xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 1f2744e6e4915c9da2a3f980279398c4cf7d5e6d)
1 /*	$NetBSD: uipc_socket2.c,v 1.9 1994/06/29 06:33:39 cgd Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)uipc_socket2.c	8.1 (Berkeley) 6/10/93
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/file.h>
42 #include <sys/buf.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/protosw.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 
49 /*
50  * Primitive routines for operating on sockets and socket buffers
51  */
52 
53 /* strings for sleep message: */
54 char	netio[] = "netio";
55 char	netcon[] = "netcon";
56 char	netcls[] = "netcls";
57 
58 u_long	sb_max = SB_MAX;		/* patchable */
59 
60 /*
61  * Procedures to manipulate state flags of socket
62  * and do appropriate wakeups.  Normal sequence from the
63  * active (originating) side is that soisconnecting() is
64  * called during processing of connect() call,
65  * resulting in an eventual call to soisconnected() if/when the
66  * connection is established.  When the connection is torn down
67  * soisdisconnecting() is called during processing of disconnect() call,
68  * and soisdisconnected() is called when the connection to the peer
69  * is totally severed.  The semantics of these routines are such that
70  * connectionless protocols can call soisconnected() and soisdisconnected()
71  * only, bypassing the in-progress calls when setting up a ``connection''
72  * takes no time.
73  *
74  * From the passive side, a socket is created with
75  * two queues of sockets: so_q0 for connections in progress
76  * and so_q for connections already made and awaiting user acceptance.
77  * As a protocol is preparing incoming connections, it creates a socket
78  * structure queued on so_q0 by calling sonewconn().  When the connection
79  * is established, soisconnected() is called, and transfers the
80  * socket structure to so_q, making it available to accept().
81  *
82  * If a socket is closed with sockets on either
83  * so_q0 or so_q, these sockets are dropped.
84  *
85  * If higher level protocols are implemented in
86  * the kernel, the wakeups done here will sometimes
87  * cause software-interrupt process scheduling.
88  */
89 
90 void
91 soisconnecting(so)
92 	register struct socket *so;
93 {
94 
95 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
96 	so->so_state |= SS_ISCONNECTING;
97 }
98 
99 void
100 soisconnected(so)
101 	register struct socket *so;
102 {
103 	register struct socket *head = so->so_head;
104 
105 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
106 	so->so_state |= SS_ISCONNECTED;
107 	if (head && soqremque(so, 0)) {
108 		soqinsque(head, so, 1);
109 		sorwakeup(head);
110 		wakeup((caddr_t)&head->so_timeo);
111 	} else {
112 		wakeup((caddr_t)&so->so_timeo);
113 		sorwakeup(so);
114 		sowwakeup(so);
115 	}
116 }
117 
118 void
119 soisdisconnecting(so)
120 	register struct socket *so;
121 {
122 
123 	so->so_state &= ~SS_ISCONNECTING;
124 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
125 	wakeup((caddr_t)&so->so_timeo);
126 	sowwakeup(so);
127 	sorwakeup(so);
128 }
129 
130 void
131 soisdisconnected(so)
132 	register struct socket *so;
133 {
134 
135 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
136 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE);
137 	wakeup((caddr_t)&so->so_timeo);
138 	sowwakeup(so);
139 	sorwakeup(so);
140 }
141 
142 /*
143  * When an attempt at a new connection is noted on a socket
144  * which accepts connections, sonewconn is called.  If the
145  * connection is possible (subject to space constraints, etc.)
146  * then we allocate a new structure, propoerly linked into the
147  * data structure of the original socket, and return this.
148  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
149  *
150  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
151  * to catch calls that are missing the (new) second parameter.
