., the socket must be held locked by the
131  *   changing thread.  The thread must issue membar_exit() to prevent
132  *   memory accesses being reordered, and can set so_lock to the desired
133  *   value.  If the lock pointed to by the new value of so_lock is not
134  *   held by the changing thread, the socket must then be considered
135  *   unlocked.
136  *
137  * o If so_lock is mutated, and the previous lock referred to by so_lock
138  *   could still be visible to other threads in the system (e.g. via file
139  *   descriptor or protocol-internal reference), then the old lock must
140  *   remain valid until the socket and/or protocol control block has been
141  *   torn down.
142  *
143  * o If a socket has a non-NULL so_head value (i.e. is in the process of
144  *   connecting), then locking the socket must also lock the socket pointed
145  *   to by so_head: their lock pointers must match.
146  *
147  * o If a socket has connections in progress (so_q, so_q0 not empty) then
148  *   locking the socket must also lock the sockets attached to both queues.
149  *   Again, their lock pointers must match.
150  *
151  * o Beyond the initial lock assignment in socreate(), assigning locks to
152  *   sockets is the responsibility of the individual protocols / protocol
153  *   domains.
154  */
155 
156 static pool_cache_t	socket_cache;
157 u_long			sb_max = SB_MAX;/* maximum socket buffer size */
158 static u_long		sb_max_adj;	/* adjusted sb_max */
159 
160 void
161 soisconnecting(struct socket *so)
162 {
163 
164 	KASSERT(solocked(so));
165 
166 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
167 	so->so_state |= SS_ISCONNECTING;
168 }
169 
170 void
171 soisconnected(struct socket *so)
172 {
173 	struct socket	*head;
174 
175 	head = so->so_head;
176 
177 	KASSERT(solocked(so));
178 	KASSERT(head == NULL || solocked2(so, head));
179 
180 	so->so_state &= ~(SS_ISCONNECTING | SS_ISDISCONNECTING);
181 	so->so_state |= SS_ISCONNECTED;
182 	if (head && so->so_onq == &head->so_q0) {
183 		if ((so->so_options & SO_ACCEPTFILTER) == 0) {
184 			/*
185 			 * Re-enqueue and wake up any waiters, e.g.
186 			 * processes blocking on accept().
187 			 */
188 			soqremque(so, 0);
189 			soqinsque(head, so, 1);
190 			sorwakeup(head);
191 			cv_broadcast(&head->so_cv);
192 		} else {
193 			so->so_upcall =
194 			    head->so_accf->so_accept_filter->accf_callback;
195 			so->so_upcallarg = head->so_accf->so_accept_filter_arg;
196 			so->so_rcv.sb_flags |= SB_UPCALL;
197 			so->so_options &= ~SO_ACCEPTFILTER;
198 			(*so->so_upcall)(so, so->so_upcallarg,
199 					 POLLIN|POLLRDNORM, M_DONTWAIT);
200 		}
201 	} else {
202 		cv_broadcast(&so->so_cv);
203 		sorwakeup(so);
204 		sowwakeup(so);
205 	}
206 }
207 
208 void
209 soisdisconnecting(struct socket *so)
210 {
211 
212 	KASSERT(solocked(so));
213 
214 	so->so_state &= ~SS_ISCONNECTING;
215 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
216 	cv_broadcast(&so->so_cv);
217 	sowwakeup(so);
218 	sorwakeup(so);
219 }
220 
221 void
222 soisdisconnected(struct socket *so)
223 {
224 
225 	KASSERT(solocked(so));
226 
227 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
228 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
229 	cv_broadcast(&so->so_cv);
230 	sowwakeup(so);
231 	sorwakeup(so);
232 }
233 
234 void
235 soinit2(void)
236 {
237 
238 	socket_cache = pool_cache_init(sizeof(struct socket), 0, 0, 0,
239 	    "socket", NULL, IPL_SOFTNET, NULL, NULL, NULL);
240 }
241 
242 /*
243  * sonewconn: accept a new connection.
244  *
245  * When an attempt at a new connection is noted on a socket which accepts
246  * connections, sonewconn(9) is called.  If the connection is possible
247  * (subject to space constraints, etc) then we allocate a new structure,
248  * properly linked into the data structure of the original socket.
249  *
250  * => If 'soready' is true, then socket will become ready for accept() i.e.
251  *    inserted into the so_q queue, SS_ISCONNECTED set and waiters awoken.
252  * => May be called from soft-interrupt context.
253  * => Listening socket should be locked.
254  * => Returns the new socket locked.
255  */
256 struct socket *
257 sonewconn(struct socket *head, bool soready)
258 {
259 	struct socket *so;
260 	int soqueue, error;
261 
262 	KASSERT(solocked(head));
263 
264 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2) {
265 		/* Listen queue overflow. */
266 		return NULL;
267 	}
268 	if ((head->so_options & SO_ACCEPTFILTER) != 0) {
269 		soready = false;
270 	}
271 	soqueue = soready ? 1 : 0;
272 
273 	if ((so = soget(false)) == NULL) {
274 		return NULL;
275 	}
276 	so->so_type = head->so_type;
277 	so->so_options = head->so_options & ~SO_ACCEPTCONN;
278 	so->so_linger = head->so_linger;
279 	so->so_state = head->so_state | SS_NOFDREF;
280 	so->so_proto = head->so_proto;
281 	so->so_timeo = head->so_timeo;
282 	so->so_pgid = head->so_pgid;
283 	so->so_send = head->so_send;
284 	so->so_receive = head->so_receive;
285 	so->so_uidinfo = head->so_uidinfo;
286 	so->so_cpid = head->so_cpid;
287 
288 	/*
289 	 * Share the lock with the listening-socket, it may get unshared
290 	 * once the connection is complete.
291 	 */
292 	mutex_obj_hold(head->so_lock);
293 	so->so_lock = head->so_lock;
294 
295 	/*
296 	 * Reserve the space for socket buffers.
