1 /* $NetBSD: uipc_socket.c,v 1.206 2011/12/20 23:56:28 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.206 2011/12/20 23:56:28 christos Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 #include <sys/kthread.h> 96 97 #ifdef COMPAT_50 98 #include <compat/sys/time.h> 99 #include <compat/sys/socket.h> 100 #endif 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_loan.h> 104 #include <uvm/uvm_page.h> 105 106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 107 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 108 109 extern const struct fileops socketops; 110 111 extern int somaxconn; /* patchable (XXX sysctl) */ 112 int somaxconn = SOMAXCONN; 113 kmutex_t *softnet_lock; 114 115 #ifdef SOSEND_COUNTERS 116 #include <sys/device.h> 117 118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 119 NULL, "sosend", "loan big"); 120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 121 NULL, "sosend", "copy big"); 122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 123 NULL, "sosend", "copy small"); 124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 125 NULL, "sosend", "kva limit"); 126 127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 128 129 EVCNT_ATTACH_STATIC(sosend_loan_big); 130 EVCNT_ATTACH_STATIC(sosend_copy_big); 131 EVCNT_ATTACH_STATIC(sosend_copy_small); 132 EVCNT_ATTACH_STATIC(sosend_kvalimit); 133 #else 134 135 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 136 137 #endif /* SOSEND_COUNTERS */ 138 139 static struct callback_entry sokva_reclaimerentry; 140 141 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 142 int sock_loan_thresh = -1; 143 #else 144 int sock_loan_thresh = 4096; 145 #endif 146 147 static kmutex_t so_pendfree_lock; 148 static struct mbuf *so_pendfree = NULL; 149 150 #ifndef SOMAXKVA 151 #define SOMAXKVA (16 * 1024 * 1024) 152 #endif 153 int somaxkva = SOMAXKVA; 154 static int socurkva; 155 static kcondvar_t socurkva_cv; 156 157 static kauth_listener_t socket_listener; 158 159 #define SOCK_LOAN_CHUNK 65536 160 161 static void sopendfree_thread(void *); 162 static kcondvar_t pendfree_thread_cv; 163 static lwp_t *sopendfree_lwp; 164 165 static void sysctl_kern_somaxkva_setup(void); 166 static struct sysctllog *socket_sysctllog; 167 168 static vsize_t 169 sokvareserve(struct socket *so, vsize_t len) 170 { 171 int error; 172 173 mutex_enter(&so_pendfree_lock); 174 while (socurkva + len > somaxkva) { 175 SOSEND_COUNTER_INCR(&sosend_kvalimit); 176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 177 if (error) { 178 len = 0; 179 break; 180 } 181 } 182 socurkva += len; 183 mutex_exit(&so_pendfree_lock); 184 return len; 185 } 186 187 static void 188 sokvaunreserve(vsize_t len) 189 { 190 191 mutex_enter(&so_pendfree_lock); 192 socurkva -= len; 193 cv_broadcast(&socurkva_cv); 194 mutex_exit(&so_pendfree_lock); 195 } 196 197 /* 198 * sokvaalloc: allocate kva for loan. 199 */ 200 201 vaddr_t 202 sokvaalloc(vsize_t len, struct socket *so) 203 { 204 vaddr_t lva; 205 206 /* 207 * reserve kva. 208 */ 209 210 if (sokvareserve(so, len) == 0) 211 return 0; 212 213 /* 214 * allocate kva. 215 */ 216 217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 218 if (lva == 0) { 219 sokvaunreserve(len); 220 return (0); 221 } 222 223 return lva; 224 } 225 226 /* 227 * sokvafree: free kva for loan. 228 */ 229 230 void 231 sokvafree(vaddr_t sva, vsize_t len) 232 { 233 234 /* 235 * free kva. 236 */ 237 238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 239 240 /* 241 * unreserve kva. 242 */ 243 244 sokvaunreserve(len); 245 } 246 247 static void 248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 249 { 250 vaddr_t sva, eva; 251 vsize_t len; 252 int npgs; 253 254 KASSERT(pgs != NULL); 255 256 eva = round_page((vaddr_t) buf + size); 257 sva = trunc_page((vaddr_t) buf); 258 len = eva - sva; 259 npgs = len >> PAGE_SHIFT; 260 261 pmap_kremove(sva, len); 262 pmap_update(pmap_kernel()); 263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 264 sokvafree(sva, len); 265 } 266 267 /* 268 * sopendfree_thread: free mbufs on "pendfree" list. 269 * unlock and relock so_pendfree_lock when freeing mbufs. 270 */ 271 272 static void 273 sopendfree_thread(void *v) 274 { 275 struct mbuf *m, *next; 276 size_t rv; 277 278 mutex_enter(&so_pendfree_lock); 279 280 for (;;) { 281 rv = 0; 282 while (so_pendfree != NULL) { 283 m = so_pendfree; 284 so_pendfree = NULL; 285 mutex_exit(&so_pendfree_lock); 286 287 for (; m != NULL; m = next) { 288 next = m->m_next; 289 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 290 KASSERT(m->m_ext.ext_refcnt == 0); 291 292 rv += m->m_ext.ext_size; 293 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 294 m->m_ext.ext_size); 295 pool_cache_put(mb_cache, m); 296 } 297 298 mutex_enter(&so_pendfree_lock); 299 } 300 if (rv) 301 cv_broadcast(&socurkva_cv); 302 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 303 } 304 panic("sopendfree_thread"); 305 /* NOTREACHED */ 306 } 307 308 void 309 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 310 { 311 312 KASSERT(m != NULL); 313 314 /* 315 * postpone freeing mbuf. 316 * 317 * we can't do it in interrupt context 318 * because we need to put kva back to kernel_map. 319 */ 320 321 mutex_enter(&so_pendfree_lock); 322 m->m_next = so_pendfree; 323 so_pendfree = m; 324 cv_signal(&pendfree_thread_cv); 325 mutex_exit(&so_pendfree_lock); 326 } 327 328 static long 329 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 330 { 331 struct iovec *iov = uio->uio_iov; 332 vaddr_t sva, eva; 333 vsize_t len; 334 vaddr_t lva; 335 int npgs, error; 336 vaddr_t va; 337 int i; 338 339 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 340 return (0); 341 342 if (iov->iov_len < (size_t) space) 343 space = iov->iov_len; 344 if (space > SOCK_LOAN_CHUNK) 345 space = SOCK_LOAN_CHUNK; 346 347 eva = round_page((vaddr_t) iov->iov_base + space); 348 sva = trunc_page((vaddr_t) iov->iov_base); 349 len = eva - sva; 350 npgs = len >> PAGE_SHIFT; 351 352 KASSERT(npgs <= M_EXT_MAXPAGES); 353 354 lva = sokvaalloc(len, so); 355 if (lva == 0) 356 return 0; 357 358 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 359 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 360 if (error) { 361 sokvafree(lva, len); 362 return (0); 363 } 364 365 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 366 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 367 VM_PROT_READ, 0); 368 pmap_update(pmap_kernel()); 369 370 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 371 372 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 373 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 374 375 uio->uio_resid -= space; 376 /* uio_offset not updated, not set/used for write(2) */ 377 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 378 uio->uio_iov->iov_len -= space; 379 if (uio->uio_iov->iov_len == 0) { 380 uio->uio_iov++; 381 uio->uio_iovcnt--; 382 } 383 384 return (space); 385 } 386 387 static int 388 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 389 { 390 391 KASSERT(ce == &sokva_reclaimerentry); 392 KASSERT(obj == NULL); 393 394 if (!vm_map_starved_p(kernel_map)) { 395 return CALLBACK_CHAIN_ABORT; 396 } 397 return CALLBACK_CHAIN_CONTINUE; 398 } 399 400 struct mbuf * 401 getsombuf(struct socket *so, int type) 402 { 403 struct mbuf *m; 404 405 m = m_get(M_WAIT, type); 406 MCLAIM(m, so->so_mowner); 407 return m; 408 } 409 410 static int 411 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 412 void *arg0, void *arg1, void *arg2, void *arg3) 413 { 414 int result; 415 enum kauth_network_req req; 416 417 result = KAUTH_RESULT_DEFER; 418 req = (enum kauth_network_req)arg0; 419 420 if ((action != KAUTH_NETWORK_SOCKET) && 421 (action != KAUTH_NETWORK_BIND)) 422 return result; 423 424 switch (req) { 425 case KAUTH_REQ_NETWORK_BIND_PORT: 426 result = KAUTH_RESULT_ALLOW; 427 break; 428 429 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 430 /* Normal users can only drop their own connections. */ 431 struct socket *so = (struct socket *)arg1; 432 433 if (proc_uidmatch(cred, so->so_cred)) 434 result = KAUTH_RESULT_ALLOW; 435 436 break; 437 } 438 439 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 440 /* We allow "raw" routing/bluetooth sockets to anyone. */ 441 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 442 || (u_long)arg1 == PF_BLUETOOTH) { 443 result = KAUTH_RESULT_ALLOW; 444 } else { 445 /* Privileged, let secmodel handle this. */ 446 if ((u_long)arg2 == SOCK_RAW) 447 break; 448 } 449 450 result = KAUTH_RESULT_ALLOW; 451 452 break; 453 454 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 455 result = KAUTH_RESULT_ALLOW; 456 457 break; 458 459 default: 460 break; 461 } 462 463 return result; 464 } 465 466 void 467 soinit(void) 468 { 469 470 sysctl_kern_somaxkva_setup(); 471 472 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 473 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 474 cv_init(&socurkva_cv, "sokva"); 475 cv_init(&pendfree_thread_cv, "sopendfr"); 476 soinit2(); 477 478 /* Set the initial adjusted socket buffer size. */ 479 if (sb_max_set(sb_max)) 480 panic("bad initial sb_max value: %lu", sb_max); 481 482 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 483 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 484 485 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 486 socket_listener_cb, NULL); 487 } 488 489 void 490 soinit1(void) 491 { 492 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 493 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 494 if (error) 495 panic("soinit1 %d", error); 496 } 497 498 /* 499 * Socket operation routines. 500 * These routines are called by the routines in 501 * sys_socket.c or from a system process, and 502 * implement the semantics of socket operations by 503 * switching out to the protocol specific routines. 504 */ 505 /*ARGSUSED*/ 506 int 507 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 508 struct socket *lockso) 509 { 510 const struct protosw *prp; 511 struct socket *so; 512 uid_t uid; 513 int error; 514 kmutex_t *lock; 515 516 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 517 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 518 KAUTH_ARG(proto)); 519 if (error != 0) 520 return error; 521 522 if (proto) 523 prp = pffindproto(dom, proto, type); 524 else 525 prp = pffindtype(dom, type); 526 if (prp == NULL) { 527 /* no support for domain */ 528 if (pffinddomain(dom) == 0) 529 return EAFNOSUPPORT; 530 /* no support for socket type */ 531 if (proto == 0 && type != 0) 532 return EPROTOTYPE; 533 return EPROTONOSUPPORT; 534 } 535 if (prp->pr_usrreq == NULL) 536 return EPROTONOSUPPORT; 537 if (prp->pr_type != type) 538 return EPROTOTYPE; 539 540 so = soget(true); 541 so->so_type = type; 542 so->so_proto = prp; 543 so->so_send = sosend; 544 so->so_receive = soreceive; 545 #ifdef MBUFTRACE 546 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 547 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 548 so->so_mowner = &prp->pr_domain->dom_mowner; 549 #endif 550 uid = kauth_cred_geteuid(l->l_cred); 551 so->so_uidinfo = uid_find(uid); 552 so->so_cpid = l->l_proc->p_pid; 553 if (lockso != NULL) { 554 /* Caller wants us to share a lock. */ 555 lock = lockso->so_lock; 556 so->so_lock = lock; 557 mutex_obj_hold(lock); 558 mutex_enter(lock); 559 } else { 560 /* Lock assigned and taken during PRU_ATTACH. */ 561 } 562 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 563 (struct mbuf *)(long)proto, NULL, l); 564 KASSERT(solocked(so)); 565 if (error != 0) { 566 so->so_state |= SS_NOFDREF; 567 sofree(so); 568 return error; 569 } 570 so->so_cred = kauth_cred_dup(l->l_cred); 571 sounlock(so); 572 *aso = so; 573 return 0; 574 } 575 576 /* On success, write file descriptor to fdout and return zero. On 577 * failure, return non-zero; *fdout will be undefined. 578 */ 579 int 580 fsocreate(int domain, struct socket **sop, int type, int protocol, 581 struct lwp *l, int *fdout) 582 { 583 struct socket *so; 584 struct file *fp; 585 int fd, error; 586 int flags = type & SOCK_FLAGS_MASK; 587 588 type &= ~SOCK_FLAGS_MASK; 589 if ((error = fd_allocfile(&fp, &fd)) != 0) 590 return error; 591 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 592 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0); 593 fp->f_type = DTYPE_SOCKET; 594 fp->f_ops = &socketops; 595 error = socreate(domain, &so, type, protocol, l, NULL); 596 if (error != 0) { 597 fd_abort(curproc, fp, fd); 598 } else { 599 if (sop != NULL) 600 *sop = so; 601 fp->f_data = so; 602 fd_affix(curproc, fp, fd); 603 *fdout = fd; 604 } 605 return error; 606 } 607 608 int 609 sofamily(const struct socket *so) 610 { 611 const struct protosw *pr; 612 const struct domain *dom; 613 614 if ((pr = so->so_proto) == NULL) 615 return AF_UNSPEC; 616 if ((dom = pr->pr_domain) == NULL) 617 return AF_UNSPEC; 618 return dom->dom_family; 619 } 620 621 int 622 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 623 { 624 int error; 625 626 solock(so); 627 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 628 sounlock(so); 629 return error; 630 } 631 632 int 633 solisten(struct socket *so, int backlog, struct lwp *l) 634 { 635 int error; 636 637 solock(so); 638 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 639 SS_ISDISCONNECTING)) != 0) { 640 sounlock(so); 641 return (EOPNOTSUPP); 642 } 643 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 644 NULL, NULL, l); 645 if (error != 0) { 646 sounlock(so); 647 return error; 648 } 649 if (TAILQ_EMPTY(&so->so_q)) 650 so->so_options |= SO_ACCEPTCONN; 651 if (backlog < 0) 652 backlog = 0; 653 so->so_qlimit = min(backlog, somaxconn); 654 sounlock(so); 655 return 0; 656 } 657 658 void 659 sofree(struct socket *so) 660 { 661 u_int refs; 662 663 KASSERT(solocked(so)); 664 665 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 666 sounlock(so); 667 return; 668 } 669 if (so->so_head) { 670 /* 671 * We must not decommission a socket that's on the accept(2) 672 * queue. If we do, then accept(2) may hang after select(2) 673 * indicated that the listening socket was ready. 674 */ 675 if (!soqremque(so, 0)) { 676 sounlock(so); 677 return; 678 } 679 } 680 if (so->so_rcv.sb_hiwat) 681 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 682 RLIM_INFINITY); 683 if (so->so_snd.sb_hiwat) 684 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 685 RLIM_INFINITY); 686 sbrelease(&so->so_snd, so); 687 KASSERT(!cv_has_waiters(&so->so_cv)); 688 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 689 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 690 sorflush(so); 691 refs = so->so_aborting; /* XXX */ 692 /* Remove acccept filter if one is present. */ 693 if (so->so_accf != NULL) 694 (void)accept_filt_clear(so); 695 sounlock(so); 696 if (refs == 0) /* XXX */ 697 soput(so); 698 } 699 700 /* 701 * Close a socket on last file table reference removal. 702 * Initiate disconnect if connected. 703 * Free socket when disconnect complete. 