1 /* $NetBSD: uipc_socket.c,v 1.279 2019/05/08 14:05:18 christos Exp $ */ 2 3 /* 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.279 2019/05/08 14:05:18 christos Exp $"); 75 76 #ifdef _KERNEL_OPT 77 #include "opt_compat_netbsd.h" 78 #include "opt_sock_counters.h" 79 #include "opt_sosend_loan.h" 80 #include "opt_mbuftrace.h" 81 #include "opt_somaxkva.h" 82 #include "opt_multiprocessor.h" /* XXX */ 83 #include "opt_sctp.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/proc.h> 89 #include <sys/file.h> 90 #include <sys/filedesc.h> 91 #include <sys/kmem.h> 92 #include <sys/mbuf.h> 93 #include <sys/domain.h> 94 #include <sys/kernel.h> 95 #include <sys/protosw.h> 96 #include <sys/socket.h> 97 #include <sys/socketvar.h> 98 #include <sys/signalvar.h> 99 #include <sys/resourcevar.h> 100 #include <sys/uidinfo.h> 101 #include <sys/event.h> 102 #include <sys/poll.h> 103 #include <sys/kauth.h> 104 #include <sys/mutex.h> 105 #include <sys/condvar.h> 106 #include <sys/kthread.h> 107 #include <sys/compat_stub.h> 108 109 #include <compat/sys/time.h> 110 #include <compat/sys/socket.h> 111 112 #include <uvm/uvm_extern.h> 113 #include <uvm/uvm_loan.h> 114 #include <uvm/uvm_page.h> 115 116 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 117 118 extern const struct fileops socketops; 119 120 static int sooptions; 121 extern int somaxconn; /* patchable (XXX sysctl) */ 122 int somaxconn = SOMAXCONN; 123 kmutex_t *softnet_lock; 124 125 #ifdef SOSEND_COUNTERS 126 #include <sys/device.h> 127 128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 129 NULL, "sosend", "loan big"); 130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 131 NULL, "sosend", "copy big"); 132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 133 NULL, "sosend", "copy small"); 134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 135 NULL, "sosend", "kva limit"); 136 137 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 138 139 EVCNT_ATTACH_STATIC(sosend_loan_big); 140 EVCNT_ATTACH_STATIC(sosend_copy_big); 141 EVCNT_ATTACH_STATIC(sosend_copy_small); 142 EVCNT_ATTACH_STATIC(sosend_kvalimit); 143 #else 144 145 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 146 147 #endif /* SOSEND_COUNTERS */ 148 149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 150 int sock_loan_thresh = -1; 151 #else 152 int sock_loan_thresh = 4096; 153 #endif 154 155 static kmutex_t so_pendfree_lock; 156 static struct mbuf *so_pendfree = NULL; 157 158 #ifndef SOMAXKVA 159 #define SOMAXKVA (16 * 1024 * 1024) 160 #endif 161 int somaxkva = SOMAXKVA; 162 static int socurkva; 163 static kcondvar_t socurkva_cv; 164 165 static kauth_listener_t socket_listener; 166 167 #define SOCK_LOAN_CHUNK 65536 168 169 static void sopendfree_thread(void *); 170 static kcondvar_t pendfree_thread_cv; 171 static lwp_t *sopendfree_lwp; 172 173 static void sysctl_kern_socket_setup(void); 174 static struct sysctllog *socket_sysctllog; 175 176 static vsize_t 177 sokvareserve(struct socket *so, vsize_t len) 178 { 179 int error; 180 181 mutex_enter(&so_pendfree_lock); 182 while (socurkva + len > somaxkva) { 183 SOSEND_COUNTER_INCR(&sosend_kvalimit); 184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 185 if (error) { 186 len = 0; 187 break; 188 } 189 } 190 socurkva += len; 191 mutex_exit(&so_pendfree_lock); 192 return len; 193 } 194 195 static void 196 sokvaunreserve(vsize_t len) 197 { 198 199 mutex_enter(&so_pendfree_lock); 200 socurkva -= len; 201 cv_broadcast(&socurkva_cv); 202 mutex_exit(&so_pendfree_lock); 203 } 204 205 /* 206 * sokvaalloc: allocate kva for loan. 207 */ 208 vaddr_t 209 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 210 { 211 vaddr_t lva; 212 213 if (sokvareserve(so, len) == 0) 214 return 0; 215 216 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 217 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 218 if (lva == 0) { 219 sokvaunreserve(len); 220 return 0; 221 } 222 223 return lva; 224 } 225 226 /* 227 * sokvafree: free kva for loan. 228 */ 229 void 230 sokvafree(vaddr_t sva, vsize_t len) 231 { 232 233 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 234 sokvaunreserve(len); 235 } 236 237 static void 238 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 239 { 240 vaddr_t sva, eva; 241 vsize_t len; 242 int npgs; 243 244 KASSERT(pgs != NULL); 245 246 eva = round_page((vaddr_t) buf + size); 247 sva = trunc_page((vaddr_t) buf); 248 len = eva - sva; 249 npgs = len >> PAGE_SHIFT; 250 251 pmap_kremove(sva, len); 252 pmap_update(pmap_kernel()); 253 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 254 sokvafree(sva, len); 255 } 256 257 /* 258 * sopendfree_thread: free mbufs on "pendfree" list. Unlock and relock 259 * so_pendfree_lock when freeing mbufs. 260 */ 261 static void 262 sopendfree_thread(void *v) 263 { 264 struct mbuf *m, *next; 265 size_t rv; 266 267 mutex_enter(&so_pendfree_lock); 268 269 for (;;) { 270 rv = 0; 271 while (so_pendfree != NULL) { 272 m = so_pendfree; 273 so_pendfree = NULL; 274 mutex_exit(&so_pendfree_lock); 275 276 for (; m != NULL; m = next) { 277 next = m->m_next; 278 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 279 0); 280 KASSERT(m->m_ext.ext_refcnt == 0); 281 282 rv += m->m_ext.ext_size; 283 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 284 m->m_ext.ext_size); 285 pool_cache_put(mb_cache, m); 286 } 287 288 mutex_enter(&so_pendfree_lock); 289 } 290 if (rv) 291 cv_broadcast(&socurkva_cv); 292 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 293 } 294 panic("sopendfree_thread"); 295 /* NOTREACHED */ 296 } 297 298 void 299 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 300 { 301 302 KASSERT(m != NULL); 303 304 /* 305 * postpone freeing mbuf. 306 * 307 * we can't do it in interrupt context 308 * because we need to put kva back to kernel_map. 309 */ 310 311 mutex_enter(&so_pendfree_lock); 312 m->m_next = so_pendfree; 313 so_pendfree = m; 314 cv_signal(&pendfree_thread_cv); 315 mutex_exit(&so_pendfree_lock); 316 } 317 318 static long 319 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 320 { 321 struct iovec *iov = uio->uio_iov; 322 vaddr_t sva, eva; 323 vsize_t len; 324 vaddr_t lva; 325 int npgs, error; 326 vaddr_t va; 327 int i; 328 329 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 330 return 0; 331 332 if (iov->iov_len < (size_t) space) 333 space = iov->iov_len; 334 if (space > SOCK_LOAN_CHUNK) 335 space = SOCK_LOAN_CHUNK; 336 337 eva = round_page((vaddr_t) iov->iov_base + space); 338 sva = trunc_page((vaddr_t) iov->iov_base); 339 len = eva - sva; 340 npgs = len >> PAGE_SHIFT; 341 342 KASSERT(npgs <= M_EXT_MAXPAGES); 343 344 lva = sokvaalloc(sva, len, so); 345 if (lva == 0) 346 return 0; 347 348 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 349 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 350 if (error) { 351 sokvafree(lva, len); 352 return 0; 353 } 354 355 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 356 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 357 VM_PROT_READ, 0); 358 pmap_update(pmap_kernel()); 359 360 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 361 362 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 363 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 364 365 uio->uio_resid -= space; 366 /* uio_offset not updated, not set/used for write(2) */ 367 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 368 uio->uio_iov->iov_len -= space; 369 if (uio->uio_iov->iov_len == 0) { 370 uio->uio_iov++; 371 uio->uio_iovcnt--; 372 } 373 374 return space; 375 } 376 377 static int 378 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 379 void *arg0, void *arg1, void *arg2, void *arg3) 380 { 381 int result; 382 enum kauth_network_req req; 383 384 result = KAUTH_RESULT_DEFER; 385 req = (enum kauth_network_req)arg0; 386 387 if ((action != KAUTH_NETWORK_SOCKET) && 388 (action != KAUTH_NETWORK_BIND)) 