1 /* $NetBSD: uipc_socket.c,v 1.252 2016/10/13 19:10:23 uwe Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.252 2016/10/13 19:10:23 uwe Exp $"); 75 76 #ifdef _KERNEL_OPT 77 #include "opt_compat_netbsd.h" 78 #include "opt_sock_counters.h" 79 #include "opt_sosend_loan.h" 80 #include "opt_mbuftrace.h" 81 #include "opt_somaxkva.h" 82 #include "opt_multiprocessor.h" /* XXX */ 83 #include "opt_sctp.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/proc.h> 89 #include <sys/file.h> 90 #include <sys/filedesc.h> 91 #include <sys/kmem.h> 92 #include <sys/mbuf.h> 93 #include <sys/domain.h> 94 #include <sys/kernel.h> 95 #include <sys/protosw.h> 96 #include <sys/socket.h> 97 #include <sys/socketvar.h> 98 #include <sys/signalvar.h> 99 #include <sys/resourcevar.h> 100 #include <sys/uidinfo.h> 101 #include <sys/event.h> 102 #include <sys/poll.h> 103 #include <sys/kauth.h> 104 #include <sys/mutex.h> 105 #include <sys/condvar.h> 106 #include <sys/kthread.h> 107 108 #ifdef COMPAT_50 109 #include <compat/sys/time.h> 110 #include <compat/sys/socket.h> 111 #endif 112 113 #include <uvm/uvm_extern.h> 114 #include <uvm/uvm_loan.h> 115 #include <uvm/uvm_page.h> 116 117 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 118 119 extern const struct fileops socketops; 120 121 extern int somaxconn; /* patchable (XXX sysctl) */ 122 int somaxconn = SOMAXCONN; 123 kmutex_t *softnet_lock; 124 125 #ifdef SOSEND_COUNTERS 126 #include <sys/device.h> 127 128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 129 NULL, "sosend", "loan big"); 130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 131 NULL, "sosend", "copy big"); 132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 133 NULL, "sosend", "copy small"); 134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 135 NULL, "sosend", "kva limit"); 136 137 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 138 139 EVCNT_ATTACH_STATIC(sosend_loan_big); 140 EVCNT_ATTACH_STATIC(sosend_copy_big); 141 EVCNT_ATTACH_STATIC(sosend_copy_small); 142 EVCNT_ATTACH_STATIC(sosend_kvalimit); 143 #else 144 145 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 146 147 #endif /* SOSEND_COUNTERS */ 148 149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 150 int sock_loan_thresh = -1; 151 #else 152 int sock_loan_thresh = 4096; 153 #endif 154 155 static kmutex_t so_pendfree_lock; 156 static struct mbuf *so_pendfree = NULL; 157 158 #ifndef SOMAXKVA 159 #define SOMAXKVA (16 * 1024 * 1024) 160 #endif 161 int somaxkva = SOMAXKVA; 162 static int socurkva; 163 static kcondvar_t socurkva_cv; 164 165 static kauth_listener_t socket_listener; 166 167 #define SOCK_LOAN_CHUNK 65536 168 169 static void sopendfree_thread(void *); 170 static kcondvar_t pendfree_thread_cv; 171 static lwp_t *sopendfree_lwp; 172 173 static void sysctl_kern_socket_setup(void); 174 static struct sysctllog *socket_sysctllog; 175 176 static vsize_t 177 sokvareserve(struct socket *so, vsize_t len) 178 { 179 int error; 180 181 mutex_enter(&so_pendfree_lock); 182 while (socurkva + len > somaxkva) { 183 SOSEND_COUNTER_INCR(&sosend_kvalimit); 184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 185 if (error) { 186 len = 0; 187 break; 188 } 189 } 190 socurkva += len; 191 mutex_exit(&so_pendfree_lock); 192 return len; 193 } 194 195 static void 196 sokvaunreserve(vsize_t len) 197 { 198 199 mutex_enter(&so_pendfree_lock); 200 socurkva -= len; 201 cv_broadcast(&socurkva_cv); 202 mutex_exit(&so_pendfree_lock); 203 } 204 205 /* 206 * sokvaalloc: allocate kva for loan. 207 */ 208 209 vaddr_t 210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 211 { 212 vaddr_t lva; 213 214 /* 215 * reserve kva. 216 */ 217 218 if (sokvareserve(so, len) == 0) 219 return 0; 220 221 /* 222 * allocate kva. 223 */ 224 225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 227 if (lva == 0) { 228 sokvaunreserve(len); 229 return (0); 230 } 231 232 return lva; 233 } 234 235 /* 236 * sokvafree: free kva for loan. 237 */ 238 239 void 240 sokvafree(vaddr_t sva, vsize_t len) 241 { 242 243 /* 244 * free kva. 245 */ 246 247 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 248 249 /* 250 * unreserve kva. 251 */ 252 253 sokvaunreserve(len); 254 } 255 256 static void 257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 258 { 259 vaddr_t sva, eva; 260 vsize_t len; 261 int npgs; 262 263 KASSERT(pgs != NULL); 264 265 eva = round_page((vaddr_t) buf + size); 266 sva = trunc_page((vaddr_t) buf); 267 len = eva - sva; 268 npgs = len >> PAGE_SHIFT; 269 270 pmap_kremove(sva, len); 271 pmap_update(pmap_kernel()); 272 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 273 sokvafree(sva, len); 274 } 275 276 /* 277 * sopendfree_thread: free mbufs on "pendfree" list. 278 * unlock and relock so_pendfree_lock when freeing mbufs. 279 */ 280 281 static void 282 sopendfree_thread(void *v) 283 { 284 struct mbuf *m, *next; 285 size_t rv; 286 287 mutex_enter(&so_pendfree_lock); 288 289 for (;;) { 290 rv = 0; 291 while (so_pendfree != NULL) { 292 m = so_pendfree; 293 so_pendfree = NULL; 294 mutex_exit(&so_pendfree_lock); 295 296 for (; m != NULL; m = next) { 297 next = m->m_next; 298 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 299 KASSERT(m->m_ext.ext_refcnt == 0); 300 301 rv += m->m_ext.ext_size; 302 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 303 m->m_ext.ext_size); 304 pool_cache_put(mb_cache, m); 305 } 306 307 mutex_enter(&so_pendfree_lock); 308 } 309 if (rv) 310 cv_broadcast(&socurkva_cv); 311 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 312 } 313 panic("sopendfree_thread"); 314 /* NOTREACHED */ 315 } 316 317 void 318 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 319 { 320 321 KASSERT(m != NULL); 322 323 /* 324 * postpone freeing mbuf. 325 * 326 * we can't do it in interrupt context 327 * because we need to put kva back to kernel_map. 328 */ 329 330 mutex_enter(&so_pendfree_lock); 331 m->m_next = so_pendfree; 332 so_pendfree = m; 333 cv_signal(&pendfree_thread_cv); 334 mutex_exit(&so_pendfree_lock); 335 } 336 337 static long 338 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 339 { 340 struct iovec *iov = uio->uio_iov; 341 vaddr_t sva, eva; 342 vsize_t len; 343 vaddr_t lva; 344 int npgs, error; 345 vaddr_t va; 346 int i; 347 348 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 349 return (0); 350 351 if (iov->iov_len < (size_t) space) 352 space = iov->iov_len; 353 if (space > SOCK_LOAN_CHUNK) 354 space = SOCK_LOAN_CHUNK; 355 356 eva = round_page((vaddr_t) iov->iov_base + space); 357 sva = trunc_page((vaddr_t) iov->iov_base); 358 len = eva - sva; 359 npgs = len >> PAGE_SHIFT; 360 361 KASSERT(npgs <= M_EXT_MAXPAGES); 362 363 lva = sokvaalloc(sva, len, so); 364 if (lva == 0) 365 return 0; 366 367 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 368 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 369 if (error) { 370 sokvafree(lva, len); 371 return (0); 372 } 373 374 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 375 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 376 VM_PROT_READ, 0); 377 pmap_update(pmap_kernel()); 378 379 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 380 381 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 382 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 383 384 uio->uio_resid -= space; 385 /* uio_offset not updated, not set/used for write(2) */ 386 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 387 uio->uio_iov->iov_len -= space; 388 if (uio->uio_iov->iov_len == 0) { 389 uio->uio_iov++; 390 uio->uio_iovcnt--; 391 } 392 393 return (space); 394 } 395 396 struct mbuf * 397 getsombuf(struct socket *so, int type) 398 { 399 struct mbuf *m; 400 401 m = m_get(M_WAIT, type); 402 