1 /* $NetBSD: uipc_socket.c,v 1.189 2009/04/30 20:41:33 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.189 2009/04/30 20:41:33 ad Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 96 #ifdef COMPAT_50 97 #include <compat/sys/time.h> 98 #include <compat/sys/socket.h> 99 #endif 100 101 #include <uvm/uvm.h> 102 103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 104 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 105 106 extern const struct fileops socketops; 107 108 extern int somaxconn; /* patchable (XXX sysctl) */ 109 int somaxconn = SOMAXCONN; 110 kmutex_t *softnet_lock; 111 112 #ifdef SOSEND_COUNTERS 113 #include <sys/device.h> 114 115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "loan big"); 117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "copy big"); 119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 120 NULL, "sosend", "copy small"); 121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 122 NULL, "sosend", "kva limit"); 123 124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 125 126 EVCNT_ATTACH_STATIC(sosend_loan_big); 127 EVCNT_ATTACH_STATIC(sosend_copy_big); 128 EVCNT_ATTACH_STATIC(sosend_copy_small); 129 EVCNT_ATTACH_STATIC(sosend_kvalimit); 130 #else 131 132 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 133 134 #endif /* SOSEND_COUNTERS */ 135 136 static struct callback_entry sokva_reclaimerentry; 137 138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 139 int sock_loan_thresh = -1; 140 #else 141 int sock_loan_thresh = 4096; 142 #endif 143 144 static kmutex_t so_pendfree_lock; 145 static struct mbuf *so_pendfree; 146 147 #ifndef SOMAXKVA 148 #define SOMAXKVA (16 * 1024 * 1024) 149 #endif 150 int somaxkva = SOMAXKVA; 151 static int socurkva; 152 static kcondvar_t socurkva_cv; 153 154 #define SOCK_LOAN_CHUNK 65536 155 156 static size_t sodopendfree(void); 157 static size_t sodopendfreel(void); 158 159 static void sysctl_kern_somaxkva_setup(void); 160 static struct sysctllog *socket_sysctllog; 161 162 static vsize_t 163 sokvareserve(struct socket *so, vsize_t len) 164 { 165 int error; 166 167 mutex_enter(&so_pendfree_lock); 168 while (socurkva + len > somaxkva) { 169 size_t freed; 170 171 /* 172 * try to do pendfree. 173 */ 174 175 freed = sodopendfreel(); 176 177 /* 178 * if some kva was freed, try again. 179 */ 180 181 if (freed) 182 continue; 183 184 SOSEND_COUNTER_INCR(&sosend_kvalimit); 185 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 186 if (error) { 187 len = 0; 188 break; 189 } 190 } 191 socurkva += len; 192 mutex_exit(&so_pendfree_lock); 193 return len; 194 } 195 196 static void 197 sokvaunreserve(vsize_t len) 198 { 199 200 mutex_enter(&so_pendfree_lock); 201 socurkva -= len; 202 cv_broadcast(&socurkva_cv); 203 mutex_exit(&so_pendfree_lock); 204 } 205 206 /* 207 * sokvaalloc: allocate kva for loan. 208 */ 209 210 vaddr_t 211 sokvaalloc(vsize_t len, struct socket *so) 212 { 213 vaddr_t lva; 214 215 /* 216 * reserve kva. 217 */ 218 219 if (sokvareserve(so, len) == 0) 220 return 0; 221 222 /* 223 * allocate kva. 224 */ 225 226 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 227 if (lva == 0) { 228 sokvaunreserve(len); 229 return (0); 230 } 231 232 return lva; 233 } 234 235 /* 236 * sokvafree: free kva for loan. 237 */ 238 239 void 240 sokvafree(vaddr_t sva, vsize_t len) 241 { 242 243 /* 244 * free kva. 245 */ 246 247 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 248 249 /* 250 * unreserve kva. 251 */ 252 253 sokvaunreserve(len); 254 } 255 256 static void 257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 258 { 259 vaddr_t sva, eva; 260 vsize_t len; 261 int npgs; 262 263 KASSERT(pgs != NULL); 264 265 eva = round_page((vaddr_t) buf + size); 266 sva = trunc_page((vaddr_t) buf); 267 len = eva - sva; 268 npgs = len >> PAGE_SHIFT; 269 270 pmap_kremove(sva, len); 271 pmap_update(pmap_kernel()); 272 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 273 sokvafree(sva, len); 274 } 275 276 static size_t 277 sodopendfree(void) 278 { 279 size_t rv; 280 281 if (__predict_true(so_pendfree == NULL)) 282 return 0; 283 284 mutex_enter(&so_pendfree_lock); 285 rv = sodopendfreel(); 286 mutex_exit(&so_pendfree_lock); 287 288 return rv; 289 } 290 291 /* 292 * sodopendfreel: free mbufs on "pendfree" list. 293 * unlock and relock so_pendfree_lock when freeing mbufs. 294 * 295 * => called with so_pendfree_lock held. 296 */ 297 298 static size_t 299 sodopendfreel(void) 300 { 301 struct mbuf *m, *next; 302 size_t rv = 0; 303 304 KASSERT(mutex_owned(&so_pendfree_lock)); 305 306 while (so_pendfree != NULL) { 307 m = so_pendfree; 308 so_pendfree = NULL; 309 mutex_exit(&so_pendfree_lock); 310 311 for (; m != NULL; m = next) { 312 next = m->m_next; 313 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 314 KASSERT(m->m_ext.ext_refcnt == 0); 315 316 rv += m->m_ext.ext_size; 317 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 318 m->m_ext.ext_size); 319 pool_cache_put(mb_cache, m); 320 } 321 322 mutex_enter(&so_pendfree_lock); 323 } 324 325 return (rv); 326 } 327 328 void 329 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 330 { 331 332 KASSERT(m != NULL); 333 334 /* 335 * postpone freeing mbuf. 336 * 337 * we can't do it in interrupt context 338 * because we need to put kva back to kernel_map. 339 */ 340 341 mutex_enter(&so_pendfree_lock); 342 m->m_next = so_pendfree; 343 so_pendfree = m; 344 cv_broadcast(&socurkva_cv); 345 mutex_exit(&so_pendfree_lock); 346 } 347 348 static long 349 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 350 { 351 struct iovec *iov = uio->uio_iov; 352 vaddr_t sva, eva; 353 vsize_t len; 354 vaddr_t lva; 355 int npgs, error; 356 vaddr_t va; 357 int i; 358 359 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 360 return (0); 361 362 if (iov->iov_len < (size_t) space) 363 space = iov->iov_len; 364 if (space > SOCK_LOAN_CHUNK) 365 space = SOCK_LOAN_CHUNK; 366 367 eva = round_page((vaddr_t) iov->iov_base + space); 368 sva = trunc_page((vaddr_t) iov->iov_base); 369 len = eva - sva; 370 npgs = len >> PAGE_SHIFT; 371 372 KASSERT(npgs <= M_EXT_MAXPAGES); 373 374 lva = sokvaalloc(len, so); 375 if (lva == 0) 376 return 0; 377 378 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 379 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 380 if (error) { 381 sokvafree(lva, len); 382 return (0); 383 } 384 385 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 386 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 387 VM_PROT_READ); 388 pmap_update(pmap_kernel()); 389 390 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 391 392 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 393 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 394 395 uio->uio_resid -= space; 396 /* uio_offset not updated, not set/used for write(2) */ 397 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 398 uio->uio_iov->iov_len -= space; 399 if (uio->uio_iov->iov_len == 0) { 400 uio->uio_iov++; 401 uio->uio_iovcnt--; 402 } 403 404 return (space); 405 } 406 407 static int 408 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 409 { 410 411 KASSERT(ce == &sokva_reclaimerentry); 412 KASSERT(obj == NULL); 413 414 sodopendfree(); 415 if (!vm_map_starved_p(kernel_map)) { 416 return CALLBACK_CHAIN_ABORT; 417 } 418 return CALLBACK_CHAIN_CONTINUE; 419 } 420 421 struct mbuf * 422 getsombuf(struct socket *so, int type) 423 { 424 struct mbuf *m; 425 426 m = m_get(M_WAIT, type); 427 MCLAIM(m, so->so_mowner); 428 return m; 429 } 430 431 void 432 soinit(void) 433 { 434 435 sysctl_kern_somaxkva_setup(); 436 437 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 438 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 439 cv_init(&socurkva_cv, "sokva"); 440 soinit2(); 441 442 /* Set the initial adjusted socket buffer size. */ 443 if (sb_max_set(sb_max)) 444 panic("bad initial sb_max value: %lu", sb_max); 445 446 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 447 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 448 } 449 450 /* 451 * Socket operation routines. 