xref: /netbsd-src/sys/kern/uipc_socket2.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: uipc_socket2.c,v 1.53 2003/06/29 22:31:31 fvdl Exp $	*/
2 
3 /*
4  * Copyright (c) 1982, 1986, 1988, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)uipc_socket2.c	8.2 (Berkeley) 2/14/95
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: uipc_socket2.c,v 1.53 2003/06/29 22:31:31 fvdl Exp $");
40 
41 #include "opt_mbuftrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/file.h>
47 #include <sys/buf.h>
48 #include <sys/malloc.h>
49 #include <sys/mbuf.h>
50 #include <sys/protosw.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/signalvar.h>
54 
55 /*
56  * Primitive routines for operating on sockets and socket buffers
57  */
58 
59 /* strings for sleep message: */
60 const char	netcon[] = "netcon";
61 const char	netcls[] = "netcls";
62 const char	netio[] = "netio";
63 const char	netlck[] = "netlck";
64 
65 /*
66  * Procedures to manipulate state flags of socket
67  * and do appropriate wakeups.  Normal sequence from the
68  * active (originating) side is that soisconnecting() is
69  * called during processing of connect() call,
70  * resulting in an eventual call to soisconnected() if/when the
71  * connection is established.  When the connection is torn down
72  * soisdisconnecting() is called during processing of disconnect() call,
73  * and soisdisconnected() is called when the connection to the peer
74  * is totally severed.  The semantics of these routines are such that
75  * connectionless protocols can call soisconnected() and soisdisconnected()
76  * only, bypassing the in-progress calls when setting up a ``connection''
77  * takes no time.
78  *
79  * From the passive side, a socket is created with
80  * two queues of sockets: so_q0 for connections in progress
81  * and so_q for connections already made and awaiting user acceptance.
82  * As a protocol is preparing incoming connections, it creates a socket
83  * structure queued on so_q0 by calling sonewconn().  When the connection
84  * is established, soisconnected() is called, and transfers the
85  * socket structure to so_q, making it available to accept().
86  *
87  * If a socket is closed with sockets on either
88  * so_q0 or so_q, these sockets are dropped.
89  *
90  * If higher level protocols are implemented in
91  * the kernel, the wakeups done here will sometimes
92  * cause software-interrupt process scheduling.
93  */
94 
95 void
96 soisconnecting(struct socket *so)
97 {
98 
99 	so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
100 	so->so_state |= SS_ISCONNECTING;
101 }
102 
103 void
104 soisconnected(struct socket *so)
105 {
106 	struct socket	*head;
107 
108 	head = so->so_head;
109 	so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
110 	so->so_state |= SS_ISCONNECTED;
111 	if (head && soqremque(so, 0)) {
112 		soqinsque(head, so, 1);
113 		sorwakeup(head);
114 		wakeup((caddr_t)&head->so_timeo);
115 	} else {
116 		wakeup((caddr_t)&so->so_timeo);
117 		sorwakeup(so);
118 		sowwakeup(so);
119 	}
120 }
121 
122 void
123 soisdisconnecting(struct socket *so)
124 {
125 
126 	so->so_state &= ~SS_ISCONNECTING;
127 	so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
128 	wakeup((caddr_t)&so->so_timeo);
129 	sowwakeup(so);
130 	sorwakeup(so);
131 }
132 
133 void
134 soisdisconnected(struct socket *so)
135 {
136 
137 	so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
138 	so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
139 	wakeup((caddr_t)&so->so_timeo);
140 	sowwakeup(so);
141 	sorwakeup(so);
142 }
143 
144 /*
145  * When an attempt at a new connection is noted on a socket
146  * which accepts connections, sonewconn is called.  If the
147  * connection is possible (subject to space constraints, etc.)
148  * then we allocate a new structure, propoerly linked into the
149  * data structure of the original socket, and return this.
150  * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
151  *
152  * Currently, sonewconn() is defined as sonewconn1() in socketvar.h
153  * to catch calls that are missing the (new) second parameter.