704 */ 705 int 706 soclose(struct socket *so) 707 { 708 struct socket *so2; 709 int error; 710 int error2; 711 712 error = 0; 713 solock(so); 714 if (so->so_options & SO_ACCEPTCONN) { 715 for (;;) { 716 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 717 KASSERT(solocked2(so, so2)); 718 (void) soqremque(so2, 0); 719 /* soabort drops the lock. */ 720 (void) soabort(so2); 721 solock(so); 722 continue; 723 } 724 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 725 KASSERT(solocked2(so, so2)); 726 (void) soqremque(so2, 1); 727 /* soabort drops the lock. */ 728 (void) soabort(so2); 729 solock(so); 730 continue; 731 } 732 break; 733 } 734 } 735 if (so->so_pcb == 0) 736 goto discard; 737 if (so->so_state & SS_ISCONNECTED) { 738 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 739 error = sodisconnect(so); 740 if (error) 741 goto drop; 742 } 743 if (so->so_options & SO_LINGER) { 744 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 745 (SS_ISDISCONNECTING|SS_NBIO)) 746 goto drop; 747 while (so->so_state & SS_ISCONNECTED) { 748 error = sowait(so, true, so->so_linger * hz); 749 if (error) 750 break; 751 } 752 } 753 } 754 drop: 755 if (so->so_pcb) { 756 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 757 NULL, NULL, NULL, NULL); 758 if (error == 0) 759 error = error2; 760 } 761 discard: 762 if (so->so_state & SS_NOFDREF) 763 panic("soclose: NOFDREF"); 764 kauth_cred_free(so->so_cred); 765 so->so_state |= SS_NOFDREF; 766 sofree(so); 767 return (error); 768 } 769 770 /* 771 * Must be called with the socket locked.. Will return with it unlocked. 772 */ 773 int 774 soabort(struct socket *so) 775 { 776 u_int refs; 777 int error; 778 779 KASSERT(solocked(so)); 780 KASSERT(so->so_head == NULL); 781 782 so->so_aborting++; /* XXX */ 783 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 784 NULL, NULL, NULL); 785 refs = --so->so_aborting; /* XXX */ 786 if (error || (refs == 0)) { 787 sofree(so); 788 } else { 789 sounlock(so); 790 } 791 return error; 792 } 793 794 int 795 soaccept(struct socket *so, struct mbuf *nam) 796 { 797 int error; 798 799 KASSERT(solocked(so)); 800 801 error = 0; 802 if ((so->so_state & SS_NOFDREF) == 0) 803 panic("soaccept: !NOFDREF"); 804 so->so_state &= ~SS_NOFDREF; 805 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 806 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 807 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 808 NULL, nam, NULL, NULL); 809 else 810 error = ECONNABORTED; 811 812 return (error); 813 } 814 815 int 816 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 817 { 818 int error; 819 820 KASSERT(solocked(so)); 821 822 if (so->so_options & SO_ACCEPTCONN) 823 return (EOPNOTSUPP); 824 /* 825 * If protocol is connection-based, can only connect once. 826 * Otherwise, if connected, try to disconnect first. 827 * This allows user to disconnect by connecting to, e.g., 828 * a null address. 829 */ 830 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 831 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 832 (error = sodisconnect(so)))) 833 error = EISCONN; 834 else 835 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 836 NULL, nam, NULL, l); 837 return (error); 838 } 839 840 int 841 soconnect2(struct socket *so1, struct socket *so2) 842 { 843 int error; 844 845 KASSERT(solocked2(so1, so2)); 846 847 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 848 NULL, (struct mbuf *)so2, NULL, NULL); 849 return (error); 850 } 851 852 int 853 sodisconnect(struct socket *so) 854 { 855 int error; 856 857 KASSERT(solocked(so)); 858 859 if ((so->so_state & SS_ISCONNECTED) == 0) { 860 error = ENOTCONN; 861 } else if (so->so_state & SS_ISDISCONNECTING) { 862 error = EALREADY; 863 } else { 864 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 865 NULL, NULL, NULL, NULL); 866 } 867 return (error); 868 } 869 870 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 871 /* 872 * Send on a socket. 873 * If send must go all at once and message is larger than 874 * send buffering, then hard error. 875 * Lock against other senders. 876 * If must go all at once and not enough room now, then 877 * inform user that this would block and do nothing. 878 * Otherwise, if nonblocking, send as much as possible. 879 * The data to be sent is described by "uio" if nonzero, 880 * otherwise by the mbuf chain "top" (which must be null 881 * if uio is not). Data provided in mbuf chain must be small 882 * enough to send all at once. 883 * 884 * Returns nonzero on error, timeout or signal; callers 885 * must check for short counts if EINTR/ERESTART are returned. 886 * Data and control buffers are freed on return. 887 */ 888 int 889 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 890 struct mbuf *control, int flags, struct lwp *l) 891 { 892 struct mbuf **mp, *m; 893 struct proc *p; 894 long space, len, resid, clen, mlen; 895 int error, s, dontroute, atomic; 896 short wakeup_state = 0; 897 898 p = l->l_proc; 899 clen = 0; 900 901 /* 902 * solock() provides atomicity of access. splsoftnet() prevents 903 * protocol processing soft interrupts from interrupting us and 904 * blocking (expensive). 905 */ 906 s = splsoftnet(); 907 solock(so); 908 atomic = sosendallatonce(so) || top; 909 if (uio) 910 resid = uio->uio_resid; 911 else 912 resid = top->m_pkthdr.len; 913 /* 914 * In theory resid should be unsigned. 915 * However, space must be signed, as it might be less than 0 916 * if we over-committed, and we must use a signed comparison 917 * of space and resid. On the other hand, a negative resid 918 * causes us to loop sending 0-length segments to the protocol. 919 */ 920 if (resid < 0) { 921 error = EINVAL; 922 goto out; 923 } 924 dontroute = 925 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 926 (so->so_proto->pr_flags & PR_ATOMIC); 927 l->l_ru.ru_msgsnd++; 928 if (control) 929 clen = control->m_len; 930 restart: 931 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 932 goto out; 933 do { 934 if (so->so_state & SS_CANTSENDMORE) { 935 error = EPIPE; 936 goto release; 937 } 938 if (so->so_error) { 939 error = so->so_error; 940 so->so_error = 0; 941 goto release; 942 } 943 if ((so->so_state & SS_ISCONNECTED) == 0) { 944 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 945 if ((so->so_state & SS_ISCONFIRMING) == 0 && 946 !(resid == 0 && clen != 0)) { 947 error = ENOTCONN; 948 goto release; 949 } 950 } else if (addr == 0) { 951 error = EDESTADDRREQ; 952 goto release; 953 } 954 } 955 space = sbspace(&so->so_snd); 956 if (flags & MSG_OOB) 957 space += 1024; 958 if ((atomic && resid > so->so_snd.sb_hiwat) || 959 clen > so->so_snd.sb_hiwat) { 960 error = EMSGSIZE; 961 goto release; 962 } 963 if (space < resid + clen && 964 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 965 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 966 error = EWOULDBLOCK; 967 goto release; 968 } 969 sbunlock(&so->so_snd); 970 if (wakeup_state & SS_RESTARTSYS) { 971 error = ERESTART; 972 goto out; 973 } 974 error = sbwait(&so->so_snd); 975 if (error) 976 goto out; 977 wakeup_state = so->so_state; 978 goto restart; 979 } 980 wakeup_state = 0; 981 mp = ⊤ 982 space -= clen; 983 do { 984 if (uio == NULL) { 985 /* 986 * Data is prepackaged in "top". 