452 * These routines are called by the routines in 453 * sys_socket.c or from a system process, and 454 * implement the semantics of socket operations by 455 * switching out to the protocol specific routines. 456 */ 457 /*ARGSUSED*/ 458 int 459 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 460 struct socket *lockso) 461 { 462 const struct protosw *prp; 463 struct socket *so; 464 uid_t uid; 465 int error; 466 kmutex_t *lock; 467 468 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 469 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 470 KAUTH_ARG(proto)); 471 if (error != 0) 472 return error; 473 474 if (proto) 475 prp = pffindproto(dom, proto, type); 476 else 477 prp = pffindtype(dom, type); 478 if (prp == NULL) { 479 /* no support for domain */ 480 if (pffinddomain(dom) == 0) 481 return EAFNOSUPPORT; 482 /* no support for socket type */ 483 if (proto == 0 && type != 0) 484 return EPROTOTYPE; 485 return EPROTONOSUPPORT; 486 } 487 if (prp->pr_usrreq == NULL) 488 return EPROTONOSUPPORT; 489 if (prp->pr_type != type) 490 return EPROTOTYPE; 491 492 so = soget(true); 493 so->so_type = type; 494 so->so_proto = prp; 495 so->so_send = sosend; 496 so->so_receive = soreceive; 497 #ifdef MBUFTRACE 498 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 499 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 500 so->so_mowner = &prp->pr_domain->dom_mowner; 501 #endif 502 uid = kauth_cred_geteuid(l->l_cred); 503 so->so_uidinfo = uid_find(uid); 504 so->so_egid = kauth_cred_getegid(l->l_cred); 505 so->so_cpid = l->l_proc->p_pid; 506 if (lockso != NULL) { 507 /* Caller wants us to share a lock. */ 508 lock = lockso->so_lock; 509 so->so_lock = lock; 510 mutex_obj_hold(lock); 511 mutex_enter(lock); 512 } else { 513 /* Lock assigned and taken during PRU_ATTACH. */ 514 } 515 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 516 (struct mbuf *)(long)proto, NULL, l); 517 KASSERT(solocked(so)); 518 if (error != 0) { 519 so->so_state |= SS_NOFDREF; 520 sofree(so); 521 return error; 522 } 523 sounlock(so); 524 *aso = so; 525 return 0; 526 } 527 528 /* On success, write file descriptor to fdout and return zero. On 529 * failure, return non-zero; *fdout will be undefined. 530 */ 531 int 532 fsocreate(int domain, struct socket **sop, int type, int protocol, 533 struct lwp *l, int *fdout) 534 { 535 struct socket *so; 536 struct file *fp; 537 int fd, error; 538 539 if ((error = fd_allocfile(&fp, &fd)) != 0) 540 return (error); 541 fp->f_flag = FREAD|FWRITE; 542 fp->f_type = DTYPE_SOCKET; 543 fp->f_ops = &socketops; 544 error = socreate(domain, &so, type, protocol, l, NULL); 545 if (error != 0) { 546 fd_abort(curproc, fp, fd); 547 } else { 548 if (sop != NULL) 549 *sop = so; 550 fp->f_data = so; 551 fd_affix(curproc, fp, fd); 552 *fdout = fd; 553 } 554 return error; 555 } 556 557 int 558 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 559 { 560 int error; 561 562 solock(so); 563 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 564 sounlock(so); 565 return error; 566 } 567 568 int 569 solisten(struct socket *so, int backlog, struct lwp *l) 570 { 571 int error; 572 573 solock(so); 574 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 575 SS_ISDISCONNECTING)) != 0) { 576 sounlock(so); 577 return (EOPNOTSUPP); 578 } 579 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 580 NULL, NULL, l); 581 if (error != 0) { 582 sounlock(so); 583 return error; 584 } 585 if (TAILQ_EMPTY(&so->so_q)) 586 so->so_options |= SO_ACCEPTCONN; 587 if (backlog < 0) 588 backlog = 0; 589 so->so_qlimit = min(backlog, somaxconn); 590 sounlock(so); 591 return 0; 592 } 593 594 void 595 sofree(struct socket *so) 596 { 597 u_int refs; 598 599 KASSERT(solocked(so)); 600 601 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 602 sounlock(so); 603 return; 604 } 605 if (so->so_head) { 606 /* 607 * We must not decommission a socket that's on the accept(2) 608 * queue. If we do, then accept(2) may hang after select(2) 609 * indicated that the listening socket was ready. 610 */ 611 if (!soqremque(so, 0)) { 612 sounlock(so); 613 return; 614 } 615 } 616 if (so->so_rcv.sb_hiwat) 617 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 618 RLIM_INFINITY); 619 if (so->so_snd.sb_hiwat) 620 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 621 RLIM_INFINITY); 622 sbrelease(&so->so_snd, so); 623 KASSERT(!cv_has_waiters(&so->so_cv)); 624 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 625 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 626 sorflush(so); 627 refs = so->so_aborting; /* XXX */ 628 /* Remove acccept filter if one is present. */ 629 if (so->so_accf != NULL) 630 (void)accept_filt_clear(so); 631 sounlock(so); 632 if (refs == 0) /* XXX */ 633 soput(so); 634 } 635 636 /* 637 * Close a socket on last file table reference removal. 638 * Initiate disconnect if connected. 639 * Free socket when disconnect complete. 640 */ 641 int 642 soclose(struct socket *so) 643 { 644 struct socket *so2; 645 int error; 646 int error2; 647 648 error = 0; 649 solock(so); 650 if (so->so_options & SO_ACCEPTCONN) { 651 for (;;) { 652 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 653 KASSERT(solocked2(so, so2)); 654 (void) soqremque(so2, 0); 655 /* soabort drops the lock. */ 656 (void) soabort(so2); 657 solock(so); 658 continue; 659 } 660 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 661 KASSERT(solocked2(so, so2)); 662 (void) soqremque(so2, 1); 663 /* soabort drops the lock. */ 664 (void) soabort(so2); 665 solock(so); 666 continue; 667 } 668 break; 669 } 670 } 671 if (so->so_pcb == 0) 672 goto discard; 673 if (so->so_state & SS_ISCONNECTED) { 674 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 675 error = sodisconnect(so); 676 if (error) 677 goto drop; 678 } 679 if (so->so_options & SO_LINGER) { 680 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio) 681 goto drop; 682 while (so->so_state & SS_ISCONNECTED) { 683 error = sowait(so, true, so->so_linger * hz); 684 if (error) 685 break; 686 } 687 } 688 } 689 drop: 690 if (so->so_pcb) { 691 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 692 NULL, NULL, NULL, NULL); 693 if (error == 0) 694 error = error2; 695 } 696 discard: 697 if (so->so_state & SS_NOFDREF) 698 panic("soclose: NOFDREF"); 699 so->so_state |= SS_NOFDREF; 700 sofree(so); 701 return (error); 702 } 703 704 /* 705 * Must be called with the socket locked.. Will return with it unlocked. 