152  */
153 struct socket *
154 sonewconn1(head, connstatus)
155 	register struct socket *head;
156 	int connstatus;
157 {
158 	register struct socket *so;
159 	int soqueue = connstatus ? 1 : 0;
160 
161 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
162 		return ((struct socket *)0);
163 	MALLOC(so, struct socket *, sizeof(*so), M_SOCKET, M_DONTWAIT);
164 	if (so == NULL)
165 		return ((struct socket *)0);
166 	bzero((caddr_t)so, sizeof(*so));
167 	so->so_type = head->so_type;
168 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
169 	so->so_linger = head->so_linger;
170 	so->so_state = head->so_state | SS_NOFDREF;
171 	so->so_proto = head->so_proto;
172 	so->so_timeo = head->so_timeo;
173 	so->so_pgid = head->so_pgid;
174 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
175 	soqinsque(head, so, soqueue);
176 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
177 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0)) {
178 		(void) soqremque(so, soqueue);
179 		(void) free((caddr_t)so, M_SOCKET);
180 		return ((struct socket *)0);
181 	}
182 	if (connstatus) {
183 		sorwakeup(head);
184 		wakeup((caddr_t)&head->so_timeo);
185 		so->so_state |= connstatus;
186 	}
187 	return (so);
188 }
189 
190 void
191 soqinsque(head, so, q)
192 	register struct socket *head, *so;
193 	int q;
194 {
195 
196 	register struct socket **prev;
197 	so->so_head = head;
198 	if (q == 0) {
199 		head->so_q0len++;
200 		so->so_q0 = 0;
201 		for (prev = &(head->so_q0); *prev; )
202 			prev = &((*prev)->so_q0);
203 	} else {
204 		head->so_qlen++;
205 		so->so_q = 0;
206 		for (prev = &(head->so_q); *prev; )
207 			prev = &((*prev)->so_q);
208 	}
209 	*prev = so;
210 }
211 
212 int
213 soqremque(so, q)
214 	register struct socket *so;
215 	int q;
216 {
217 	register struct socket *head, *prev, *next;
218 
219 	head = so->so_head;
220 	prev = head;
221 	for (;;) {
222 		next = q ? prev->so_q : prev->so_q0;
223 		if (next == so)
224 			break;
225 		if (next == 0)
226 			return (0);
227 		prev = next;
228 	}
229 	if (q == 0) {
230 		prev->so_q0 = next->so_q0;
231 		head->so_q0len--;
232 	} else {
233 		prev->so_q = next->so_q;
234 		head->so_qlen--;
235 	}
236 	next->so_q0 = next->so_q = 0;
237 	next->so_head = 0;
238 	return (1);
239 }
240 
241 /*
242  * Socantsendmore indicates that no more data will be sent on the
243  * socket; it would normally be applied to a socket when the user
244  * informs the system that no more data is to be sent, by the protocol
245  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
246  * will be received, and will normally be applied to the socket by a
247  * protocol when it detects that the peer will send no more data.
248  * Data queued for reading in the socket may yet be read.
249  */
250 
251 void
252 socantsendmore(so)
253 	struct socket *so;
254 {
255 
256 	so->so_state |= SS_CANTSENDMORE;
257 	sowwakeup(so);
258 }
259 
260 void
261 socantrcvmore(so)
262 	struct socket *so;
263 {
264 
265 	so->so_state |= SS_CANTRCVMORE;
266 	sorwakeup(so);
267 }
268 
269 /*
270  * Wait for data to arrive at/drain from a socket buffer.
271  */
272 int
273 sbwait(sb)
274 	struct sockbuf *sb;
275 {
276 
277 	sb->sb_flags |= SB_WAIT;
278 	return (tsleep((caddr_t)&sb->sb_cc,
279 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
280 	    sb->sb_timeo));
281 }
282 
283 /*
284  * Lock a sockbuf already known to be locked;
285  * return any error returned from sleep (EINTR).
286  */
287 int
288 sb_lock(sb)
289 	register struct sockbuf *sb;
290 {
291 	int error;
292 
293 	while (sb->sb_flags & SB_LOCK) {
294 		sb->sb_flags |= SB_WANT;
295 		if (error = tsleep((caddr_t)&sb->sb_flags,
296 		    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK|PCATCH,
297 		    netio, 0))
298 			return (error);
299 	}
300 	sb->sb_flags |= SB_LOCK;
301 	return (0);
302 }
303 
304 /*
305  * Wakeup processes waiting on a socket buffer.