389 return result; 390 391 switch (req) { 392 case KAUTH_REQ_NETWORK_BIND_PORT: 393 result = KAUTH_RESULT_ALLOW; 394 break; 395 396 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 397 /* Normal users can only drop their own connections. */ 398 struct socket *so = (struct socket *)arg1; 399 400 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 401 result = KAUTH_RESULT_ALLOW; 402 403 break; 404 } 405 406 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 407 /* We allow "raw" routing/bluetooth sockets to anyone. */ 408 switch ((u_long)arg1) { 409 case PF_ROUTE: 410 case PF_OROUTE: 411 case PF_BLUETOOTH: 412 case PF_CAN: 413 result = KAUTH_RESULT_ALLOW; 414 break; 415 default: 416 /* Privileged, let secmodel handle this. */ 417 if ((u_long)arg2 == SOCK_RAW) 418 break; 419 result = KAUTH_RESULT_ALLOW; 420 break; 421 } 422 break; 423 424 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 425 result = KAUTH_RESULT_ALLOW; 426 427 break; 428 429 default: 430 break; 431 } 432 433 return result; 434 } 435 436 void 437 soinit(void) 438 { 439 440 sysctl_kern_socket_setup(); 441 442 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 443 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 444 cv_init(&socurkva_cv, "sokva"); 445 cv_init(&pendfree_thread_cv, "sopendfr"); 446 soinit2(); 447 448 /* Set the initial adjusted socket buffer size. */ 449 if (sb_max_set(sb_max)) 450 panic("bad initial sb_max value: %lu", sb_max); 451 452 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 453 socket_listener_cb, NULL); 454 } 455 456 void 457 soinit1(void) 458 { 459 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 460 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 461 if (error) 462 panic("soinit1 %d", error); 463 } 464 465 /* 466 * socreate: create a new socket of the specified type and the protocol. 467 * 468 * => Caller may specify another socket for lock sharing (must not be held). 469 * => Returns the new socket without lock held. 470 */ 471 int 472 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 473 struct socket *lockso) 474 { 475 const struct protosw *prp; 476 struct socket *so; 477 uid_t uid; 478 int error; 479 kmutex_t *lock; 480 481 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 482 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 483 KAUTH_ARG(proto)); 484 if (error != 0) 485 return error; 486 487 if (proto) 488 prp = pffindproto(dom, proto, type); 489 else 490 prp = pffindtype(dom, type); 491 if (prp == NULL) { 492 /* no support for domain */ 493 if (pffinddomain(dom) == 0) 494 return EAFNOSUPPORT; 495 /* no support for socket type */ 496 if (proto == 0 && type != 0) 497 return EPROTOTYPE; 498 return EPROTONOSUPPORT; 499 } 500 if (prp->pr_usrreqs == NULL) 501 return EPROTONOSUPPORT; 502 if (prp->pr_type != type) 503 return EPROTOTYPE; 504 505 so = soget(true); 506 so->so_type = type; 507 so->so_proto = prp; 508 so->so_send = sosend; 509 so->so_receive = soreceive; 510 so->so_options = sooptions; 511 #ifdef MBUFTRACE 512 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 513 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 514 so->so_mowner = &prp->pr_domain->dom_mowner; 515 #endif 516 uid = kauth_cred_geteuid(l->l_cred); 517 so->so_uidinfo = uid_find(uid); 518 so->so_cpid = l->l_proc->p_pid; 519 520 /* 521 * Lock assigned and taken during PCB attach, unless we share 522 * the lock with another socket, e.g. socketpair(2) case. 523 */ 524 if (lockso) { 525 lock = lockso->so_lock; 526 so->so_lock = lock; 527 mutex_obj_hold(lock); 528 mutex_enter(lock); 529 } 530 531 /* Attach the PCB (returns with the socket lock held). */ 532 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 533 KASSERT(solocked(so)); 534 535 if (error) { 536 KASSERT(so->so_pcb == NULL); 537 so->so_state |= SS_NOFDREF; 538 sofree(so); 539 return error; 540 } 541 so->so_cred = kauth_cred_dup(l->l_cred); 542 sounlock(so); 543 544 *aso = so; 545 return 0; 546 } 547 548 /* 549 * fsocreate: create a socket and a file descriptor associated with it. 550 * 551 * => On success, write file descriptor to fdout and return zero. 552 * => On failure, return non-zero; *fdout will be undefined. 553 */ 554 int 555 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 556 { 557 lwp_t *l = curlwp; 558 int error, fd, flags; 559 struct socket *so; 560 struct file *fp; 561 562 if ((error = fd_allocfile(&fp, &fd)) != 0) { 563 return error; 564 } 565 flags = type & SOCK_FLAGS_MASK; 566 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 567 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 568 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 569 fp->f_type = DTYPE_SOCKET; 570 fp->f_ops = &socketops; 571 572 type &= ~SOCK_FLAGS_MASK; 573 error = socreate(domain, &so, type, proto, l, NULL); 574 if (error) { 575 fd_abort(curproc, fp, fd); 576 return error; 577 } 578 if (flags & SOCK_NONBLOCK) { 579 so->so_state |= SS_NBIO; 580 } 581 fp->f_socket = so; 582 fd_affix(curproc, fp, fd); 583 584 if (sop != NULL) { 585 *sop = so; 586 } 587 *fdout = fd; 588 return error; 589 } 590 591 int 592 sofamily(const struct socket *so) 593 { 594 const struct protosw *pr; 595 const struct domain *dom; 596 597 if ((pr = so->so_proto) == NULL) 598 return AF_UNSPEC; 599 if ((dom = pr->pr_domain) == NULL) 600 return AF_UNSPEC; 601 return dom->dom_family; 602 } 603 604 int 605 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 606 { 607 int error; 608 609 solock(so); 610 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 611 sounlock(so); 612 return EAFNOSUPPORT; 613 } 614 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 615 sounlock(so); 616 return error; 617 } 618 619 int 620 solisten(struct socket *so, int backlog, struct lwp *l) 621 { 622 int error; 623 short oldopt, oldqlimit; 624 625 solock(so); 626 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 627 SS_ISDISCONNECTING)) != 0) { 628 sounlock(so); 629 return EINVAL; 630 } 631 oldopt = so->so_options; 632 oldqlimit = so->so_qlimit; 633 if (TAILQ_EMPTY(&so->so_q)) 634 so->so_options |= SO_ACCEPTCONN; 635 if (backlog < 0) 636 backlog = 0; 637 so->so_qlimit = uimin(backlog, somaxconn); 638 639 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 640 if (error != 0) { 641 so->so_options = oldopt; 642 so->so_qlimit = oldqlimit; 643 sounlock(so); 644 return error; 645 } 646 sounlock(so); 647 return 0; 648 } 649 650 void 651 sofree(struct socket *so) 652 { 653 u_int refs; 654 655 KASSERT(solocked(so)); 656 657 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 658 sounlock(so); 659 return; 660 } 661 if (so->so_head) { 662 /* 663 * We must not decommission a socket that's on the accept(2) 664 * queue. If we do, then accept(2) may hang after select(2) 665 * indicated that the listening socket was ready. 666 */ 667 if (!soqremque(so, 0)) { 668 sounlock(so); 669 return; 670 } 671 } 672 if (so->so_rcv.sb_hiwat) 673 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 674 RLIM_INFINITY); 675 if (so->so_snd.sb_hiwat) 676 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 677 RLIM_INFINITY); 678 sbrelease(&so->so_snd, so); 679 KASSERT(!cv_has_waiters(&so->so_cv)); 680 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 681 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 682 sorflush(so); 683 refs = so->so_aborting; /* XXX */ 684 /* Remove acccept filter if one is present. */ 685 if (so->so_accf != NULL) 686 (void)accept_filt_clear(so); 687 sounlock(so); 688 if (refs == 0) /* XXX */ 689 soput(so); 690 } 691 692 /* 693 * soclose: close a socket on last file table reference removal. 694 * Initiate disconnect if connected. Free socket when disconnect complete. 