MCLAIM(m, so->so_mowner); 403 return m; 404 } 405 406 static int 407 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 408 void *arg0, void *arg1, void *arg2, void *arg3) 409 { 410 int result; 411 enum kauth_network_req req; 412 413 result = KAUTH_RESULT_DEFER; 414 req = (enum kauth_network_req)arg0; 415 416 if ((action != KAUTH_NETWORK_SOCKET) && 417 (action != KAUTH_NETWORK_BIND)) 418 return result; 419 420 switch (req) { 421 case KAUTH_REQ_NETWORK_BIND_PORT: 422 result = KAUTH_RESULT_ALLOW; 423 break; 424 425 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 426 /* Normal users can only drop their own connections. */ 427 struct socket *so = (struct socket *)arg1; 428 429 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 430 result = KAUTH_RESULT_ALLOW; 431 432 break; 433 } 434 435 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 436 /* We allow "raw" routing/bluetooth sockets to anyone. */ 437 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 438 || (u_long)arg1 == PF_BLUETOOTH) { 439 result = KAUTH_RESULT_ALLOW; 440 } else { 441 /* Privileged, let secmodel handle this. */ 442 if ((u_long)arg2 == SOCK_RAW) 443 break; 444 } 445 446 result = KAUTH_RESULT_ALLOW; 447 448 break; 449 450 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 451 result = KAUTH_RESULT_ALLOW; 452 453 break; 454 455 default: 456 break; 457 } 458 459 return result; 460 } 461 462 void 463 soinit(void) 464 { 465 466 sysctl_kern_socket_setup(); 467 468 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 469 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 470 cv_init(&socurkva_cv, "sokva"); 471 cv_init(&pendfree_thread_cv, "sopendfr"); 472 soinit2(); 473 474 /* Set the initial adjusted socket buffer size. */ 475 if (sb_max_set(sb_max)) 476 panic("bad initial sb_max value: %lu", sb_max); 477 478 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 479 socket_listener_cb, NULL); 480 } 481 482 void 483 soinit1(void) 484 { 485 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 486 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 487 if (error) 488 panic("soinit1 %d", error); 489 } 490 491 /* 492 * socreate: create a new socket of the specified type and the protocol. 493 * 494 * => Caller may specify another socket for lock sharing (must not be held). 495 * => Returns the new socket without lock held. 496 */ 497 int 498 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 499 struct socket *lockso) 500 { 501 const struct protosw *prp; 502 struct socket *so; 503 uid_t uid; 504 int error; 505 kmutex_t *lock; 506 507 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 508 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 509 KAUTH_ARG(proto)); 510 if (error != 0) 511 return error; 512 513 if (proto) 514 prp = pffindproto(dom, proto, type); 515 else 516 prp = pffindtype(dom, type); 517 if (prp == NULL) { 518 /* no support for domain */ 519 if (pffinddomain(dom) == 0) 520 return EAFNOSUPPORT; 521 /* no support for socket type */ 522 if (proto == 0 && type != 0) 523 return EPROTOTYPE; 524 return EPROTONOSUPPORT; 525 } 526 if (prp->pr_usrreqs == NULL) 527 return EPROTONOSUPPORT; 528 if (prp->pr_type != type) 529 return EPROTOTYPE; 530 531 so = soget(true); 532 so->so_type = type; 533 so->so_proto = prp; 534 so->so_send = sosend; 535 so->so_receive = soreceive; 536 #ifdef MBUFTRACE 537 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 538 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 539 so->so_mowner = &prp->pr_domain->dom_mowner; 540 #endif 541 uid = kauth_cred_geteuid(l->l_cred); 542 so->so_uidinfo = uid_find(uid); 543 so->so_cpid = l->l_proc->p_pid; 544 545 /* 546 * Lock assigned and taken during PCB attach, unless we share 547 * the lock with another socket, e.g. socketpair(2) case. 548 */ 549 if (lockso) { 550 lock = lockso->so_lock; 551 so->so_lock = lock; 552 mutex_obj_hold(lock); 553 mutex_enter(lock); 554 } 555 556 /* Attach the PCB (returns with the socket lock held). */ 557 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 558 KASSERT(solocked(so)); 559 560 if (error) { 561 KASSERT(so->so_pcb == NULL); 562 so->so_state |= SS_NOFDREF; 563 sofree(so); 564 return error; 565 } 566 so->so_cred = kauth_cred_dup(l->l_cred); 567 sounlock(so); 568 569 *aso = so; 570 return 0; 571 } 572 573 /* 574 * fsocreate: create a socket and a file descriptor associated with it. 575 * 576 * => On success, write file descriptor to fdout and return zero. 577 * => On failure, return non-zero; *fdout will be undefined. 578 */ 579 int 580 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 581 { 582 lwp_t *l = curlwp; 583 int error, fd, flags; 584 struct socket *so; 585 struct file *fp; 586 587 if ((error = fd_allocfile(&fp, &fd)) != 0) { 588 return error; 589 } 590 flags = type & SOCK_FLAGS_MASK; 591 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 592 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 593 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 594 fp->f_type = DTYPE_SOCKET; 595 fp->f_ops = &socketops; 596 597 type &= ~SOCK_FLAGS_MASK; 598 error = socreate(domain, &so, type, proto, l, NULL); 599 if (error) { 600 fd_abort(curproc, fp, fd); 601 return error; 602 } 603 if (flags & SOCK_NONBLOCK) { 604 so->so_state |= SS_NBIO; 605 } 606 fp->f_socket = so; 607 fd_affix(curproc, fp, fd); 608 609 if (sop != NULL) { 610 *sop = so; 611 } 612 *fdout = fd; 613 return error; 614 } 615 616 int 617 sofamily(const struct socket *so) 618 { 619 const struct protosw *pr; 620 const struct domain *dom; 621 622 if ((pr = so->so_proto) == NULL) 623 return AF_UNSPEC; 624 if ((dom = pr->pr_domain) == NULL) 625 return AF_UNSPEC; 626 return dom->dom_family; 627 } 628 629 int 630 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 631 { 632 int error; 633 634 solock(so); 635 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 636 sounlock(so); 637 return EAFNOSUPPORT; 638 } 639 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 640 sounlock(so); 641 return error; 642 } 643 644 int 645 solisten(struct socket *so, int backlog, struct lwp *l) 646 { 647 int error; 648 short oldopt, oldqlimit; 649 650 solock(so); 651 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 652 SS_ISDISCONNECTING)) != 0) { 653 sounlock(so); 654 return EINVAL; 655 } 656 oldopt = so->so_options; 657 oldqlimit = so->so_qlimit; 658 if (TAILQ_EMPTY(&so->so_q)) 659 so->so_options |= SO_ACCEPTCONN; 660 if (backlog < 0) 661 backlog = 0; 662 so->so_qlimit = min(backlog, somaxconn); 663 664 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 665 if (error != 0) { 666 so->so_options = oldopt; 667 so->so_qlimit = oldqlimit; 668 sounlock(so); 669 return error; 670 } 671 sounlock(so); 672 return 0; 673 } 674 675 void 676 sofree(struct socket *so) 677 { 678 u_int refs; 679 680 KASSERT(solocked(so)); 681 682 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 683 sounlock(so); 684 return; 685 } 686 if (so->so_head) { 687 /* 688 * We must not decommission a socket that's on the accept(2) 689 * queue. If we do, then accept(2) may hang after select(2) 690 * indicated that the listening socket was ready. 691 */ 692 if (!soqremque(so, 0)) { 693 sounlock(so); 694 return; 695 } 696 } 697 if (so->so_rcv.sb_hiwat) 698 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 699 RLIM_INFINITY); 700 if (so->so_snd.sb_hiwat) 701 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 702 RLIM_INFINITY); 703 sbrelease(&so->so_snd, so); 704 KASSERT(!cv_has_waiters(&so->so_cv)); 705 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 706 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 707 sorflush(so); 708 refs = so->so_aborting; /* XXX */ 709 /* Remove acccept filter if one is present. */ 710 if (so->so_accf != NULL) 711 (void)accept_filt_clear(so); 712 sounlock(so); 713 if (refs == 0) /* XXX */ 714 soput(so); 715 } 716 717 /* 718 * soclose: close a socket on last file table reference removal. 