306  * Do asynchronous notification via SIGIO
307  * if the socket has the SS_ASYNC flag set.
308  */
309 void
310 sowakeup(so, sb)
311 	register struct socket *so;
312 	register struct sockbuf *sb;
313 {
314 	struct proc *p;
315 
316 	selwakeup(&sb->sb_sel);
317 	sb->sb_flags &= ~SB_SEL;
318 	if (sb->sb_flags & SB_WAIT) {
319 		sb->sb_flags &= ~SB_WAIT;
320 		wakeup((caddr_t)&sb->sb_cc);
321 	}
322 	if (so->so_state & SS_ASYNC) {
323 		if (so->so_pgid < 0)
324 			gsignal(-so->so_pgid, SIGIO);
325 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
326 			psignal(p, SIGIO);
327 	}
328 }
329 
330 /*
331  * Socket buffer (struct sockbuf) utility routines.
332  *
333  * Each socket contains two socket buffers: one for sending data and
334  * one for receiving data.  Each buffer contains a queue of mbufs,
335  * information about the number of mbufs and amount of data in the
336  * queue, and other fields allowing select() statements and notification
337  * on data availability to be implemented.
338  *
339  * Data stored in a socket buffer is maintained as a list of records.
340  * Each record is a list of mbufs chained together with the m_next
341  * field.  Records are chained together with the m_nextpkt field. The upper
342  * level routine soreceive() expects the following conventions to be
343  * observed when placing information in the receive buffer:
344  *
345  * 1. If the protocol requires each message be preceded by the sender's
346  *    name, then a record containing that name must be present before
347  *    any associated data (mbuf's must be of type MT_SONAME).
348  * 2. If the protocol supports the exchange of ``access rights'' (really
349  *    just additional data associated with the message), and there are
350  *    ``rights'' to be received, then a record containing this data
351  *    should be present (mbuf's must be of type MT_RIGHTS).
352  * 3. If a name or rights record exists, then it must be followed by
353  *    a data record, perhaps of zero length.
354  *
355  * Before using a new socket structure it is first necessary to reserve
356  * buffer space to the socket, by calling sbreserve().  This should commit
357  * some of the available buffer space in the system buffer pool for the
358  * socket (currently, it does nothing but enforce limits).  The space
359  * should be released by calling sbrelease() when the socket is destroyed.
360  */
361 
362 int
363 soreserve(so, sndcc, rcvcc)
364 	register struct socket *so;
365 	u_long sndcc, rcvcc;
366 {
367 
368 	if (sbreserve(&so->so_snd, sndcc) == 0)
369 		goto bad;
370 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
371 		goto bad2;
372 	if (so->so_rcv.sb_lowat == 0)
373 		so->so_rcv.sb_lowat = 1;
374 	if (so->so_snd.sb_lowat == 0)
375 		so->so_snd.sb_lowat = MCLBYTES;
376 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
377 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
378 	return (0);
379 bad2:
380 	sbrelease(&so->so_snd);
381 bad:
382 	return (ENOBUFS);
383 }
384 
385 /*
386  * Allot mbufs to a sockbuf.
387  * Attempt to scale mbmax so that mbcnt doesn't become limiting
388  * if buffering efficiency is near the normal case.
389  */
390 int
391 sbreserve(sb, cc)
392 	struct sockbuf *sb;
393 	u_long cc;
394 {
395 
396 	if (cc > sb_max * MCLBYTES / (MSIZE + MCLBYTES))
397 		return (0);
398 	sb->sb_hiwat = cc;
399 	sb->sb_mbmax = min(cc * 2, sb_max);
400 	if (sb->sb_lowat > sb->sb_hiwat)
401 		sb->sb_lowat = sb->sb_hiwat;
402 	return (1);
403 }
404 
405 /*
406  * Free mbufs held by a socket, and reserved mbuf space.