706 */ 707 int 708 soabort(struct socket *so) 709 { 710 u_int refs; 711 int error; 712 713 KASSERT(solocked(so)); 714 KASSERT(so->so_head == NULL); 715 716 so->so_aborting++; /* XXX */ 717 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 718 NULL, NULL, NULL); 719 refs = --so->so_aborting; /* XXX */ 720 if (error || (refs == 0)) { 721 sofree(so); 722 } else { 723 sounlock(so); 724 } 725 return error; 726 } 727 728 int 729 soaccept(struct socket *so, struct mbuf *nam) 730 { 731 int error; 732 733 KASSERT(solocked(so)); 734 735 error = 0; 736 if ((so->so_state & SS_NOFDREF) == 0) 737 panic("soaccept: !NOFDREF"); 738 so->so_state &= ~SS_NOFDREF; 739 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 740 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 741 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 742 NULL, nam, NULL, NULL); 743 else 744 error = ECONNABORTED; 745 746 return (error); 747 } 748 749 int 750 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 751 { 752 int error; 753 754 KASSERT(solocked(so)); 755 756 if (so->so_options & SO_ACCEPTCONN) 757 return (EOPNOTSUPP); 758 /* 759 * If protocol is connection-based, can only connect once. 760 * Otherwise, if connected, try to disconnect first. 761 * This allows user to disconnect by connecting to, e.g., 762 * a null address. 763 */ 764 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 765 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 766 (error = sodisconnect(so)))) 767 error = EISCONN; 768 else 769 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 770 NULL, nam, NULL, l); 771 return (error); 772 } 773 774 int 775 soconnect2(struct socket *so1, struct socket *so2) 776 { 777 int error; 778 779 KASSERT(solocked2(so1, so2)); 780 781 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 782 NULL, (struct mbuf *)so2, NULL, NULL); 783 return (error); 784 } 785 786 int 787 sodisconnect(struct socket *so) 788 { 789 int error; 790 791 KASSERT(solocked(so)); 792 793 if ((so->so_state & SS_ISCONNECTED) == 0) { 794 error = ENOTCONN; 795 } else if (so->so_state & SS_ISDISCONNECTING) { 796 error = EALREADY; 797 } else { 798 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 799 NULL, NULL, NULL, NULL); 800 } 801 sodopendfree(); 802 return (error); 803 } 804 805 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 806 /* 807 * Send on a socket. 808 * If send must go all at once and message is larger than 809 * send buffering, then hard error. 810 * Lock against other senders. 811 * If must go all at once and not enough room now, then 812 * inform user that this would block and do nothing. 813 * Otherwise, if nonblocking, send as much as possible. 814 * The data to be sent is described by "uio" if nonzero, 815 * otherwise by the mbuf chain "top" (which must be null 816 * if uio is not). Data provided in mbuf chain must be small 817 * enough to send all at once. 818 * 819 * Returns nonzero on error, timeout or signal; callers 820 * must check for short counts if EINTR/ERESTART are returned. 821 * Data and control buffers are freed on return. 822 */ 823 int 824 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 825 struct mbuf *control, int flags, struct lwp *l) 826 { 827 struct mbuf **mp, *m; 828 struct proc *p; 829 long space, len, resid, clen, mlen; 830 int error, s, dontroute, atomic; 831 832 p = l->l_proc; 833 sodopendfree(); 834 clen = 0; 835 836 /* 837 * solock() provides atomicity of access. splsoftnet() prevents 838 * protocol processing soft interrupts from interrupting us and 839 * blocking (expensive). 840 */ 841 s = splsoftnet(); 842 solock(so); 843 atomic = sosendallatonce(so) || top; 844 if (uio) 845 resid = uio->uio_resid; 846 else 847 resid = top->m_pkthdr.len; 848 /* 849 * In theory resid should be unsigned. 850 * However, space must be signed, as it might be less than 0 851 * if we over-committed, and we must use a signed comparison 852 * of space and resid. On the other hand, a negative resid 853 * causes us to loop sending 0-length segments to the protocol. 854 */ 855 if (resid < 0) { 856 error = EINVAL; 857 goto out; 858 } 859 dontroute = 860 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 861 (so->so_proto->pr_flags & PR_ATOMIC); 862 l->l_ru.ru_msgsnd++; 863 if (control) 864 clen = control->m_len; 865 restart: 866 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 867 goto out; 868 do { 869 if (so->so_state & SS_CANTSENDMORE) { 870 error = EPIPE; 871 goto release; 872 } 873 if (so->so_error) { 874 error = so->so_error; 875 so->so_error = 0; 876 goto release; 877 } 878 if ((so->so_state & SS_ISCONNECTED) == 0) { 879 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 880 if ((so->so_state & SS_ISCONFIRMING) == 0 && 881 !(resid == 0 && clen != 0)) { 882 error = ENOTCONN; 883 goto release; 884 } 885 } else if (addr == 0) { 886 error = EDESTADDRREQ; 887 goto release; 888 } 889 } 890 space = sbspace(&so->so_snd); 891 if (flags & MSG_OOB) 892 space += 1024; 893 if ((atomic && resid > so->so_snd.sb_hiwat) || 894 clen > so->so_snd.sb_hiwat) { 895 error = EMSGSIZE; 896 goto release; 897 } 898 if (space < resid + clen && 899 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 900 if (so->so_nbio) { 901 error = EWOULDBLOCK; 902 goto release; 903 } 904 sbunlock(&so->so_snd); 905 error = sbwait(&so->so_snd); 906 if (error) 907 goto out; 908 goto restart; 909 } 910 mp = ⊤ 911 space -= clen; 912 do { 913 if (uio == NULL) { 914 /* 915 * Data is prepackaged in "top". 916 */ 917 resid = 0; 918 if (flags & MSG_EOR) 919 top->m_flags |= M_EOR; 920 } else do { 921 sounlock(so); 922 splx(s); 923 if (top == NULL) { 924 m = m_gethdr(M_WAIT, MT_DATA); 925 mlen = MHLEN; 926 m->m_pkthdr.len = 0; 927 m->m_pkthdr.rcvif = NULL; 928 } else { 929 m = m_get(M_WAIT, MT_DATA); 930 mlen = MLEN; 931 } 932 MCLAIM(m, so->so_snd.sb_mowner); 933 if (sock_loan_thresh >= 0 && 934 uio->uio_iov->iov_len >= sock_loan_thresh && 935 space >= sock_loan_thresh && 936 (len = sosend_loan(so, uio, m, 937 space)) != 0) { 938 SOSEND_COUNTER_INCR(&sosend_loan_big); 939 space -= len; 940 goto have_data; 941 } 942 if (resid >= MINCLSIZE && space >= MCLBYTES) { 943 SOSEND_COUNTER_INCR(&sosend_copy_big); 944 m_clget(m, M_WAIT); 945 if ((m->m_flags & M_EXT) == 0) 946 goto nopages; 947 mlen = MCLBYTES; 948 if (atomic && top == 0) { 949 len = lmin(MCLBYTES - max_hdr, 950 resid); 951 m->m_data += max_hdr; 952 } else 953 len = lmin(MCLBYTES, resid); 954 space -= len; 955 } else { 956 nopages: 957 SOSEND_COUNTER_INCR(&sosend_copy_small); 958 len = lmin(lmin(mlen, resid), space); 959 space -= len; 960 /* 961 * For datagram protocols, leave room 962 * for protocol headers in first mbuf. 963 */ 964 if (atomic && top == 0 && len < mlen) 965 MH_ALIGN(m, len); 966 } 967 error = uiomove(mtod(m, void *), (int)len, uio); 968 have_data: 969 resid = uio->uio_resid; 