719 * Initiate disconnect if connected. Free socket when disconnect complete. 720 */ 721 int 722 soclose(struct socket *so) 723 { 724 struct socket *so2; 725 int error = 0; 726 727 solock(so); 728 if (so->so_options & SO_ACCEPTCONN) { 729 for (;;) { 730 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 731 KASSERT(solocked2(so, so2)); 732 (void) soqremque(so2, 0); 733 /* soabort drops the lock. */ 734 (void) soabort(so2); 735 solock(so); 736 continue; 737 } 738 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 739 KASSERT(solocked2(so, so2)); 740 (void) soqremque(so2, 1); 741 /* soabort drops the lock. */ 742 (void) soabort(so2); 743 solock(so); 744 continue; 745 } 746 break; 747 } 748 } 749 if (so->so_pcb == NULL) 750 goto discard; 751 if (so->so_state & SS_ISCONNECTED) { 752 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 753 error = sodisconnect(so); 754 if (error) 755 goto drop; 756 } 757 if (so->so_options & SO_LINGER) { 758 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 759 (SS_ISDISCONNECTING|SS_NBIO)) 760 goto drop; 761 while (so->so_state & SS_ISCONNECTED) { 762 error = sowait(so, true, so->so_linger * hz); 763 if (error) 764 break; 765 } 766 } 767 } 768 drop: 769 if (so->so_pcb) { 770 KASSERT(solocked(so)); 771 (*so->so_proto->pr_usrreqs->pr_detach)(so); 772 } 773 discard: 774 KASSERT((so->so_state & SS_NOFDREF) == 0); 775 kauth_cred_free(so->so_cred); 776 so->so_state |= SS_NOFDREF; 777 sofree(so); 778 return error; 779 } 780 781 /* 782 * Must be called with the socket locked.. Will return with it unlocked. 783 */ 784 int 785 soabort(struct socket *so) 786 { 787 u_int refs; 788 int error; 789 790 KASSERT(solocked(so)); 791 KASSERT(so->so_head == NULL); 792 793 so->so_aborting++; /* XXX */ 794 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 795 refs = --so->so_aborting; /* XXX */ 796 if (error || (refs == 0)) { 797 sofree(so); 798 } else { 799 sounlock(so); 800 } 801 return error; 802 } 803 804 int 805 soaccept(struct socket *so, struct sockaddr *nam) 806 { 807 int error; 808 809 KASSERT(solocked(so)); 810 KASSERT((so->so_state & SS_NOFDREF) != 0); 811 812 so->so_state &= ~SS_NOFDREF; 813 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 814 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 815 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 816 else 817 error = ECONNABORTED; 818 819 return error; 820 } 821 822 int 823 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 824 { 825 int error; 826 827 KASSERT(solocked(so)); 828 829 if (so->so_options & SO_ACCEPTCONN) 830 return EOPNOTSUPP; 831 /* 832 * If protocol is connection-based, can only connect once. 833 * Otherwise, if connected, try to disconnect first. 834 * This allows user to disconnect by connecting to, e.g., 835 * a null address. 836 */ 837 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 838 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 839 (error = sodisconnect(so)))) { 840 error = EISCONN; 841 } else { 842 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 843 return EAFNOSUPPORT; 844 } 845 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 846 } 847 848 return error; 849 } 850 851 int 852 soconnect2(struct socket *so1, struct socket *so2) 853 { 854 KASSERT(solocked2(so1, so2)); 855 856 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 857 } 858 859 int 860 sodisconnect(struct socket *so) 861 { 862 int error; 863 864 KASSERT(solocked(so)); 865 866 if ((so->so_state & SS_ISCONNECTED) == 0) { 867 error = ENOTCONN; 868 } else if (so->so_state & SS_ISDISCONNECTING) { 869 error = EALREADY; 870 } else { 871 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 872 } 873 return (error); 874 } 875 876 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 877 /* 878 * Send on a socket. 879 * If send must go all at once and message is larger than 880 * send buffering, then hard error. 881 * Lock against other senders. 882 * If must go all at once and not enough room now, then 883 * inform user that this would block and do nothing. 884 * Otherwise, if nonblocking, send as much as possible. 885 * The data to be sent is described by "uio" if nonzero, 886 * otherwise by the mbuf chain "top" (which must be null 887 * if uio is not). Data provided in mbuf chain must be small 888 * enough to send all at once. 889 * 890 * Returns nonzero on error, timeout or signal; callers 891 * must check for short counts if EINTR/ERESTART are returned. 892 * Data and control buffers are freed on return. 893 */ 894 int 895 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 896 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 897 { 898 struct mbuf **mp, *m; 899 long space, len, resid, clen, mlen; 900 int error, s, dontroute, atomic; 901 short wakeup_state = 0; 902 903 clen = 0; 904 905 /* 906 * solock() provides atomicity of access. splsoftnet() prevents 907 * protocol processing soft interrupts from interrupting us and 908 * blocking (expensive). 909 */ 910 s = splsoftnet(); 911 solock(so); 912 atomic = sosendallatonce(so) || top; 913 if (uio) 914 resid = uio->uio_resid; 915 else 916 resid = top->m_pkthdr.len; 917 /* 918 * In theory resid should be unsigned. 919 * However, space must be signed, as it might be less than 0 920 * if we over-committed, and we must use a signed comparison 921 * of space and resid. On the other hand, a negative resid 922 * causes us to loop sending 0-length segments to the protocol. 923 */ 924 if (resid < 0) { 925 error = EINVAL; 926 goto out; 927 } 928 dontroute = 929 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 930 (so->so_proto->pr_flags & PR_ATOMIC); 931 l->l_ru.ru_msgsnd++; 932 if (control) 933 clen = control->m_len; 934 restart: 935 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 936 goto out; 937 do { 938 if (so->so_state & SS_CANTSENDMORE) { 939 error = EPIPE; 940 goto release; 941 } 942 if (so->so_error) { 943 error = so->so_error; 944 so->so_error = 0; 945 goto release; 946 } 947 if ((so->so_state & SS_ISCONNECTED) == 0) { 948 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 949 if (resid || clen == 0) { 950 error = ENOTCONN; 951 goto release; 952 } 953 } else if (addr == NULL) { 954 error = EDESTADDRREQ; 955 goto release; 956 } 957 } 958 space = sbspace(&so->so_snd); 959 if (flags & MSG_OOB) 960 space += 1024; 961 if ((atomic && resid > so->so_snd.sb_hiwat) || 962 clen > so->so_snd.sb_hiwat) { 963 error = EMSGSIZE; 964 goto release; 965 } 966 if (space < resid + clen && 967 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 968 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 969 error = EWOULDBLOCK; 970 goto release; 971 } 972 sbunlock(&so->so_snd); 973 if (wakeup_state & SS_RESTARTSYS) { 974 error = ERESTART; 975 goto out; 976 } 977 error = sbwait(&so->so_snd); 978 if (error) 979 goto out; 980 wakeup_state = so->so_state; 981 goto restart; 982 } 983 wakeup_state = 0; 984 mp = ⊤ 985 space -= clen; 986 do { 987 if (uio == NULL) { 988 /* 989 * Data is prepackaged in "top". 