407  */
408 void
409 sbrelease(sb)
410 	struct sockbuf *sb;
411 {
412 
413 	sbflush(sb);
414 	sb->sb_hiwat = sb->sb_mbmax = 0;
415 }
416 
417 /*
418  * Routines to add and remove
419  * data from an mbuf queue.
420  *
421  * The routines sbappend() or sbappendrecord() are normally called to
422  * append new mbufs to a socket buffer, after checking that adequate
423  * space is available, comparing the function sbspace() with the amount
424  * of data to be added.  sbappendrecord() differs from sbappend() in
425  * that data supplied is treated as the beginning of a new record.
426  * To place a sender's address, optional access rights, and data in a
427  * socket receive buffer, sbappendaddr() should be used.  To place
428  * access rights and data in a socket receive buffer, sbappendrights()
429  * should be used.  In either case, the new data begins a new record.
430  * Note that unlike sbappend() and sbappendrecord(), these routines check
431  * for the caller that there will be enough space to store the data.
432  * Each fails if there is not enough space, or if it cannot find mbufs
433  * to store additional information in.
434  *
435  * Reliable protocols may use the socket send buffer to hold data
436  * awaiting acknowledgement.  Data is normally copied from a socket
437  * send buffer in a protocol with m_copy for output to a peer,
438  * and then removing the data from the socket buffer with sbdrop()
439  * or sbdroprecord() when the data is acknowledged by the peer.
440  */
441 
442 /*
443  * Append mbuf chain m to the last record in the
444  * socket buffer sb.  The additional space associated
445  * the mbuf chain is recorded in sb.  Empty mbufs are
446  * discarded and mbufs are compacted where possible.
447  */
448 void
449 sbappend(sb, m)
450 	struct sockbuf *sb;
451 	struct mbuf *m;
452 {
453 	register struct mbuf *n;
454 
455 	if (m == 0)
456 		return;
457 	if (n = sb->sb_mb) {
458 		while (n->m_nextpkt)
459 			n = n->m_nextpkt;
460 		do {
461 			if (n->m_flags & M_EOR) {
462 				sbappendrecord(sb, m); /* XXXXXX!!!! */
463 				return;
464 			}
465 		} while (n->m_next && (n = n->m_next));
466 	}
467 	sbcompress(sb, m, n);
468 }
469 
470 #ifdef SOCKBUF_DEBUG
471 void
472 sbcheck(sb)
473 	register struct sockbuf *sb;
474 {
475 	register struct mbuf *m;
476 	register int len = 0, mbcnt = 0;
477 
478 	for (m = sb->sb_mb; m; m = m->m_next) {
479 		len += m->m_len;
480 		mbcnt += MSIZE;
481 		if (m->m_flags & M_EXT)
482 			mbcnt += m->m_ext.ext_size;
483 		if (m->m_nextpkt)
484 			panic("sbcheck nextpkt");
485 	}
486 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
487 		printf("cc %d != %d || mbcnt %d != %d\n", len, sb->sb_cc,
488 		    mbcnt, sb->sb_mbcnt);
489 		panic("sbcheck");
490 	}
491 }
492 #endif
493 
494 /*
495  * As above, except the mbuf chain
496  * begins a new record.
497  */
498 void
499 sbappendrecord(sb, m0)
500 	register struct sockbuf *sb;
501 	register struct mbuf *m0;
502 {
503 	register struct mbuf *m;
504 
505 	if (m0 == 0)
506 		return;
507 	if (m = sb->sb_mb)
508 		while (m->m_nextpkt)
509 			m = m->m_nextpkt;
510 	/*
511 	 * Put the first mbuf on the queue.
512 	 * Note this permits zero length records.