297 	 */
298 #ifdef MBUFTRACE
299 	so->so_mowner = head->so_mowner;
300 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
301 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
302 #endif
303 	if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
304 		goto out;
305 	}
306 	so->so_snd.sb_lowat = head->so_snd.sb_lowat;
307 	so->so_rcv.sb_lowat = head->so_rcv.sb_lowat;
308 	so->so_rcv.sb_timeo = head->so_rcv.sb_timeo;
309 	so->so_snd.sb_timeo = head->so_snd.sb_timeo;
310 	so->so_rcv.sb_flags |= head->so_rcv.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
311 	so->so_snd.sb_flags |= head->so_snd.sb_flags & (SB_AUTOSIZE | SB_ASYNC);
312 
313 	/*
314 	 * Finally, perform the protocol attach.  Note: a new socket
315 	 * lock may be assigned at this point (if so, it will be held).
316 	 */
317 	error = (*so->so_proto->pr_usrreqs->pr_attach)(so, 0);
318 	if (error) {
319 out:
320 		KASSERT(solocked(so));
321 		KASSERT(so->so_accf == NULL);
322 		soput(so);
323 
324 		/* Note: the listening socket shall stay locked. */
325 		KASSERT(solocked(head));
326 		return NULL;
327 	}
328 	KASSERT(solocked2(head, so));
329 
330 	/*
331 	 * Insert into the queue.  If ready, update the connection status
332 	 * and wake up any waiters, e.g. processes blocking on accept().
333 	 */
334 	soqinsque(head, so, soqueue);
335 	if (soready) {
336 		so->so_state |= SS_ISCONNECTED;
337 		sorwakeup(head);
338 		cv_broadcast(&head->so_cv);
339 	}
340 	return so;
341 }
342 
343 struct socket *
344 soget(bool waitok)
345 {
346 	struct socket *so;
347 
348 	so = pool_cache_get(socket_cache, (waitok ? PR_WAITOK : PR_NOWAIT));
349 	if (__predict_false(so == NULL))
350 		return (NULL);
351 	memset(so, 0, sizeof(*so));
352 	TAILQ_INIT(&so->so_q0);
353 	TAILQ_INIT(&so->so_q);
354 	cv_init(&so->so_cv, "socket");
355 	cv_init(&so->so_rcv.sb_cv, "netio");
356 	cv_init(&so->so_snd.sb_cv, "netio");
357 	selinit(&so->so_rcv.sb_sel);
358 	selinit(&so->so_snd.sb_sel);
359 	so->so_rcv.sb_so = so;
360 	so->so_snd.sb_so = so;
361 	return so;
362 }
363 
364 void
365 soput(struct socket *so)
366 {
367 
368 	KASSERT(!cv_has_waiters(&so->so_cv));
369 	KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv));
370 	KASSERT(!cv_has_waiters(&so->so_snd.sb_cv));
371 	seldestroy(&so->so_rcv.sb_sel);
372 	seldestroy(&so->so_snd.sb_sel);
373 	mutex_obj_free(so->so_lock);
374 	cv_destroy(&so->so_cv);
375 	cv_destroy(&so->so_rcv.sb_cv);
376 	cv_destroy(&so->so_snd.sb_cv);
377 	pool_cache_put(socket_cache, so);
378 }
379 
380 /*
381  * soqinsque: insert socket of a new connection into the specified
382  * accept queue of the listening socket (head).
383  *
384  *	q = 0: queue of partial connections
385  *	q = 1: queue of incoming connections
386  */
387 void
388 soqinsque(struct socket *head, struct socket *so, int q)
389 {
390 	KASSERT(q == 0 || q == 1);
391 	KASSERT(solocked2(head, so));
392 	KASSERT(so->so_onq == NULL);
393 	KASSERT(so->so_head == NULL);
394 
395 	so->so_head = head;
396 	if (q == 0) {
397 		head->so_q0len++;
398 		so->so_onq = &head->so_q0;
399 	} else {
400 		head->so_qlen++;
401 		so->so_onq = &head->so_q;
402 	}
403 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
404 }
405 
406 /*
407  * soqremque: remove socket from the specified queue.
408  *
409  * => Returns true if socket was removed from the specified queue.
410  * => False if socket was not removed (because it was in other queue).
411  */
412 bool
413 soqremque(struct socket *so, int q)
414 {
415 	struct socket *head = so->so_head;
416 
417 	KASSERT(q == 0 || q == 1);
418 	KASSERT(solocked(so));
419 	KASSERT(so->so_onq != NULL);
420 	KASSERT(head != NULL);
421 
422 	if (q == 0) {
423 		if (so->so_onq != &head->so_q0)
424 			return false;
425 		head->so_q0len--;
426 	} else {
427 		if (so->so_onq != &head->so_q)
428 			return false;
429 		head->so_qlen--;
430 	}
431 	KASSERT(solocked2(so, head));
432 	TAILQ_REMOVE(so->so_onq, so, so_qe);
433 	so->so_onq = NULL;
434 	so->so_head = NULL;
435 	return true;
436 }
437 
438 /*
439  * socantsendmore: indicates that no more data will be sent on the
440  * socket; it would normally be applied to a socket when the user
441  * informs the system that no more data is to be sent, by the protocol
442  * code (in case pr_shutdown()).
443  */
444 void
445 socantsendmore(struct socket *so)
446 {
447 	KASSERT(solocked(so));
448 
449 	so->so_state |= SS_CANTSENDMORE;
450 	sowwakeup(so);
451 }
452 
453 /*
454  * socantrcvmore(): indicates that no more data will be received and
455  * will normally be applied to the socket by a protocol when it detects
456  * that the peer will send no more data.  Data queued for reading in
457  * the socket may yet be read.
458  */
459 void
460 socantrcvmore(struct socket *so)
461 {
462 	KASSERT(solocked(so));
463 
464 	so->so_state |= SS_CANTRCVMORE;
465 	sorwakeup(so);
466 }
467 
468 /*
469  * Wait for data to arrive at/drain from a socket buffer.