990 */ 991 resid = 0; 992 if (flags & MSG_EOR) 993 top->m_flags |= M_EOR; 994 } else do { 995 sounlock(so); 996 splx(s); 997 if (top == NULL) { 998 m = m_gethdr(M_WAIT, MT_DATA); 999 mlen = MHLEN; 1000 m->m_pkthdr.len = 0; 1001 m_reset_rcvif(m); 1002 } else { 1003 m = m_get(M_WAIT, MT_DATA); 1004 mlen = MLEN; 1005 } 1006 MCLAIM(m, so->so_snd.sb_mowner); 1007 if (sock_loan_thresh >= 0 && 1008 uio->uio_iov->iov_len >= sock_loan_thresh && 1009 space >= sock_loan_thresh && 1010 (len = sosend_loan(so, uio, m, 1011 space)) != 0) { 1012 SOSEND_COUNTER_INCR(&sosend_loan_big); 1013 space -= len; 1014 goto have_data; 1015 } 1016 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1017 SOSEND_COUNTER_INCR(&sosend_copy_big); 1018 m_clget(m, M_DONTWAIT); 1019 if ((m->m_flags & M_EXT) == 0) 1020 goto nopages; 1021 mlen = MCLBYTES; 1022 if (atomic && top == 0) { 1023 len = lmin(MCLBYTES - max_hdr, 1024 resid); 1025 m->m_data += max_hdr; 1026 } else 1027 len = lmin(MCLBYTES, resid); 1028 space -= len; 1029 } else { 1030 nopages: 1031 SOSEND_COUNTER_INCR(&sosend_copy_small); 1032 len = lmin(lmin(mlen, resid), space); 1033 space -= len; 1034 /* 1035 * For datagram protocols, leave room 1036 * for protocol headers in first mbuf. 1037 */ 1038 if (atomic && top == 0 && len < mlen) 1039 MH_ALIGN(m, len); 1040 } 1041 error = uiomove(mtod(m, void *), (int)len, uio); 1042 have_data: 1043 resid = uio->uio_resid; 1044 m->m_len = len; 1045 *mp = m; 1046 top->m_pkthdr.len += len; 1047 s = splsoftnet(); 1048 solock(so); 1049 if (error != 0) 1050 goto release; 1051 mp = &m->m_next; 1052 if (resid <= 0) { 1053 if (flags & MSG_EOR) 1054 top->m_flags |= M_EOR; 1055 break; 1056 } 1057 } while (space > 0 && atomic); 1058 1059 if (so->so_state & SS_CANTSENDMORE) { 1060 error = EPIPE; 1061 goto release; 1062 } 1063 if (dontroute) 1064 so->so_options |= SO_DONTROUTE; 1065 if (resid > 0) 1066 so->so_state |= SS_MORETOCOME; 1067 if (flags & MSG_OOB) { 1068 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so, 1069 top, control); 1070 } else { 1071 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1072 top, addr, control, l); 1073 } 1074 if (dontroute) 1075 so->so_options &= ~SO_DONTROUTE; 1076 if (resid > 0) 1077 so->so_state &= ~SS_MORETOCOME; 1078 clen = 0; 1079 control = NULL; 1080 top = NULL; 1081 mp = ⊤ 1082 if (error != 0) 1083 goto release; 1084 } while (resid && space > 0); 1085 } while (resid); 1086 1087 release: 1088 sbunlock(&so->so_snd); 1089 out: 1090 sounlock(so); 1091 splx(s); 1092 if (top) 1093 m_freem(top); 1094 if (control) 1095 m_freem(control); 1096 return (error); 1097 } 1098 1099 /* 1100 * Following replacement or removal of the first mbuf on the first 1101 * mbuf chain of a socket buffer, push necessary state changes back 1102 * into the socket buffer so that other consumers see the values 1103 * consistently. 'nextrecord' is the callers locally stored value of 1104 * the original value of sb->sb_mb->m_nextpkt which must be restored 1105 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1106 */ 1107 static void 1108 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1109 { 1110 1111 KASSERT(solocked(sb->sb_so)); 1112 1113 /* 1114 * First, update for the new value of nextrecord. If necessary, 1115 * make it the first record. 1116 */ 1117 if (sb->sb_mb != NULL) 1118 sb->sb_mb->m_nextpkt = nextrecord; 1119 else 1120 sb->sb_mb = nextrecord; 1121 1122 /* 1123 * Now update any dependent socket buffer fields to reflect 1124 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1125 * the addition of a second clause that takes care of the 1126 * case where sb_mb has been updated, but remains the last 1127 * record. 1128 */ 1129 if (sb->sb_mb == NULL) { 1130 sb->sb_mbtail = NULL; 1131 sb->sb_lastrecord = NULL; 1132 } else if (sb->sb_mb->m_nextpkt == NULL) 1133 sb->sb_lastrecord = sb->sb_mb; 1134 } 1135 1136 /* 1137 * Implement receive operations on a socket. 1138 * We depend on the way that records are added to the sockbuf 1139 * by sbappend*. In particular, each record (mbufs linked through m_next) 1140 * must begin with an address if the protocol so specifies, 1141 * followed by an optional mbuf or mbufs containing ancillary data, 1142 * and then zero or more mbufs of data. 1143 * In order to avoid blocking network interrupts for the entire time here, 1144 * we splx() while doing the actual copy to user space. 1145 * Although the sockbuf is locked, new data may still be appended, 1146 * and thus we must maintain consistency of the sockbuf during that time. 1147 * 1148 * The caller may receive the data as a single mbuf chain by supplying 1149 * an mbuf **mp0 for use in returning the chain. The uio is then used 1150 * only for the count in uio_resid. 1151 */ 1152 int 1153 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1154 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1155 { 1156 struct lwp *l = curlwp; 1157 struct mbuf *m, **mp, *mt; 1158 size_t len, offset, moff, orig_resid; 1159 int atomic, flags, error, s, type; 1160 const struct protosw *pr; 1161 struct mbuf *nextrecord; 1162 int mbuf_removed = 0; 1163 const struct domain *dom; 1164 short wakeup_state = 0; 1165 1166 pr = so->so_proto; 1167 atomic = pr->pr_flags & PR_ATOMIC; 1168 dom = pr->pr_domain; 1169 mp = mp0; 1170 type = 0; 1171 orig_resid = uio->uio_resid; 1172 1173 if (paddr != NULL) 1174 *paddr = NULL; 1175 if (controlp != NULL) 1176 *controlp = NULL; 1177 if (flagsp != NULL) 1178 flags = *flagsp &~ MSG_EOR; 1179 else 1180 flags = 0; 1181 1182 if (flags & MSG_OOB) { 1183 m = m_get(M_WAIT, MT_DATA); 1184 solock(so); 1185 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1186 sounlock(so); 1187 if (error) 1188 goto bad; 1189 do { 1190 error = uiomove(mtod(m, void *), 1191 MIN(uio->uio_resid, m->m_len), uio); 1192 m = m_free(m); 1193 } while (uio->uio_resid > 0 && error == 0 && m); 1194 bad: 1195 if (m != NULL) 1196 m_freem(m); 1197 return error; 1198 } 1199 if (mp != NULL) 1200 *mp = NULL; 1201 1202 /* 1203 * solock() provides atomicity of access. splsoftnet() prevents 1204 * protocol processing soft interrupts from interrupting us and 1205 * blocking (expensive). 1206 */ 1207 s = splsoftnet(); 1208 solock(so); 1209 restart: 1210 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1211 sounlock(so); 1212 splx(s); 1213 return error; 1214 } 1215 1216 m = so->so_rcv.sb_mb; 1217 /* 1218 * If we have less data than requested, block awaiting more 1219 * (subject to any timeout) if: 1220 * 1. the current count is less than the low water mark, 1221 * 2. MSG_WAITALL is set, and it is possible to do the entire 1222 * receive operation at once if we block (resid <= hiwat), or 1223 * 3. MSG_DONTWAIT is not set. 1224 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1225 * we have to do the receive in sections, and thus risk returning 1226 * a short count if a timeout or signal occurs after we start. 1227 */ 1228 if (m == NULL || 1229 ((flags & MSG_DONTWAIT) == 0 && 1230 so->so_rcv.sb_cc < uio->uio_resid && 1231 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1232 ((flags & MSG_WAITALL) && 1233 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1234 m->m_nextpkt == NULL && !atomic)) { 1235 #ifdef DIAGNOSTIC 1236 if (m == NULL && so->so_rcv.sb_cc) 1237 panic("receive 1"); 1238 #endif 1239 if (so->so_error) { 1240 if (m != NULL) 1241 goto dontblock; 1242 error = so->so_error; 1243 if ((flags & MSG_PEEK) == 0) 1244 so->so_error = 0; 1245 goto release; 1246 } 1247 if (so->so_state & SS_CANTRCVMORE) { 1248 if (m != NULL) 1249 goto dontblock; 1250 else 1251 goto release; 1252 } 1253 for (; m != NULL; m = m->m_next) 1254 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1255 m = so->so_rcv.sb_mb; 1256 goto dontblock; 1257 } 1258 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1259 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1260 error = ENOTCONN; 1261 goto release; 1262 } 1263 if (uio->uio_resid == 0) 1264 goto release; 1265 if ((so->so_state & SS_NBIO) || 1266 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1267 error = EWOULDBLOCK; 1268 goto release; 1269 } 1270 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1271 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1272 sbunlock(&so->so_rcv); 1273 if (wakeup_state & SS_RESTARTSYS) 1274 error = ERESTART; 1275 else 1276 error = sbwait(&so->so_rcv); 1277 if (error != 0) { 1278 sounlock(so); 1279 splx(s); 1280 return error; 1281 } 1282 wakeup_state = so->so_state; 1283 goto restart; 1284 } 1285 dontblock: 1286 /* 1287 * On entry here, m points to the first record of the socket buffer. 