695 */ 696 int 697 soclose(struct socket *so) 698 { 699 struct socket *so2; 700 int error = 0; 701 702 solock(so); 703 if (so->so_options & SO_ACCEPTCONN) { 704 for (;;) { 705 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 706 KASSERT(solocked2(so, so2)); 707 (void) soqremque(so2, 0); 708 /* soabort drops the lock. */ 709 (void) soabort(so2); 710 solock(so); 711 continue; 712 } 713 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 714 KASSERT(solocked2(so, so2)); 715 (void) soqremque(so2, 1); 716 /* soabort drops the lock. */ 717 (void) soabort(so2); 718 solock(so); 719 continue; 720 } 721 break; 722 } 723 } 724 if (so->so_pcb == NULL) 725 goto discard; 726 if (so->so_state & SS_ISCONNECTED) { 727 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 728 error = sodisconnect(so); 729 if (error) 730 goto drop; 731 } 732 if (so->so_options & SO_LINGER) { 733 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 734 (SS_ISDISCONNECTING|SS_NBIO)) 735 goto drop; 736 while (so->so_state & SS_ISCONNECTED) { 737 error = sowait(so, true, so->so_linger * hz); 738 if (error) 739 break; 740 } 741 } 742 } 743 drop: 744 if (so->so_pcb) { 745 KASSERT(solocked(so)); 746 (*so->so_proto->pr_usrreqs->pr_detach)(so); 747 } 748 discard: 749 KASSERT((so->so_state & SS_NOFDREF) == 0); 750 kauth_cred_free(so->so_cred); 751 so->so_cred = NULL; 752 so->so_state |= SS_NOFDREF; 753 sofree(so); 754 return error; 755 } 756 757 /* 758 * Must be called with the socket locked.. Will return with it unlocked. 759 */ 760 int 761 soabort(struct socket *so) 762 { 763 u_int refs; 764 int error; 765 766 KASSERT(solocked(so)); 767 KASSERT(so->so_head == NULL); 768 769 so->so_aborting++; /* XXX */ 770 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 771 refs = --so->so_aborting; /* XXX */ 772 if (error || (refs == 0)) { 773 sofree(so); 774 } else { 775 sounlock(so); 776 } 777 return error; 778 } 779 780 int 781 soaccept(struct socket *so, struct sockaddr *nam) 782 { 783 int error; 784 785 KASSERT(solocked(so)); 786 KASSERT((so->so_state & SS_NOFDREF) != 0); 787 788 so->so_state &= ~SS_NOFDREF; 789 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 790 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 791 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 792 else 793 error = ECONNABORTED; 794 795 return error; 796 } 797 798 int 799 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 800 { 801 int error; 802 803 KASSERT(solocked(so)); 804 805 if (so->so_options & SO_ACCEPTCONN) 806 return EOPNOTSUPP; 807 /* 808 * If protocol is connection-based, can only connect once. 809 * Otherwise, if connected, try to disconnect first. 810 * This allows user to disconnect by connecting to, e.g., 811 * a null address. 812 */ 813 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 814 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 815 (error = sodisconnect(so)))) { 816 error = EISCONN; 817 } else { 818 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 819 return EAFNOSUPPORT; 820 } 821 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 822 } 823 824 return error; 825 } 826 827 int 828 soconnect2(struct socket *so1, struct socket *so2) 829 { 830 KASSERT(solocked2(so1, so2)); 831 832 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 833 } 834 835 int 836 sodisconnect(struct socket *so) 837 { 838 int error; 839 840 KASSERT(solocked(so)); 841 842 if ((so->so_state & SS_ISCONNECTED) == 0) { 843 error = ENOTCONN; 844 } else if (so->so_state & SS_ISDISCONNECTING) { 845 error = EALREADY; 846 } else { 847 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 848 } 849 return error; 850 } 851 852 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 853 /* 854 * Send on a socket. 855 * If send must go all at once and message is larger than 856 * send buffering, then hard error. 857 * Lock against other senders. 858 * If must go all at once and not enough room now, then 859 * inform user that this would block and do nothing. 860 * Otherwise, if nonblocking, send as much as possible. 861 * The data to be sent is described by "uio" if nonzero, 862 * otherwise by the mbuf chain "top" (which must be null 863 * if uio is not). Data provided in mbuf chain must be small 864 * enough to send all at once. 865 * 866 * Returns nonzero on error, timeout or signal; callers 867 * must check for short counts if EINTR/ERESTART are returned. 868 * Data and control buffers are freed on return. 869 */ 870 int 871 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 872 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 873 { 874 struct mbuf **mp, *m; 875 long space, len, resid, clen, mlen; 876 int error, s, dontroute, atomic; 877 short wakeup_state = 0; 878 879 clen = 0; 880 881 /* 882 * solock() provides atomicity of access. splsoftnet() prevents 883 * protocol processing soft interrupts from interrupting us and 884 * blocking (expensive). 885 */ 886 s = splsoftnet(); 887 solock(so); 888 atomic = sosendallatonce(so) || top; 889 if (uio) 890 resid = uio->uio_resid; 891 else 892 resid = top->m_pkthdr.len; 893 /* 894 * In theory resid should be unsigned. 895 * However, space must be signed, as it might be less than 0 896 * if we over-committed, and we must use a signed comparison 897 * of space and resid. On the other hand, a negative resid 898 * causes us to loop sending 0-length segments to the protocol. 899 */ 900 if (resid < 0) { 901 error = EINVAL; 902 goto out; 903 } 904 dontroute = 905 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 906 (so->so_proto->pr_flags & PR_ATOMIC); 907 l->l_ru.ru_msgsnd++; 908 if (control) 909 clen = control->m_len; 910 restart: 911 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 912 goto out; 913 do { 914 if (so->so_state & SS_CANTSENDMORE) { 915 error = EPIPE; 916 goto release; 917 } 918 if (so->so_error) { 919 error = so->so_error; 920 so->so_error = 0; 921 goto release; 922 } 923 if ((so->so_state & SS_ISCONNECTED) == 0) { 924 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 925 if (resid || clen == 0) { 926 error = ENOTCONN; 927 goto release; 928 } 929 } else if (addr == NULL) { 930 error = EDESTADDRREQ; 931 goto release; 932 } 933 } 934 space = sbspace(&so->so_snd); 935 if (flags & MSG_OOB) 936 space += 1024; 937 if ((atomic && resid > so->so_snd.sb_hiwat) || 938 clen > so->so_snd.sb_hiwat) { 939 error = EMSGSIZE; 940 goto release; 941 } 942 if (space < resid + clen && 943 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 944 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 945 error = EWOULDBLOCK; 946 goto release; 947 } 948 sbunlock(&so->so_snd); 949 if (wakeup_state & SS_RESTARTSYS) { 950 error = ERESTART; 951 goto out; 952 } 953 error = sbwait(&so->so_snd); 954 if (error) 955 goto out; 956 wakeup_state = so->so_state; 957 goto restart; 958 } 959 wakeup_state = 0; 960 mp = ⊤ 961 space -= clen; 962 do { 963 if (uio == NULL) { 964 /* 965 * Data is prepackaged in "top". 