987 */ 988 resid = 0; 989 if (flags & MSG_EOR) 990 top->m_flags |= M_EOR; 991 } else do { 992 sounlock(so); 993 splx(s); 994 if (top == NULL) { 995 m = m_gethdr(M_WAIT, MT_DATA); 996 mlen = MHLEN; 997 m->m_pkthdr.len = 0; 998 m->m_pkthdr.rcvif = NULL; 999 } else { 1000 m = m_get(M_WAIT, MT_DATA); 1001 mlen = MLEN; 1002 } 1003 MCLAIM(m, so->so_snd.sb_mowner); 1004 if (sock_loan_thresh >= 0 && 1005 uio->uio_iov->iov_len >= sock_loan_thresh && 1006 space >= sock_loan_thresh && 1007 (len = sosend_loan(so, uio, m, 1008 space)) != 0) { 1009 SOSEND_COUNTER_INCR(&sosend_loan_big); 1010 space -= len; 1011 goto have_data; 1012 } 1013 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1014 SOSEND_COUNTER_INCR(&sosend_copy_big); 1015 m_clget(m, M_DONTWAIT); 1016 if ((m->m_flags & M_EXT) == 0) 1017 goto nopages; 1018 mlen = MCLBYTES; 1019 if (atomic && top == 0) { 1020 len = lmin(MCLBYTES - max_hdr, 1021 resid); 1022 m->m_data += max_hdr; 1023 } else 1024 len = lmin(MCLBYTES, resid); 1025 space -= len; 1026 } else { 1027 nopages: 1028 SOSEND_COUNTER_INCR(&sosend_copy_small); 1029 len = lmin(lmin(mlen, resid), space); 1030 space -= len; 1031 /* 1032 * For datagram protocols, leave room 1033 * for protocol headers in first mbuf. 1034 */ 1035 if (atomic && top == 0 && len < mlen) 1036 MH_ALIGN(m, len); 1037 } 1038 error = uiomove(mtod(m, void *), (int)len, uio); 1039 have_data: 1040 resid = uio->uio_resid; 1041 m->m_len = len; 1042 *mp = m; 1043 top->m_pkthdr.len += len; 1044 s = splsoftnet(); 1045 solock(so); 1046 if (error != 0) 1047 goto release; 1048 mp = &m->m_next; 1049 if (resid <= 0) { 1050 if (flags & MSG_EOR) 1051 top->m_flags |= M_EOR; 1052 break; 1053 } 1054 } while (space > 0 && atomic); 1055 1056 if (so->so_state & SS_CANTSENDMORE) { 1057 error = EPIPE; 1058 goto release; 1059 } 1060 if (dontroute) 1061 so->so_options |= SO_DONTROUTE; 1062 if (resid > 0) 1063 so->so_state |= SS_MORETOCOME; 1064 error = (*so->so_proto->pr_usrreq)(so, 1065 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1066 top, addr, control, curlwp); 1067 if (dontroute) 1068 so->so_options &= ~SO_DONTROUTE; 1069 if (resid > 0) 1070 so->so_state &= ~SS_MORETOCOME; 1071 clen = 0; 1072 control = NULL; 1073 top = NULL; 1074 mp = ⊤ 1075 if (error != 0) 1076 goto release; 1077 } while (resid && space > 0); 1078 } while (resid); 1079 1080 release: 1081 sbunlock(&so->so_snd); 1082 out: 1083 sounlock(so); 1084 splx(s); 1085 if (top) 1086 m_freem(top); 1087 if (control) 1088 m_freem(control); 1089 return (error); 1090 } 1091 1092 /* 1093 * Following replacement or removal of the first mbuf on the first 1094 * mbuf chain of a socket buffer, push necessary state changes back 1095 * into the socket buffer so that other consumers see the values 1096 * consistently. 'nextrecord' is the callers locally stored value of 1097 * the original value of sb->sb_mb->m_nextpkt which must be restored 1098 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1099 */ 1100 static void 1101 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1102 { 1103 1104 KASSERT(solocked(sb->sb_so)); 1105 1106 /* 1107 * First, update for the new value of nextrecord. If necessary, 1108 * make it the first record. 1109 */ 1110 if (sb->sb_mb != NULL) 1111 sb->sb_mb->m_nextpkt = nextrecord; 1112 else 1113 sb->sb_mb = nextrecord; 1114 1115 /* 1116 * Now update any dependent socket buffer fields to reflect 1117 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1118 * the addition of a second clause that takes care of the 1119 * case where sb_mb has been updated, but remains the last 1120 * record. 1121 */ 1122 if (sb->sb_mb == NULL) { 1123 sb->sb_mbtail = NULL; 1124 sb->sb_lastrecord = NULL; 1125 } else if (sb->sb_mb->m_nextpkt == NULL) 1126 sb->sb_lastrecord = sb->sb_mb; 1127 } 1128 1129 /* 1130 * Implement receive operations on a socket. 1131 * We depend on the way that records are added to the sockbuf 1132 * by sbappend*. In particular, each record (mbufs linked through m_next) 1133 * must begin with an address if the protocol so specifies, 1134 * followed by an optional mbuf or mbufs containing ancillary data, 1135 * and then zero or more mbufs of data. 1136 * In order to avoid blocking network interrupts for the entire time here, 1137 * we splx() while doing the actual copy to user space. 1138 * Although the sockbuf is locked, new data may still be appended, 1139 * and thus we must maintain consistency of the sockbuf during that time. 1140 * 1141 * The caller may receive the data as a single mbuf chain by supplying 1142 * an mbuf **mp0 for use in returning the chain. The uio is then used 1143 * only for the count in uio_resid. 1144 */ 1145 int 1146 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1147 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1148 { 1149 struct lwp *l = curlwp; 1150 struct mbuf *m, **mp, *mt; 1151 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1152 const struct protosw *pr; 1153 struct mbuf *nextrecord; 1154 int mbuf_removed = 0; 1155 const struct domain *dom; 1156 short wakeup_state = 0; 1157 1158 pr = so->so_proto; 1159 atomic = pr->pr_flags & PR_ATOMIC; 1160 dom = pr->pr_domain; 1161 mp = mp0; 1162 type = 0; 1163 orig_resid = uio->uio_resid; 1164 1165 if (paddr != NULL) 1166 *paddr = NULL; 1167 if (controlp != NULL) 1168 *controlp = NULL; 1169 if (flagsp != NULL) 1170 flags = *flagsp &~ MSG_EOR; 1171 else 1172 flags = 0; 1173 1174 if (flags & MSG_OOB) { 1175 m = m_get(M_WAIT, MT_DATA); 1176 solock(so); 1177 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1178 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1179 sounlock(so); 1180 if (error) 1181 goto bad; 1182 do { 1183 error = uiomove(mtod(m, void *), 1184 (int) min(uio->uio_resid, m->m_len), uio); 1185 m = m_free(m); 1186 } while (uio->uio_resid > 0 && error == 0 && m); 1187 bad: 1188 if (m != NULL) 1189 m_freem(m); 1190 return error; 1191 } 1192 if (mp != NULL) 1193 *mp = NULL; 1194 1195 /* 1196 * solock() provides atomicity of access. splsoftnet() prevents 1197 * protocol processing soft interrupts from interrupting us and 1198 * blocking (expensive). 1199 */ 1200 s = splsoftnet(); 1201 solock(so); 1202 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1203 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1204 1205 restart: 1206 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1207 sounlock(so); 1208 splx(s); 1209 return error; 1210 } 1211 1212 m = so->so_rcv.sb_mb; 1213 /* 1214 * If we have less data than requested, block awaiting more 1215 * (subject to any timeout) if: 1216 * 1. the current count is less than the low water mark, 1217 * 2. MSG_WAITALL is set, and it is possible to do the entire 1218 * receive operation at once if we block (resid <= hiwat), or 1219 * 3. MSG_DONTWAIT is not set. 1220 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1221 * we have to do the receive in sections, and thus risk returning 1222 * a short count if a timeout or signal occurs after we start. 