154  */
155 struct socket *
156 sonewconn1(struct socket *head, int connstatus)
157 {
158 	struct socket	*so;
159 	int		soqueue;
160 
161 	soqueue = connstatus ? 1 : 0;
162 	if (head->so_qlen + head->so_q0len > 3 * head->so_qlimit / 2)
163 		return ((struct socket *)0);
164 	so = pool_get(&socket_pool, PR_NOWAIT);
165 	if (so == NULL)
166 		return (NULL);
167 	memset((caddr_t)so, 0, sizeof(*so));
168 	so->so_type = head->so_type;
169 	so->so_options = head->so_options &~ SO_ACCEPTCONN;
170 	so->so_linger = head->so_linger;
171 	so->so_state = head->so_state | SS_NOFDREF;
172 	so->so_proto = head->so_proto;
173 	so->so_timeo = head->so_timeo;
174 	so->so_pgid = head->so_pgid;
175 	so->so_send = head->so_send;
176 	so->so_receive = head->so_receive;
177 	so->so_uid = head->so_uid;
178 #ifdef MBUFTRACE
179 	so->so_mowner = head->so_mowner;
180 	so->so_rcv.sb_mowner = head->so_rcv.sb_mowner;
181 	so->so_snd.sb_mowner = head->so_snd.sb_mowner;
182 #endif
183 	(void) soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat);
184 	soqinsque(head, so, soqueue);
185 	if ((*so->so_proto->pr_usrreq)(so, PRU_ATTACH,
186 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
187 	    (struct proc *)0)) {
188 		(void) soqremque(so, soqueue);
189 		pool_put(&socket_pool, so);
190 		return (NULL);
191 	}
192 	if (connstatus) {
193 		sorwakeup(head);
194 		wakeup((caddr_t)&head->so_timeo);
195 		so->so_state |= connstatus;
196 	}
197 	return (so);
198 }
199 
200 void
201 soqinsque(struct socket *head, struct socket *so, int q)
202 {
203 
204 #ifdef DIAGNOSTIC
205 	if (so->so_onq != NULL)
206 		panic("soqinsque");
207 #endif
208 
209 	so->so_head = head;
210 	if (q == 0) {
211 		head->so_q0len++;
212 		so->so_onq = &head->so_q0;
213 	} else {
214 		head->so_qlen++;
215 		so->so_onq = &head->so_q;
216 	}
217 	TAILQ_INSERT_TAIL(so->so_onq, so, so_qe);
218 }
219 
220 int
221 soqremque(struct socket *so, int q)
222 {
223 	struct socket	*head;
224 
225 	head = so->so_head;
226 	if (q == 0) {
227 		if (so->so_onq != &head->so_q0)
228 			return (0);
229 		head->so_q0len--;
230 	} else {
231 		if (so->so_onq != &head->so_q)
232 			return (0);
233 		head->so_qlen--;
234 	}
235 	TAILQ_REMOVE(so->so_onq, so, so_qe);
236 	so->so_onq = NULL;
237 	so->so_head = NULL;
238 	return (1);
239 }
240 
241 /*
242  * Socantsendmore indicates that no more data will be sent on the
243  * socket; it would normally be applied to a socket when the user
244  * informs the system that no more data is to be sent, by the protocol
245  * code (in case PRU_SHUTDOWN).  Socantrcvmore indicates that no more data
246  * will be received, and will normally be applied to the socket by a
247  * protocol when it detects that the peer will send no more data.
248  * Data queued for reading in the socket may yet be read.
249  */
250 
251 void
252 socantsendmore(struct socket *so)
253 {
254 
255 	so->so_state |= SS_CANTSENDMORE;
256 	sowwakeup(so);
257 }
258 
259 void
260 socantrcvmore(struct socket *so)
261 {
262 
263 	so->so_state |= SS_CANTRCVMORE;
264 	sorwakeup(so);
265 }
266 
267 /*
268  * Wait for data to arrive at/drain from a socket buffer.