470  */
471 int
472 sbwait(struct sockbuf *sb)
473 {
474 	struct socket *so;
475 	kmutex_t *lock;
476 	int error;
477 
478 	so = sb->sb_so;
479 
480 	KASSERT(solocked(so));
481 
482 	sb->sb_flags |= SB_NOTIFY;
483 	lock = so->so_lock;
484 	if ((sb->sb_flags & SB_NOINTR) != 0)
485 		error = cv_timedwait(&sb->sb_cv, lock, sb->sb_timeo);
486 	else
487 		error = cv_timedwait_sig(&sb->sb_cv, lock, sb->sb_timeo);
488 	if (__predict_false(lock != so->so_lock))
489 		solockretry(so, lock);
490 	return error;
491 }
492 
493 /*
494  * Wakeup processes waiting on a socket buffer.
495  * Do asynchronous notification via SIGIO
496  * if the socket buffer has the SB_ASYNC flag set.
497  */
498 void
499 sowakeup(struct socket *so, struct sockbuf *sb, int code)
500 {
501 	int band;
502 
503 	KASSERT(solocked(so));
504 	KASSERT(sb->sb_so == so);
505 
506 	if (code == POLL_IN)
507 		band = POLLIN|POLLRDNORM;
508 	else
509 		band = POLLOUT|POLLWRNORM;
510 	sb->sb_flags &= ~SB_NOTIFY;
511 	selnotify(&sb->sb_sel, band, NOTE_SUBMIT);
512 	cv_broadcast(&sb->sb_cv);
513 	if (sb->sb_flags & SB_ASYNC)
514 		fownsignal(so->so_pgid, SIGIO, code, band, so);
515 	if (sb->sb_flags & SB_UPCALL)
516 		(*so->so_upcall)(so, so->so_upcallarg, band, M_DONTWAIT);
517 }
518 
519 /*
520  * Reset a socket's lock pointer.  Wake all threads waiting on the
521  * socket's condition variables so that they can restart their waits
522  * using the new lock.  The existing lock must be held.
523  */
524 void
525 solockreset(struct socket *so, kmutex_t *lock)
526 {
527 
528 	KASSERT(solocked(so));
529 
530 	so->so_lock = lock;
531 	cv_broadcast(&so->so_snd.sb_cv);
532 	cv_broadcast(&so->so_rcv.sb_cv);
533 	cv_broadcast(&so->so_cv);
534 }
535 
536 /*
537  * Socket buffer (struct sockbuf) utility routines.
538  *
539  * Each socket contains two socket buffers: one for sending data and
540  * one for receiving data.  Each buffer contains a queue of mbufs,
541  * information about the number of mbufs and amount of data in the
542  * queue, and other fields allowing poll() statements and notification
543  * on data availability to be implemented.
544  *
545  * Data stored in a socket buffer is maintained as a list of records.
546  * Each record is a list of mbufs chained together with the m_next
547  * field.  Records are chained together with the m_nextpkt field. The upper
548  * level routine soreceive() expects the following conventions to be
549  * observed when placing information in the receive buffer:
550  *
551  * 1. If the protocol requires each message be preceded by the sender's
552  *    name, then a record containing that name must be present before
553  *    any associated data (mbuf's must be of type MT_SONAME).
554  * 2. If the protocol supports the exchange of ``access rights'' (really
555  *    just additional data associated with the message), and there are
556  *    ``rights'' to be received, then a record containing this data
557  *    should be present (mbuf's must be of type MT_CONTROL).
558  * 3. If a name or rights record exists, then it must be followed by
559  *    a data record, perhaps of zero length.
560  *
561  * Before using a new socket structure it is first necessary to reserve
562  * buffer space to the socket, by calling sbreserve().  This should commit
563  * some of the available buffer space in the system buffer pool for the
564  * socket (currently, it does nothing but enforce limits).  The space
565  * should be released by calling sbrelease() when the socket is destroyed.
566  */
567 
568 int
569 sb_max_set(u_long new_sbmax)
570 {
571 	int s;
572 
573 	if (new_sbmax < (16 * 1024))
574 		return (EINVAL);
575 
576 	s = splsoftnet();
577 	sb_max = new_sbmax;
578 	sb_max_adj = (u_quad_t)new_sbmax * MCLBYTES / (MSIZE + MCLBYTES);
579 	splx(s);
580 
581 	return (0);
582 }
583 
584 int
585 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
586 {
587 	KASSERT(so->so_pcb == NULL || solocked(so));
588 
589 	/*
590 	 * there's at least one application (a configure script of screen)
591 	 * which expects a fifo is writable even if it has "some" bytes
592 	 * in its buffer.
593 	 * so we want to make sure (hiwat - lowat) >= (some bytes).
594 	 *
595 	 * PIPE_BUF here is an arbitrary value chosen as (some bytes) above.
596 	 * we expect it's large enough for such applications.
597 	 */
598 	u_long  lowat = MAX(sock_loan_thresh, MCLBYTES);
599 	u_long  hiwat = lowat + PIPE_BUF;
600 
601 	if (sndcc < hiwat)
602 		sndcc = hiwat;
603 	if (sbreserve(&so->so_snd, sndcc, so) == 0)
604 		goto bad;
605 	if (sbreserve(&so->so_rcv, rcvcc, so) == 0)
606 		goto bad2;
607 	if (so->so_rcv.sb_lowat == 0)
608 		so->so_rcv.sb_lowat = 1;
609 	if (so->so_snd.sb_lowat == 0)
610 		so->so_snd.sb_lowat = lowat;
611 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
612 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
613 	return (0);
614  bad2:
615 	sbrelease(&so->so_snd, so);
616  bad:
617 	return (ENOBUFS);
618 }
619 
620 /*
621  * Allot mbufs to a sockbuf.
622  * Attempt to scale mbmax so that mbcnt doesn't become limiting
623  * if buffering efficiency is near the normal case.