1288 * From this point onward, we maintain 'nextrecord' as a cache of the 1289 * pointer to the next record in the socket buffer. We must keep the 1290 * various socket buffer pointers and local stack versions of the 1291 * pointers in sync, pushing out modifications before dropping the 1292 * socket lock, and re-reading them when picking it up. 1293 * 1294 * Otherwise, we will race with the network stack appending new data 1295 * or records onto the socket buffer by using inconsistent/stale 1296 * versions of the field, possibly resulting in socket buffer 1297 * corruption. 1298 * 1299 * By holding the high-level sblock(), we prevent simultaneous 1300 * readers from pulling off the front of the socket buffer. 1301 */ 1302 if (l != NULL) 1303 l->l_ru.ru_msgrcv++; 1304 KASSERT(m == so->so_rcv.sb_mb); 1305 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1306 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1307 nextrecord = m->m_nextpkt; 1308 if (pr->pr_flags & PR_ADDR) { 1309 #ifdef DIAGNOSTIC 1310 if (m->m_type != MT_SONAME) 1311 panic("receive 1a"); 1312 #endif 1313 orig_resid = 0; 1314 if (flags & MSG_PEEK) { 1315 if (paddr) 1316 *paddr = m_copy(m, 0, m->m_len); 1317 m = m->m_next; 1318 } else { 1319 sbfree(&so->so_rcv, m); 1320 mbuf_removed = 1; 1321 if (paddr != NULL) { 1322 *paddr = m; 1323 so->so_rcv.sb_mb = m->m_next; 1324 m->m_next = NULL; 1325 m = so->so_rcv.sb_mb; 1326 } else { 1327 m = so->so_rcv.sb_mb = m_free(m); 1328 } 1329 sbsync(&so->so_rcv, nextrecord); 1330 } 1331 } 1332 if (pr->pr_flags & PR_ADDR_OPT) { 1333 /* 1334 * For SCTP we may be getting a 1335 * whole message OR a partial delivery. 1336 */ 1337 if (m->m_type == MT_SONAME) { 1338 orig_resid = 0; 1339 if (flags & MSG_PEEK) { 1340 if (paddr) 1341 *paddr = m_copy(m, 0, m->m_len); 1342 m = m->m_next; 1343 } else { 1344 sbfree(&so->so_rcv, m); 1345 if (paddr) { 1346 *paddr = m; 1347 so->so_rcv.sb_mb = m->m_next; 1348 m->m_next = 0; 1349 m = so->so_rcv.sb_mb; 1350 } else { 1351 m = so->so_rcv.sb_mb = m_free(m); 1352 } 1353 } 1354 } 1355 } 1356 1357 /* 1358 * Process one or more MT_CONTROL mbufs present before any data mbufs 1359 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1360 * just copy the data; if !MSG_PEEK, we call into the protocol to 1361 * perform externalization (or freeing if controlp == NULL). 1362 */ 1363 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1364 struct mbuf *cm = NULL, *cmn; 1365 struct mbuf **cme = &cm; 1366 1367 do { 1368 if (flags & MSG_PEEK) { 1369 if (controlp != NULL) { 1370 *controlp = m_copy(m, 0, m->m_len); 1371 controlp = &(*controlp)->m_next; 1372 } 1373 m = m->m_next; 1374 } else { 1375 sbfree(&so->so_rcv, m); 1376 so->so_rcv.sb_mb = m->m_next; 1377 m->m_next = NULL; 1378 *cme = m; 1379 cme = &(*cme)->m_next; 1380 m = so->so_rcv.sb_mb; 1381 } 1382 } while (m != NULL && m->m_type == MT_CONTROL); 1383 if ((flags & MSG_PEEK) == 0) 1384 sbsync(&so->so_rcv, nextrecord); 1385 for (; cm != NULL; cm = cmn) { 1386 cmn = cm->m_next; 1387 cm->m_next = NULL; 1388 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1389 if (controlp != NULL) { 1390 if (dom->dom_externalize != NULL && 1391 type == SCM_RIGHTS) { 1392 sounlock(so); 1393 splx(s); 1394 error = (*dom->dom_externalize)(cm, l, 1395 (flags & MSG_CMSG_CLOEXEC) ? 1396 O_CLOEXEC : 0); 1397 s = splsoftnet(); 1398 solock(so); 1399 } 1400 *controlp = cm; 1401 while (*controlp != NULL) 1402 controlp = &(*controlp)->m_next; 1403 } else { 1404 /* 1405 * Dispose of any SCM_RIGHTS message that went 1406 * through the read path rather than recv. 1407 */ 1408 if (dom->dom_dispose != NULL && 1409 type == SCM_RIGHTS) { 1410 sounlock(so); 1411 (*dom->dom_dispose)(cm); 1412 solock(so); 1413 } 1414 m_freem(cm); 1415 } 1416 } 1417 if (m != NULL) 1418 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1419 else 1420 nextrecord = so->so_rcv.sb_mb; 1421 orig_resid = 0; 1422 } 1423 1424 /* If m is non-NULL, we have some data to read. */ 1425 if (__predict_true(m != NULL)) { 1426 type = m->m_type; 1427 if (type == MT_OOBDATA) 1428 flags |= MSG_OOB; 1429 } 1430 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1431 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1432 1433 moff = 0; 1434 offset = 0; 1435 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1436 if (m->m_type == MT_OOBDATA) { 1437 if (type != MT_OOBDATA) 1438 break; 1439 } else if (type == MT_OOBDATA) 1440 break; 1441 #ifdef DIAGNOSTIC 1442 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1443 panic("receive 3"); 1444 #endif 1445 so->so_state &= ~SS_RCVATMARK; 1446 wakeup_state = 0; 1447 len = uio->uio_resid; 1448 if (so->so_oobmark && len > so->so_oobmark - offset) 1449 len = so->so_oobmark - offset; 1450 if (len > m->m_len - moff) 1451 len = m->m_len - moff; 1452 /* 1453 * If mp is set, just pass back the mbufs. 1454 * Otherwise copy them out via the uio, then free. 1455 * Sockbuf must be consistent here (points to current mbuf, 1456 * it points to next record) when we drop priority; 1457 * we must note any additions to the sockbuf when we 1458 * block interrupts again. 1459 */ 1460 if (mp == NULL) { 1461 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1462 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1463 sounlock(so); 1464 splx(s); 1465 error = uiomove(mtod(m, char *) + moff, len, uio); 1466 s = splsoftnet(); 1467 solock(so); 1468 if (error != 0) { 1469 /* 1470 * If any part of the record has been removed 1471 * (such as the MT_SONAME mbuf, which will 1472 * happen when PR_ADDR, and thus also 1473 * PR_ATOMIC, is set), then drop the entire 1474 * record to maintain the atomicity of the 1475 * receive operation. 1476 * 1477 * This avoids a later panic("receive 1a") 1478 * when compiled with DIAGNOSTIC. 1479 */ 1480 if (m && mbuf_removed && atomic) 1481 (void) sbdroprecord(&so->so_rcv); 1482 1483 goto release; 1484 } 1485 } else 1486 uio->uio_resid -= len; 1487 if (len == m->m_len - moff) { 1488 if (m->m_flags & M_EOR) 1489 flags |= MSG_EOR; 1490 #ifdef SCTP 1491 if (m->m_flags & M_NOTIFICATION) 1492 flags |= MSG_NOTIFICATION; 1493 #endif /* SCTP */ 1494 if (flags & MSG_PEEK) { 1495 m = m->m_next; 1496 moff = 0; 1497 } else { 1498 nextrecord = m->m_nextpkt; 1499 sbfree(&so->so_rcv, m); 1500 if (mp) { 1501 *mp = m; 1502 mp = &m->m_next; 1503 so->so_rcv.sb_mb = m = m->m_next; 1504 *mp = NULL; 1505 } else { 1506 m = so->so_rcv.sb_mb = m_free(m); 1507 } 1508 /* 1509 * If m != NULL, we also know that 1510 * so->so_rcv.sb_mb != NULL. 1511 */ 1512 KASSERT(so->so_rcv.sb_mb == m); 1513 if (m) { 1514 m->m_nextpkt = nextrecord; 1515 if (nextrecord == NULL) 1516 so->so_rcv.sb_lastrecord = m; 1517 } else { 1518 so->so_rcv.sb_mb = nextrecord; 1519 SB_EMPTY_FIXUP(&so->so_rcv); 1520 } 1521 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1522 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1523 } 1524 } else if (flags & MSG_PEEK) 1525 moff += len; 1526 else { 1527 if (mp != NULL) { 1528 mt = m_copym(m, 0, len, M_NOWAIT); 1529 if (__predict_false(mt == NULL)) { 1530 sounlock(so); 1531 mt = m_copym(m, 0, len, M_WAIT); 1532 solock(so); 1533 } 1534 *mp = mt; 1535 } 1536 m->m_data += len; 1537 m->m_len -= len; 1538 so->so_rcv.sb_cc -= len; 1539 } 1540 if (so->so_oobmark) { 1541 if ((flags & MSG_PEEK) == 0) { 1542 so->so_oobmark -= len; 1543 if (so->so_oobmark == 0) { 1544 so->so_state |= SS_RCVATMARK; 1545 break; 1546 } 1547 } else { 1548 offset += len; 1549 if (offset == so->so_oobmark) 1550 break; 1551 } 1552 } 1553 if (flags & MSG_EOR) 1554 break; 1555 /* 1556 * If the MSG_WAITALL flag is set (for non-atomic socket), 1557 * we must not quit until "uio->uio_resid == 0" or an error 1558 * termination. If a signal/timeout occurs, return 1559 * with a short count but without error. 