269  */
270 int
271 sbwait(struct sockbuf *sb)
272 {
273 
274 	sb->sb_flags |= SB_WAIT;
275 	return (tsleep((caddr_t)&sb->sb_cc,
276 	    (sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, netio,
277 	    sb->sb_timeo));
278 }
279 
280 /*
281  * Lock a sockbuf already known to be locked;
282  * return any error returned from sleep (EINTR).
283  */
284 int
285 sb_lock(struct sockbuf *sb)
286 {
287 	int	error;
288 
289 	while (sb->sb_flags & SB_LOCK) {
290 		sb->sb_flags |= SB_WANT;
291 		error = tsleep((caddr_t)&sb->sb_flags,
292 		    (sb->sb_flags & SB_NOINTR) ?  PSOCK : PSOCK|PCATCH,
293 		    netlck, 0);
294 		if (error)
295 			return (error);
296 	}
297 	sb->sb_flags |= SB_LOCK;
298 	return (0);
299 }
300 
301 /*
302  * Wakeup processes waiting on a socket buffer.
303  * Do asynchronous notification via SIGIO
304  * if the socket buffer has the SB_ASYNC flag set.
305  */
306 void
307 sowakeup(struct socket *so, struct sockbuf *sb)
308 {
309 	struct proc	*p;
310 
311 	selnotify(&sb->sb_sel, 0);
312 	sb->sb_flags &= ~SB_SEL;
313 	if (sb->sb_flags & SB_WAIT) {
314 		sb->sb_flags &= ~SB_WAIT;
315 		wakeup((caddr_t)&sb->sb_cc);
316 	}
317 	if (sb->sb_flags & SB_ASYNC) {
318 		if (so->so_pgid < 0)
319 			gsignal(-so->so_pgid, SIGIO);
320 		else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
321 			psignal(p, SIGIO);
322 	}
323 	if (sb->sb_flags & SB_UPCALL)
324 		(*so->so_upcall)(so, so->so_upcallarg, M_DONTWAIT);
325 }
326 
327 /*
328  * Socket buffer (struct sockbuf) utility routines.
329  *
330  * Each socket contains two socket buffers: one for sending data and
331  * one for receiving data.  Each buffer contains a queue of mbufs,
332  * information about the number of mbufs and amount of data in the
333  * queue, and other fields allowing poll() statements and notification
334  * on data availability to be implemented.
335  *
336  * Data stored in a socket buffer is maintained as a list of records.
337  * Each record is a list of mbufs chained together with the m_next
338  * field.  Records are chained together with the m_nextpkt field. The upper
339  * level routine soreceive() expects the following conventions to be
340  * observed when placing information in the receive buffer:
341  *
342  * 1. If the protocol requires each message be preceded by the sender's
343  *    name, then a record containing that name must be present before
344  *    any associated data (mbuf's must be of type MT_SONAME).
345  * 2. If the protocol supports the exchange of ``access rights'' (really
346  *    just additional data associated with the message), and there are
347  *    ``rights'' to be received, then a record containing this data
348  *    should be present (mbuf's must be of type MT_CONTROL).
349  * 3. If a name or rights record exists, then it must be followed by
350  *    a data record, perhaps of zero length.
351  *
352  * Before using a new socket structure it is first necessary to reserve
353  * buffer space to the socket, by calling sbreserve().  This should commit
354  * some of the available buffer space in the system buffer pool for the
355  * socket (currently, it does nothing but enforce limits).  The space
356  * should be released by calling sbrelease() when the socket is destroyed.
357  */
358 
359 int
360 soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
361 {
362 
363 	if (sbreserve(&so->so_snd, sndcc) == 0)
364 		goto bad;
365 	if (sbreserve(&so->so_rcv, rcvcc) == 0)
366 		goto bad2;
367 	if (so->so_rcv.sb_lowat == 0)
368 		so->so_rcv.sb_lowat = 1;
369 	if (so->so_snd.sb_lowat == 0)
370 		so->so_snd.sb_lowat = MCLBYTES;
371 	if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
372 		so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
373 	return (0);
374  bad2:
375 	sbrelease(&so->so_snd);
376  bad:
377 	return (ENOBUFS);
378 }
379 
380 /*
381  * Allot mbufs to a sockbuf.