1223 */ 1224 if (m == NULL || 1225 ((flags & MSG_DONTWAIT) == 0 && 1226 so->so_rcv.sb_cc < uio->uio_resid && 1227 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1228 ((flags & MSG_WAITALL) && 1229 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1230 m->m_nextpkt == NULL && !atomic)) { 1231 #ifdef DIAGNOSTIC 1232 if (m == NULL && so->so_rcv.sb_cc) 1233 panic("receive 1"); 1234 #endif 1235 if (so->so_error) { 1236 if (m != NULL) 1237 goto dontblock; 1238 error = so->so_error; 1239 if ((flags & MSG_PEEK) == 0) 1240 so->so_error = 0; 1241 goto release; 1242 } 1243 if (so->so_state & SS_CANTRCVMORE) { 1244 if (m != NULL) 1245 goto dontblock; 1246 else 1247 goto release; 1248 } 1249 for (; m != NULL; m = m->m_next) 1250 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1251 m = so->so_rcv.sb_mb; 1252 goto dontblock; 1253 } 1254 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1255 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1256 error = ENOTCONN; 1257 goto release; 1258 } 1259 if (uio->uio_resid == 0) 1260 goto release; 1261 if ((so->so_state & SS_NBIO) || 1262 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1263 error = EWOULDBLOCK; 1264 goto release; 1265 } 1266 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1267 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1268 sbunlock(&so->so_rcv); 1269 if (wakeup_state & SS_RESTARTSYS) 1270 error = ERESTART; 1271 else 1272 error = sbwait(&so->so_rcv); 1273 if (error != 0) { 1274 sounlock(so); 1275 splx(s); 1276 return error; 1277 } 1278 wakeup_state = so->so_state; 1279 goto restart; 1280 } 1281 dontblock: 1282 /* 1283 * On entry here, m points to the first record of the socket buffer. 1284 * From this point onward, we maintain 'nextrecord' as a cache of the 1285 * pointer to the next record in the socket buffer. We must keep the 1286 * various socket buffer pointers and local stack versions of the 1287 * pointers in sync, pushing out modifications before dropping the 1288 * socket lock, and re-reading them when picking it up. 1289 * 1290 * Otherwise, we will race with the network stack appending new data 1291 * or records onto the socket buffer by using inconsistent/stale 1292 * versions of the field, possibly resulting in socket buffer 1293 * corruption. 1294 * 1295 * By holding the high-level sblock(), we prevent simultaneous 1296 * readers from pulling off the front of the socket buffer. 1297 */ 1298 if (l != NULL) 1299 l->l_ru.ru_msgrcv++; 1300 KASSERT(m == so->so_rcv.sb_mb); 1301 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1302 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1303 nextrecord = m->m_nextpkt; 1304 if (pr->pr_flags & PR_ADDR) { 1305 #ifdef DIAGNOSTIC 1306 if (m->m_type != MT_SONAME) 1307 panic("receive 1a"); 1308 #endif 1309 orig_resid = 0; 1310 if (flags & MSG_PEEK) { 1311 if (paddr) 1312 *paddr = m_copy(m, 0, m->m_len); 1313 m = m->m_next; 1314 } else { 1315 sbfree(&so->so_rcv, m); 1316 mbuf_removed = 1; 1317 if (paddr != NULL) { 1318 *paddr = m; 1319 so->so_rcv.sb_mb = m->m_next; 1320 m->m_next = NULL; 1321 m = so->so_rcv.sb_mb; 1322 } else { 1323 MFREE(m, so->so_rcv.sb_mb); 1324 m = so->so_rcv.sb_mb; 1325 } 1326 sbsync(&so->so_rcv, nextrecord); 1327 } 1328 } 1329 1330 /* 1331 * Process one or more MT_CONTROL mbufs present before any data mbufs 1332 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1333 * just copy the data; if !MSG_PEEK, we call into the protocol to 1334 * perform externalization (or freeing if controlp == NULL). 1335 */ 1336 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1337 struct mbuf *cm = NULL, *cmn; 1338 struct mbuf **cme = &cm; 1339 1340 do { 1341 if (flags & MSG_PEEK) { 1342 if (controlp != NULL) { 1343 *controlp = m_copy(m, 0, m->m_len); 1344 controlp = &(*controlp)->m_next; 1345 } 1346 m = m->m_next; 1347 } else { 1348 sbfree(&so->so_rcv, m); 1349 so->so_rcv.sb_mb = m->m_next; 1350 m->m_next = NULL; 1351 *cme = m; 1352 cme = &(*cme)->m_next; 1353 m = so->so_rcv.sb_mb; 1354 } 1355 } while (m != NULL && m->m_type == MT_CONTROL); 1356 if ((flags & MSG_PEEK) == 0) 1357 sbsync(&so->so_rcv, nextrecord); 1358 for (; cm != NULL; cm = cmn) { 1359 cmn = cm->m_next; 1360 cm->m_next = NULL; 1361 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1362 if (controlp != NULL) { 1363 if (dom->dom_externalize != NULL && 1364 type == SCM_RIGHTS) { 1365 sounlock(so); 1366 splx(s); 1367 error = (*dom->dom_externalize)(cm, l, 1368 (flags & MSG_CMSG_CLOEXEC) ? 1369 O_CLOEXEC : 0); 1370 s = splsoftnet(); 1371 solock(so); 1372 } 1373 *controlp = cm; 1374 while (*controlp != NULL) 1375 controlp = &(*controlp)->m_next; 1376 } else { 1377 /* 1378 * Dispose of any SCM_RIGHTS message that went 1379 * through the read path rather than recv. 1380 */ 1381 if (dom->dom_dispose != NULL && 1382 type == SCM_RIGHTS) { 1383 sounlock(so); 1384 (*dom->dom_dispose)(cm); 1385 solock(so); 1386 } 1387 m_freem(cm); 1388 } 1389 } 1390 if (m != NULL) 1391 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1392 else 1393 nextrecord = so->so_rcv.sb_mb; 1394 orig_resid = 0; 1395 } 1396 1397 /* If m is non-NULL, we have some data to read. */ 1398 if (__predict_true(m != NULL)) { 1399 type = m->m_type; 1400 if (type == MT_OOBDATA) 1401 flags |= MSG_OOB; 1402 } 1403 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1404 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1405 1406 moff = 0; 1407 offset = 0; 1408 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1409 if (m->m_type == MT_OOBDATA) { 1410 if (type != MT_OOBDATA) 1411 break; 1412 } else if (type == MT_OOBDATA) 1413 break; 1414 #ifdef DIAGNOSTIC 1415 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1416 panic("receive 3"); 1417 #endif 1418 so->so_state &= ~SS_RCVATMARK; 1419 wakeup_state = 0; 1420 len = uio->uio_resid; 1421 if (so->so_oobmark && len > so->so_oobmark - offset) 1422 len = so->so_oobmark - offset; 1423 if (len > m->m_len - moff) 1424 len = m->m_len - moff; 1425 /* 1426 * If mp is set, just pass back the mbufs. 1427 * Otherwise copy them out via the uio, then free. 1428 * Sockbuf must be consistent here (points to current mbuf, 1429 * it points to next record) when we drop priority; 1430 * we must note any additions to the sockbuf when we 1431 * block interrupts again. 1432 */ 1433 if (mp == NULL) { 1434 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1435 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1436 sounlock(so); 1437 splx(s); 1438 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1439 s = splsoftnet(); 1440 solock(so); 1441 if (error != 0) { 1442 /* 1443 * If any part of the record has been removed 1444 * (such as the MT_SONAME mbuf, which will 1445 * happen when PR_ADDR, and thus also 1446 * PR_ATOMIC, is set), then drop the entire 1447 * record to maintain the atomicity of the 1448 * receive operation. 1449 * 1450 * This avoids a later panic("receive 1a") 1451 * when compiled with DIAGNOSTIC. 1452 */ 1453 if (m && mbuf_removed && atomic) 1454 (void) sbdroprecord(&so->so_rcv); 1455 1456 goto release; 1457 } 1458 } else 1459 uio->uio_resid -= len; 1460 if (len == m->m_len - moff) { 1461 if (m->m_flags & M_EOR) 1462 flags |= MSG_EOR; 1463 if (flags & MSG_PEEK) { 1464 m = m->m_next; 1465 moff = 0; 1466 } else { 1467 nextrecord = m->m_nextpkt; 1468 sbfree(&so->so_rcv, m); 1469 if (mp) { 1470 *mp = m; 1471 mp = &m->m_next; 1472 so->so_rcv.sb_mb = m = m->m_next; 1473 *mp = NULL; 1474 } else { 1475 MFREE(m, so->so_rcv.sb_mb); 1476 m = so->so_rcv.sb_mb; 1477 } 1478 /* 1479 * If m != NULL, we also know that 1480 * so->so_rcv.sb_mb != NULL. 1481 */ 1482 KASSERT(so->so_rcv.sb_mb == m); 1483 if (m) { 1484 m->m_nextpkt = nextrecord; 1485 if (nextrecord == NULL) 1486 so->so_rcv.sb_lastrecord = m; 1487 } else { 1488 so->so_rcv.sb_mb = nextrecord; 1489 SB_EMPTY_FIXUP(&so->so_rcv); 1490 } 1491 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1492 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1493 } 1494 } else if (flags & MSG_PEEK) 1495 moff += len; 1496 else { 1497 if (mp != NULL) { 1498 mt = m_copym(m, 0, len, M_NOWAIT); 1499 if (__predict_false(mt == NULL)) { 1500 sounlock(so); 1501 mt = m_copym(m, 0, len, M_WAIT); 1502 solock(so); 1503 } 1504 *mp = mt; 1505 } 1506 m->m_data += len; 1507 m->m_len -= len; 1508 so->so_rcv.sb_cc -= len; 1509 } 1510 if (so->so_oobmark) { 1511 if ((flags & MSG_PEEK) == 0) { 1512 so->so_oobmark -= len; 1513 if (so->so_oobmark == 0) { 1514 so->so_state |= SS_RCVATMARK; 1515 break; 1516 } 1517 } else { 1518 offset += len; 1519 if (offset == so->so_oobmark) 1520 break; 1521 } 1522 } 1523 if (flags & MSG_EOR) 1524 break; 1525 /* 1526 * If the MSG_WAITALL flag is set (for non-atomic socket), 1527 * we must not quit until "uio->uio_resid == 0" or an error 1528 * termination. If a signal/timeout occurs, return 1529 * with a short count but without error. 