513 	 */
514 	sballoc(sb, m0);
515 	if (m)
516 		m->m_nextpkt = m0;
517 	else
518 		sb->sb_mb = m0;
519 	m = m0->m_next;
520 	m0->m_next = 0;
521 	if (m && (m0->m_flags & M_EOR)) {
522 		m0->m_flags &= ~M_EOR;
523 		m->m_flags |= M_EOR;
524 	}
525 	sbcompress(sb, m, m0);
526 }
527 
528 /*
529  * As above except that OOB data
530  * is inserted at the beginning of the sockbuf,
531  * but after any other OOB data.
532  */
533 void
534 sbinsertoob(sb, m0)
535 	register struct sockbuf *sb;
536 	register struct mbuf *m0;
537 {
538 	register struct mbuf *m;
539 	register struct mbuf **mp;
540 
541 	if (m0 == 0)
542 		return;
543 	for (mp = &sb->sb_mb; m = *mp; mp = &((*mp)->m_nextpkt)) {
544 	    again:
545 		switch (m->m_type) {
546 
547 		case MT_OOBDATA:
548 			continue;		/* WANT next train */
549 
550 		case MT_CONTROL:
551 			if (m = m->m_next)
552 				goto again;	/* inspect THIS train further */
553 		}
554 		break;
555 	}
556 	/*
557 	 * Put the first mbuf on the queue.
558 	 * Note this permits zero length records.
559 	 */
560 	sballoc(sb, m0);
561 	m0->m_nextpkt = *mp;
562 	*mp = m0;
563 	m = m0->m_next;
564 	m0->m_next = 0;
565 	if (m && (m0->m_flags & M_EOR)) {
566 		m0->m_flags &= ~M_EOR;
567 		m->m_flags |= M_EOR;
568 	}
569 	sbcompress(sb, m, m0);
570 }
571 
572 /*
573  * Append address and data, and optionally, control (ancillary) data
574  * to the receive queue of a socket.  If present,
575  * m0 must include a packet header with total length.
576  * Returns 0 if no space in sockbuf or insufficient mbufs.
577  */
578 int
579 sbappendaddr(sb, asa, m0, control)
580 	register struct sockbuf *sb;
581 	struct sockaddr *asa;
582 	struct mbuf *m0, *control;
583 {
584 	register struct mbuf *m, *n;
585 	int space = asa->sa_len;
586 
587 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
588 panic("sbappendaddr");
589 	if (m0)
590 		space += m0->m_pkthdr.len;
591 	for (n = control; n; n = n->m_next) {
592 		space += n->m_len;
593 		if (n->m_next == 0)	/* keep pointer to last control buf */
594 			break;
595 	}
596 	if (space > sbspace(sb))
597 		return (0);
598 	if (asa->sa_len > MLEN)
599 		return (0);
600 	MGET(m, M_DONTWAIT, MT_SONAME);
601 	if (m == 0)
602 		return (0);
603 	m->m_len = asa->sa_len;
604 	bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
605 	if (n)
606 		n->m_next = m0;		/* concatenate data to control */
607 	else
608 		control = m0;
609 	m->m_next = control;
610 	for (n = m; n; n = n->m_next)
611 		sballoc(sb, n);
612 	if (n = sb->sb_mb) {
613 		while (n->m_nextpkt)
614 			n = n->m_nextpkt;
615 		n->m_nextpkt = m;
616 	} else
617 		sb->sb_mb = m;
618 	return (1);
619 }
620 
621 int
622 sbappendcontrol(sb, m0, control)
623 	struct sockbuf *sb;
624 	struct mbuf *m0, *control;
625 {
626 	register struct mbuf *m, *n;
627 	int space = 0;
628 
629 	if (control == 0)
630 		panic("sbappendcontrol");
631 	for (m = control; ; m = m->m_next) {
632 		space += m->m_len;
633 		if (m->m_next == 0)
634 			break;
635 	}
636 	n = m;			/* save pointer to last control buffer */
637 	for (m = m0; m; m = m->m_next)
638 		space += m->m_len;
639 	if (space > sbspace(sb))
640 		return (0);
641 	n->m_next = m0;			/* concatenate data to control */
642 	for (m = control; m; m = m->m_next)
643 		sballoc(sb, m);
644 	if (n = sb->sb_mb) {
645 		while (n->m_nextpkt)
646 			n = n->m_nextpkt;
647 		n->m_nextpkt = control;
648 	} else
649 		sb->sb_mb = control;
650 	return (1);
651 }
652 
653 /*
654  * Compress mbuf chain m into the socket
655  * buffer sb following mbuf n.  If n
656  * is null, the buffer is presumed empty.