382  * Attempt to scale mbmax so that mbcnt doesn't become limiting
383  * if buffering efficiency is near the normal case.
384  */
385 int
386 sbreserve(struct sockbuf *sb, u_long cc)
387 {
388 
389 	if (cc == 0 ||
390 	    (u_quad_t) cc > (u_quad_t) sb_max * MCLBYTES / (MSIZE + MCLBYTES))
391 		return (0);
392 	sb->sb_hiwat = cc;
393 	sb->sb_mbmax = min(cc * 2, sb_max);
394 	if (sb->sb_lowat > sb->sb_hiwat)
395 		sb->sb_lowat = sb->sb_hiwat;
396 	return (1);
397 }
398 
399 /*
400  * Free mbufs held by a socket, and reserved mbuf space.
401  */
402 void
403 sbrelease(struct sockbuf *sb)
404 {
405 
406 	sbflush(sb);
407 	sb->sb_hiwat = sb->sb_mbmax = 0;
408 }
409 
410 /*
411  * Routines to add and remove
412  * data from an mbuf queue.
413  *
414  * The routines sbappend() or sbappendrecord() are normally called to
415  * append new mbufs to a socket buffer, after checking that adequate
416  * space is available, comparing the function sbspace() with the amount
417  * of data to be added.  sbappendrecord() differs from sbappend() in
418  * that data supplied is treated as the beginning of a new record.
419  * To place a sender's address, optional access rights, and data in a
420  * socket receive buffer, sbappendaddr() should be used.  To place
421  * access rights and data in a socket receive buffer, sbappendrights()
422  * should be used.  In either case, the new data begins a new record.
423  * Note that unlike sbappend() and sbappendrecord(), these routines check
424  * for the caller that there will be enough space to store the data.
425  * Each fails if there is not enough space, or if it cannot find mbufs
426  * to store additional information in.
427  *
428  * Reliable protocols may use the socket send buffer to hold data
429  * awaiting acknowledgement.  Data is normally copied from a socket
430  * send buffer in a protocol with m_copy for output to a peer,
431  * and then removing the data from the socket buffer with sbdrop()
432  * or sbdroprecord() when the data is acknowledged by the peer.
433  */
434 
435 #ifdef SOCKBUF_DEBUG
436 void
437 sblastrecordchk(struct sockbuf *sb, const char *where)
438 {
439 	struct mbuf *m = sb->sb_mb;
440 
441 	while (m && m->m_nextpkt)
442 		m = m->m_nextpkt;
443 
444 	if (m != sb->sb_lastrecord) {
445 		printf("sblastrecordchk: sb_mb %p sb_lastrecord %p last %p\n",
446 		    sb->sb_mb, sb->sb_lastrecord, m);
447 		printf("packet chain:\n");
448 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
449 			printf("\t%p\n", m);
450 		panic("sblastrecordchk from %s", where);
451 	}
452 }
453 
454 void
455 sblastmbufchk(struct sockbuf *sb, const char *where)
456 {
457 	struct mbuf *m = sb->sb_mb;
458 	struct mbuf *n;
459 
460 	while (m && m->m_nextpkt)
461 		m = m->m_nextpkt;
462 
463 	while (m && m->m_next)
464 		m = m->m_next;
465 
466 	if (m != sb->sb_mbtail) {
467 		printf("sblastmbufchk: sb_mb %p sb_mbtail %p last %p\n",
468 		    sb->sb_mb, sb->sb_mbtail, m);
469 		printf("packet tree:\n");
470 		for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
471 			printf("\t");
472 			for (n = m; n != NULL; n = n->m_next)
473 				printf("%p ", n);
474 			printf("\n");
475 		}
476 		panic("sblastmbufchk from %s", where);
477 	}
478 }
479 #endif /* SOCKBUF_DEBUG */
480 
481 #define	SBLINKRECORD(sb, m0)						\
482 do {									\
483 	if ((sb)->sb_lastrecord != NULL)				\
484 		(sb)->sb_lastrecord->m_nextpkt = (m0);			\
485 	else								\
486 		(sb)->sb_mb = (m0);					\
487 	(sb)->sb_lastrecord = (m0);					\
488 } while (/*CONSTCOND*/0)
489 
490 /*
491  * Append mbuf chain m to the last record in the
492  * socket buffer sb.  The additional space associated
493  * the mbuf chain is recorded in sb.  Empty mbufs are
494  * discarded and mbufs are compacted where possible.