1530 * Keep sockbuf locked against other readers. 1531 */ 1532 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1533 !sosendallatonce(so) && !nextrecord) { 1534 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1535 break; 1536 /* 1537 * If we are peeking and the socket receive buffer is 1538 * full, stop since we can't get more data to peek at. 1539 */ 1540 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1541 break; 1542 /* 1543 * If we've drained the socket buffer, tell the 1544 * protocol in case it needs to do something to 1545 * get it filled again. 1546 */ 1547 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1548 (*pr->pr_usrreq)(so, PRU_RCVD, 1549 NULL, (struct mbuf *)(long)flags, NULL, l); 1550 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1551 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1552 if (wakeup_state & SS_RESTARTSYS) 1553 error = ERESTART; 1554 else 1555 error = sbwait(&so->so_rcv); 1556 if (error != 0) { 1557 sbunlock(&so->so_rcv); 1558 sounlock(so); 1559 splx(s); 1560 return 0; 1561 } 1562 if ((m = so->so_rcv.sb_mb) != NULL) 1563 nextrecord = m->m_nextpkt; 1564 wakeup_state = so->so_state; 1565 } 1566 } 1567 1568 if (m && atomic) { 1569 flags |= MSG_TRUNC; 1570 if ((flags & MSG_PEEK) == 0) 1571 (void) sbdroprecord(&so->so_rcv); 1572 } 1573 if ((flags & MSG_PEEK) == 0) { 1574 if (m == NULL) { 1575 /* 1576 * First part is an inline SB_EMPTY_FIXUP(). Second 1577 * part makes sure sb_lastrecord is up-to-date if 1578 * there is still data in the socket buffer. 1579 */ 1580 so->so_rcv.sb_mb = nextrecord; 1581 if (so->so_rcv.sb_mb == NULL) { 1582 so->so_rcv.sb_mbtail = NULL; 1583 so->so_rcv.sb_lastrecord = NULL; 1584 } else if (nextrecord->m_nextpkt == NULL) 1585 so->so_rcv.sb_lastrecord = nextrecord; 1586 } 1587 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1588 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1589 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1590 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1591 (struct mbuf *)(long)flags, NULL, l); 1592 } 1593 if (orig_resid == uio->uio_resid && orig_resid && 1594 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1595 sbunlock(&so->so_rcv); 1596 goto restart; 1597 } 1598 1599 if (flagsp != NULL) 1600 *flagsp |= flags; 1601 release: 1602 sbunlock(&so->so_rcv); 1603 sounlock(so); 1604 splx(s); 1605 return error; 1606 } 1607 1608 int 1609 soshutdown(struct socket *so, int how) 1610 { 1611 const struct protosw *pr; 1612 int error; 1613 1614 KASSERT(solocked(so)); 1615 1616 pr = so->so_proto; 1617 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1618 return (EINVAL); 1619 1620 if (how == SHUT_RD || how == SHUT_RDWR) { 1621 sorflush(so); 1622 error = 0; 1623 } 1624 if (how == SHUT_WR || how == SHUT_RDWR) 1625 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1626 NULL, NULL, NULL); 1627 1628 return error; 1629 } 1630 1631 void 1632 sorestart(struct socket *so) 1633 { 1634 /* 1635 * An application has called close() on an fd on which another 1636 * of its threads has called a socket system call. 1637 * Mark this and wake everyone up, and code that would block again 1638 * instead returns ERESTART. 1639 * On system call re-entry the fd is validated and EBADF returned. 1640 * Any other fd will block again on the 2nd syscall. 1641 */ 1642 solock(so); 1643 so->so_state |= SS_RESTARTSYS; 1644 cv_broadcast(&so->so_cv); 1645 cv_broadcast(&so->so_snd.sb_cv); 1646 cv_broadcast(&so->so_rcv.sb_cv); 1647 sounlock(so); 1648 } 1649 1650 void 1651 sorflush(struct socket *so) 1652 { 1653 struct sockbuf *sb, asb; 1654 const struct protosw *pr; 1655 1656 KASSERT(solocked(so)); 1657 1658 sb = &so->so_rcv; 1659 pr = so->so_proto; 1660 socantrcvmore(so); 1661 sb->sb_flags |= SB_NOINTR; 1662 (void )sblock(sb, M_WAITOK); 1663 sbunlock(sb); 1664 asb = *sb; 1665 /* 1666 * Clear most of the sockbuf structure, but leave some of the 1667 * fields valid. 1668 */ 1669 memset(&sb->sb_startzero, 0, 1670 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1671 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1672 sounlock(so); 1673 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1674 solock(so); 1675 } 1676 sbrelease(&asb, so); 1677 } 1678 1679 /* 1680 * internal set SOL_SOCKET options 1681 */ 1682 static int 1683 sosetopt1(struct socket *so, const struct sockopt *sopt) 1684 { 1685 int error = EINVAL, optval, opt; 1686 struct linger l; 1687 struct timeval tv; 1688 1689 switch ((opt = sopt->sopt_name)) { 1690 1691 case SO_ACCEPTFILTER: 1692 error = accept_filt_setopt(so, sopt); 1693 KASSERT(solocked(so)); 1694 break; 1695 1696 case SO_LINGER: 1697 error = sockopt_get(sopt, &l, sizeof(l)); 1698 solock(so); 1699 if (error) 1700 break; 1701 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1702 l.l_linger > (INT_MAX / hz)) { 1703 error = EDOM; 1704 break; 1705 } 1706 so->so_linger = l.l_linger; 1707 if (l.l_onoff) 1708 so->so_options |= SO_LINGER; 1709 else 1710 so->so_options &= ~SO_LINGER; 1711 break; 1712 1713 case SO_DEBUG: 1714 case SO_KEEPALIVE: 1715 case SO_DONTROUTE: 1716 case SO_USELOOPBACK: 1717 case SO_BROADCAST: 1718 case SO_REUSEADDR: 1719 case SO_REUSEPORT: 1720 case SO_OOBINLINE: 1721 case SO_TIMESTAMP: 1722 #ifdef SO_OTIMESTAMP 1723 case SO_OTIMESTAMP: 1724 #endif 1725 error = sockopt_getint(sopt, &optval); 1726 solock(so); 1727 if (error) 1728 break; 1729 if (optval) 1730 so->so_options |= opt; 1731 else 1732 so->so_options &= ~opt; 1733 break; 1734 1735 case SO_SNDBUF: 1736 case SO_RCVBUF: 1737 case SO_SNDLOWAT: 1738 case SO_RCVLOWAT: 1739 error = sockopt_getint(sopt, &optval); 1740 solock(so); 1741 if (error) 1742 break; 1743 1744 /* 1745 * Values < 1 make no sense for any of these 1746 * options, so disallow them. 1747 */ 1748 if (optval < 1) { 1749 error = EINVAL; 1750 break; 1751 } 1752 1753 switch (opt) { 1754 case SO_SNDBUF: 1755 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1756 error = ENOBUFS; 1757 break; 1758 } 1759 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1760 break; 1761 1762 case SO_RCVBUF: 1763 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1764 error = ENOBUFS; 1765 break; 1766 } 1767 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1768 break; 1769 1770 /* 1771 * Make sure the low-water is never greater than 1772 * the high-water. 