966 */ 967 resid = 0; 968 if (flags & MSG_EOR) 969 top->m_flags |= M_EOR; 970 } else do { 971 sounlock(so); 972 splx(s); 973 if (top == NULL) { 974 m = m_gethdr(M_WAIT, MT_DATA); 975 mlen = MHLEN; 976 m->m_pkthdr.len = 0; 977 m_reset_rcvif(m); 978 } else { 979 m = m_get(M_WAIT, MT_DATA); 980 mlen = MLEN; 981 } 982 MCLAIM(m, so->so_snd.sb_mowner); 983 if (sock_loan_thresh >= 0 && 984 uio->uio_iov->iov_len >= sock_loan_thresh && 985 space >= sock_loan_thresh && 986 (len = sosend_loan(so, uio, m, 987 space)) != 0) { 988 SOSEND_COUNTER_INCR(&sosend_loan_big); 989 space -= len; 990 goto have_data; 991 } 992 if (resid >= MINCLSIZE && space >= MCLBYTES) { 993 SOSEND_COUNTER_INCR(&sosend_copy_big); 994 m_clget(m, M_DONTWAIT); 995 if ((m->m_flags & M_EXT) == 0) 996 goto nopages; 997 mlen = MCLBYTES; 998 if (atomic && top == 0) { 999 len = lmin(MCLBYTES - max_hdr, 1000 resid); 1001 m->m_data += max_hdr; 1002 } else 1003 len = lmin(MCLBYTES, resid); 1004 space -= len; 1005 } else { 1006 nopages: 1007 SOSEND_COUNTER_INCR(&sosend_copy_small); 1008 len = lmin(lmin(mlen, resid), space); 1009 space -= len; 1010 /* 1011 * For datagram protocols, leave room 1012 * for protocol headers in first mbuf. 1013 */ 1014 if (atomic && top == 0 && len < mlen) 1015 m_align(m, len); 1016 } 1017 error = uiomove(mtod(m, void *), (int)len, uio); 1018 have_data: 1019 resid = uio->uio_resid; 1020 m->m_len = len; 1021 *mp = m; 1022 top->m_pkthdr.len += len; 1023 s = splsoftnet(); 1024 solock(so); 1025 if (error != 0) 1026 goto release; 1027 mp = &m->m_next; 1028 if (resid <= 0) { 1029 if (flags & MSG_EOR) 1030 top->m_flags |= M_EOR; 1031 break; 1032 } 1033 } while (space > 0 && atomic); 1034 1035 if (so->so_state & SS_CANTSENDMORE) { 1036 error = EPIPE; 1037 goto release; 1038 } 1039 if (dontroute) 1040 so->so_options |= SO_DONTROUTE; 1041 if (resid > 0) 1042 so->so_state |= SS_MORETOCOME; 1043 if (flags & MSG_OOB) { 1044 error = (*so->so_proto->pr_usrreqs->pr_sendoob)( 1045 so, top, control); 1046 } else { 1047 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1048 top, addr, control, l); 1049 } 1050 if (dontroute) 1051 so->so_options &= ~SO_DONTROUTE; 1052 if (resid > 0) 1053 so->so_state &= ~SS_MORETOCOME; 1054 clen = 0; 1055 control = NULL; 1056 top = NULL; 1057 mp = ⊤ 1058 if (error != 0) 1059 goto release; 1060 } while (resid && space > 0); 1061 } while (resid); 1062 1063 release: 1064 sbunlock(&so->so_snd); 1065 out: 1066 sounlock(so); 1067 splx(s); 1068 if (top) 1069 m_freem(top); 1070 if (control) 1071 m_freem(control); 1072 return error; 1073 } 1074 1075 /* 1076 * Following replacement or removal of the first mbuf on the first 1077 * mbuf chain of a socket buffer, push necessary state changes back 1078 * into the socket buffer so that other consumers see the values 1079 * consistently. 'nextrecord' is the caller's locally stored value of 1080 * the original value of sb->sb_mb->m_nextpkt which must be restored 1081 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1082 */ 1083 static void 1084 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1085 { 1086 1087 KASSERT(solocked(sb->sb_so)); 1088 1089 /* 1090 * First, update for the new value of nextrecord. If necessary, 1091 * make it the first record. 1092 */ 1093 if (sb->sb_mb != NULL) 1094 sb->sb_mb->m_nextpkt = nextrecord; 1095 else 1096 sb->sb_mb = nextrecord; 1097 1098 /* 1099 * Now update any dependent socket buffer fields to reflect 1100 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1101 * the addition of a second clause that takes care of the 1102 * case where sb_mb has been updated, but remains the last 1103 * record. 1104 */ 1105 if (sb->sb_mb == NULL) { 1106 sb->sb_mbtail = NULL; 1107 sb->sb_lastrecord = NULL; 1108 } else if (sb->sb_mb->m_nextpkt == NULL) 1109 sb->sb_lastrecord = sb->sb_mb; 1110 } 1111 1112 /* 1113 * Implement receive operations on a socket. 1114 * 1115 * We depend on the way that records are added to the sockbuf by sbappend*. In 1116 * particular, each record (mbufs linked through m_next) must begin with an 1117 * address if the protocol so specifies, followed by an optional mbuf or mbufs 1118 * containing ancillary data, and then zero or more mbufs of data. 1119 * 1120 * In order to avoid blocking network interrupts for the entire time here, we 1121 * splx() while doing the actual copy to user space. Although the sockbuf is 1122 * locked, new data may still be appended, and thus we must maintain 1123 * consistency of the sockbuf during that time. 1124 * 1125 * The caller may receive the data as a single mbuf chain by supplying an mbuf 1126 * **mp0 for use in returning the chain. The uio is then used only for the 1127 * count in uio_resid. 1128 */ 1129 int 1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1131 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1132 { 1133 struct lwp *l = curlwp; 1134 struct mbuf *m, **mp, *mt; 1135 size_t len, offset, moff, orig_resid; 1136 int atomic, flags, error, s, type; 1137 const struct protosw *pr; 1138 struct mbuf *nextrecord; 1139 int mbuf_removed = 0; 1140 const struct domain *dom; 1141 short wakeup_state = 0; 1142 1143 pr = so->so_proto; 1144 atomic = pr->pr_flags & PR_ATOMIC; 1145 dom = pr->pr_domain; 1146 mp = mp0; 1147 type = 0; 1148 orig_resid = uio->uio_resid; 1149 1150 if (paddr != NULL) 1151 *paddr = NULL; 1152 if (controlp != NULL) 1153 *controlp = NULL; 1154 if (flagsp != NULL) 1155 flags = *flagsp &~ MSG_EOR; 1156 else 1157 flags = 0; 1158 1159 if (flags & MSG_OOB) { 1160 m = m_get(M_WAIT, MT_DATA); 1161 solock(so); 1162 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1163 sounlock(so); 1164 if (error) 1165 goto bad; 1166 do { 1167 error = uiomove(mtod(m, void *), 1168 MIN(uio->uio_resid, m->m_len), uio); 1169 m = m_free(m); 1170 } while (uio->uio_resid > 0 && error == 0 && m); 1171 bad: 1172 if (m != NULL) 1173 m_freem(m); 1174 return error; 1175 } 1176 if (mp != NULL) 1177 *mp = NULL; 1178 1179 /* 1180 * solock() provides atomicity of access. splsoftnet() prevents 1181 * protocol processing soft interrupts from interrupting us and 1182 * blocking (expensive). 1183 */ 1184 s = splsoftnet(); 1185 solock(so); 1186 restart: 1187 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1188 sounlock(so); 1189 splx(s); 1190 return error; 1191 } 1192 m = so->so_rcv.sb_mb; 1193 1194 /* 1195 * If we have less data than requested, block awaiting more 1196 * (subject to any timeout) if: 1197 * 1. the current count is less than the low water mark, 1198 * 2. MSG_WAITALL is set, and it is possible to do the entire 1199 * receive operation at once if we block (resid <= hiwat), or 1200 * 3. MSG_DONTWAIT is not set. 1201 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1202 * we have to do the receive in sections, and thus risk returning 1203 * a short count if a timeout or signal occurs after we start. 1204 */ 1205 if (m == NULL || 1206 ((flags & MSG_DONTWAIT) == 0 && 1207 so->so_rcv.sb_cc < uio->uio_resid && 1208 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1209 ((flags & MSG_WAITALL) && 1210 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1211 m->m_nextpkt == NULL && !atomic)) { 1212 #ifdef DIAGNOSTIC 1213 if (m == NULL && so->so_rcv.sb_cc) 1214 panic("receive 1"); 1215 #endif 1216 if (so->so_error || so->so_rerror) { 1217 if (m != NULL) 1218 goto dontblock; 1219 if (so->so_error) { 1220 error = so->so_error; 1221 so->so_error = 0; 1222 } else { 1223 error = so->so_rerror; 1224 so->so_rerror = 0; 1225 } 1226 goto release; 1227 } 1228 if (so->so_state & SS_CANTRCVMORE) { 1229 if (m != NULL) 1230 goto dontblock; 1231 else 1232 goto release; 1233 } 1234 for (; m != NULL; m = m->m_next) 1235 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1236 m = so->so_rcv.sb_mb; 1237 goto dontblock; 1238 } 1239 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1240 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1241 error = ENOTCONN; 1242 goto release; 1243 } 1244 if (uio->uio_resid == 0) 1245 goto release; 1246 if ((so->so_state & SS_NBIO) || 1247 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1248 error = EWOULDBLOCK; 1249 goto release; 1250 } 1251 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1252 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1253 sbunlock(&so->so_rcv); 1254 if (wakeup_state & SS_RESTARTSYS) 1255 error = ERESTART; 1256 else 1257 error = sbwait(&so->so_rcv); 1258 if (error != 0) { 1259 sounlock(so); 1260 splx(s); 1261 return error; 1262 } 1263 wakeup_state = so->so_state; 1264 goto restart; 1265 } 1266 1267 dontblock: 1268 /* 1269 * On entry here, m points to the first record of the socket buffer. 1270 * From this point onward, we maintain 'nextrecord' as a cache of the 1271 * pointer to the next record in the socket buffer. We must keep the 1272 * various socket buffer pointers and local stack versions of the 1273 * pointers in sync, pushing out modifications before dropping the 1274 * socket lock, and re-reading them when picking it up. 1275 * 1276 * Otherwise, we will race with the network stack appending new data 1277 * or records onto the socket buffer by using inconsistent/stale 1278 * versions of the field, possibly resulting in socket buffer 1279 * corruption. 