495  */
496 void
497 sbappend(struct sockbuf *sb, struct mbuf *m)
498 {
499 	struct mbuf	*n;
500 
501 	if (m == 0)
502 		return;
503 
504 #ifdef MBUFTRACE
505 	m_claim(m, sb->sb_mowner);
506 #endif
507 
508 	SBLASTRECORDCHK(sb, "sbappend 1");
509 
510 	if ((n = sb->sb_lastrecord) != NULL) {
511 		/*
512 		 * XXX Would like to simply use sb_mbtail here, but
513 		 * XXX I need to verify that I won't miss an EOR that
514 		 * XXX way.
515 		 */
516 		do {
517 			if (n->m_flags & M_EOR) {
518 				sbappendrecord(sb, m); /* XXXXXX!!!! */
519 				return;
520 			}
521 		} while (n->m_next && (n = n->m_next));
522 	} else {
523 		/*
524 		 * If this is the first record in the socket buffer, it's
525 		 * also the last record.
526 		 */
527 		sb->sb_lastrecord = m;
528 	}
529 	sbcompress(sb, m, n);
530 	SBLASTRECORDCHK(sb, "sbappend 2");
531 }
532 
533 /*
534  * This version of sbappend() should only be used when the caller
535  * absolutely knows that there will never be more than one record
536  * in the socket buffer, that is, a stream protocol (such as TCP).
537  */
538 void
539 sbappendstream(struct sockbuf *sb, struct mbuf *m)
540 {
541 
542 	KDASSERT(m->m_nextpkt == NULL);
543 	KASSERT(sb->sb_mb == sb->sb_lastrecord);
544 
545 	SBLASTMBUFCHK(sb, __func__);
546 
547 #ifdef MBUFTRACE
548 	m_claim(m, sb->sb_mowner);
549 #endif
550 
551 	sbcompress(sb, m, sb->sb_mbtail);
552 
553 	sb->sb_lastrecord = sb->sb_mb;
554 	SBLASTRECORDCHK(sb, __func__);
555 }
556 
557 #ifdef SOCKBUF_DEBUG
558 void
559 sbcheck(struct sockbuf *sb)
560 {
561 	struct mbuf	*m;
562 	u_long		len, mbcnt;
563 
564 	len = 0;
565 	mbcnt = 0;
566 	for (m = sb->sb_mb; m; m = m->m_next) {
567 		len += m->m_len;
568 		mbcnt += MSIZE;
569 		if (m->m_flags & M_EXT)
570 			mbcnt += m->m_ext.ext_size;
571 		if (m->m_nextpkt)
572 			panic("sbcheck nextpkt");
573 	}
574 	if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
575 		printf("cc %lu != %lu || mbcnt %lu != %lu\n", len, sb->sb_cc,
576 		    mbcnt, sb->sb_mbcnt);
577 		panic("sbcheck");
578 	}
579 }
580 #endif
581 
582 /*
583  * As above, except the mbuf chain
584  * begins a new record.
585  */
586 void
587 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
588 {
589 	struct mbuf	*m;
590 
591 	if (m0 == 0)
592 		return;
593 
594 #ifdef MBUFTRACE
595 	m_claim(m0, sb->sb_mowner);
596 #endif
597 	/*
598 	 * Put the first mbuf on the queue.