1773 */ 1774 case SO_SNDLOWAT: 1775 if (optval > so->so_snd.sb_hiwat) 1776 optval = so->so_snd.sb_hiwat; 1777 1778 so->so_snd.sb_lowat = optval; 1779 break; 1780 1781 case SO_RCVLOWAT: 1782 if (optval > so->so_rcv.sb_hiwat) 1783 optval = so->so_rcv.sb_hiwat; 1784 1785 so->so_rcv.sb_lowat = optval; 1786 break; 1787 } 1788 break; 1789 1790 #ifdef COMPAT_50 1791 case SO_OSNDTIMEO: 1792 case SO_ORCVTIMEO: { 1793 struct timeval50 otv; 1794 error = sockopt_get(sopt, &otv, sizeof(otv)); 1795 if (error) { 1796 solock(so); 1797 break; 1798 } 1799 timeval50_to_timeval(&otv, &tv); 1800 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1801 error = 0; 1802 /*FALLTHROUGH*/ 1803 } 1804 #endif /* COMPAT_50 */ 1805 1806 case SO_SNDTIMEO: 1807 case SO_RCVTIMEO: 1808 if (error) 1809 error = sockopt_get(sopt, &tv, sizeof(tv)); 1810 solock(so); 1811 if (error) 1812 break; 1813 1814 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1815 error = EDOM; 1816 break; 1817 } 1818 1819 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1820 if (optval == 0 && tv.tv_usec != 0) 1821 optval = 1; 1822 1823 switch (opt) { 1824 case SO_SNDTIMEO: 1825 so->so_snd.sb_timeo = optval; 1826 break; 1827 case SO_RCVTIMEO: 1828 so->so_rcv.sb_timeo = optval; 1829 break; 1830 } 1831 break; 1832 1833 default: 1834 solock(so); 1835 error = ENOPROTOOPT; 1836 break; 1837 } 1838 KASSERT(solocked(so)); 1839 return error; 1840 } 1841 1842 int 1843 sosetopt(struct socket *so, struct sockopt *sopt) 1844 { 1845 int error, prerr; 1846 1847 if (sopt->sopt_level == SOL_SOCKET) { 1848 error = sosetopt1(so, sopt); 1849 KASSERT(solocked(so)); 1850 } else { 1851 error = ENOPROTOOPT; 1852 solock(so); 1853 } 1854 1855 if ((error == 0 || error == ENOPROTOOPT) && 1856 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1857 /* give the protocol stack a shot */ 1858 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1859 if (prerr == 0) 1860 error = 0; 1861 else if (prerr != ENOPROTOOPT) 1862 error = prerr; 1863 } 1864 sounlock(so); 1865 return error; 1866 } 1867 1868 /* 1869 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1870 */ 1871 int 1872 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1873 const void *val, size_t valsize) 1874 { 1875 struct sockopt sopt; 1876 int error; 1877 1878 KASSERT(valsize == 0 || val != NULL); 1879 1880 sockopt_init(&sopt, level, name, valsize); 1881 sockopt_set(&sopt, val, valsize); 1882 1883 error = sosetopt(so, &sopt); 1884 1885 sockopt_destroy(&sopt); 1886 1887 return error; 1888 } 1889 1890 /* 1891 * internal get SOL_SOCKET options 1892 */ 1893 static int 1894 sogetopt1(struct socket *so, struct sockopt *sopt) 1895 { 1896 int error, optval, opt; 1897 struct linger l; 1898 struct timeval tv; 1899 1900 switch ((opt = sopt->sopt_name)) { 1901 1902 case SO_ACCEPTFILTER: 1903 error = accept_filt_getopt(so, sopt); 1904 break; 1905 1906 case SO_LINGER: 1907 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1908 l.l_linger = so->so_linger; 1909 1910 error = sockopt_set(sopt, &l, sizeof(l)); 1911 break; 1912 1913 case SO_USELOOPBACK: 1914 case SO_DONTROUTE: 1915 case SO_DEBUG: 1916 case SO_KEEPALIVE: 1917 case SO_REUSEADDR: 1918 case SO_REUSEPORT: 1919 case SO_BROADCAST: 1920 case SO_OOBINLINE: 1921 case SO_TIMESTAMP: 1922 #ifdef SO_OTIMESTAMP 1923 case SO_OTIMESTAMP: 1924 #endif 1925 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1926 break; 1927 1928 case SO_TYPE: 1929 error = sockopt_setint(sopt, so->so_type); 1930 break; 1931 1932 case SO_ERROR: 1933 error = sockopt_setint(sopt, so->so_error); 1934 so->so_error = 0; 1935 break; 1936 1937 case SO_SNDBUF: 1938 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1939 break; 1940 1941 case SO_RCVBUF: 1942 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1943 break; 1944 1945 case SO_SNDLOWAT: 1946 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1947 break; 1948 1949 case SO_RCVLOWAT: 1950 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1951 break; 1952 1953 #ifdef COMPAT_50 1954 case SO_OSNDTIMEO: 1955 case SO_ORCVTIMEO: { 1956 struct timeval50 otv; 1957 1958 optval = (opt == SO_OSNDTIMEO ? 1959 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1960 1961 otv.tv_sec = optval / hz; 1962 otv.tv_usec = (optval % hz) * tick; 1963 1964 error = sockopt_set(sopt, &otv, sizeof(otv)); 1965 break; 1966 } 1967 #endif /* COMPAT_50 */ 1968 1969 case SO_SNDTIMEO: 1970 case SO_RCVTIMEO: 1971 optval = (opt == SO_SNDTIMEO ? 1972 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1973 1974 tv.tv_sec = optval / hz; 1975 tv.tv_usec = (optval % hz) * tick; 1976 1977 error = sockopt_set(sopt, &tv, sizeof(tv)); 1978 break; 1979 1980 case SO_OVERFLOWED: 1981 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1982 break; 1983 1984 default: 1985 error = ENOPROTOOPT; 1986 break; 1987 } 1988 1989 return (error); 1990 } 1991 1992 int 1993 sogetopt(struct socket *so, struct sockopt *sopt) 1994 { 1995 int error; 1996 1997 solock(so); 1998 if (sopt->sopt_level != SOL_SOCKET) { 1999 if (so->so_proto && so->so_proto->pr_ctloutput) { 2000 error = ((*so->so_proto->pr_ctloutput) 2001 (PRCO_GETOPT, so, sopt)); 2002 } else 2003 error = (ENOPROTOOPT); 2004 } else { 2005 error = sogetopt1(so, sopt); 2006 } 2007 sounlock(so); 2008 return (error); 2009 } 2010 2011 /* 2012 * alloc sockopt data buffer buffer 2013 * - will be released at destroy 2014 */ 2015 static int 2016 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2017 { 2018 2019 KASSERT(sopt->sopt_size == 0); 2020 2021 if (len > sizeof(sopt->sopt_buf)) { 2022 sopt->sopt_data = kmem_zalloc(len, kmflag); 2023 if (sopt->sopt_data == NULL) 2024 return ENOMEM; 2025 } else 2026 sopt->sopt_data = sopt->sopt_buf; 2027 2028 sopt->sopt_size = len; 2029 return 0; 2030 } 2031 2032 /* 2033 * initialise sockopt storage 2034 * - MAY sleep during allocation 2035 */ 2036 void 2037 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2038 { 2039 2040 memset(sopt, 0, sizeof(*sopt)); 2041 2042 sopt->sopt_level = level; 2043 sopt->sopt_name = name; 2044 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2045 } 2046 2047 /* 2048 * destroy sockopt storage 2049 * - will release any held memory references 2050 */ 2051 void 2052 sockopt_destroy(struct sockopt *sopt) 2053 { 2054 2055 if (sopt->sopt_data != sopt->sopt_buf) 2056 kmem_free(sopt->sopt_data, sopt->sopt_size); 2057 2058 memset(sopt, 0, sizeof(*sopt)); 2059 } 2060 2061 /* 2062 * set sockopt value 2063 * - value is copied into sockopt 2064 * - memory is allocated when necessary, will not sleep 2065 */ 2066 int 2067 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2068 { 2069 int error; 2070 2071 if (sopt->sopt_size == 0) { 2072 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2073 if (error) 2074 return error; 2075 } 2076 2077 KASSERT(sopt->sopt_size == len); 2078 memcpy(sopt->sopt_data, buf, len); 2079 return 0; 2080 } 2081 2082 /* 2083 * common case of set sockopt integer value 2084 */ 2085 int 2086 sockopt_setint(struct sockopt *sopt, int val) 2087 { 2088 2089 return sockopt_set(sopt, &val, sizeof(int)); 2090 } 2091 2092 /* 2093 * get sockopt value 2094 * - correct size must be given 2095 */ 2096 int 2097 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2098 { 2099 2100 if (sopt->sopt_size != len) 2101 return EINVAL; 2102 2103 memcpy(buf, sopt->sopt_data, len); 2104 return 0; 2105 } 2106 2107 /* 2108 * common case of get sockopt integer value 2109 */ 2110 int 2111 sockopt_getint(const struct sockopt *sopt, int *valp) 2112 { 2113 2114 return sockopt_get(sopt, valp, sizeof(int)); 2115 } 2116 2117 /* 2118 * set sockopt value from mbuf 2119 * - ONLY for legacy code 2120 * - mbuf is released by sockopt 2121 * - will not sleep 2122 */ 2123 int 2124 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2125 { 2126 size_t len; 2127 int error; 2128 2129 len = m_length(m); 2130 2131 if (sopt->sopt_size == 0) { 2132 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2133 if (error) 2134 return error; 2135 } 2136 2137 