624  */
625 int
626 sbreserve(struct sockbuf *sb, u_long cc, struct socket *so)
627 {
628 	struct lwp *l = curlwp; /* XXX */
629 	rlim_t maxcc;
630 	struct uidinfo *uidinfo;
631 
632 	KASSERT(so->so_pcb == NULL || solocked(so));
633 	KASSERT(sb->sb_so == so);
634 	KASSERT(sb_max_adj != 0);
635 
636 	if (cc == 0 || cc > sb_max_adj)
637 		return (0);
638 
639 	maxcc = l->l_proc->p_rlimit[RLIMIT_SBSIZE].rlim_cur;
640 
641 	uidinfo = so->so_uidinfo;
642 	if (!chgsbsize(uidinfo, &sb->sb_hiwat, cc, maxcc))
643 		return 0;
644 	sb->sb_mbmax = min(cc * 2, sb_max);
645 	if (sb->sb_lowat > sb->sb_hiwat)
646 		sb->sb_lowat = sb->sb_hiwat;
647 	return (1);
648 }
649 
650 /*
651  * Free mbufs held by a socket, and reserved mbuf space.  We do not assert
652  * that the socket is held locked here: see sorflush().
653  */
654 void
655 sbrelease(struct sockbuf *sb, struct socket *so)
656 {
657 
658 	KASSERT(sb->sb_so == so);
659 
660 	sbflush(sb);
661 	(void)chgsbsize(so->so_uidinfo, &sb->sb_hiwat, 0, RLIM_INFINITY);
662 	sb->sb_mbmax = 0;
663 }
664 
665 /*
666  * Routines to add and remove
667  * data from an mbuf queue.
668  *
669  * The routines sbappend() or sbappendrecord() are normally called to
670  * append new mbufs to a socket buffer, after checking that adequate
671  * space is available, comparing the function sbspace() with the amount
672  * of data to be added.  sbappendrecord() differs from sbappend() in
673  * that data supplied is treated as the beginning of a new record.
674  * To place a sender's address, optional access rights, and data in a
675  * socket receive buffer, sbappendaddr() should be used.  To place
676  * access rights and data in a socket receive buffer, sbappendrights()
677  * should be used.  In either case, the new data begins a new record.
678  * Note that unlike sbappend() and sbappendrecord(), these routines check
679  * for the caller that there will be enough space to store the data.
680  * Each fails if there is not enough space, or if it cannot find mbufs
681  * to store additional information in.
682  *
683  * Reliable protocols may use the socket send buffer to hold data
684  * awaiting acknowledgement.  Data is normally copied from a socket
685  * send buffer in a protocol with m_copy for output to a peer,
686  * and then removing the data from the socket buffer with sbdrop()
687  * or sbdroprecord() when the data is acknowledged by the peer.
688  */
689 
690 #ifdef SOCKBUF_DEBUG
691 void
692 sblastrecordchk(struct sockbuf *sb, const char *where)
693 {
694 	struct mbuf *m = sb->sb_mb;
695 
696 	KASSERT(solocked(sb->sb_so));
697 
698 	while (m && m->m_nextpkt)
699 		m = m->m_nextpkt;
700 
701 	if (m != sb->sb_lastrecord) {
702 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
703 		    sb->sb_mb, sb->sb_lastrecord, m);
704 		printf("packet chain:\n");
705 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
706 			printf("\t%p\n", m);
707 		panic("sblastrecordchk from %s", where);
708 	}
709 }
710 
711 void
712 sblastmbufchk(struct sockbuf *sb, const char *where)
713 {
714 	struct mbuf *m = sb->sb_mb;
715 	struct mbuf *n;
716 
717 	KASSERT(solocked(sb->sb_so));
718 
719 	while (m && m->m_nextpkt)
720 		m = m->m_nextpkt;
721 
722 	while (m && m->m_next)
723 		m = m->m_next;
724 
725 	if (m != sb->sb_mbtail) {
726 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
727 		    sb->sb_mb, sb->sb_mbtail, m);
728 		printf("packet tree:\n");
729 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
730 			printf("\t");
731 			for (n = m; n != NULL; n = n->m_next)
732 				printf("%p ", n);
733 			printf("\n");
734 		}
735 		panic("sblastmbufchk from %s", where);
736 	}
737 }
738 #endif /* SOCKBUF_DEBUG */
739 
740 /*
741  * Link a chain of records onto a socket buffer
742  */
743 #define	SBLINKRECORDCHAIN(sb, m0, mlast)				\
744 do {									\
745 	if ((sb)->sb_lastrecord != NULL)				\
746 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
747 	else								\
748 		(sb)->sb_mb = (m0);					\
749 	(sb)->sb_lastrecord = (mlast);					\
750 } while (/*CONSTCOND*/0)
751 
752 
753 #define	SBLINKRECORD(sb, m0)						\
754     SBLINKRECORDCHAIN(sb, m0, m0)
755 
756 /*
757  * Append mbuf chain m to the last record in the
758  * socket buffer sb.  The additional space associated
759  * the mbuf chain is recorded in sb.  Empty mbufs are
760  * discarded and mbufs are compacted where possible.
761  */
762 void
763 sbappend(struct sockbuf *sb, struct mbuf *m)
764 {
765 	struct mbuf	*n;
766 
767 	KASSERT(solocked(sb->sb_so));
768 
769 	if (m == NULL)
770 		return;
771 
772 #ifdef MBUFTRACE
773 	m_claimm(m, sb->sb_mowner);
774 #endif
775 
776 	SBLASTRECORDCHK(sb, "sbappend 1");
777 
778 	if ((n = sb->sb_lastrecord) != NULL) {
779 		/*
780 		 * XXX Would like to simply use sb_mbtail here, but
781 		 * XXX I need to verify that I won't miss an EOR that
782 		 * XXX way.