599 	 * Note this permits zero length records.
600 	 */
601 	sballoc(sb, m0);
602 	SBLASTRECORDCHK(sb, "sbappendrecord 1");
603 	SBLINKRECORD(sb, m0);
604 	m = m0->m_next;
605 	m0->m_next = 0;
606 	if (m && (m0->m_flags & M_EOR)) {
607 		m0->m_flags &= ~M_EOR;
608 		m->m_flags |= M_EOR;
609 	}
610 	sbcompress(sb, m, m0);
611 	SBLASTRECORDCHK(sb, "sbappendrecord 2");
612 }
613 
614 /*
615  * As above except that OOB data
616  * is inserted at the beginning of the sockbuf,
617  * but after any other OOB data.
618  */
619 void
620 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
621 {
622 	struct mbuf	*m, **mp;
623 
624 	if (m0 == 0)
625 		return;
626 
627 	SBLASTRECORDCHK(sb, "sbinsertoob 1");
628 
629 	for (mp = &sb->sb_mb; (m = *mp) != NULL; mp = &((*mp)->m_nextpkt)) {
630 	    again:
631 		switch (m->m_type) {
632 
633 		case MT_OOBDATA:
634 			continue;		/* WANT next train */
635 
636 		case MT_CONTROL:
637 			if ((m = m->m_next) != NULL)
638 				goto again;	/* inspect THIS train further */
639 		}
640 		break;
641 	}
642 	/*
643 	 * Put the first mbuf on the queue.
644 	 * Note this permits zero length records.
645 	 */
646 	sballoc(sb, m0);
647 	m0->m_nextpkt = *mp;
648 	if (*mp == NULL) {
649 		/* m0 is actually the new tail */
650 		sb->sb_lastrecord = m0;
651 	}
652 	*mp = m0;
653 	m = m0->m_next;
654 	m0->m_next = 0;
655 	if (m && (m0->m_flags & M_EOR)) {
656 		m0->m_flags &= ~M_EOR;
657 		m->m_flags |= M_EOR;
658 	}
659 	sbcompress(sb, m, m0);
660 	SBLASTRECORDCHK(sb, "sbinsertoob 2");
661 }
662 
663 /*
664  * Append address and data, and optionally, control (ancillary) data
665  * to the receive queue of a socket.  If present,
666  * m0 must include a packet header with total length.
667  * Returns 0 if no space in sockbuf or insufficient mbufs.
668  */
669 int
670 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
671 	struct mbuf *control)
672 {
673 	struct mbuf	*m, *n, *nlast;
674 	int		space, len;
675 
676 	space = asa->sa_len;
677 
678 	if (m0 != NULL) {
679 		if ((m0->m_flags & M_PKTHDR) == 0)
680 			panic("sbappendaddr");
681 		space += m0->m_pkthdr.len;
682 #ifdef MBUFTRACE
683 		m_claim(m0, sb->sb_mowner);
684 #endif
685 	}
686 	for (n = control; n; n = n->m_next) {
687 		space += n->m_len;
688 		MCLAIM(n, sb->sb_mowner);
689 		if (n->m_next == 0)	/* keep pointer to last control buf */
690 			break;
691 	}
692 	if (space > sbspace(sb))
693 		return (0);
694 	MGET(m, M_DONTWAIT, MT_SONAME);
695 	if (m == 0)
696 		return (0);
697 	MCLAIM(m, sb->sb_mowner);
698 	/*
699 	 * XXX avoid 'comparison always true' warning which isn't easily
700 	 * avoided.