1560 * Keep sockbuf locked against other readers. 1561 */ 1562 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1563 !sosendallatonce(so) && !nextrecord) { 1564 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1565 break; 1566 /* 1567 * If we are peeking and the socket receive buffer is 1568 * full, stop since we can't get more data to peek at. 1569 */ 1570 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1571 break; 1572 /* 1573 * If we've drained the socket buffer, tell the 1574 * protocol in case it needs to do something to 1575 * get it filled again. 1576 */ 1577 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1578 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1579 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1580 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1581 if (wakeup_state & SS_RESTARTSYS) 1582 error = ERESTART; 1583 else 1584 error = sbwait(&so->so_rcv); 1585 if (error != 0) { 1586 sbunlock(&so->so_rcv); 1587 sounlock(so); 1588 splx(s); 1589 return 0; 1590 } 1591 if ((m = so->so_rcv.sb_mb) != NULL) 1592 nextrecord = m->m_nextpkt; 1593 wakeup_state = so->so_state; 1594 } 1595 } 1596 1597 if (m && atomic) { 1598 flags |= MSG_TRUNC; 1599 if ((flags & MSG_PEEK) == 0) 1600 (void) sbdroprecord(&so->so_rcv); 1601 } 1602 if ((flags & MSG_PEEK) == 0) { 1603 if (m == NULL) { 1604 /* 1605 * First part is an inline SB_EMPTY_FIXUP(). Second 1606 * part makes sure sb_lastrecord is up-to-date if 1607 * there is still data in the socket buffer. 1608 */ 1609 so->so_rcv.sb_mb = nextrecord; 1610 if (so->so_rcv.sb_mb == NULL) { 1611 so->so_rcv.sb_mbtail = NULL; 1612 so->so_rcv.sb_lastrecord = NULL; 1613 } else if (nextrecord->m_nextpkt == NULL) 1614 so->so_rcv.sb_lastrecord = nextrecord; 1615 } 1616 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1617 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1618 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1619 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1620 } 1621 if (orig_resid == uio->uio_resid && orig_resid && 1622 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1623 sbunlock(&so->so_rcv); 1624 goto restart; 1625 } 1626 1627 if (flagsp != NULL) 1628 *flagsp |= flags; 1629 release: 1630 sbunlock(&so->so_rcv); 1631 sounlock(so); 1632 splx(s); 1633 return error; 1634 } 1635 1636 int 1637 soshutdown(struct socket *so, int how) 1638 { 1639 const struct protosw *pr; 1640 int error; 1641 1642 KASSERT(solocked(so)); 1643 1644 pr = so->so_proto; 1645 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1646 return (EINVAL); 1647 1648 if (how == SHUT_RD || how == SHUT_RDWR) { 1649 sorflush(so); 1650 error = 0; 1651 } 1652 if (how == SHUT_WR || how == SHUT_RDWR) 1653 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1654 1655 return error; 1656 } 1657 1658 void 1659 sorestart(struct socket *so) 1660 { 1661 /* 1662 * An application has called close() on an fd on which another 1663 * of its threads has called a socket system call. 1664 * Mark this and wake everyone up, and code that would block again 1665 * instead returns ERESTART. 1666 * On system call re-entry the fd is validated and EBADF returned. 1667 * Any other fd will block again on the 2nd syscall. 1668 */ 1669 solock(so); 1670 so->so_state |= SS_RESTARTSYS; 1671 cv_broadcast(&so->so_cv); 1672 cv_broadcast(&so->so_snd.sb_cv); 1673 cv_broadcast(&so->so_rcv.sb_cv); 1674 sounlock(so); 1675 } 1676 1677 void 1678 sorflush(struct socket *so) 1679 { 1680 struct sockbuf *sb, asb; 1681 const struct protosw *pr; 1682 1683 KASSERT(solocked(so)); 1684 1685 sb = &so->so_rcv; 1686 pr = so->so_proto; 1687 socantrcvmore(so); 1688 sb->sb_flags |= SB_NOINTR; 1689 (void )sblock(sb, M_WAITOK); 1690 sbunlock(sb); 1691 asb = *sb; 1692 /* 1693 * Clear most of the sockbuf structure, but leave some of the 1694 * fields valid. 1695 */ 1696 memset(&sb->sb_startzero, 0, 1697 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1698 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1699 sounlock(so); 1700 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1701 solock(so); 1702 } 1703 sbrelease(&asb, so); 1704 } 1705 1706 /* 1707 * internal set SOL_SOCKET options 1708 */ 1709 static int 1710 sosetopt1(struct socket *so, const struct sockopt *sopt) 1711 { 1712 int error = EINVAL, opt; 1713 int optval = 0; /* XXX: gcc */ 1714 struct linger l; 1715 struct timeval tv; 1716 1717 switch ((opt = sopt->sopt_name)) { 1718 1719 case SO_ACCEPTFILTER: 1720 error = accept_filt_setopt(so, sopt); 1721 KASSERT(solocked(so)); 1722 break; 1723 1724 case SO_LINGER: 1725 error = sockopt_get(sopt, &l, sizeof(l)); 1726 solock(so); 1727 if (error) 1728 break; 1729 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1730 l.l_linger > (INT_MAX / hz)) { 1731 error = EDOM; 1732 break; 1733 } 1734 so->so_linger = l.l_linger; 1735 if (l.l_onoff) 1736 so->so_options |= SO_LINGER; 1737 else 1738 so->so_options &= ~SO_LINGER; 1739 break; 1740 1741 case SO_DEBUG: 1742 case SO_KEEPALIVE: 1743 case SO_DONTROUTE: 1744 case SO_USELOOPBACK: 1745 case SO_BROADCAST: 1746 case SO_REUSEADDR: 1747 case SO_REUSEPORT: 1748 case SO_OOBINLINE: 1749 case SO_TIMESTAMP: 1750 case SO_NOSIGPIPE: 1751 #ifdef SO_OTIMESTAMP 1752 case SO_OTIMESTAMP: 1753 #endif 1754 error = sockopt_getint(sopt, &optval); 1755 solock(so); 1756 if (error) 1757 break; 1758 if (optval) 1759 so->so_options |= opt; 1760 else 1761 so->so_options &= ~opt; 1762 break; 1763 1764 case SO_SNDBUF: 1765 case SO_RCVBUF: 1766 case SO_SNDLOWAT: 1767 case SO_RCVLOWAT: 1768 error = sockopt_getint(sopt, &optval); 1769 solock(so); 1770 if (error) 1771 break; 1772 1773 /* 1774 * Values < 1 make no sense for any of these 1775 * options, so disallow them. 1776 */ 1777 if (optval < 1) { 1778 error = EINVAL; 1779 break; 1780 } 1781 1782 switch (opt) { 1783 case SO_SNDBUF: 1784 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1785 error = ENOBUFS; 1786 break; 1787 } 1788 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1789 break; 1790 1791 case SO_RCVBUF: 1792 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1793 error = ENOBUFS; 1794 break; 1795 } 1796 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1797 break; 1798 1799 /* 1800 * Make sure the low-water is never greater than 1801 * the high-water. 