783 		 */
784 		do {
785 			if (n->m_flags & M_EOR) {
786 				sbappendrecord(sb, m); /* XXXXXX!!!! */
787 				return;
788 			}
789 		} while (n->m_next && (n = n->m_next));
790 	} else {
791 		/*
792 		 * If this is the first record in the socket buffer, it's
793 		 * also the last record.
794 		 */
795 		sb->sb_lastrecord = m;
796 	}
797 	sbcompress(sb, m, n);
798 	SBLASTRECORDCHK(sb, "sbappend 2");
799 }
800 
801 /*
802  * This version of sbappend() should only be used when the caller
803  * absolutely knows that there will never be more than one record
804  * in the socket buffer, that is, a stream protocol (such as TCP).
805  */
806 void
807 sbappendstream(struct sockbuf *sb, struct mbuf *m)
808 {
809 
810 	KASSERT(solocked(sb->sb_so));
811 	KDASSERT(m->m_nextpkt == NULL);
812 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
813 
814 	SBLASTMBUFCHK(sb, __func__);
815 
816 #ifdef MBUFTRACE
817 	m_claimm(m, sb->sb_mowner);
818 #endif
819 
820 	sbcompress(sb, m, sb->sb_mbtail);
821 
822 	sb->sb_lastrecord = sb->sb_mb;
823 	SBLASTRECORDCHK(sb, __func__);
824 }
825 
826 #ifdef SOCKBUF_DEBUG
827 void
828 sbcheck(struct sockbuf *sb)
829 {
830 	struct mbuf	*m, *m2;
831 	u_long		len, mbcnt;
832 
833 	KASSERT(solocked(sb->sb_so));
834 
835 	len = 0;
836 	mbcnt = 0;
837 	for (m = sb->sb_mb; m; m = m->m_nextpkt) {
838 		for (m2 = m; m2 != NULL; m2 = m2->m_next) {
839 			len += m2->m_len;
840 			mbcnt += MSIZE;
841 			if (m2->m_flags & M_EXT)
842 				mbcnt += m2->m_ext.ext_size;
843 			if (m2->m_nextpkt != NULL)
844 				panic("sbcheck nextpkt");
845 		}
846 	}
847 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
848 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
849 		    mbcnt, sb->sb_mbcnt);
850 		panic("sbcheck");
851 	}
852 }
853 #endif
854 
855 /*
856  * As above, except the mbuf chain
857  * begins a new record.
858  */
859 void
860 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
861 {
862 	struct mbuf	*m;
863 
864 	KASSERT(solocked(sb->sb_so));
865 
866 	if (m0 == NULL)
867 		return;
868 
869 #ifdef MBUFTRACE
870 	m_claimm(m0, sb->sb_mowner);
871 #endif
872 	/*
873 	 * Put the first mbuf on the queue.
874 	 * Note this permits zero length records.
875 	 */
876 	sballoc(sb, m0);
877 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
878 	SBLINKRECORD(sb, m0);
879 	m = m0->m_next;
880 	m0->m_next = 0;
881 	if (m && (m0->m_flags & M_EOR)) {
882 		m0->m_flags &= ~M_EOR;
883 		m->m_flags |= M_EOR;
884 	}
885 	sbcompress(sb, m, m0);
886 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
887 }
888 
889 /*
890  * As above except that OOB data
891  * is inserted at the beginning of the sockbuf,
892  * but after any other OOB data.
893  */
894 void
895 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
896 {
897 	struct mbuf	*m, **mp;
898 
899 	KASSERT(solocked(sb->sb_so));
900 
901 	if (m0 == NULL)
902 		return;
903 
904 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
905 
906 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
907 	    again:
908 		switch (m->m_type) {
909 
910 		case MT_OOBDATA:
911 			continue;		/* WANT next train */
912 
913 		case MT_CONTROL:
914 			if ((m = m->m_next) != NULL)
915 				goto again;	/* inspect THIS train further */
916 		}
917 		break;
918 	}
919 	/*
920 	 * Put the first mbuf on the queue.
921 	 * Note this permits zero length records.
922 	 */
923 	sballoc(sb, m0);
924 	m0->m_nextpkt = *mp;
925 	if (*mp == NULL) {
926 		/* m0 is actually the new tail */
927 		sb->sb_lastrecord = m0;
928 	}
929 	*mp = m0;
930 	m = m0->m_next;
931 	m0->m_next = 0;
932 	if (m && (m0->m_flags & M_EOR)) {
933 		m0->m_flags &= ~M_EOR;
934 		m->m_flags |= M_EOR;
935 	}
936 	sbcompress(sb, m, m0);
937 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
938 }
939 
940 /*
941  * Append address and data, and optionally, control (ancillary) data
942  * to the receive queue of a socket.  If present,
943  * m0 must include a packet header with total length.
944  * Returns 0 if no space in sockbuf or insufficient mbufs.
945  */
946 int
947 sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa, struct mbuf *m0,
948 	struct mbuf *control)
949 {
950 	struct mbuf	*m, *n, *nlast;
951 	int		space, len;
952 
953 	KASSERT(solocked(sb->sb_so));
954 
955 	space = asa->sa_len;
956 
957 	if (m0 != NULL) {
958 		if ((m0->m_flags & M_PKTHDR) == 0)
959 			panic("sbappendaddr");
960 		space += m0->m_pkthdr.len;
961 #ifdef MBUFTRACE
962 		m_claimm(m0, sb->sb_mowner);
963 #endif
964 	}
965 	for (n = control; n; n = n->m_next) {
966 		space += n->m_len;
967 		MCLAIM(n, sb->sb_mowner);
968 		if (n->m_next == NULL)	/* keep pointer to last control buf */
969 			break;
970 	}
971 	if (space > sbspace(sb))
972 		return (0);
973 	m = m_get(M_DONTWAIT, MT_SONAME);
974 	if (m == NULL)
975 		return (0);
976 	MCLAIM(m, sb->sb_mowner);
977 	/*
978 	 * XXX avoid 'comparison always true' warning which isn't easily
979 	 * avoided.