701 	 */
702 	len = asa->sa_len;
703 	if (len > MLEN) {
704 		MEXTMALLOC(m, asa->sa_len, M_NOWAIT);
705 		if ((m->m_flags & M_EXT) == 0) {
706 			m_free(m);
707 			return (0);
708 		}
709 	}
710 	m->m_len = asa->sa_len;
711 	memcpy(mtod(m, caddr_t), (caddr_t)asa, asa->sa_len);
712 	if (n)
713 		n->m_next = m0;		/* concatenate data to control */
714 	else
715 		control = m0;
716 	m->m_next = control;
717 
718 	SBLASTRECORDCHK(sb, "sbappendaddr 1");
719 
720 	for (n = m; n->m_next != NULL; n = n->m_next)
721 		sballoc(sb, n);
722 	sballoc(sb, n);
723 	nlast = n;
724 	SBLINKRECORD(sb, m);
725 
726 	sb->sb_mbtail = nlast;
727 	SBLASTMBUFCHK(sb, "sbappendaddr");
728 
729 	SBLASTRECORDCHK(sb, "sbappendaddr 2");
730 
731 	return (1);
732 }
733 
734 int
735 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
736 {
737 	struct mbuf	*m, *mlast, *n;
738 	int		space;
739 
740 	space = 0;
741 	if (control == 0)
742 		panic("sbappendcontrol");
743 	for (m = control; ; m = m->m_next) {
744 		space += m->m_len;
745 		MCLAIM(m, sb->sb_mowner);
746 		if (m->m_next == 0)
747 			break;
748 	}
749 	n = m;			/* save pointer to last control buffer */
750 	for (m = m0; m; m = m->m_next) {
751 		MCLAIM(m, sb->sb_mowner);
752 		space += m->m_len;
753 	}
754 	if (space > sbspace(sb))
755 		return (0);
756 	n->m_next = m0;			/* concatenate data to control */
757 
758 	SBLASTRECORDCHK(sb, "sbappendcontrol 1");
759 
760 	for (m = control; m->m_next != NULL; m = m->m_next)
761 		sballoc(sb, m);
762 	sballoc(sb, m);
763 	mlast = m;
764 	SBLINKRECORD(sb, control);
765 
766 	sb->sb_mbtail = mlast;
767 	SBLASTMBUFCHK(sb, "sbappendcontrol");
768 
769 	SBLASTRECORDCHK(sb, "sbappendcontrol 2");
770 
771 	return (1);
772 }
773 
774 /*
775  * Compress mbuf chain m into the socket
776  * buffer sb following mbuf n.  If n
777  * is null, the buffer is presumed empty.
778  */
779 void
780 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
781 {
782 	int		eor;
783 	struct mbuf	*o;
784 
785 	eor = 0;
786 	while (m) {
787 		eor |= m->m_flags & M_EOR;
788 		if (m->m_len == 0 &&
789 		    (eor == 0 ||
790 		     (((o = m->m_next) || (o = n)) &&
791 		      o->m_type == m->m_type))) {
792 			if (sb->sb_lastrecord == m)
793 				sb->sb_lastrecord = m->m_next;
794 			m = m_free(m);
795 			continue;
796 		}
797 		if (n && (n->m_flags & M_EOR) == 0 &&
798 		    /* M_TRAILINGSPACE() checks buffer writeability */
799 		    m->m_len <= MCLBYTES / 4 && /* XXX Don't copy too much */
800 		    m->m_len <= M_TRAILINGSPACE(n) &&
801 		    n->m_type == m->m_type) {
802 			memcpy(mtod(n, caddr_t) + n->m_len, mtod(m, caddr_t),
803 			    (unsigned)m->m_len);
804 			n->m_len += m->m_len;
805 			sb->sb_cc += m->m_len;
806 			m = m_free(m);
807 			continue;
808 		}
809 		if (n)
810 			n->m_next = m;
811 		else
812 			sb->sb_mb = m;
813 		sb->sb_mbtail = m;
814 		sballoc(sb, m);
815 		n = m;
816 		m->m_flags &= ~M_EOR;
817 		m = m->m_next;
818 		n->m_next = 0;
819 	}
820 	if (eor) {
821 		if (n)
822 			n->m_flags |= eor;
823 		else
824 			printf("semi-panic: sbcompress\n");
825 	}
826 	SBLASTMBUFCHK(sb, __func__);
827 }
828 
829 /*
830  * Free all mbufs in a sockbuf.