1802 */ 1803 case SO_SNDLOWAT: 1804 if (optval > so->so_snd.sb_hiwat) 1805 optval = so->so_snd.sb_hiwat; 1806 1807 so->so_snd.sb_lowat = optval; 1808 break; 1809 1810 case SO_RCVLOWAT: 1811 if (optval > so->so_rcv.sb_hiwat) 1812 optval = so->so_rcv.sb_hiwat; 1813 1814 so->so_rcv.sb_lowat = optval; 1815 break; 1816 } 1817 break; 1818 1819 #ifdef COMPAT_50 1820 case SO_OSNDTIMEO: 1821 case SO_ORCVTIMEO: { 1822 struct timeval50 otv; 1823 error = sockopt_get(sopt, &otv, sizeof(otv)); 1824 if (error) { 1825 solock(so); 1826 break; 1827 } 1828 timeval50_to_timeval(&otv, &tv); 1829 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1830 error = 0; 1831 /*FALLTHROUGH*/ 1832 } 1833 #endif /* COMPAT_50 */ 1834 1835 case SO_SNDTIMEO: 1836 case SO_RCVTIMEO: 1837 if (error) 1838 error = sockopt_get(sopt, &tv, sizeof(tv)); 1839 solock(so); 1840 if (error) 1841 break; 1842 1843 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1844 error = EDOM; 1845 break; 1846 } 1847 1848 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1849 if (optval == 0 && tv.tv_usec != 0) 1850 optval = 1; 1851 1852 switch (opt) { 1853 case SO_SNDTIMEO: 1854 so->so_snd.sb_timeo = optval; 1855 break; 1856 case SO_RCVTIMEO: 1857 so->so_rcv.sb_timeo = optval; 1858 break; 1859 } 1860 break; 1861 1862 default: 1863 solock(so); 1864 error = ENOPROTOOPT; 1865 break; 1866 } 1867 KASSERT(solocked(so)); 1868 return error; 1869 } 1870 1871 int 1872 sosetopt(struct socket *so, struct sockopt *sopt) 1873 { 1874 int error, prerr; 1875 1876 if (sopt->sopt_level == SOL_SOCKET) { 1877 error = sosetopt1(so, sopt); 1878 KASSERT(solocked(so)); 1879 } else { 1880 error = ENOPROTOOPT; 1881 solock(so); 1882 } 1883 1884 if ((error == 0 || error == ENOPROTOOPT) && 1885 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1886 /* give the protocol stack a shot */ 1887 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1888 if (prerr == 0) 1889 error = 0; 1890 else if (prerr != ENOPROTOOPT) 1891 error = prerr; 1892 } 1893 sounlock(so); 1894 return error; 1895 } 1896 1897 /* 1898 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1899 */ 1900 int 1901 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1902 const void *val, size_t valsize) 1903 { 1904 struct sockopt sopt; 1905 int error; 1906 1907 KASSERT(valsize == 0 || val != NULL); 1908 1909 sockopt_init(&sopt, level, name, valsize); 1910 sockopt_set(&sopt, val, valsize); 1911 1912 error = sosetopt(so, &sopt); 1913 1914 sockopt_destroy(&sopt); 1915 1916 return error; 1917 } 1918 1919 /* 1920 * internal get SOL_SOCKET options 1921 */ 1922 static int 1923 sogetopt1(struct socket *so, struct sockopt *sopt) 1924 { 1925 int error, optval, opt; 1926 struct linger l; 1927 struct timeval tv; 1928 1929 switch ((opt = sopt->sopt_name)) { 1930 1931 case SO_ACCEPTFILTER: 1932 error = accept_filt_getopt(so, sopt); 1933 break; 1934 1935 case SO_LINGER: 1936 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1937 l.l_linger = so->so_linger; 1938 1939 error = sockopt_set(sopt, &l, sizeof(l)); 1940 break; 1941 1942 case SO_USELOOPBACK: 1943 case SO_DONTROUTE: 1944 case SO_DEBUG: 1945 case SO_KEEPALIVE: 1946 case SO_REUSEADDR: 1947 case SO_REUSEPORT: 1948 case SO_BROADCAST: 1949 case SO_OOBINLINE: 1950 case SO_TIMESTAMP: 1951 case SO_NOSIGPIPE: 1952 #ifdef SO_OTIMESTAMP 1953 case SO_OTIMESTAMP: 1954 #endif 1955 case SO_ACCEPTCONN: 1956 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1957 break; 1958 1959 case SO_TYPE: 1960 error = sockopt_setint(sopt, so->so_type); 1961 break; 1962 1963 case SO_ERROR: 1964 error = sockopt_setint(sopt, so->so_error); 1965 so->so_error = 0; 1966 break; 1967 1968 case SO_SNDBUF: 1969 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1970 break; 1971 1972 case SO_RCVBUF: 1973 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1974 break; 1975 1976 case SO_SNDLOWAT: 1977 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1978 break; 1979 1980 case SO_RCVLOWAT: 1981 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1982 break; 1983 1984 #ifdef COMPAT_50 1985 case SO_OSNDTIMEO: 1986 case SO_ORCVTIMEO: { 1987 struct timeval50 otv; 1988 1989 optval = (opt == SO_OSNDTIMEO ? 1990 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1991 1992 otv.tv_sec = optval / hz; 1993 otv.tv_usec = (optval % hz) * tick; 1994 1995 error = sockopt_set(sopt, &otv, sizeof(otv)); 1996 break; 1997 } 1998 #endif /* COMPAT_50 */ 1999 2000 case SO_SNDTIMEO: 2001 case SO_RCVTIMEO: 2002 optval = (opt == SO_SNDTIMEO ? 2003 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2004 2005 tv.tv_sec = optval / hz; 2006 tv.tv_usec = (optval % hz) * tick; 2007 2008 error = sockopt_set(sopt, &tv, sizeof(tv)); 2009 break; 2010 2011 case SO_OVERFLOWED: 2012 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 2013 break; 2014 2015 default: 2016 error = ENOPROTOOPT; 2017 break; 2018 } 2019 2020 return (error); 2021 } 2022 2023 int 2024 sogetopt(struct socket *so, struct sockopt *sopt) 2025 { 2026 int error; 2027 2028 solock(so); 2029 if (sopt->sopt_level != SOL_SOCKET) { 2030 if (so->so_proto && so->so_proto->pr_ctloutput) { 2031 error = ((*so->so_proto->pr_ctloutput) 2032 (PRCO_GETOPT, so, sopt)); 2033 } else 2034 error = (ENOPROTOOPT); 2035 } else { 2036 error = sogetopt1(so, sopt); 2037 } 2038 sounlock(so); 2039 return (error); 2040 } 2041 2042 /* 2043 * alloc sockopt data buffer buffer 2044 * - will be released at destroy 2045 */ 2046 static int 2047 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2048 { 2049 2050 KASSERT(sopt->sopt_size == 0); 2051 2052 if (len > sizeof(sopt->sopt_buf)) { 2053 sopt->sopt_data = kmem_zalloc(len, kmflag); 2054 if (sopt->sopt_data == NULL) 2055 return ENOMEM; 2056 } else 2057 sopt->sopt_data = sopt->sopt_buf; 2058 2059 sopt->sopt_size = len; 2060 return 0; 2061 } 2062 2063 /* 2064 * initialise sockopt storage 2065 * - MAY sleep during allocation 2066 */ 2067 void 2068 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2069 { 2070 2071 memset(sopt, 0, sizeof(*sopt)); 2072 2073 sopt->sopt_level = level; 2074 sopt->sopt_name = name; 2075 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2076 } 2077 2078 /* 2079 * destroy sockopt storage 2080 * - will release any held memory references 2081 */ 2082 void 2083 sockopt_destroy(struct sockopt *sopt) 2084 { 2085 2086 if (sopt->sopt_data != sopt->sopt_buf) 2087 kmem_free(sopt->sopt_data, sopt->sopt_size); 2088 2089 memset(sopt, 0, sizeof(*sopt)); 2090 } 2091 2092 /* 2093 * set sockopt value 2094 * - value is copied into sockopt 2095 * - memory is allocated when necessary, will not sleep 2096 */ 2097 int 2098 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2099 { 2100 int error; 2101 2102 if (sopt->sopt_size == 0) { 2103 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2104 if (error) 2105 return error; 2106 } 2107 2108 KASSERT(sopt->sopt_size == len); 2109 memcpy(sopt->sopt_data, buf, len); 2110 return 0; 2111 } 2112 2113 /* 2114 * common case of set sockopt integer value 2115 */ 2116 int 2117 sockopt_setint(struct sockopt *sopt, int val) 2118 { 2119 2120 return sockopt_set(sopt, &val, sizeof(int)); 2121 } 2122 2123 /* 2124 * get sockopt value 2125 * - correct size must be given 2126 */ 2127 int 2128 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2129 { 2130 2131 if (sopt->sopt_size != len) 2132 return EINVAL; 2133 2134 memcpy(buf, sopt->sopt_data, len); 2135 return 0; 2136 } 2137 2138 /* 2139 * common case of get sockopt integer value 2140 */ 2141 int 2142 sockopt_getint(const struct sockopt *sopt, int *valp) 2143 { 2144 2145 return sockopt_get(sopt, valp, sizeof(int)); 2146 } 2147 2148 /* 2149 * set sockopt value from mbuf 2150 * - ONLY for legacy code 2151 * - mbuf is released by sockopt 2152 * - will not sleep 2153 */ 2154 int 2155 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2156 { 2157 size_t len; 2158 int error; 2159 2160 len = m_length(m); 2161 2162 if (sopt->sopt_size == 0) { 2163 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2164 if (error) 2165 return error; 2166 } 2167 2168 KASSERT(sopt->sopt_size == len); 2169 m_copydata(m, 0, len, sopt->sopt_data); 2170 m_freem(m); 2171 2172 return 0; 2173 } 2174 2175 /* 2176 * get sockopt value into mbuf 2177 * - ONLY for legacy code 2178 * - mbuf to be released by the caller 2179 * - will not sleep 2180 */ 2181 struct mbuf * 2182 sockopt_getmbuf(const struct sockopt *sopt) 2183 { 2184 struct mbuf *m; 2185 2186 if (sopt->sopt_size > MCLBYTES) 2187 return NULL; 2188 2189 m = m_get(M_DONTWAIT, MT_SOOPTS); 2190 if (m == NULL) 2191 return NULL; 2192 2193 if (sopt->sopt_size > MLEN) { 2194 