980 	 */
981 	len = asa->sa_len;
982 	if (len > MLEN) {
983 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
984 		if ((m->m_flags & M_EXT) == 0) {
985 			m_free(m);
986 			return (0);
987 		}
988 	}
989 	m->m_len = asa->sa_len;
990 	memcpy(mtod(m, void *), asa, asa->sa_len);
991 	if (n)
992 		n->m_next = m0;		/* concatenate data to control */
993 	else
994 		control = m0;
995 	m->m_next = control;
996 
997 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
998 
999 	for (n = m; n->m_next != NULL; n = n->m_next)
1000 		sballoc(sb, n);
1001 	sballoc(sb, n);
1002 	nlast = n;
1003 	SBLINKRECORD(sb, m);
1004 
1005 	sb->sb_mbtail = nlast;
1006 	SBLASTMBUFCHK(sb, "sbappendaddr");
1007 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
1008 
1009 	return (1);
1010 }
1011 
1012 /*
1013  * Helper for sbappendchainaddr: prepend a struct sockaddr* to
1014  * an mbuf chain.
1015  */
1016 static inline struct mbuf *
1017 m_prepend_sockaddr(struct sockbuf *sb, struct mbuf *m0,
1018 		   const struct sockaddr *asa)
1019 {
1020 	struct mbuf *m;
1021 	const int salen = asa->sa_len;
1022 
1023 	KASSERT(solocked(sb->sb_so));
1024 
1025 	/* only the first in each chain need be a pkthdr */
1026 	m = m_gethdr(M_DONTWAIT, MT_SONAME);
1027 	if (m == NULL)
1028 		return NULL;
1029 	MCLAIM(m, sb->sb_mowner);
1030 #ifdef notyet
1031 	if (salen > MHLEN) {
1032 		MEXTMALLOC(m, salen, M_NOWAIT);
1033 		if ((m->m_flags & M_EXT) == 0) {
1034 			m_free(m);
1035 			return NULL;
1036 		}
1037 	}
1038 #else
1039 	KASSERT(salen <= MHLEN);
1040 #endif
1041 	m->m_len = salen;
1042 	memcpy(mtod(m, void *), asa, salen);
1043 	m->m_next = m0;
1044 	m->m_pkthdr.len = salen + m0->m_pkthdr.len;
1045 
1046 	return m;
1047 }
1048 
1049 int
1050 sbappendaddrchain(struct sockbuf *sb, const struct sockaddr *asa,
1051 		  struct mbuf *m0, int sbprio)
1052 {
1053 	struct mbuf *m, *n, *n0, *nlast;
1054 	int error;
1055 
1056 	KASSERT(solocked(sb->sb_so));
1057 
1058 	/*
1059 	 * XXX sbprio reserved for encoding priority of this* request:
1060 	 *  SB_PRIO_NONE --> honour normal sb limits
1061 	 *  SB_PRIO_ONESHOT_OVERFLOW --> if socket has any space,
1062 	 *	take whole chain. Intended for large requests
1063 	 *      that should be delivered atomically (all, or none).
1064 	 * SB_PRIO_OVERDRAFT -- allow a small (2*MLEN) overflow
1065 	 *       over normal socket limits, for messages indicating
1066 	 *       buffer overflow in earlier normal/lower-priority messages
1067 	 * SB_PRIO_BESTEFFORT -->  ignore limits entirely.
1068 	 *       Intended for  kernel-generated messages only.
1069 	 *        Up to generator to avoid total mbuf resource exhaustion.
1070 	 */
1071 	(void)sbprio;
1072 
1073 	if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1074 		panic("sbappendaddrchain");
1075 
1076 #ifdef notyet
1077 	space = sbspace(sb);
1078 
1079 	/*
1080 	 * Enforce SB_PRIO_* limits as described above.
1081 	 */
1082 #endif
1083 
1084 	n0 = NULL;
1085 	nlast = NULL;
1086 	for (m = m0; m; m = m->m_nextpkt) {
1087 		struct mbuf *np;
1088 
1089 #ifdef MBUFTRACE
1090 		m_claimm(m, sb->sb_mowner);
1091 #endif
1092 
1093 		/* Prepend sockaddr to this record (m) of input chain m0 */
1094 	  	n = m_prepend_sockaddr(sb, m, asa);
1095 		if (n == NULL) {
1096 			error = ENOBUFS;
1097 			goto bad;
1098 		}
1099 
1100 		/* Append record (asa+m) to end of new chain n0 */
1101 		if (n0 == NULL) {
1102 			n0 = n;
1103 		} else {
1104 			nlast->m_nextpkt = n;
1105 		}
1106 		/* Keep track of last record on new chain */
1107 		nlast = n;
1108 
1109 		for (np = n; np; np = np->m_next)
1110 			sballoc(sb, np);
1111 	}
1112 
1113 	SBLASTRECORDCHK(sb, "sbappendaddrchain 1");
1114 
1115 	/* Drop the entire chain of (asa+m) records onto the socket */
1116 	SBLINKRECORDCHAIN(sb, n0, nlast);
1117 
1118 	SBLASTRECORDCHK(sb, "sbappendaddrchain 2");
1119 
1120 	for (m = nlast; m->m_next; m = m->m_next)
1121 		;
1122 	sb->sb_mbtail = m;
1123 	SBLASTMBUFCHK(sb, "sbappendaddrchain");
1124 
1125 	return (1);
1126 
1127 bad:
1128 	/*
1129 	 * On error, free the prepended addreseses. For consistency
1130 	 * with sbappendaddr(), leave it to our caller to free
1131 	 * the input record chain passed to us as m0.