970 m->m_len = len; 971 *mp = m; 972 top->m_pkthdr.len += len; 973 s = splsoftnet(); 974 solock(so); 975 if (error != 0) 976 goto release; 977 mp = &m->m_next; 978 if (resid <= 0) { 979 if (flags & MSG_EOR) 980 top->m_flags |= M_EOR; 981 break; 982 } 983 } while (space > 0 && atomic); 984 985 if (so->so_state & SS_CANTSENDMORE) { 986 error = EPIPE; 987 goto release; 988 } 989 if (dontroute) 990 so->so_options |= SO_DONTROUTE; 991 if (resid > 0) 992 so->so_state |= SS_MORETOCOME; 993 error = (*so->so_proto->pr_usrreq)(so, 994 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 995 top, addr, control, curlwp); 996 if (dontroute) 997 so->so_options &= ~SO_DONTROUTE; 998 if (resid > 0) 999 so->so_state &= ~SS_MORETOCOME; 1000 clen = 0; 1001 control = NULL; 1002 top = NULL; 1003 mp = ⊤ 1004 if (error != 0) 1005 goto release; 1006 } while (resid && space > 0); 1007 } while (resid); 1008 1009 release: 1010 sbunlock(&so->so_snd); 1011 out: 1012 sounlock(so); 1013 splx(s); 1014 if (top) 1015 m_freem(top); 1016 if (control) 1017 m_freem(control); 1018 return (error); 1019 } 1020 1021 /* 1022 * Following replacement or removal of the first mbuf on the first 1023 * mbuf chain of a socket buffer, push necessary state changes back 1024 * into the socket buffer so that other consumers see the values 1025 * consistently. 'nextrecord' is the callers locally stored value of 1026 * the original value of sb->sb_mb->m_nextpkt which must be restored 1027 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1028 */ 1029 static void 1030 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1031 { 1032 1033 KASSERT(solocked(sb->sb_so)); 1034 1035 /* 1036 * First, update for the new value of nextrecord. If necessary, 1037 * make it the first record. 1038 */ 1039 if (sb->sb_mb != NULL) 1040 sb->sb_mb->m_nextpkt = nextrecord; 1041 else 1042 sb->sb_mb = nextrecord; 1043 1044 /* 1045 * Now update any dependent socket buffer fields to reflect 1046 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1047 * the addition of a second clause that takes care of the 1048 * case where sb_mb has been updated, but remains the last 1049 * record. 1050 */ 1051 if (sb->sb_mb == NULL) { 1052 sb->sb_mbtail = NULL; 1053 sb->sb_lastrecord = NULL; 1054 } else if (sb->sb_mb->m_nextpkt == NULL) 1055 sb->sb_lastrecord = sb->sb_mb; 1056 } 1057 1058 /* 1059 * Implement receive operations on a socket. 1060 * We depend on the way that records are added to the sockbuf 1061 * by sbappend*. In particular, each record (mbufs linked through m_next) 1062 * must begin with an address if the protocol so specifies, 1063 * followed by an optional mbuf or mbufs containing ancillary data, 1064 * and then zero or more mbufs of data. 1065 * In order to avoid blocking network interrupts for the entire time here, 1066 * we splx() while doing the actual copy to user space. 1067 * Although the sockbuf is locked, new data may still be appended, 1068 * and thus we must maintain consistency of the sockbuf during that time. 1069 * 1070 * The caller may receive the data as a single mbuf chain by supplying 1071 * an mbuf **mp0 for use in returning the chain. The uio is then used 1072 * only for the count in uio_resid. 1073 */ 1074 int 1075 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1076 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1077 { 1078 struct lwp *l = curlwp; 1079 struct mbuf *m, **mp, *mt; 1080 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1081 const struct protosw *pr; 1082 struct mbuf *nextrecord; 1083 int mbuf_removed = 0; 1084 const struct domain *dom; 1085 1086 pr = so->so_proto; 1087 atomic = pr->pr_flags & PR_ATOMIC; 1088 dom = pr->pr_domain; 1089 mp = mp0; 1090 type = 0; 1091 orig_resid = uio->uio_resid; 1092 1093 if (paddr != NULL) 1094 *paddr = NULL; 1095 if (controlp != NULL) 1096 *controlp = NULL; 1097 if (flagsp != NULL) 1098 flags = *flagsp &~ MSG_EOR; 1099 else 1100 flags = 0; 1101 1102 if ((flags & MSG_DONTWAIT) == 0) 1103 sodopendfree(); 1104 1105 if (flags & MSG_OOB) { 1106 m = m_get(M_WAIT, MT_DATA); 1107 solock(so); 1108 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1109 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1110 sounlock(so); 1111 if (error) 1112 goto bad; 1113 do { 1114 error = uiomove(mtod(m, void *), 1115 (int) min(uio->uio_resid, m->m_len), uio); 1116 m = m_free(m); 1117 } while (uio->uio_resid > 0 && error == 0 && m); 1118 bad: 1119 if (m != NULL) 1120 m_freem(m); 1121 return error; 1122 } 1123 if (mp != NULL) 1124 *mp = NULL; 1125 1126 /* 1127 * solock() provides atomicity of access. splsoftnet() prevents 1128 * protocol processing soft interrupts from interrupting us and 1129 * blocking (expensive). 1130 */ 1131 s = splsoftnet(); 1132 solock(so); 1133 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1134 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1135 1136 restart: 1137 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1138 sounlock(so); 1139 splx(s); 1140 return error; 1141 } 1142 1143 m = so->so_rcv.sb_mb; 1144 /* 1145 * If we have less data than requested, block awaiting more 1146 * (subject to any timeout) if: 1147 * 1. the current count is less than the low water mark, 1148 * 2. MSG_WAITALL is set, and it is possible to do the entire 1149 * receive operation at once if we block (resid <= hiwat), or 1150 * 3. MSG_DONTWAIT is not set. 1151 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1152 * we have to do the receive in sections, and thus risk returning 1153 * a short count if a timeout or signal occurs after we start. 1154 */ 1155 if (m == NULL || 1156 ((flags & MSG_DONTWAIT) == 0 && 1157 so->so_rcv.sb_cc < uio->uio_resid && 1158 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1159 ((flags & MSG_WAITALL) && 1160 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1161 m->m_nextpkt == NULL && !atomic)) { 1162 #ifdef DIAGNOSTIC 1163 if (m == NULL && so->so_rcv.sb_cc) 1164 panic("receive 1"); 1165 #endif 1166 if (so->so_error) { 1167 if (m != NULL) 1168 goto dontblock; 1169 error = so->so_error; 1170 if ((flags & MSG_PEEK) == 0) 1171 so->so_error = 0; 1172 goto release; 1173 } 1174 if (so->so_state & SS_CANTRCVMORE) { 1175 if (m != NULL) 1176 goto dontblock; 1177 else 1178 goto release; 1179 } 1180 for (; m != NULL; m = m->m_next) 1181 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1182 m = so->so_rcv.sb_mb; 1183 goto dontblock; 1184 } 1185 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1186 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1187 error = ENOTCONN; 1188 goto release; 1189 } 1190 if (uio->uio_resid == 0) 1191 goto release; 1192 if (so->so_nbio || (flags & MSG_DONTWAIT)) { 1193 error = EWOULDBLOCK; 1194 goto release; 1195 } 1196 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1197 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1198 sbunlock(&so->so_rcv); 1199 error = sbwait(&so->so_rcv); 1200 if (error != 0) { 1201 sounlock(so); 1202 splx(s); 1203 return error; 1204 } 1205 goto restart; 1206 } 1207 dontblock: 1208 /* 1209 * On entry here, m points to the first record of the socket buffer. 