1280 * 1281 * By holding the high-level sblock(), we prevent simultaneous 1282 * readers from pulling off the front of the socket buffer. 1283 */ 1284 if (l != NULL) 1285 l->l_ru.ru_msgrcv++; 1286 KASSERT(m == so->so_rcv.sb_mb); 1287 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1288 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1289 nextrecord = m->m_nextpkt; 1290 1291 if (pr->pr_flags & PR_ADDR) { 1292 KASSERT(m->m_type == MT_SONAME); 1293 orig_resid = 0; 1294 if (flags & MSG_PEEK) { 1295 if (paddr) 1296 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1297 m = m->m_next; 1298 } else { 1299 sbfree(&so->so_rcv, m); 1300 mbuf_removed = 1; 1301 if (paddr != NULL) { 1302 *paddr = m; 1303 so->so_rcv.sb_mb = m->m_next; 1304 m->m_next = NULL; 1305 m = so->so_rcv.sb_mb; 1306 } else { 1307 m = so->so_rcv.sb_mb = m_free(m); 1308 } 1309 sbsync(&so->so_rcv, nextrecord); 1310 } 1311 } 1312 1313 if (pr->pr_flags & PR_ADDR_OPT) { 1314 /* 1315 * For SCTP we may be getting a whole message OR a partial 1316 * delivery. 1317 */ 1318 if (m->m_type == MT_SONAME) { 1319 orig_resid = 0; 1320 if (flags & MSG_PEEK) { 1321 if (paddr) 1322 *paddr = m_copym(m, 0, m->m_len, M_DONTWAIT); 1323 m = m->m_next; 1324 } else { 1325 sbfree(&so->so_rcv, m); 1326 if (paddr) { 1327 *paddr = m; 1328 so->so_rcv.sb_mb = m->m_next; 1329 m->m_next = 0; 1330 m = so->so_rcv.sb_mb; 1331 } else { 1332 m = so->so_rcv.sb_mb = m_free(m); 1333 } 1334 } 1335 } 1336 } 1337 1338 /* 1339 * Process one or more MT_CONTROL mbufs present before any data mbufs 1340 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1341 * just copy the data; if !MSG_PEEK, we call into the protocol to 1342 * perform externalization (or freeing if controlp == NULL). 1343 */ 1344 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1345 struct mbuf *cm = NULL, *cmn; 1346 struct mbuf **cme = &cm; 1347 1348 do { 1349 if (flags & MSG_PEEK) { 1350 if (controlp != NULL) { 1351 *controlp = m_copym(m, 0, m->m_len, M_DONTWAIT); 1352 controlp = &(*controlp)->m_next; 1353 } 1354 m = m->m_next; 1355 } else { 1356 sbfree(&so->so_rcv, m); 1357 so->so_rcv.sb_mb = m->m_next; 1358 m->m_next = NULL; 1359 *cme = m; 1360 cme = &(*cme)->m_next; 1361 m = so->so_rcv.sb_mb; 1362 } 1363 } while (m != NULL && m->m_type == MT_CONTROL); 1364 if ((flags & MSG_PEEK) == 0) 1365 sbsync(&so->so_rcv, nextrecord); 1366 1367 for (; cm != NULL; cm = cmn) { 1368 cmn = cm->m_next; 1369 cm->m_next = NULL; 1370 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1371 if (controlp != NULL) { 1372 if (dom->dom_externalize != NULL && 1373 type == SCM_RIGHTS) { 1374 sounlock(so); 1375 splx(s); 1376 error = (*dom->dom_externalize)(cm, l, 1377 (flags & MSG_CMSG_CLOEXEC) ? 1378 O_CLOEXEC : 0); 1379 s = splsoftnet(); 1380 solock(so); 1381 } 1382 *controlp = cm; 1383 while (*controlp != NULL) 1384 controlp = &(*controlp)->m_next; 1385 } else { 1386 /* 1387 * Dispose of any SCM_RIGHTS message that went 1388 * through the read path rather than recv. 1389 */ 1390 if (dom->dom_dispose != NULL && 1391 type == SCM_RIGHTS) { 1392 sounlock(so); 1393 (*dom->dom_dispose)(cm); 1394 solock(so); 1395 } 1396 m_freem(cm); 1397 } 1398 } 1399 if (m != NULL) 1400 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1401 else 1402 nextrecord = so->so_rcv.sb_mb; 1403 orig_resid = 0; 1404 } 1405 1406 /* If m is non-NULL, we have some data to read. */ 1407 if (__predict_true(m != NULL)) { 1408 type = m->m_type; 1409 if (type == MT_OOBDATA) 1410 flags |= MSG_OOB; 1411 } 1412 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1413 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1414 1415 moff = 0; 1416 offset = 0; 1417 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1418 /* 1419 * If the type of mbuf has changed, end the receive 1420 * operation and do a short read. 1421 */ 1422 if (m->m_type == MT_OOBDATA) { 1423 if (type != MT_OOBDATA) 1424 break; 1425 } else if (type == MT_OOBDATA) { 1426 break; 1427 } else if (m->m_type == MT_CONTROL) { 1428 break; 1429 } 1430 #ifdef DIAGNOSTIC 1431 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) { 1432 panic("%s: m_type=%d", __func__, m->m_type); 1433 } 1434 #endif 1435 1436 so->so_state &= ~SS_RCVATMARK; 1437 wakeup_state = 0; 1438 len = uio->uio_resid; 1439 if (so->so_oobmark && len > so->so_oobmark - offset) 1440 len = so->so_oobmark - offset; 1441 if (len > m->m_len - moff) 1442 len = m->m_len - moff; 1443 1444 /* 1445 * If mp is set, just pass back the mbufs. 1446 * Otherwise copy them out via the uio, then free. 1447 * Sockbuf must be consistent here (points to current mbuf, 1448 * it points to next record) when we drop priority; 1449 * we must note any additions to the sockbuf when we 1450 * block interrupts again. 1451 */ 1452 if (mp == NULL) { 1453 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1454 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1455 sounlock(so); 1456 splx(s); 1457 error = uiomove(mtod(m, char *) + moff, len, uio); 1458 s = splsoftnet(); 1459 solock(so); 1460 if (error != 0) { 1461 /* 1462 * If any part of the record has been removed 1463 * (such as the MT_SONAME mbuf, which will 1464 * happen when PR_ADDR, and thus also 1465 * PR_ATOMIC, is set), then drop the entire 1466 * record to maintain the atomicity of the 1467 * receive operation. 1468 * 1469 * This avoids a later panic("receive 1a") 1470 * when compiled with DIAGNOSTIC. 1471 */ 1472 if (m && mbuf_removed && atomic) 1473 (void) sbdroprecord(&so->so_rcv); 1474 1475 goto release; 1476 } 1477 } else { 1478 uio->uio_resid -= len; 1479 } 1480 1481 if (len == m->m_len - moff) { 1482 if (m->m_flags & M_EOR) 1483 flags |= MSG_EOR; 1484 #ifdef SCTP 1485 if (m->m_flags & M_NOTIFICATION) 1486 flags |= MSG_NOTIFICATION; 1487 #endif 1488 if (flags & MSG_PEEK) { 1489 m = m->m_next; 1490 moff = 0; 1491 } else { 1492 nextrecord = m->m_nextpkt; 1493 sbfree(&so->so_rcv, m); 1494 if (mp) { 1495 *mp = m; 1496 mp = &m->m_next; 1497 so->so_rcv.sb_mb = m = m->m_next; 1498 *mp = NULL; 1499 } else { 1500 m = so->so_rcv.sb_mb = m_free(m); 1501 } 1502 /* 1503 * If m != NULL, we also know that 1504 * so->so_rcv.sb_mb != NULL. 1505 */ 1506 KASSERT(so->so_rcv.sb_mb == m); 1507 if (m) { 1508 m->m_nextpkt = nextrecord; 1509 if (nextrecord == NULL) 1510 so->so_rcv.sb_lastrecord = m; 1511 } else { 1512 so->so_rcv.sb_mb = nextrecord; 1513 SB_EMPTY_FIXUP(&so->so_rcv); 1514 } 1515 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1516 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1517 } 1518 } else if (flags & MSG_PEEK) { 1519 moff += len; 1520 } else { 1521 if (mp != NULL) { 1522 mt = m_copym(m, 0, len, M_NOWAIT); 1523 if (__predict_false(mt == NULL)) { 1524 sounlock(so); 1525 mt = m_copym(m, 0, len, M_WAIT); 1526 solock(so); 1527 } 1528 *mp = mt; 1529 } 1530 m->m_data += len; 1531 m->m_len -= len; 1532 so->so_rcv.sb_cc -= len; 1533 } 1534 1535 if (so->so_oobmark) { 1536 if ((flags & MSG_PEEK) == 0) { 1537 so->so_oobmark -= len; 1538 if (so->so_oobmark == 0) { 1539 so->so_state |= SS_RCVATMARK; 1540 break; 1541 } 1542 } else { 1543 offset += len; 1544 if (offset == so->so_oobmark) 1545 break; 1546 } 1547 } 1548 if (flags & MSG_EOR) 1549 break; 1550 1551 /* 1552 * If the MSG_WAITALL flag is set (for non-atomic socket), 1553 * we must not quit until "uio->uio_resid == 0" or an error 1554 * termination. If a signal/timeout occurs, return 1555 * with a short count but without error. 1556 * Keep sockbuf locked against other readers. 