1132 	 */
1133 	while ((n = n0) != NULL) {
1134 	  	struct mbuf *np;
1135 
1136 		/* Undo the sballoc() of this record */
1137 		for (np = n; np; np = np->m_next)
1138 			sbfree(sb, np);
1139 
1140 		n0 = n->m_nextpkt;	/* iterate at next prepended address */
1141 		MFREE(n, np);		/* free prepended address (not data) */
1142 	}
1143 	return error;
1144 }
1145 
1146 
1147 int
1148 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
1149 {
1150 	struct mbuf	*m, *mlast, *n;
1151 	int		space;
1152 
1153 	KASSERT(solocked(sb->sb_so));
1154 
1155 	space = 0;
1156 	if (control == NULL)
1157 		panic("sbappendcontrol");
1158 	for (m = control; ; m = m->m_next) {
1159 		space += m->m_len;
1160 		MCLAIM(m, sb->sb_mowner);
1161 		if (m->m_next == NULL)
1162 			break;
1163 	}
1164 	n = m;			/* save pointer to last control buffer */
1165 	for (m = m0; m; m = m->m_next) {
1166 		MCLAIM(m, sb->sb_mowner);
1167 		space += m->m_len;
1168 	}
1169 	if (space > sbspace(sb))
1170 		return (0);
1171 	n->m_next = m0;			/* concatenate data to control */
1172 
1173 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1174 
1175 	for (m = control; m->m_next != NULL; m = m->m_next)
1176 		sballoc(sb, m);
1177 	sballoc(sb, m);
1178 	mlast = m;
1179 	SBLINKRECORD(sb, control);
1180 
1181 	sb->sb_mbtail = mlast;
1182 	SBLASTMBUFCHK(sb, "sbappendcontrol");
1183 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1184 
1185 	return (1);
1186 }
1187 
1188 /*
1189  * Compress mbuf chain m into the socket
1190  * buffer sb following mbuf n.  If n
1191  * is null, the buffer is presumed empty.
1192  */
1193 void
1194 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1195 {
1196 	int		eor;
1197 	struct mbuf	*o;
1198 
1199 	KASSERT(solocked(sb->sb_so));
1200 
1201 	eor = 0;
1202 	while (m) {
1203 		eor |= m->m_flags & M_EOR;
1204 		if (m->m_len == 0 &&
1205 		    (eor == 0 ||
1206 		     (((o = m->m_next) || (o = n)) &&
1207 		      o->m_type == m->m_type))) {
1208 			if (sb->sb_lastrecord == m)
1209 				sb->sb_lastrecord = m->m_next;
1210 			m = m_free(m);
1211 			continue;
1212 		}
1213 		if (n && (n->m_flags & M_EOR) == 0 &&
1214 		    /* M_TRAILINGSPACE() checks buffer writeability */
1215 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
1216 		    m->m_len <= M_TRAILINGSPACE(n) &&
1217 		    n->m_type == m->m_type) {
1218 			memcpy(mtod(n, char *) + n->m_len, mtod(m, void *),
1219 			    (unsigned)m->m_len);
1220 			n->m_len += m->m_len;
1221 			sb->sb_cc += m->m_len;
1222 			m = m_free(m);
1223 			continue;
1224 		}
1225 		if (n)
1226 			n->m_next = m;
1227 		else
1228 			sb->sb_mb = m;
1229 		sb->sb_mbtail = m;
1230 		sballoc(sb, m);
1231 		n = m;
1232 		m->m_flags &= ~M_EOR;
1233 		m = m->m_next;
1234 		n->m_next = 0;
1235 	}
1236 	if (eor) {
1237 		if (n)
1238 			n->m_flags |= eor;
1239 		else
1240 			printf("semi-panic: sbcompress\n");
1241 	}
1242 	SBLASTMBUFCHK(sb, __func__);
1243 }
1244 
1245 /*
1246  * Free all mbufs in a sockbuf.
1247  * Check that all resources are reclaimed.
1248  */
1249 void
1250 sbflush(struct sockbuf *sb)
1251 {
1252 
1253 	KASSERT(solocked(sb->sb_so));
1254 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
1255 
1256 	while (sb->sb_mbcnt)
1257 		sbdrop(sb, (int)sb->sb_cc);
1258 
1259 	KASSERT(sb->sb_cc == 0);
1260 	KASSERT(sb->sb_mb == NULL);
1261 	KASSERT(sb->sb_mbtail == NULL);
1262 	KASSERT(sb->sb_lastrecord == NULL);
1263 }
1264 
1265 /*
1266  * Drop data from (the front of) a sockbuf.
1267  */
1268 void
1269 sbdrop(struct sockbuf *sb, int len)
1270 {
1271 	struct mbuf	*m, *mn, *next;
1272 
1273 	KASSERT(solocked(sb->sb_so));
1274 
1275 	next = (m = sb->sb_mb) ? m->m_nextpkt : NULL;
1276 	while (len > 0) {
1277 		if (m == NULL) {
1278 			if (next == NULL)
1279 				panic("sbdrop(%p,%d): cc=%lu",
1280 				    sb, len, sb->sb_cc);
1281 			m = next;
1282 			next = m->m_nextpkt;
1283 			continue;
1284 		}
1285 		if (m->m_len > len) {
1286 			m->m_len -= len;
1287 			m->m_data += len;
1288 			sb->sb_cc -= len;
1289 			break;
1290 		}
1291 		len -= m->m_len;
1292 		sbfree(sb, m);
1293 		MFREE(m, mn);
1294 		m = mn;
1295 	}
1296 	while (m && m->m_len == 0) {
1297 		sbfree(sb, m);
1298 		MFREE(m, mn);
1299 		m = mn;
1300 	}
1301 	if (m) {
1302 		sb->sb_mb = m;
1303 		m->m_nextpkt = next;
1304 	} else
1305 		sb->sb_mb = next;
1306 	/*
1307 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
1308 	 * makes sure sb_lastrecord is up-to-date if we dropped
1309 	 * part of the last record.
1310 	 */
1311 	m = sb->sb_mb;
1312 	if (m == NULL) {
1313 		sb->sb_mbtail = NULL;
1314 		sb->sb_lastrecord = NULL;
1315 	} else if (m->m_nextpkt == NULL)
1316 		sb->sb_lastrecord = m;
1317 }
1318 
1319 /*
1320  * Drop a record off the front of a sockbuf
1321  * and move the next record to the front.