1210 * From this point onward, we maintain 'nextrecord' as a cache of the 1211 * pointer to the next record in the socket buffer. We must keep the 1212 * various socket buffer pointers and local stack versions of the 1213 * pointers in sync, pushing out modifications before dropping the 1214 * socket lock, and re-reading them when picking it up. 1215 * 1216 * Otherwise, we will race with the network stack appending new data 1217 * or records onto the socket buffer by using inconsistent/stale 1218 * versions of the field, possibly resulting in socket buffer 1219 * corruption. 1220 * 1221 * By holding the high-level sblock(), we prevent simultaneous 1222 * readers from pulling off the front of the socket buffer. 1223 */ 1224 if (l != NULL) 1225 l->l_ru.ru_msgrcv++; 1226 KASSERT(m == so->so_rcv.sb_mb); 1227 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1228 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1229 nextrecord = m->m_nextpkt; 1230 if (pr->pr_flags & PR_ADDR) { 1231 #ifdef DIAGNOSTIC 1232 if (m->m_type != MT_SONAME) 1233 panic("receive 1a"); 1234 #endif 1235 orig_resid = 0; 1236 if (flags & MSG_PEEK) { 1237 if (paddr) 1238 *paddr = m_copy(m, 0, m->m_len); 1239 m = m->m_next; 1240 } else { 1241 sbfree(&so->so_rcv, m); 1242 mbuf_removed = 1; 1243 if (paddr != NULL) { 1244 *paddr = m; 1245 so->so_rcv.sb_mb = m->m_next; 1246 m->m_next = NULL; 1247 m = so->so_rcv.sb_mb; 1248 } else { 1249 MFREE(m, so->so_rcv.sb_mb); 1250 m = so->so_rcv.sb_mb; 1251 } 1252 sbsync(&so->so_rcv, nextrecord); 1253 } 1254 } 1255 1256 /* 1257 * Process one or more MT_CONTROL mbufs present before any data mbufs 1258 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1259 * just copy the data; if !MSG_PEEK, we call into the protocol to 1260 * perform externalization (or freeing if controlp == NULL). 1261 */ 1262 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1263 struct mbuf *cm = NULL, *cmn; 1264 struct mbuf **cme = &cm; 1265 1266 do { 1267 if (flags & MSG_PEEK) { 1268 if (controlp != NULL) { 1269 *controlp = m_copy(m, 0, m->m_len); 1270 controlp = &(*controlp)->m_next; 1271 } 1272 m = m->m_next; 1273 } else { 1274 sbfree(&so->so_rcv, m); 1275 so->so_rcv.sb_mb = m->m_next; 1276 m->m_next = NULL; 1277 *cme = m; 1278 cme = &(*cme)->m_next; 1279 m = so->so_rcv.sb_mb; 1280 } 1281 } while (m != NULL && m->m_type == MT_CONTROL); 1282 if ((flags & MSG_PEEK) == 0) 1283 sbsync(&so->so_rcv, nextrecord); 1284 for (; cm != NULL; cm = cmn) { 1285 cmn = cm->m_next; 1286 cm->m_next = NULL; 1287 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1288 if (controlp != NULL) { 1289 if (dom->dom_externalize != NULL && 1290 type == SCM_RIGHTS) { 1291 sounlock(so); 1292 splx(s); 1293 error = (*dom->dom_externalize)(cm, l); 1294 s = splsoftnet(); 1295 solock(so); 1296 } 1297 *controlp = cm; 1298 while (*controlp != NULL) 1299 controlp = &(*controlp)->m_next; 1300 } else { 1301 /* 1302 * Dispose of any SCM_RIGHTS message that went 1303 * through the read path rather than recv. 1304 */ 1305 if (dom->dom_dispose != NULL && 1306 type == SCM_RIGHTS) { 1307 sounlock(so); 1308 (*dom->dom_dispose)(cm); 1309 solock(so); 1310 } 1311 m_freem(cm); 1312 } 1313 } 1314 if (m != NULL) 1315 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1316 else 1317 nextrecord = so->so_rcv.sb_mb; 1318 orig_resid = 0; 1319 } 1320 1321 /* If m is non-NULL, we have some data to read. */ 1322 if (__predict_true(m != NULL)) { 1323 type = m->m_type; 1324 if (type == MT_OOBDATA) 1325 flags |= MSG_OOB; 1326 } 1327 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1328 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1329 1330 moff = 0; 1331 offset = 0; 1332 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1333 if (m->m_type == MT_OOBDATA) { 1334 if (type != MT_OOBDATA) 1335 break; 1336 } else if (type == MT_OOBDATA) 1337 break; 1338 #ifdef DIAGNOSTIC 1339 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1340 panic("receive 3"); 1341 #endif 1342 so->so_state &= ~SS_RCVATMARK; 1343 len = uio->uio_resid; 1344 if (so->so_oobmark && len > so->so_oobmark - offset) 1345 len = so->so_oobmark - offset; 1346 if (len > m->m_len - moff) 1347 len = m->m_len - moff; 1348 /* 1349 * If mp is set, just pass back the mbufs. 1350 * Otherwise copy them out via the uio, then free. 1351 * Sockbuf must be consistent here (points to current mbuf, 1352 * it points to next record) when we drop priority; 1353 * we must note any additions to the sockbuf when we 1354 * block interrupts again. 1355 */ 1356 if (mp == NULL) { 1357 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1358 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1359 sounlock(so); 1360 splx(s); 1361 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1362 s = splsoftnet(); 1363 solock(so); 1364 if (error != 0) { 1365 /* 1366 * If any part of the record has been removed 1367 * (such as the MT_SONAME mbuf, which will 1368 * happen when PR_ADDR, and thus also 1369 * PR_ATOMIC, is set), then drop the entire 1370 * record to maintain the atomicity of the 1371 * receive operation. 1372 * 1373 * This avoids a later panic("receive 1a") 1374 * when compiled with DIAGNOSTIC. 1375 */ 1376 if (m && mbuf_removed && atomic) 1377 (void) sbdroprecord(&so->so_rcv); 1378 1379 goto release; 1380 } 1381 } else 1382 uio->uio_resid -= len; 1383 if (len == m->m_len - moff) { 1384 if (m->m_flags & M_EOR) 1385 flags |= MSG_EOR; 1386 if (flags & MSG_PEEK) { 1387 m = m->m_next; 1388 moff = 0; 1389 } else { 1390 nextrecord = m->m_nextpkt; 1391 sbfree(&so->so_rcv, m); 1392 if (mp) { 1393 *mp = m; 1394 mp = &m->m_next; 1395 so->so_rcv.sb_mb = m = m->m_next; 1396 *mp = NULL; 1397 } else { 1398 MFREE(m, so->so_rcv.sb_mb); 1399 m = so->so_rcv.sb_mb; 1400 } 1401 /* 1402 * If m != NULL, we also know that 1403 * so->so_rcv.sb_mb != NULL. 1404 */ 1405 KASSERT(so->so_rcv.sb_mb == m); 1406 if (m) { 1407 m->m_nextpkt = nextrecord; 1408 if (nextrecord == NULL) 1409 so->so_rcv.sb_lastrecord = m; 1410 } else { 1411 so->so_rcv.sb_mb = nextrecord; 1412 SB_EMPTY_FIXUP(&so->so_rcv); 1413 } 1414 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1415 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1416 } 1417 } else if (flags & MSG_PEEK) 1418 moff += len; 1419 else { 1420 if (mp != NULL) { 1421 mt = m_copym(m, 0, len, M_NOWAIT); 1422 if (__predict_false(mt == NULL)) { 1423 sounlock(so); 1424 mt = m_copym(m, 0, len, M_WAIT); 1425 solock(so); 1426 } 1427 *mp = mt; 1428 } 1429 m->m_data += len; 1430 m->m_len -= len; 1431 so->so_rcv.sb_cc -= len; 1432 } 1433 if (so->so_oobmark) { 1434 if ((flags & MSG_PEEK) == 0) { 1435 so->so_oobmark -= len; 1436 if (so->so_oobmark == 0) { 1437 so->so_state |= SS_RCVATMARK; 1438 break; 1439 } 1440 } else { 1441 offset += len; 1442 if (offset == so->so_oobmark) 1443 break; 1444 } 1445 } 1446 if (flags & MSG_EOR) 1447 break; 1448 /* 1449 * If the MSG_WAITALL flag is set (for non-atomic socket), 1450 * we must not quit until "uio->uio_resid == 0" or an error 1451 * termination. If a signal/timeout occurs, return 1452 * with a short count but without error. 