1557 */ 1558 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1559 !sosendallatonce(so) && !nextrecord) { 1560 if (so->so_error || so->so_rerror || 1561 so->so_state & SS_CANTRCVMORE) 1562 break; 1563 /* 1564 * If we are peeking and the socket receive buffer is 1565 * full, stop since we can't get more data to peek at. 1566 */ 1567 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1568 break; 1569 /* 1570 * If we've drained the socket buffer, tell the 1571 * protocol in case it needs to do something to 1572 * get it filled again. 1573 */ 1574 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1575 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1576 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1577 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1578 if (wakeup_state & SS_RESTARTSYS) 1579 error = ERESTART; 1580 else 1581 error = sbwait(&so->so_rcv); 1582 if (error != 0) { 1583 sbunlock(&so->so_rcv); 1584 sounlock(so); 1585 splx(s); 1586 return 0; 1587 } 1588 if ((m = so->so_rcv.sb_mb) != NULL) 1589 nextrecord = m->m_nextpkt; 1590 wakeup_state = so->so_state; 1591 } 1592 } 1593 1594 if (m && atomic) { 1595 flags |= MSG_TRUNC; 1596 if ((flags & MSG_PEEK) == 0) 1597 (void) sbdroprecord(&so->so_rcv); 1598 } 1599 if ((flags & MSG_PEEK) == 0) { 1600 if (m == NULL) { 1601 /* 1602 * First part is an inline SB_EMPTY_FIXUP(). Second 1603 * part makes sure sb_lastrecord is up-to-date if 1604 * there is still data in the socket buffer. 1605 */ 1606 so->so_rcv.sb_mb = nextrecord; 1607 if (so->so_rcv.sb_mb == NULL) { 1608 so->so_rcv.sb_mbtail = NULL; 1609 so->so_rcv.sb_lastrecord = NULL; 1610 } else if (nextrecord->m_nextpkt == NULL) 1611 so->so_rcv.sb_lastrecord = nextrecord; 1612 } 1613 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1614 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1615 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1616 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1617 } 1618 if (orig_resid == uio->uio_resid && orig_resid && 1619 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1620 sbunlock(&so->so_rcv); 1621 goto restart; 1622 } 1623 1624 if (flagsp != NULL) 1625 *flagsp |= flags; 1626 release: 1627 sbunlock(&so->so_rcv); 1628 sounlock(so); 1629 splx(s); 1630 return error; 1631 } 1632 1633 int 1634 soshutdown(struct socket *so, int how) 1635 { 1636 const struct protosw *pr; 1637 int error; 1638 1639 KASSERT(solocked(so)); 1640 1641 pr = so->so_proto; 1642 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1643 return EINVAL; 1644 1645 if (how == SHUT_RD || how == SHUT_RDWR) { 1646 sorflush(so); 1647 error = 0; 1648 } 1649 if (how == SHUT_WR || how == SHUT_RDWR) 1650 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1651 1652 return error; 1653 } 1654 1655 void 1656 sorestart(struct socket *so) 1657 { 1658 /* 1659 * An application has called close() on an fd on which another 1660 * of its threads has called a socket system call. 1661 * Mark this and wake everyone up, and code that would block again 1662 * instead returns ERESTART. 1663 * On system call re-entry the fd is validated and EBADF returned. 1664 * Any other fd will block again on the 2nd syscall. 1665 */ 1666 solock(so); 1667 so->so_state |= SS_RESTARTSYS; 1668 cv_broadcast(&so->so_cv); 1669 cv_broadcast(&so->so_snd.sb_cv); 1670 cv_broadcast(&so->so_rcv.sb_cv); 1671 sounlock(so); 1672 } 1673 1674 void 1675 sorflush(struct socket *so) 1676 { 1677 struct sockbuf *sb, asb; 1678 const struct protosw *pr; 1679 1680 KASSERT(solocked(so)); 1681 1682 sb = &so->so_rcv; 1683 pr = so->so_proto; 1684 socantrcvmore(so); 1685 sb->sb_flags |= SB_NOINTR; 1686 (void )sblock(sb, M_WAITOK); 1687 sbunlock(sb); 1688 asb = *sb; 1689 /* 1690 * Clear most of the sockbuf structure, but leave some of the 1691 * fields valid. 1692 */ 1693 memset(&sb->sb_startzero, 0, 1694 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1695 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1696 sounlock(so); 1697 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1698 solock(so); 1699 } 1700 sbrelease(&asb, so); 1701 } 1702 1703 /* 1704 * internal set SOL_SOCKET options 1705 */ 1706 static int 1707 sosetopt1(struct socket *so, const struct sockopt *sopt) 1708 { 1709 int error, opt; 1710 int optval = 0; /* XXX: gcc */ 1711 struct linger l; 1712 struct timeval tv; 1713 1714 opt = sopt->sopt_name; 1715 1716 switch (opt) { 1717 1718 case SO_ACCEPTFILTER: 1719 error = accept_filt_setopt(so, sopt); 1720 KASSERT(solocked(so)); 1721 break; 1722 1723 case SO_LINGER: 1724 error = sockopt_get(sopt, &l, sizeof(l)); 1725 solock(so); 1726 if (error) 1727 break; 1728 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1729 l.l_linger > (INT_MAX / hz)) { 1730 error = EDOM; 1731 break; 1732 } 1733 so->so_linger = l.l_linger; 1734 if (l.l_onoff) 1735 so->so_options |= SO_LINGER; 1736 else 1737 so->so_options &= ~SO_LINGER; 1738 break; 1739 1740 case SO_DEBUG: 1741 case SO_KEEPALIVE: 1742 case SO_DONTROUTE: 1743 case SO_USELOOPBACK: 1744 case SO_BROADCAST: 1745 case SO_REUSEADDR: 1746 case SO_REUSEPORT: 1747 case SO_OOBINLINE: 1748 case SO_TIMESTAMP: 1749 case SO_NOSIGPIPE: 1750 case SO_RERROR: 1751 error = sockopt_getint(sopt, &optval); 1752 solock(so); 1753 if (error) 1754 break; 1755 if (optval) 1756 so->so_options |= opt; 1757 else 1758 so->so_options &= ~opt; 1759 break; 1760 1761 case SO_SNDBUF: 1762 case SO_RCVBUF: 1763 case SO_SNDLOWAT: 1764 case SO_RCVLOWAT: 1765 error = sockopt_getint(sopt, &optval); 1766 solock(so); 1767 if (error) 1768 break; 1769 1770 /* 1771 * Values < 1 make no sense for any of these 1772 * options, so disallow them. 1773 */ 1774 if (optval < 1) { 1775 error = EINVAL; 1776 break; 1777 } 1778 1779 switch (opt) { 1780 case SO_SNDBUF: 1781 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1782 error = ENOBUFS; 1783 break; 1784 } 1785 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1786 break; 1787 1788 case SO_RCVBUF: 1789 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1790 error = ENOBUFS; 1791 break; 1792 } 1793 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1794 break; 1795 1796 /* 1797 * Make sure the low-water is never greater than 1798 * the high-water. 1799 */ 1800 case SO_SNDLOWAT: 1801 if (optval > so->so_snd.sb_hiwat) 1802 optval = so->so_snd.sb_hiwat; 1803 1804 so->so_snd.sb_lowat = optval; 1805 break; 1806 1807 case SO_RCVLOWAT: 1808 if (optval > so->so_rcv.sb_hiwat) 1809 optval = so->so_rcv.sb_hiwat; 1810 1811 so->so_rcv.sb_lowat = optval; 1812 break; 1813 } 1814 break; 1815 1816 case SO_SNDTIMEO: 1817 case SO_RCVTIMEO: 1818 solock(so); 1819 error = sockopt_get(sopt, &tv, sizeof(tv)); 1820 if (error) 1821 break; 1822 1823 if (tv.tv_sec < 0 || tv.tv_usec < 0 || tv.tv_usec >= 1000000) { 1824 error = EDOM; 1825 break; 1826 } 1827 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1828 error = EDOM; 1829 break; 1830 } 1831 1832 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1833 if (optval == 0 && tv.tv_usec != 0) 1834 optval = 1; 1835 1836 switch (opt) { 1837 case SO_SNDTIMEO: 1838 so->so_snd.sb_timeo = optval; 1839 break; 1840 case SO_RCVTIMEO: 1841 so->so_rcv.sb_timeo = optval; 1842 break; 1843 } 1844 break; 1845 1846 default: 1847 MODULE_HOOK_CALL(uipc_socket_50_setopt1_hook, 1848 (opt, so, sopt), enosys(), error); 1849 if (error == ENOSYS || error == EPASSTHROUGH) { 1850 solock(so); 1851 error = ENOPROTOOPT; 1852 } 1853 break; 1854 } 1855 KASSERT(solocked(so)); 1856 return error; 1857 } 1858 1859 int 1860 sosetopt(struct socket *so, struct sockopt *sopt) 1861 { 1862 int error, prerr; 1863 1864 if (sopt->sopt_level == SOL_SOCKET) { 1865 error = sosetopt1(so, sopt); 1866 KASSERT(solocked(so)); 1867 } else { 1868 error = ENOPROTOOPT; 1869 solock(so); 1870 } 1871 1872 if ((error == 0 || error == ENOPROTOOPT) && 1873 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1874 /* give the protocol stack a shot */ 1875 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1876 