KASSERT(sopt->sopt_size == len); 2138 m_copydata(m, 0, len, sopt->sopt_data); 2139 m_freem(m); 2140 2141 return 0; 2142 } 2143 2144 /* 2145 * get sockopt value into mbuf 2146 * - ONLY for legacy code 2147 * - mbuf to be released by the caller 2148 * - will not sleep 2149 */ 2150 struct mbuf * 2151 sockopt_getmbuf(const struct sockopt *sopt) 2152 { 2153 struct mbuf *m; 2154 2155 if (sopt->sopt_size > MCLBYTES) 2156 return NULL; 2157 2158 m = m_get(M_DONTWAIT, MT_SOOPTS); 2159 if (m == NULL) 2160 return NULL; 2161 2162 if (sopt->sopt_size > MLEN) { 2163 MCLGET(m, M_DONTWAIT); 2164 if ((m->m_flags & M_EXT) == 0) { 2165 m_free(m); 2166 return NULL; 2167 } 2168 } 2169 2170 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2171 m->m_len = sopt->sopt_size; 2172 2173 return m; 2174 } 2175 2176 void 2177 sohasoutofband(struct socket *so) 2178 { 2179 2180 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2181 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2182 } 2183 2184 static void 2185 filt_sordetach(struct knote *kn) 2186 { 2187 struct socket *so; 2188 2189 so = ((file_t *)kn->kn_obj)->f_data; 2190 solock(so); 2191 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2192 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2193 so->so_rcv.sb_flags &= ~SB_KNOTE; 2194 sounlock(so); 2195 } 2196 2197 /*ARGSUSED*/ 2198 static int 2199 filt_soread(struct knote *kn, long hint) 2200 { 2201 struct socket *so; 2202 int rv; 2203 2204 so = ((file_t *)kn->kn_obj)->f_data; 2205 if (hint != NOTE_SUBMIT) 2206 solock(so); 2207 kn->kn_data = so->so_rcv.sb_cc; 2208 if (so->so_state & SS_CANTRCVMORE) { 2209 kn->kn_flags |= EV_EOF; 2210 kn->kn_fflags = so->so_error; 2211 rv = 1; 2212 } else if (so->so_error) /* temporary udp error */ 2213 rv = 1; 2214 else if (kn->kn_sfflags & NOTE_LOWAT) 2215 rv = (kn->kn_data >= kn->kn_sdata); 2216 else 2217 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2218 if (hint != NOTE_SUBMIT) 2219 sounlock(so); 2220 return rv; 2221 } 2222 2223 static void 2224 filt_sowdetach(struct knote *kn) 2225 { 2226 struct socket *so; 2227 2228 so = ((file_t *)kn->kn_obj)->f_data; 2229 solock(so); 2230 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2231 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2232 so->so_snd.sb_flags &= ~SB_KNOTE; 2233 sounlock(so); 2234 } 2235 2236 /*ARGSUSED*/ 2237 static int 2238 filt_sowrite(struct knote *kn, long hint) 2239 { 2240 struct socket *so; 2241 int rv; 2242 2243 so = ((file_t *)kn->kn_obj)->f_data; 2244 if (hint != NOTE_SUBMIT) 2245 solock(so); 2246 kn->kn_data = sbspace(&so->so_snd); 2247 if (so->so_state & SS_CANTSENDMORE) { 2248 kn->kn_flags |= EV_EOF; 2249 kn->kn_fflags = so->so_error; 2250 rv = 1; 2251 } else if (so->so_error) /* temporary udp error */ 2252 rv = 1; 2253 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2254 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2255 rv = 0; 2256 else if (kn->kn_sfflags & NOTE_LOWAT) 2257 rv = (kn->kn_data >= kn->kn_sdata); 2258 else 2259 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2260 if (hint != NOTE_SUBMIT) 2261 sounlock(so); 2262 return rv; 2263 } 2264 2265 /*ARGSUSED*/ 2266 static int 2267 filt_solisten(struct knote *kn, long hint) 2268 { 2269 struct socket *so; 2270 int rv; 2271 2272 so = ((file_t *)kn->kn_obj)->f_data; 2273 2274 /* 2275 * Set kn_data to number of incoming connections, not 2276 * counting partial (incomplete) connections. 2277 */ 2278 if (hint != NOTE_SUBMIT) 2279 solock(so); 2280 kn->kn_data = so->so_qlen; 2281 rv = (kn->kn_data > 0); 2282 if (hint != NOTE_SUBMIT) 2283 sounlock(so); 2284 return rv; 2285 } 2286 2287 static const struct filterops solisten_filtops = 2288 { 1, NULL, filt_sordetach, filt_solisten }; 2289 static const struct filterops soread_filtops = 2290 { 1, NULL, filt_sordetach, filt_soread }; 2291 static const struct filterops sowrite_filtops = 2292 { 1, NULL, filt_sowdetach, filt_sowrite }; 2293 2294 int 2295 soo_kqfilter(struct file *fp, struct knote *kn) 2296 { 2297 struct socket *so; 2298 struct sockbuf *sb; 2299 2300 so = ((file_t *)kn->kn_obj)->f_data; 2301 solock(so); 2302 switch (kn->kn_filter) { 2303 case EVFILT_READ: 2304 if (so->so_options & SO_ACCEPTCONN) 2305 kn->kn_fop = &solisten_filtops; 2306 else 2307 kn->kn_fop = &soread_filtops; 2308 sb = &so->so_rcv; 2309 break; 2310 case EVFILT_WRITE: 2311 kn->kn_fop = &sowrite_filtops; 2312 sb = &so->so_snd; 2313 break; 2314 default: 2315 sounlock(so); 2316 return (EINVAL); 2317 } 2318 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2319 sb->sb_flags |= SB_KNOTE; 2320 sounlock(so); 2321 return (0); 2322 } 2323 2324 static int 2325 sodopoll(struct socket *so, int events) 2326 { 2327 int revents; 2328 2329 revents = 0; 2330 2331 if (events & (POLLIN | POLLRDNORM)) 2332 if (soreadable(so)) 2333 revents |= events & (POLLIN | POLLRDNORM); 2334 2335 if (events & (POLLOUT | POLLWRNORM)) 2336 if (sowritable(so)) 2337 revents |= events & (POLLOUT | POLLWRNORM); 2338 2339 if (events & (POLLPRI | POLLRDBAND)) 2340 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2341 revents |= events & (POLLPRI | POLLRDBAND); 2342 2343 return revents; 2344 } 2345 2346 int 2347 sopoll(struct socket *so, int events) 2348 { 2349 int revents = 0; 2350 2351 #ifndef DIAGNOSTIC 2352 /* 2353 * Do a quick, unlocked check in expectation that the socket 2354 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2355 * as the solocked() assertions will fail. 2356 */ 2357 if ((revents = sodopoll(so, events)) != 0) 2358 return revents; 2359 #endif 2360 2361 solock(so); 2362 if ((revents = sodopoll(so, events)) == 0) { 2363 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2364 selrecord(curlwp, &so->so_rcv.sb_sel); 2365 so->so_rcv.sb_flags |= SB_NOTIFY; 2366 } 2367 2368 if (events & (POLLOUT | POLLWRNORM)) { 2369 selrecord(curlwp, &so->so_snd.sb_sel); 2370 so->so_snd.sb_flags |= SB_NOTIFY; 2371 } 2372 } 2373 sounlock(so); 2374 2375 return revents; 2376 } 2377 2378 2379 #include <sys/sysctl.h> 2380 2381 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2382 2383 /* 2384 * sysctl helper routine for kern.somaxkva. ensures that the given 2385 * value is not too small. 2386 * (XXX should we maybe make sure it's not too large as well?) 2387 */ 2388 static int 2389 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2390 { 2391 int error, new_somaxkva; 2392 struct sysctlnode node; 2393 2394 new_somaxkva = somaxkva; 2395 node = *rnode; 2396 node.sysctl_data = &new_somaxkva; 2397 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2398 if (error || newp == NULL) 2399 return (error); 2400 2401 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2402 return (EINVAL); 2403 2404 mutex_enter(&so_pendfree_lock); 2405 somaxkva = new_somaxkva; 2406 cv_broadcast(&socurkva_cv); 2407 mutex_exit(&so_pendfree_lock); 2408 2409 return (error); 2410 } 2411 2412 static void 2413 sysctl_kern_somaxkva_setup(void) 2414 { 2415 2416 KASSERT(socket_sysctllog == NULL); 2417 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2418 CTLFLAG_PERMANENT, 2419 CTLTYPE_NODE, "kern", NULL, 2420 NULL, 0, NULL, 0, 2421 CTL_KERN, CTL_EOL); 2422 2423 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2424 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2425 CTLTYPE_INT, "somaxkva", 2426 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2427 "used for socket buffers"), 2428 sysctl_kern_somaxkva, 0, NULL, 0, 2429 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2430 } 2431