657  */
658 void
659 sbcompress(sb, m, n)
660 	register struct sockbuf *sb;
661 	register struct mbuf *m, *n;
662 {
663 	register int eor = 0;
664 	register struct mbuf *o;
665 
666 	while (m) {
667 		eor |= m->m_flags & M_EOR;
668 		if (m->m_len == 0 &&
669 		    (eor == 0 ||
670 		     (((o = m->m_next) || (o = n)) &&
671 		      o->m_type == m->m_type))) {
672 			m = m_free(m);
673 			continue;
674 		}
675 		if (n && (n->m_flags & (M_EXT | M_EOR)) == 0 &&
676 		    (n->m_data + n->m_len + m->m_len) < &n->m_dat[MLEN] &&
677 		    n->m_type == m->m_type) {
678 			bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
679 			    (unsigned)m->m_len);
680 			n->m_len += m->m_len;
681 			sb->sb_cc += m->m_len;
682 			m = m_free(m);
683 			continue;
684 		}
685 		if (n)
686 			n->m_next = m;
687 		else
688 			sb->sb_mb = m;
689 		sballoc(sb, m);
690 		n = m;
691 		m->m_flags &= ~M_EOR;
692 		m = m->m_next;
693 		n->m_next = 0;
694 	}
695 	if (eor) {
696 		if (n)
697 			n->m_flags |= eor;
698 		else
699 			printf("semi-panic: sbcompress\n");
700 	}
701 }
702 
703 /*
704  * Free all mbufs in a sockbuf.
705  * Check that all resources are reclaimed.
706  */
707 void
708 sbflush(sb)
709 	register struct sockbuf *sb;
710 {
711 
712 	if (sb->sb_flags & SB_LOCK)
713 		panic("sbflush");
714 	while (sb->sb_mbcnt)
715 		sbdrop(sb, (int)sb->sb_cc);
716 	if (sb->sb_cc || sb->sb_mb)
717 		panic("sbflush 2");
718 }
719 
720 /*
721  * Drop data from (the front of) a sockbuf.
722  */
723 void
724 sbdrop(sb, len)
725 	register struct sockbuf *sb;
726 	register int len;
727 {
728 	register struct mbuf *m, *mn;
729 	struct mbuf *next;
730 
731 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
732 	while (len > 0) {
733 		if (m == 0) {
734 			if (next == 0)
735 				panic("sbdrop");
736 			m = next;
737 			next = m->m_nextpkt;
738 			continue;
739 		}
740 		if (m->m_len > len) {
741 			m->m_len -= len;
742 			m->m_data += len;
743 			sb->sb_cc -= len;
744 			break;
745 		}
746 		len -= m->m_len;
747 		sbfree(sb, m);
748 		MFREE(m, mn);
749 		m = mn;
750 	}
751 	while (m && m->m_len == 0) {
752 		sbfree(sb, m);
753 		MFREE(m, mn);
754 		m = mn;
755 	}
756 	if (m) {
757 		sb->sb_mb = m;
758 		m->m_nextpkt = next;
759 	} else
760 		sb->sb_mb = next;
761 }
762 
763 /*
764  * Drop a record off the front of a sockbuf
765  * and move the next record to the front.
766  */
767 void
768 sbdroprecord(sb)
769 	register struct sockbuf *sb;
770 {
771 	register struct mbuf *m, *mn;
772 
773 	m = sb->sb_mb;
774 	if (m) {
775 		sb->sb_mb = m->m_nextpkt;
776 		do {
777 			sbfree(sb, m);
778 			MFREE(m, mn);
779 		} while (m = mn);
780 	}
781 }
782