if (prerr == 0) 1877 error = 0; 1878 else if (prerr != ENOPROTOOPT) 1879 error = prerr; 1880 } 1881 sounlock(so); 1882 return error; 1883 } 1884 1885 /* 1886 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1887 */ 1888 int 1889 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1890 const void *val, size_t valsize) 1891 { 1892 struct sockopt sopt; 1893 int error; 1894 1895 KASSERT(valsize == 0 || val != NULL); 1896 1897 sockopt_init(&sopt, level, name, valsize); 1898 sockopt_set(&sopt, val, valsize); 1899 1900 error = sosetopt(so, &sopt); 1901 1902 sockopt_destroy(&sopt); 1903 1904 return error; 1905 } 1906 1907 /* 1908 * internal get SOL_SOCKET options 1909 */ 1910 static int 1911 sogetopt1(struct socket *so, struct sockopt *sopt) 1912 { 1913 int error, optval, opt; 1914 struct linger l; 1915 struct timeval tv; 1916 1917 switch ((opt = sopt->sopt_name)) { 1918 1919 case SO_ACCEPTFILTER: 1920 error = accept_filt_getopt(so, sopt); 1921 break; 1922 1923 case SO_LINGER: 1924 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1925 l.l_linger = so->so_linger; 1926 1927 error = sockopt_set(sopt, &l, sizeof(l)); 1928 break; 1929 1930 case SO_USELOOPBACK: 1931 case SO_DONTROUTE: 1932 case SO_DEBUG: 1933 case SO_KEEPALIVE: 1934 case SO_REUSEADDR: 1935 case SO_REUSEPORT: 1936 case SO_BROADCAST: 1937 case SO_OOBINLINE: 1938 case SO_TIMESTAMP: 1939 case SO_NOSIGPIPE: 1940 case SO_RERROR: 1941 case SO_ACCEPTCONN: 1942 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1943 break; 1944 1945 case SO_TYPE: 1946 error = sockopt_setint(sopt, so->so_type); 1947 break; 1948 1949 case SO_ERROR: 1950 if (so->so_error == 0) { 1951 so->so_error = so->so_rerror; 1952 so->so_rerror = 0; 1953 } 1954 error = sockopt_setint(sopt, so->so_error); 1955 so->so_error = 0; 1956 break; 1957 1958 case SO_SNDBUF: 1959 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1960 break; 1961 1962 case SO_RCVBUF: 1963 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1964 break; 1965 1966 case SO_SNDLOWAT: 1967 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1968 break; 1969 1970 case SO_RCVLOWAT: 1971 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1972 break; 1973 1974 case SO_SNDTIMEO: 1975 case SO_RCVTIMEO: 1976 optval = (opt == SO_SNDTIMEO ? 1977 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1978 1979 tv.tv_sec = optval / hz; 1980 tv.tv_usec = (optval % hz) * tick; 1981 1982 error = sockopt_set(sopt, &tv, sizeof(tv)); 1983 break; 1984 1985 case SO_OVERFLOWED: 1986 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1987 break; 1988 1989 default: 1990 MODULE_HOOK_CALL(uipc_socket_50_getopt1_hook, 1991 (opt, so, sopt), enosys(), error); 1992 if (error) 1993 error = ENOPROTOOPT; 1994 break; 1995 } 1996 1997 return error; 1998 } 1999 2000 int 2001 sogetopt(struct socket *so, struct sockopt *sopt) 2002 { 2003 int error; 2004 2005 solock(so); 2006 if (sopt->sopt_level != SOL_SOCKET) { 2007 if (so->so_proto && so->so_proto->pr_ctloutput) { 2008 error = ((*so->so_proto->pr_ctloutput) 2009 (PRCO_GETOPT, so, sopt)); 2010 } else 2011 error = (ENOPROTOOPT); 2012 } else { 2013 error = sogetopt1(so, sopt); 2014 } 2015 sounlock(so); 2016 return error; 2017 } 2018 2019 /* 2020 * alloc sockopt data buffer buffer 2021 * - will be released at destroy 2022 */ 2023 static int 2024 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2025 { 2026 2027 KASSERT(sopt->sopt_size == 0); 2028 2029 if (len > sizeof(sopt->sopt_buf)) { 2030 sopt->sopt_data = kmem_zalloc(len, kmflag); 2031 if (sopt->sopt_data == NULL) 2032 return ENOMEM; 2033 } else 2034 sopt->sopt_data = sopt->sopt_buf; 2035 2036 sopt->sopt_size = len; 2037 return 0; 2038 } 2039 2040 /* 2041 * initialise sockopt storage 2042 * - MAY sleep during allocation 2043 */ 2044 void 2045 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2046 { 2047 2048 memset(sopt, 0, sizeof(*sopt)); 2049 2050 sopt->sopt_level = level; 2051 sopt->sopt_name = name; 2052 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2053 } 2054 2055 /* 2056 * destroy sockopt storage 2057 * - will release any held memory references 2058 */ 2059 void 2060 sockopt_destroy(struct sockopt *sopt) 2061 { 2062 2063 if (sopt->sopt_data != sopt->sopt_buf) 2064 kmem_free(sopt->sopt_data, sopt->sopt_size); 2065 2066 memset(sopt, 0, sizeof(*sopt)); 2067 } 2068 2069 /* 2070 * set sockopt value 2071 * - value is copied into sockopt 2072 * - memory is allocated when necessary, will not sleep 2073 */ 2074 int 2075 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2076 { 2077 int error; 2078 2079 if (sopt->sopt_size == 0) { 2080 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2081 if (error) 2082 return error; 2083 } 2084 2085 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2086 memcpy(sopt->sopt_data, buf, sopt->sopt_retsize); 2087 2088 return 0; 2089 } 2090 2091 /* 2092 * common case of set sockopt integer value 2093 */ 2094 int 2095 sockopt_setint(struct sockopt *sopt, int val) 2096 { 2097 2098 return sockopt_set(sopt, &val, sizeof(int)); 2099 } 2100 2101 /* 2102 * get sockopt value 2103 * - correct size must be given 2104 */ 2105 int 2106 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2107 { 2108 2109 if (sopt->sopt_size != len) 2110 return EINVAL; 2111 2112 memcpy(buf, sopt->sopt_data, len); 2113 return 0; 2114 } 2115 2116 /* 2117 * common case of get sockopt integer value 2118 */ 2119 int 2120 sockopt_getint(const struct sockopt *sopt, int *valp) 2121 { 2122 2123 return sockopt_get(sopt, valp, sizeof(int)); 2124 } 2125 2126 /* 2127 * set sockopt value from mbuf 2128 * - ONLY for legacy code 2129 * - mbuf is released by sockopt 2130 * - will not sleep 2131 */ 2132 int 2133 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2134 { 2135 size_t len; 2136 int error; 2137 2138 len = m_length(m); 2139 2140 if (sopt->sopt_size == 0) { 2141 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2142 if (error) 2143 return error; 2144 } 2145 2146 sopt->sopt_retsize = MIN(sopt->sopt_size, len); 2147 m_copydata(m, 0, sopt->sopt_retsize, sopt->sopt_data); 2148 m_freem(m); 2149 2150 return 0; 2151 } 2152 2153 /* 2154 * get sockopt value into mbuf 2155 * - ONLY for legacy code 2156 * - mbuf to be released by the caller 2157 * - will not sleep 2158 */ 2159 struct mbuf * 2160 sockopt_getmbuf(const struct sockopt *sopt) 2161 { 2162 struct mbuf *m; 2163 2164 if (sopt->sopt_size > MCLBYTES) 2165 return NULL; 2166 2167 m = m_get(M_DONTWAIT, MT_SOOPTS); 2168 if (m == NULL) 2169 return NULL; 2170 2171 if (sopt->sopt_size > MLEN) { 2172 MCLGET(m, M_DONTWAIT); 2173 if ((m->m_flags & M_EXT) == 0) { 2174 m_free(m); 2175 return NULL; 2176 } 2177 } 2178 2179 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2180 m->m_len = sopt->sopt_size; 2181 2182 return m; 2183 } 2184 2185 void 2186 sohasoutofband(struct socket *so) 2187 { 2188 2189 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2190 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2191 } 2192 2193 static void 2194 filt_sordetach(struct knote *kn) 2195 { 2196 struct socket *so; 2197 2198 so = ((file_t *)kn->kn_obj)->f_socket; 2199 solock(so); 2200 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2201 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2202 so->so_rcv.sb_flags &= ~SB_KNOTE; 2203 sounlock(so); 2204 } 2205 2206 /*ARGSUSED*/ 2207 static int 2208 filt_soread(struct knote *kn, long hint) 2209 { 2210 struct socket *so; 2211 int rv; 2212 2213 so = ((file_t *)kn->kn_obj)->f_socket; 2214 if (hint != NOTE_SUBMIT) 2215 solock(so); 2216 kn->kn_data = so->so_rcv.sb_cc; 2217 if (so->so_state & SS_CANTRCVMORE) { 2218 kn->kn_flags |= EV_EOF; 2219 kn->kn_fflags = so->so_error; 2220 rv = 1; 2221 } else if (so->so_error || so->so_rerror) 2222 rv = 1; 2223 else if (kn->kn_sfflags & NOTE_LOWAT) 2224 rv = (kn->kn_data >= kn->kn_sdata); 2225 else 2226 