1453 * Keep sockbuf locked against other readers. 1454 */ 1455 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1456 !sosendallatonce(so) && !nextrecord) { 1457 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1458 break; 1459 /* 1460 * If we are peeking and the socket receive buffer is 1461 * full, stop since we can't get more data to peek at. 1462 */ 1463 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1464 break; 1465 /* 1466 * If we've drained the socket buffer, tell the 1467 * protocol in case it needs to do something to 1468 * get it filled again. 1469 */ 1470 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1471 (*pr->pr_usrreq)(so, PRU_RCVD, 1472 NULL, (struct mbuf *)(long)flags, NULL, l); 1473 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1474 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1475 error = sbwait(&so->so_rcv); 1476 if (error != 0) { 1477 sbunlock(&so->so_rcv); 1478 sounlock(so); 1479 splx(s); 1480 return 0; 1481 } 1482 if ((m = so->so_rcv.sb_mb) != NULL) 1483 nextrecord = m->m_nextpkt; 1484 } 1485 } 1486 1487 if (m && atomic) { 1488 flags |= MSG_TRUNC; 1489 if ((flags & MSG_PEEK) == 0) 1490 (void) sbdroprecord(&so->so_rcv); 1491 } 1492 if ((flags & MSG_PEEK) == 0) { 1493 if (m == NULL) { 1494 /* 1495 * First part is an inline SB_EMPTY_FIXUP(). Second 1496 * part makes sure sb_lastrecord is up-to-date if 1497 * there is still data in the socket buffer. 1498 */ 1499 so->so_rcv.sb_mb = nextrecord; 1500 if (so->so_rcv.sb_mb == NULL) { 1501 so->so_rcv.sb_mbtail = NULL; 1502 so->so_rcv.sb_lastrecord = NULL; 1503 } else if (nextrecord->m_nextpkt == NULL) 1504 so->so_rcv.sb_lastrecord = nextrecord; 1505 } 1506 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1507 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1508 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1509 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1510 (struct mbuf *)(long)flags, NULL, l); 1511 } 1512 if (orig_resid == uio->uio_resid && orig_resid && 1513 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1514 sbunlock(&so->so_rcv); 1515 goto restart; 1516 } 1517 1518 if (flagsp != NULL) 1519 *flagsp |= flags; 1520 release: 1521 sbunlock(&so->so_rcv); 1522 sounlock(so); 1523 splx(s); 1524 return error; 1525 } 1526 1527 int 1528 soshutdown(struct socket *so, int how) 1529 { 1530 const struct protosw *pr; 1531 int error; 1532 1533 KASSERT(solocked(so)); 1534 1535 pr = so->so_proto; 1536 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1537 return (EINVAL); 1538 1539 if (how == SHUT_RD || how == SHUT_RDWR) { 1540 sorflush(so); 1541 error = 0; 1542 } 1543 if (how == SHUT_WR || how == SHUT_RDWR) 1544 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1545 NULL, NULL, NULL); 1546 1547 return error; 1548 } 1549 1550 int 1551 sodrain(struct socket *so) 1552 { 1553 int error; 1554 1555 solock(so); 1556 so->so_state |= SS_ISDRAINING; 1557 cv_broadcast(&so->so_cv); 1558 error = soshutdown(so, SHUT_RDWR); 1559 sounlock(so); 1560 1561 return error; 1562 } 1563 1564 void 1565 sorflush(struct socket *so) 1566 { 1567 struct sockbuf *sb, asb; 1568 const struct protosw *pr; 1569 1570 KASSERT(solocked(so)); 1571 1572 sb = &so->so_rcv; 1573 pr = so->so_proto; 1574 socantrcvmore(so); 1575 sb->sb_flags |= SB_NOINTR; 1576 (void )sblock(sb, M_WAITOK); 1577 sbunlock(sb); 1578 asb = *sb; 1579 /* 1580 * Clear most of the sockbuf structure, but leave some of the 1581 * fields valid. 1582 */ 1583 memset(&sb->sb_startzero, 0, 1584 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1585 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1586 sounlock(so); 1587 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1588 solock(so); 1589 } 1590 sbrelease(&asb, so); 1591 } 1592 1593 /* 1594 * internal set SOL_SOCKET options 1595 */ 1596 static int 1597 sosetopt1(struct socket *so, const struct sockopt *sopt) 1598 { 1599 int error = EINVAL, optval, opt; 1600 struct linger l; 1601 struct timeval tv; 1602 1603 switch ((opt = sopt->sopt_name)) { 1604 1605 case SO_ACCEPTFILTER: 1606 error = accept_filt_setopt(so, sopt); 1607 KASSERT(solocked(so)); 1608 break; 1609 1610 case SO_LINGER: 1611 error = sockopt_get(sopt, &l, sizeof(l)); 1612 solock(so); 1613 if (error) 1614 break; 1615 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1616 l.l_linger > (INT_MAX / hz)) { 1617 error = EDOM; 1618 break; 1619 } 1620 so->so_linger = l.l_linger; 1621 if (l.l_onoff) 1622 so->so_options |= SO_LINGER; 1623 else 1624 so->so_options &= ~SO_LINGER; 1625 break; 1626 1627 case SO_DEBUG: 1628 case SO_KEEPALIVE: 1629 case SO_DONTROUTE: 1630 case SO_USELOOPBACK: 1631 case SO_BROADCAST: 1632 case SO_REUSEADDR: 1633 case SO_REUSEPORT: 1634 case SO_OOBINLINE: 1635 case SO_TIMESTAMP: 1636 #ifdef SO_OTIMESTAMP 1637 case SO_OTIMESTAMP: 1638 #endif 1639 error = sockopt_getint(sopt, &optval); 1640 solock(so); 1641 if (error) 1642 break; 1643 if (optval) 1644 so->so_options |= opt; 1645 else 1646 so->so_options &= ~opt; 1647 break; 1648 1649 case SO_SNDBUF: 1650 case SO_RCVBUF: 1651 case SO_SNDLOWAT: 1652 case SO_RCVLOWAT: 1653 error = sockopt_getint(sopt, &optval); 1654 solock(so); 1655 if (error) 1656 break; 1657 1658 /* 1659 * Values < 1 make no sense for any of these 1660 * options, so disallow them. 1661 */ 1662 if (optval < 1) { 1663 error = EINVAL; 1664 break; 1665 } 1666 1667 switch (opt) { 1668 case SO_SNDBUF: 1669 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1670 error = ENOBUFS; 1671 break; 1672 } 1673 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1674 break; 1675 1676 case SO_RCVBUF: 1677 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1678 error = ENOBUFS; 1679 break; 1680 } 1681 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1682 break; 1683 1684 /* 1685 * Make sure the low-water is never greater than 1686 * the high-water. 1687 */ 1688 case SO_SNDLOWAT: 1689 if (optval > so->so_snd.sb_hiwat) 1690 optval = so->so_snd.sb_hiwat; 1691 1692 so->so_snd.sb_lowat = optval; 1693 break; 1694 1695 case SO_RCVLOWAT: 1696 if (optval > so->so_rcv.sb_hiwat) 1697 optval = so->so_rcv.sb_hiwat; 1698 1699 so->so_rcv.sb_lowat = optval; 1700 break; 1701 } 1702 break; 1703 1704 #ifdef COMPAT_50 1705 case SO_OSNDTIMEO: 1706 case SO_ORCVTIMEO: { 1707 struct timeval50 otv; 1708 error = sockopt_get(sopt, &otv, sizeof(otv)); 1709 if (error) { 1710 solock(so); 1711 break; 1712 } 1713 timeval50_to_timeval(&otv, &tv); 1714 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1715 error = 0; 1716 /*FALLTHROUGH*/ 1717 } 1718 #endif /* COMPAT_50 */ 1719 1720 case SO_SNDTIMEO: 1721 case SO_RCVTIMEO: 1722 if (error) 1723 error = sockopt_get(sopt, &tv, sizeof(tv)); 1724 solock(so); 1725 if (error) 1726 break; 1727 1728 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1729 error = EDOM; 1730 break; 1731 } 1732 1733 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1734 if (optval == 0 && tv.tv_usec != 0) 1735 optval = 1; 1736 1737 switch (opt) { 1738 case SO_SNDTIMEO: 1739 so->so_snd.sb_timeo = optval; 1740 break; 1741 case SO_RCVTIMEO: 1742 so->so_rcv.sb_timeo = optval; 1743 break; 1744 } 1745 break; 1746 1747 default: 1748 solock(so); 1749 error = ENOPROTOOPT; 1750 break; 1751 } 1752 KASSERT(solocked(so)); 1753 return error; 1754 } 1755 1756 int 1757 sosetopt(struct socket *so, struct sockopt *sopt) 1758 { 1759 int error, prerr; 1760 1761 if (sopt->sopt_level == SOL_SOCKET) { 1762 error = sosetopt1(so, sopt); 1763 KASSERT(solocked(so)); 1764 } else { 1765 error = ENOPROTOOPT; 1766 solock(so); 1767 } 1768 1769 if ((error == 0 || error == ENOPROTOOPT) && 1770 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1771 /* give the protocol stack a shot */ 1772 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1773 if (prerr == 0) 1774 error = 0; 1775 else if (prerr != ENOPROTOOPT) 1776 error = prerr; 1777 } 1778 sounlock(so); 1779 return error; 1780 } 1781 1782 /* 1783 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1784 */ 1785 int 1786 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1787 const void *val, size_t valsize) 1788 { 1789 struct sockopt sopt; 1790 int error; 1791 1792 KASSERT(valsize == 0 || val != NULL); 1793 1794 sockopt_init(&sopt, level, name, valsize); 1795 sockopt_set(&sopt, val, valsize); 1796 1797 error = sosetopt(so, &sopt); 1798 1799 sockopt_destroy(&sopt); 1800 1801 return error; 1802 } 1803 1804 /* 1805 * internal get SOL_SOCKET options 1806 */ 1807 static int 1808 sogetopt1(struct socket *so, struct sockopt *sopt) 1809 { 1810 int error, optval, opt; 1811 struct linger l; 1812 struct timeval tv; 1813 1814 switch ((opt = sopt->sopt_name)) { 1815 1816 case SO_ACCEPTFILTER: 1817 error = accept_filt_getopt(so, sopt); 1818 break; 1819 1820 case SO_LINGER: 1821 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1822 l.l_linger = so->so_linger; 1823 1824 error = sockopt_set(sopt, &l, sizeof(l)); 1825 break; 1826 1827 case SO_USELOOPBACK: 1828 case SO_DONTROUTE: 1829 case SO_DEBUG: 1830 case SO_KEEPALIVE: 1831 case SO_REUSEADDR: 1832 case SO_REUSEPORT: 1833 case SO_BROADCAST: 1834 case SO_OOBINLINE: 1835 case SO_TIMESTAMP: 1836 #ifdef SO_OTIMESTAMP 1837 case SO_OTIMESTAMP: 1838 #endif 1839 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1840 break; 1841 1842 case SO_TYPE: 1843 error = sockopt_setint(sopt, so->so_type); 1844 break; 1845 1846 case SO_ERROR: 1847 error = sockopt_setint(sopt, so->so_error); 1848 so->so_error = 0; 1849 break; 1850 1851 case SO_SNDBUF: 1852 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1853 break; 1854 1855 case SO_RCVBUF: 1856 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1857 break; 1858 1859 case SO_SNDLOWAT: 1860 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1861 break; 1862 1863 case SO_RCVLOWAT: 1864 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1865 break; 1866 1867 #ifdef COMPAT_50 1868 case SO_OSNDTIMEO: 1869 case SO_ORCVTIMEO: { 1870 struct timeval50 otv; 1871 1872 optval = (opt == SO_OSNDTIMEO ? 1873 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1874 1875 otv.tv_sec = optval / hz; 1876 otv.tv_usec = (optval % hz) * tick; 1877 1878 error = sockopt_set(sopt, &otv, sizeof(otv)); 1879 break; 1880 } 1881 #endif /* COMPAT_50 */ 1882 1883 case SO_SNDTIMEO: 1884 case SO_RCVTIMEO: 1885 optval = (opt == SO_SNDTIMEO ? 1886 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1887 1888 tv.tv_sec = optval / hz; 1889 tv.tv_usec = (optval % hz) * tick; 1890 1891 error = sockopt_set(sopt, &tv, sizeof(tv)); 1892 break; 1893 1894 case SO_OVERFLOWED: 1895 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1896 break; 1897 1898 default: 1899 error = ENOPROTOOPT; 1900 break; 1901 } 1902 1903 return (error); 1904 } 1905 1906 int 1907 sogetopt(struct socket *so, struct sockopt *sopt) 1908 { 1909 int error; 1910 1911 solock(so); 1912 if (sopt->sopt_level != SOL_SOCKET) { 1913 if (so->so_proto && so->so_proto->pr_ctloutput) { 1914 error = ((*so->so_proto->pr_ctloutput) 1915 (PRCO_GETOPT, so, sopt)); 1916 } else 1917 error = (ENOPROTOOPT); 1918 } else { 1919 error = sogetopt1(so, sopt); 1920 } 1921 sounlock(so); 1922 return (error); 1923 } 1924 1925 /* 1926 * alloc sockopt data buffer buffer 1927 * - will be released at destroy 1928 */ 1929 static int 1930 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 1931 { 1932 1933 KASSERT(sopt->sopt_size == 0); 1934 1935 if (len > sizeof(sopt->sopt_buf)) { 1936 sopt->sopt_data = kmem_zalloc(len, kmflag); 1937 if (sopt->sopt_data == NULL) 1938 return ENOMEM; 1939 } else 1940 sopt->sopt_data = sopt->sopt_buf; 1941 1942 sopt->sopt_size = len; 1943 return 0; 1944 } 1945 1946 /* 1947 * initialise sockopt storage 1948 * - MAY sleep during allocation 1949 */ 1950 void 1951 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 1952 { 1953 1954 memset(sopt, 0, sizeof(*sopt)); 1955 1956 sopt->sopt_level = level; 1957 sopt->sopt_name = name; 1958 (void)sockopt_alloc(sopt, size, KM_SLEEP); 1959 } 1960 1961 /* 1962 * destroy sockopt storage 1963 * - will release any held memory references 1964 */ 1965 void 1966 sockopt_destroy(struct sockopt *sopt) 1967 { 1968 1969 if (sopt->sopt_data != sopt->sopt_buf) 1970 kmem_free(sopt->sopt_data, sopt->sopt_size); 1971 1972 memset(sopt, 0, sizeof(*sopt)); 1973 } 1974 1975 /* 1976 * set sockopt value 1977 * - value is copied into sockopt 1978 * - memory is allocated when necessary, will not sleep 1979 */ 1980 int 1981 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 1982 { 1983 int error; 1984 1985 if (sopt->sopt_size == 0) { 1986 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 1987 if (error) 1988 return error; 1989 } 1990 1991 KASSERT(sopt->sopt_size == len); 1992 memcpy(sopt->sopt_data, buf, len); 1993 return 0; 1994 } 1995 1996 /* 1997 * common case of set sockopt integer value 1998 */ 1999 int 2000 sockopt_setint(struct sockopt *sopt, int val) 2001 { 2002 2003 return sockopt_set(sopt, &val, sizeof(int)); 2004 } 2005 2006 /* 2007 * get sockopt value 2008 * - correct size must be given 2009 */ 2010 int 2011 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2012 { 2013 2014 if (sopt->sopt_size != len) 2015 return EINVAL; 2016 2017 memcpy(buf, sopt->sopt_data, len); 2018 return 0; 2019 } 2020 2021 /* 2022 * common case of get sockopt integer value 2023 */ 2024 int 2025 sockopt_getint(const struct sockopt *sopt, int *valp) 2026 { 2027 2028 return sockopt_get(sopt, valp, sizeof(int)); 2029 } 2030 2031 /* 2032 * set sockopt value from mbuf 2033 * - ONLY for legacy code 2034 * - mbuf is released by sockopt 2035 * - will not sleep 2036 */ 2037 int 2038 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2039 { 2040 size_t len; 2041 int error; 2042 2043 len = m_length(m); 2044 2045 if (sopt->sopt_size == 0) { 2046 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2047 if (error) 2048 return error; 2049 } 2050 2051 KASSERT(sopt->sopt_size == len); 2052 m_copydata(m, 0, len, sopt->sopt_data); 2053 m_freem(m); 2054 2055 return 0; 2056 } 2057 2058 /* 2059 * get sockopt value into mbuf 2060 * - ONLY for legacy code 2061 * - mbuf to be released by the caller 2062 * - will not sleep 2063 */ 2064 struct mbuf * 2065 sockopt_getmbuf(const struct