831  * Check that all resources are reclaimed.
832  */
833 void
834 sbflush(struct sockbuf *sb)
835 {
836 
837 	KASSERT((sb->sb_flags & SB_LOCK) == 0);
838 
839 	while (sb->sb_mbcnt)
840 		sbdrop(sb, (int)sb->sb_cc);
841 
842 	KASSERT(sb->sb_cc == 0);
843 	KASSERT(sb->sb_mb == NULL);
844 	KASSERT(sb->sb_mbtail == NULL);
845 	KASSERT(sb->sb_lastrecord == NULL);
846 }
847 
848 /*
849  * Drop data from (the front of) a sockbuf.
850  */
851 void
852 sbdrop(struct sockbuf *sb, int len)
853 {
854 	struct mbuf	*m, *mn, *next;
855 
856 	next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
857 	while (len > 0) {
858 		if (m == 0) {
859 			if (next == 0)
860 				panic("sbdrop");
861 			m = next;
862 			next = m->m_nextpkt;
863 			continue;
864 		}
865 		if (m->m_len > len) {
866 			m->m_len -= len;
867 			m->m_data += len;
868 			sb->sb_cc -= len;
869 			break;
870 		}
871 		len -= m->m_len;
872 		sbfree(sb, m);
873 		MFREE(m, mn);
874 		m = mn;
875 	}
876 	while (m && m->m_len == 0) {
877 		sbfree(sb, m);
878 		MFREE(m, mn);
879 		m = mn;
880 	}
881 	if (m) {
882 		sb->sb_mb = m;
883 		m->m_nextpkt = next;
884 	} else
885 		sb->sb_mb = next;
886 	/*
887 	 * First part is an inline SB_EMPTY_FIXUP().  Second part
888 	 * makes sure sb_lastrecord is up-to-date if we dropped
889 	 * part of the last record.
890 	 */
891 	m = sb->sb_mb;
892 	if (m == NULL) {
893 		sb->sb_mbtail = NULL;
894 		sb->sb_lastrecord = NULL;
895 	} else if (m->m_nextpkt == NULL)
896 		sb->sb_lastrecord = m;
897 }
898 
899 /*
900  * Drop a record off the front of a sockbuf
901  * and move the next record to the front.
902  */
903 void
904 sbdroprecord(struct sockbuf *sb)
905 {
906 	struct mbuf	*m, *mn;
907 
908 	m = sb->sb_mb;
909 	if (m) {
910 		sb->sb_mb = m->m_nextpkt;
911 		do {
912 			sbfree(sb, m);
913 			MFREE(m, mn);
914 		} while ((m = mn) != NULL);
915 	}
916 	SB_EMPTY_FIXUP(sb);
917 }
918 
919 /*
920  * Create a "control" mbuf containing the specified data
921  * with the specified type for presentation on a socket buffer.
922  */
923 struct mbuf *
924 sbcreatecontrol(caddr_t p, int size, int type, int level)
925 {
926 	struct cmsghdr	*cp;
927 	struct mbuf	*m;
928 
929 	if (CMSG_SPACE(size) > MCLBYTES) {
930 		printf("sbcreatecontrol: message too large %d\n", size);
931 		return NULL;
932 	}
933 
934 	if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
935 		return ((struct mbuf *) NULL);
936 	if (CMSG_SPACE(size) > MLEN) {
937 		MCLGET(m, M_DONTWAIT);
938 		if ((m->m_flags & M_EXT) == 0) {
939 			m_free(m);
940 			return NULL;
941 		}
942 	}
943 	cp = mtod(m, struct cmsghdr *);
944 	memcpy(CMSG_DATA(cp), p, size);
945 	m->m_len = CMSG_SPACE(size);
946 	cp->cmsg_len = CMSG_LEN(size);
947 	cp->cmsg_level = level;
948 	cp->cmsg_type = type;
949 	return (m);
950 }
951