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2227 if (hint != NOTE_SUBMIT) 2228 sounlock(so); 2229 return rv; 2230 } 2231 2232 static void 2233 filt_sowdetach(struct knote *kn) 2234 { 2235 struct socket *so; 2236 2237 so = ((file_t *)kn->kn_obj)->f_socket; 2238 solock(so); 2239 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2240 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2241 so->so_snd.sb_flags &= ~SB_KNOTE; 2242 sounlock(so); 2243 } 2244 2245 /*ARGSUSED*/ 2246 static int 2247 filt_sowrite(struct knote *kn, long hint) 2248 { 2249 struct socket *so; 2250 int rv; 2251 2252 so = ((file_t *)kn->kn_obj)->f_socket; 2253 if (hint != NOTE_SUBMIT) 2254 solock(so); 2255 kn->kn_data = sbspace(&so->so_snd); 2256 if (so->so_state & SS_CANTSENDMORE) { 2257 kn->kn_flags |= EV_EOF; 2258 kn->kn_fflags = so->so_error; 2259 rv = 1; 2260 } else if (so->so_error) 2261 rv = 1; 2262 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2263 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2264 rv = 0; 2265 else if (kn->kn_sfflags & NOTE_LOWAT) 2266 rv = (kn->kn_data >= kn->kn_sdata); 2267 else 2268 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2269 if (hint != NOTE_SUBMIT) 2270 sounlock(so); 2271 return rv; 2272 } 2273 2274 /*ARGSUSED*/ 2275 static int 2276 filt_solisten(struct knote *kn, long hint) 2277 { 2278 struct socket *so; 2279 int rv; 2280 2281 so = ((file_t *)kn->kn_obj)->f_socket; 2282 2283 /* 2284 * Set kn_data to number of incoming connections, not 2285 * counting partial (incomplete) connections. 2286 */ 2287 if (hint != NOTE_SUBMIT) 2288 solock(so); 2289 kn->kn_data = so->so_qlen; 2290 rv = (kn->kn_data > 0); 2291 if (hint != NOTE_SUBMIT) 2292 sounlock(so); 2293 return rv; 2294 } 2295 2296 static const struct filterops solisten_filtops = { 2297 .f_isfd = 1, 2298 .f_attach = NULL, 2299 .f_detach = filt_sordetach, 2300 .f_event = filt_solisten, 2301 }; 2302 2303 static const struct filterops soread_filtops = { 2304 .f_isfd = 1, 2305 .f_attach = NULL, 2306 .f_detach = filt_sordetach, 2307 .f_event = filt_soread, 2308 }; 2309 2310 static const struct filterops sowrite_filtops = { 2311 .f_isfd = 1, 2312 .f_attach = NULL, 2313 .f_detach = filt_sowdetach, 2314 .f_event = filt_sowrite, 2315 }; 2316 2317 int 2318 soo_kqfilter(struct file *fp, struct knote *kn) 2319 { 2320 struct socket *so; 2321 struct sockbuf *sb; 2322 2323 so = ((file_t *)kn->kn_obj)->f_socket; 2324 solock(so); 2325 switch (kn->kn_filter) { 2326 case EVFILT_READ: 2327 if (so->so_options & SO_ACCEPTCONN) 2328 kn->kn_fop = &solisten_filtops; 2329 else 2330 kn->kn_fop = &soread_filtops; 2331 sb = &so->so_rcv; 2332 break; 2333 case EVFILT_WRITE: 2334 kn->kn_fop = &sowrite_filtops; 2335 sb = &so->so_snd; 2336 break; 2337 default: 2338 sounlock(so); 2339 return EINVAL; 2340 } 2341 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2342 sb->sb_flags |= SB_KNOTE; 2343 sounlock(so); 2344 return 0; 2345 } 2346 2347 static int 2348 sodopoll(struct socket *so, int events) 2349 { 2350 int revents; 2351 2352 revents = 0; 2353 2354 if (events & (POLLIN | POLLRDNORM)) 2355 if (soreadable(so)) 2356 revents |= events & (POLLIN | POLLRDNORM); 2357 2358 if (events & (POLLOUT | POLLWRNORM)) 2359 if (sowritable(so)) 2360 revents |= events & (POLLOUT | POLLWRNORM); 2361 2362 if (events & (POLLPRI | POLLRDBAND)) 2363 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2364 revents |= events & (POLLPRI | POLLRDBAND); 2365 2366 return revents; 2367 } 2368 2369 int 2370 sopoll(struct socket *so, int events) 2371 { 2372 int revents = 0; 2373 2374 #ifndef DIAGNOSTIC 2375 /* 2376 * Do a quick, unlocked check in expectation that the socket 2377 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2378 * as the solocked() assertions will fail. 2379 */ 2380 if ((revents = sodopoll(so, events)) != 0) 2381 return revents; 2382 #endif 2383 2384 solock(so); 2385 if ((revents = sodopoll(so, events)) == 0) { 2386 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2387 selrecord(curlwp, &so->so_rcv.sb_sel); 2388 so->so_rcv.sb_flags |= SB_NOTIFY; 2389 } 2390 2391 if (events & (POLLOUT | POLLWRNORM)) { 2392 selrecord(curlwp, &so->so_snd.sb_sel); 2393 so->so_snd.sb_flags |= SB_NOTIFY; 2394 } 2395 } 2396 sounlock(so); 2397 2398 return revents; 2399 } 2400 2401 struct mbuf ** 2402 sbsavetimestamp(int opt, struct mbuf **mp) 2403 { 2404 struct timeval tv; 2405 int error; 2406 2407 microtime(&tv); 2408 2409 MODULE_HOOK_CALL(uipc_socket_50_sbts_hook, (opt, mp), enosys(), error); 2410 if (error == 0) 2411 return mp; 2412 2413 if (opt & SO_TIMESTAMP) { 2414 *mp = sbcreatecontrol(&tv, sizeof(tv), 2415 SCM_TIMESTAMP, SOL_SOCKET); 2416 if (*mp) 2417 mp = &(*mp)->m_next; 2418 } 2419 return mp; 2420 } 2421 2422 2423 #include <sys/sysctl.h> 2424 2425 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2426 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2427 2428 /* 2429 * sysctl helper routine for kern.somaxkva. ensures that the given 2430 * value is not too small. 2431 * (XXX should we maybe make sure it's not too large as well?) 2432 */ 2433 static int 2434 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2435 { 2436 int error, new_somaxkva; 2437 struct sysctlnode node; 2438 2439 new_somaxkva = somaxkva; 2440 node = *rnode; 2441 node.sysctl_data = &new_somaxkva; 2442 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2443 if (error || newp == NULL) 2444 return error; 2445 2446 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2447 return EINVAL; 2448 2449 mutex_enter(&so_pendfree_lock); 2450 somaxkva = new_somaxkva; 2451 cv_broadcast(&socurkva_cv); 2452 mutex_exit(&so_pendfree_lock); 2453 2454 return error; 2455 } 2456 2457 /* 2458 * sysctl helper routine for kern.sbmax. Basically just ensures that 2459 * any new value is not too small. 2460 */ 2461 static int 2462 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2463 { 2464 int error, new_sbmax; 2465 struct sysctlnode node; 2466 2467 new_sbmax = sb_max; 2468 node = *rnode; 2469 node.sysctl_data = &new_sbmax; 2470 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2471 if (error || newp == NULL) 2472 return error; 2473 2474 KERNEL_LOCK(1, NULL); 2475 error = sb_max_set(new_sbmax); 2476 KERNEL_UNLOCK_ONE(NULL); 2477 2478 return error; 2479 } 2480 2481 /* 2482 * sysctl helper routine for kern.sooptions. Ensures that only allowed 2483 * options can be set. 2484 */ 2485 static int 2486 sysctl_kern_sooptions(SYSCTLFN_ARGS) 2487 { 2488 int error, new_options; 2489 struct sysctlnode node; 2490 2491 new_options = sooptions; 2492 node = *rnode; 2493 node.sysctl_data = &new_options; 2494 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2495 if (error || newp == NULL) 2496 return error; 2497 2498 if (new_options & ~SO_DEFOPTS) 2499 return EINVAL; 2500 2501 sooptions = new_options; 2502 2503 return 0; 2504 } 2505 2506 static void 2507 sysctl_kern_socket_setup(void) 2508 { 2509 2510 KASSERT(socket_sysctllog == NULL); 2511 2512 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2513 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2514 CTLTYPE_INT, "somaxkva", 2515 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2516 "used for socket buffers"), 2517 sysctl_kern_somaxkva, 0, NULL, 0, 2518 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2519 2520 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2521 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2522 CTLTYPE_INT, "sbmax", 2523 SYSCTL_DESCR("Maximum socket buffer size"), 2524 sysctl_kern_sbmax, 0, NULL, 0, 2525 CTL_KERN, KERN_SBMAX, CTL_EOL); 2526 2527 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2528 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2529 CTLTYPE_INT, "sooptions", 2530 SYSCTL_DESCR("Default socket options"), 2531 sysctl_kern_sooptions, 0, NULL, 0, 2532 CTL_KERN, CTL_CREATE, CTL_EOL); 2533 } 2534