1322  */
1323 void
1324 sbdroprecord(struct sockbuf *sb)
1325 {
1326 	struct mbuf	*m, *mn;
1327 
1328 	KASSERT(solocked(sb->sb_so));
1329 
1330 	m = sb->sb_mb;
1331 	if (m) {
1332 		sb->sb_mb = m->m_nextpkt;
1333 		do {
1334 			sbfree(sb, m);
1335 			MFREE(m, mn);
1336 		} while ((m = mn) != NULL);
1337 	}
1338 	SB_EMPTY_FIXUP(sb);
1339 }
1340 
1341 /*
1342  * Create a "control" mbuf containing the specified data
1343  * with the specified type for presentation on a socket buffer.
1344  */
1345 struct mbuf *
1346 sbcreatecontrol1(void **p, int size, int type, int level, int flags)
1347 {
1348 	struct cmsghdr	*cp;
1349 	struct mbuf	*m;
1350 	int space = CMSG_SPACE(size);
1351 
1352 	if ((flags & M_DONTWAIT) && space > MCLBYTES) {
1353 		printf("%s: message too large %d\n", __func__, space);
1354 		return NULL;
1355 	}
1356 
1357 	if ((m = m_get(flags, MT_CONTROL)) == NULL)
1358 		return NULL;
1359 	if (space > MLEN) {
1360 		if (space > MCLBYTES)
1361 			MEXTMALLOC(m, space, M_WAITOK);
1362 		else
1363 			MCLGET(m, flags);
1364 		if ((m->m_flags & M_EXT) == 0) {
1365 			m_free(m);
1366 			return NULL;
1367 		}
1368 	}
1369 	cp = mtod(m, struct cmsghdr *);
1370 	*p = CMSG_DATA(cp);
1371 	m->m_len = space;
1372 	cp->cmsg_len = CMSG_LEN(size);
1373 	cp->cmsg_level = level;
1374 	cp->cmsg_type = type;
1375 	return m;
1376 }
1377 
1378 struct mbuf *
1379 sbcreatecontrol(void *p, int size, int type, int level)
1380 {
1381 	struct mbuf *m;
1382 	void *v;
1383 
1384 	m = sbcreatecontrol1(&v, size, type, level, M_DONTWAIT);
1385 	if (m == NULL)
1386 		return NULL;
1387 	memcpy(v, p, size);
1388 	return m;
1389 }
1390 
1391 void
1392 solockretry(struct socket *so, kmutex_t *lock)
1393 {
1394 
1395 	while (lock != so->so_lock) {
1396 		mutex_exit(lock);
1397 		lock = so->so_lock;
1398 		mutex_enter(lock);
1399 	}
1400 }
1401 
1402 bool
1403 solocked(struct socket *so)
1404 {
1405 
1406 	return mutex_owned(so->so_lock);
1407 }
1408 
1409 bool
1410 solocked2(struct socket *so1, struct socket *so2)
1411 {
1412 	kmutex_t *lock;
1413 
1414 	lock = so1->so_lock;
1415 	if (lock != so2->so_lock)
1416 		return false;
1417 	return mutex_owned(lock);
1418 }
1419 
1420 /*
1421  * sosetlock: assign a default lock to a new socket.
1422  */
1423 void
1424 sosetlock(struct socket *so)
1425 {
1426 	if (so->so_lock == NULL) {
1427 		kmutex_t *lock = softnet_lock;
1428 
1429 		so->so_lock = lock;
1430 		mutex_obj_hold(lock);
1431 		mutex_enter(lock);
1432 	}
1433 	KASSERT(solocked(so));
1434 }
1435 
1436 /*
1437  * Set lock on sockbuf sb; sleep if lock is already held.
1438  * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
1439  * Returns error without lock if sleep is interrupted.
1440  */
1441 int
1442 sblock(struct sockbuf *sb, int wf)
1443 {
1444 	struct socket *so;
1445 	kmutex_t *lock;
1446 	int error;
1447 
1448 	KASSERT(solocked(sb->sb_so));
1449 
1450 	for (;;) {
1451 		if (__predict_true((sb->sb_flags & SB_LOCK) == 0)) {
1452 			sb->sb_flags |= SB_LOCK;
1453 			return 0;
1454 		}
1455 		if (wf != M_WAITOK)
1456 			return EWOULDBLOCK;
1457 		so = sb->sb_so;
1458 		lock = so->so_lock;
1459 		if ((sb->sb_flags & SB_NOINTR) != 0) {
1460 			cv_wait(&so->so_cv, lock);
1461 			error = 0;
1462 		} else
1463 			error = cv_wait_sig(&so->so_cv, lock);
1464 		if (__predict_false(lock != so->so_lock))
1465 			solockretry(so, lock);
1466 		if (error != 0)
1467 			return error;
1468 	}
1469 }
1470 
1471 void
1472 sbunlock(struct sockbuf *sb)
1473 {
1474 	struct socket *so;
1475 
1476 	so = sb->sb_so;
1477 
1478 	KASSERT(solocked(so));
1479 	KASSERT((sb->sb_flags & SB_LOCK) != 0);
1480 
1481 	sb->sb_flags &= ~SB_LOCK;
1482 	cv_broadcast(&so->so_cv);
1483 }
1484 
1485 int
1486 sowait(struct socket *so, bool catch_p, int timo)
1487 {
1488 	kmutex_t *lock;
1489 	int error;
1490 
1491 	KASSERT(solocked(so));
1492 	KASSERT(catch_p || timo != 0);
1493 
1494 	lock = so->so_lock;
1495 	if (catch_p)
1496 		error = cv_timedwait_sig(&so->so_cv, lock, timo);
1497 	else
1498 		error = cv_timedwait(&so->so_cv, lock, timo);
1499 	if (__predict_false(lock != so->so_lock))
1500 		solockretry(so, lock);
1501 	return error;
1502 }
1503