MCLGET(m, M_DONTWAIT); 2195 if ((m->m_flags & M_EXT) == 0) { 2196 m_free(m); 2197 return NULL; 2198 } 2199 } 2200 2201 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2202 m->m_len = sopt->sopt_size; 2203 2204 return m; 2205 } 2206 2207 void 2208 sohasoutofband(struct socket *so) 2209 { 2210 2211 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2212 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2213 } 2214 2215 static void 2216 filt_sordetach(struct knote *kn) 2217 { 2218 struct socket *so; 2219 2220 so = ((file_t *)kn->kn_obj)->f_socket; 2221 solock(so); 2222 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2223 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2224 so->so_rcv.sb_flags &= ~SB_KNOTE; 2225 sounlock(so); 2226 } 2227 2228 /*ARGSUSED*/ 2229 static int 2230 filt_soread(struct knote *kn, long hint) 2231 { 2232 struct socket *so; 2233 int rv; 2234 2235 so = ((file_t *)kn->kn_obj)->f_socket; 2236 if (hint != NOTE_SUBMIT) 2237 solock(so); 2238 kn->kn_data = so->so_rcv.sb_cc; 2239 if (so->so_state & SS_CANTRCVMORE) { 2240 kn->kn_flags |= EV_EOF; 2241 kn->kn_fflags = so->so_error; 2242 rv = 1; 2243 } else if (so->so_error) /* temporary udp error */ 2244 rv = 1; 2245 else if (kn->kn_sfflags & NOTE_LOWAT) 2246 rv = (kn->kn_data >= kn->kn_sdata); 2247 else 2248 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2249 if (hint != NOTE_SUBMIT) 2250 sounlock(so); 2251 return rv; 2252 } 2253 2254 static void 2255 filt_sowdetach(struct knote *kn) 2256 { 2257 struct socket *so; 2258 2259 so = ((file_t *)kn->kn_obj)->f_socket; 2260 solock(so); 2261 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2262 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2263 so->so_snd.sb_flags &= ~SB_KNOTE; 2264 sounlock(so); 2265 } 2266 2267 /*ARGSUSED*/ 2268 static int 2269 filt_sowrite(struct knote *kn, long hint) 2270 { 2271 struct socket *so; 2272 int rv; 2273 2274 so = ((file_t *)kn->kn_obj)->f_socket; 2275 if (hint != NOTE_SUBMIT) 2276 solock(so); 2277 kn->kn_data = sbspace(&so->so_snd); 2278 if (so->so_state & SS_CANTSENDMORE) { 2279 kn->kn_flags |= EV_EOF; 2280 kn->kn_fflags = so->so_error; 2281 rv = 1; 2282 } else if (so->so_error) /* temporary udp error */ 2283 rv = 1; 2284 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2285 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2286 rv = 0; 2287 else if (kn->kn_sfflags & NOTE_LOWAT) 2288 rv = (kn->kn_data >= kn->kn_sdata); 2289 else 2290 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2291 if (hint != NOTE_SUBMIT) 2292 sounlock(so); 2293 return rv; 2294 } 2295 2296 /*ARGSUSED*/ 2297 static int 2298 filt_solisten(struct knote *kn, long hint) 2299 { 2300 struct socket *so; 2301 int rv; 2302 2303 so = ((file_t *)kn->kn_obj)->f_socket; 2304 2305 /* 2306 * Set kn_data to number of incoming connections, not 2307 * counting partial (incomplete) connections. 2308 */ 2309 if (hint != NOTE_SUBMIT) 2310 solock(so); 2311 kn->kn_data = so->so_qlen; 2312 rv = (kn->kn_data > 0); 2313 if (hint != NOTE_SUBMIT) 2314 sounlock(so); 2315 return rv; 2316 } 2317 2318 static const struct filterops solisten_filtops = 2319 { 1, NULL, filt_sordetach, filt_solisten }; 2320 static const struct filterops soread_filtops = 2321 { 1, NULL, filt_sordetach, filt_soread }; 2322 static const struct filterops sowrite_filtops = 2323 { 1, NULL, filt_sowdetach, filt_sowrite }; 2324 2325 int 2326 soo_kqfilter(struct file *fp, struct knote *kn) 2327 { 2328 struct socket *so; 2329 struct sockbuf *sb; 2330 2331 so = ((file_t *)kn->kn_obj)->f_socket; 2332 solock(so); 2333 switch (kn->kn_filter) { 2334 case EVFILT_READ: 2335 if (so->so_options & SO_ACCEPTCONN) 2336 kn->kn_fop = &solisten_filtops; 2337 else 2338 kn->kn_fop = &soread_filtops; 2339 sb = &so->so_rcv; 2340 break; 2341 case EVFILT_WRITE: 2342 kn->kn_fop = &sowrite_filtops; 2343 sb = &so->so_snd; 2344 break; 2345 default: 2346 sounlock(so); 2347 return (EINVAL); 2348 } 2349 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2350 sb->sb_flags |= SB_KNOTE; 2351 sounlock(so); 2352 return (0); 2353 } 2354 2355 static int 2356 sodopoll(struct socket *so, int events) 2357 { 2358 int revents; 2359 2360 revents = 0; 2361 2362 if (events & (POLLIN | POLLRDNORM)) 2363 if (soreadable(so)) 2364 revents |= events & (POLLIN | POLLRDNORM); 2365 2366 if (events & (POLLOUT | POLLWRNORM)) 2367 if (sowritable(so)) 2368 revents |= events & (POLLOUT | POLLWRNORM); 2369 2370 if (events & (POLLPRI | POLLRDBAND)) 2371 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2372 revents |= events & (POLLPRI | POLLRDBAND); 2373 2374 return revents; 2375 } 2376 2377 int 2378 sopoll(struct socket *so, int events) 2379 { 2380 int revents = 0; 2381 2382 #ifndef DIAGNOSTIC 2383 /* 2384 * Do a quick, unlocked check in expectation that the socket 2385 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2386 * as the solocked() assertions will fail. 2387 */ 2388 if ((revents = sodopoll(so, events)) != 0) 2389 return revents; 2390 #endif 2391 2392 solock(so); 2393 if ((revents = sodopoll(so, events)) == 0) { 2394 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2395 selrecord(curlwp, &so->so_rcv.sb_sel); 2396 so->so_rcv.sb_flags |= SB_NOTIFY; 2397 } 2398 2399 if (events & (POLLOUT | POLLWRNORM)) { 2400 selrecord(curlwp, &so->so_snd.sb_sel); 2401 so->so_snd.sb_flags |= SB_NOTIFY; 2402 } 2403 } 2404 sounlock(so); 2405 2406 return revents; 2407 } 2408 2409 2410 #include <sys/sysctl.h> 2411 2412 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2413 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2414 2415 /* 2416 * sysctl helper routine for kern.somaxkva. ensures that the given 2417 * value is not too small. 2418 * (XXX should we maybe make sure it's not too large as well?) 2419 */ 2420 static int 2421 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2422 { 2423 int error, new_somaxkva; 2424 struct sysctlnode node; 2425 2426 new_somaxkva = somaxkva; 2427 node = *rnode; 2428 node.sysctl_data = &new_somaxkva; 2429 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2430 if (error || newp == NULL) 2431 return (error); 2432 2433 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2434 return (EINVAL); 2435 2436 mutex_enter(&so_pendfree_lock); 2437 somaxkva = new_somaxkva; 2438 cv_broadcast(&socurkva_cv); 2439 mutex_exit(&so_pendfree_lock); 2440 2441 return (error); 2442 } 2443 2444 /* 2445 * sysctl helper routine for kern.sbmax. Basically just ensures that 2446 * any new value is not too small. 2447 */ 2448 static int 2449 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2450 { 2451 int error, new_sbmax; 2452 struct sysctlnode node; 2453 2454 new_sbmax = sb_max; 2455 node = *rnode; 2456 node.sysctl_data = &new_sbmax; 2457 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2458 if (error || newp == NULL) 2459 return (error); 2460 2461 KERNEL_LOCK(1, NULL); 2462 error = sb_max_set(new_sbmax); 2463 KERNEL_UNLOCK_ONE(NULL); 2464 2465 return (error); 2466 } 2467 2468 static void 2469 sysctl_kern_socket_setup(void) 2470 { 2471 2472 KASSERT(socket_sysctllog == NULL); 2473 2474 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2475 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2476 CTLTYPE_INT, "somaxkva", 2477 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2478 "used for socket buffers"), 2479 sysctl_kern_somaxkva, 0, NULL, 0, 2480 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2481 2482 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2483 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2484 CTLTYPE_INT, "sbmax", 2485 SYSCTL_DESCR("Maximum socket buffer size"), 2486 sysctl_kern_sbmax, 0, NULL, 0, 2487 CTL_KERN, KERN_SBMAX, CTL_EOL); 2488 } 2489