sockopt *sopt) 2066 { 2067 struct mbuf *m; 2068 2069 if (sopt->sopt_size > MCLBYTES) 2070 return NULL; 2071 2072 m = m_get(M_DONTWAIT, MT_SOOPTS); 2073 if (m == NULL) 2074 return NULL; 2075 2076 if (sopt->sopt_size > MLEN) { 2077 MCLGET(m, M_DONTWAIT); 2078 if ((m->m_flags & M_EXT) == 0) { 2079 m_free(m); 2080 return NULL; 2081 } 2082 } 2083 2084 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2085 m->m_len = sopt->sopt_size; 2086 2087 return m; 2088 } 2089 2090 void 2091 sohasoutofband(struct socket *so) 2092 { 2093 2094 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2095 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2096 } 2097 2098 static void 2099 filt_sordetach(struct knote *kn) 2100 { 2101 struct socket *so; 2102 2103 so = ((file_t *)kn->kn_obj)->f_data; 2104 solock(so); 2105 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2106 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2107 so->so_rcv.sb_flags &= ~SB_KNOTE; 2108 sounlock(so); 2109 } 2110 2111 /*ARGSUSED*/ 2112 static int 2113 filt_soread(struct knote *kn, long hint) 2114 { 2115 struct socket *so; 2116 int rv; 2117 2118 so = ((file_t *)kn->kn_obj)->f_data; 2119 if (hint != NOTE_SUBMIT) 2120 solock(so); 2121 kn->kn_data = so->so_rcv.sb_cc; 2122 if (so->so_state & SS_CANTRCVMORE) { 2123 kn->kn_flags |= EV_EOF; 2124 kn->kn_fflags = so->so_error; 2125 rv = 1; 2126 } else if (so->so_error) /* temporary udp error */ 2127 rv = 1; 2128 else if (kn->kn_sfflags & NOTE_LOWAT) 2129 rv = (kn->kn_data >= kn->kn_sdata); 2130 else 2131 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2132 if (hint != NOTE_SUBMIT) 2133 sounlock(so); 2134 return rv; 2135 } 2136 2137 static void 2138 filt_sowdetach(struct knote *kn) 2139 { 2140 struct socket *so; 2141 2142 so = ((file_t *)kn->kn_obj)->f_data; 2143 solock(so); 2144 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2145 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2146 so->so_snd.sb_flags &= ~SB_KNOTE; 2147 sounlock(so); 2148 } 2149 2150 /*ARGSUSED*/ 2151 static int 2152 filt_sowrite(struct knote *kn, long hint) 2153 { 2154 struct socket *so; 2155 int rv; 2156 2157 so = ((file_t *)kn->kn_obj)->f_data; 2158 if (hint != NOTE_SUBMIT) 2159 solock(so); 2160 kn->kn_data = sbspace(&so->so_snd); 2161 if (so->so_state & SS_CANTSENDMORE) { 2162 kn->kn_flags |= EV_EOF; 2163 kn->kn_fflags = so->so_error; 2164 rv = 1; 2165 } else if (so->so_error) /* temporary udp error */ 2166 rv = 1; 2167 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2168 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2169 rv = 0; 2170 else if (kn->kn_sfflags & NOTE_LOWAT) 2171 rv = (kn->kn_data >= kn->kn_sdata); 2172 else 2173 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2174 if (hint != NOTE_SUBMIT) 2175 sounlock(so); 2176 return rv; 2177 } 2178 2179 /*ARGSUSED*/ 2180 static int 2181 filt_solisten(struct knote *kn, long hint) 2182 { 2183 struct socket *so; 2184 int rv; 2185 2186 so = ((file_t *)kn->kn_obj)->f_data; 2187 2188 /* 2189 * Set kn_data to number of incoming connections, not 2190 * counting partial (incomplete) connections. 2191 */ 2192 if (hint != NOTE_SUBMIT) 2193 solock(so); 2194 kn->kn_data = so->so_qlen; 2195 rv = (kn->kn_data > 0); 2196 if (hint != NOTE_SUBMIT) 2197 sounlock(so); 2198 return rv; 2199 } 2200 2201 static const struct filterops solisten_filtops = 2202 { 1, NULL, filt_sordetach, filt_solisten }; 2203 static const struct filterops soread_filtops = 2204 { 1, NULL, filt_sordetach, filt_soread }; 2205 static const struct filterops sowrite_filtops = 2206 { 1, NULL, filt_sowdetach, filt_sowrite }; 2207 2208 int 2209 soo_kqfilter(struct file *fp, struct knote *kn) 2210 { 2211 struct socket *so; 2212 struct sockbuf *sb; 2213 2214 so = ((file_t *)kn->kn_obj)->f_data; 2215 solock(so); 2216 switch (kn->kn_filter) { 2217 case EVFILT_READ: 2218 if (so->so_options & SO_ACCEPTCONN) 2219 kn->kn_fop = &solisten_filtops; 2220 else 2221 kn->kn_fop = &soread_filtops; 2222 sb = &so->so_rcv; 2223 break; 2224 case EVFILT_WRITE: 2225 kn->kn_fop = &sowrite_filtops; 2226 sb = &so->so_snd; 2227 break; 2228 default: 2229 sounlock(so); 2230 return (EINVAL); 2231 } 2232 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2233 sb->sb_flags |= SB_KNOTE; 2234 sounlock(so); 2235 return (0); 2236 } 2237 2238 static int 2239 sodopoll(struct socket *so, int events) 2240 { 2241 int revents; 2242 2243 revents = 0; 2244 2245 if (events & (POLLIN | POLLRDNORM)) 2246 if (soreadable(so)) 2247 revents |= events & (POLLIN | POLLRDNORM); 2248 2249 if (events & (POLLOUT | POLLWRNORM)) 2250 if (sowritable(so)) 2251 revents |= events & (POLLOUT | POLLWRNORM); 2252 2253 if (events & (POLLPRI | POLLRDBAND)) 2254 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2255 revents |= events & (POLLPRI | POLLRDBAND); 2256 2257 return revents; 2258 } 2259 2260 int 2261 sopoll(struct socket *so, int events) 2262 { 2263 int revents = 0; 2264 2265 #ifndef DIAGNOSTIC 2266 /* 2267 * Do a quick, unlocked check in expectation that the socket 2268 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2269 * as the solocked() assertions will fail. 2270 */ 2271 if ((revents = sodopoll(so, events)) != 0) 2272 return revents; 2273 #endif 2274 2275 solock(so); 2276 if ((revents = sodopoll(so, events)) == 0) { 2277 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2278 selrecord(curlwp, &so->so_rcv.sb_sel); 2279 so->so_rcv.sb_flags |= SB_NOTIFY; 2280 } 2281 2282 if (events & (POLLOUT | POLLWRNORM)) { 2283 selrecord(curlwp, &so->so_snd.sb_sel); 2284 so->so_snd.sb_flags |= SB_NOTIFY; 2285 } 2286 } 2287 sounlock(so); 2288 2289 return revents; 2290 } 2291 2292 2293 #include <sys/sysctl.h> 2294 2295 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2296 2297 /* 2298 * sysctl helper routine for kern.somaxkva. ensures that the given 2299 * value is not too small. 2300 * (XXX should we maybe make sure it's not too large as well?) 2301 */ 2302 static int 2303 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2304 { 2305 int error, new_somaxkva; 2306 struct sysctlnode node; 2307 2308 new_somaxkva = somaxkva; 2309 node = *rnode; 2310 node.sysctl_data = &new_somaxkva; 2311 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2312 if (error || newp == NULL) 2313 return (error); 2314 2315 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2316 return (EINVAL); 2317 2318 mutex_enter(&so_pendfree_lock); 2319 somaxkva = new_somaxkva; 2320 cv_broadcast(&socurkva_cv); 2321 mutex_exit(&so_pendfree_lock); 2322 2323 return (error); 2324 } 2325 2326 static void 2327 sysctl_kern_somaxkva_setup(void) 2328 { 2329 2330 KASSERT(socket_sysctllog == NULL); 2331 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2332 CTLFLAG_PERMANENT, 2333 CTLTYPE_NODE, "kern", NULL, 2334 NULL, 0, NULL, 0, 2335 CTL_KERN, CTL_EOL); 2336 2337 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2339 CTLTYPE_INT, "somaxkva", 2340 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2341 "used for socket buffers"), 2342 sysctl_kern_somaxkva, 0, NULL, 0, 2343 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2344 } 2345