1 /* $NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.202 2011/01/17 07:13:32 uebayasi Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 96 #ifdef COMPAT_50 97 #include <compat/sys/time.h> 98 #include <compat/sys/socket.h> 99 #endif 100 101 #include <uvm/uvm_extern.h> 102 #include <uvm/uvm_loan.h> 103 #include <uvm/uvm_page.h> 104 105 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 106 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 107 108 extern const struct fileops socketops; 109 110 extern int somaxconn; /* patchable (XXX sysctl) */ 111 int somaxconn = SOMAXCONN; 112 kmutex_t *softnet_lock; 113 114 #ifdef SOSEND_COUNTERS 115 #include <sys/device.h> 116 117 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "loan big"); 119 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 120 NULL, "sosend", "copy big"); 121 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 122 NULL, "sosend", "copy small"); 123 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 124 NULL, "sosend", "kva limit"); 125 126 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 127 128 EVCNT_ATTACH_STATIC(sosend_loan_big); 129 EVCNT_ATTACH_STATIC(sosend_copy_big); 130 EVCNT_ATTACH_STATIC(sosend_copy_small); 131 EVCNT_ATTACH_STATIC(sosend_kvalimit); 132 #else 133 134 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 135 136 #endif /* SOSEND_COUNTERS */ 137 138 static struct callback_entry sokva_reclaimerentry; 139 140 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 141 int sock_loan_thresh = -1; 142 #else 143 int sock_loan_thresh = 4096; 144 #endif 145 146 static kmutex_t so_pendfree_lock; 147 static struct mbuf *so_pendfree; 148 149 #ifndef SOMAXKVA 150 #define SOMAXKVA (16 * 1024 * 1024) 151 #endif 152 int somaxkva = SOMAXKVA; 153 static int socurkva; 154 static kcondvar_t socurkva_cv; 155 156 static kauth_listener_t socket_listener; 157 158 #define SOCK_LOAN_CHUNK 65536 159 160 static size_t sodopendfree(void); 161 static size_t sodopendfreel(void); 162 163 static void sysctl_kern_somaxkva_setup(void); 164 static struct sysctllog *socket_sysctllog; 165 166 static vsize_t 167 sokvareserve(struct socket *so, vsize_t len) 168 { 169 int error; 170 171 mutex_enter(&so_pendfree_lock); 172 while (socurkva + len > somaxkva) { 173 size_t freed; 174 175 /* 176 * try to do pendfree. 177 */ 178 179 freed = sodopendfreel(); 180 181 /* 182 * if some kva was freed, try again. 183 */ 184 185 if (freed) 186 continue; 187 188 SOSEND_COUNTER_INCR(&sosend_kvalimit); 189 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 190 if (error) { 191 len = 0; 192 break; 193 } 194 } 195 socurkva += len; 196 mutex_exit(&so_pendfree_lock); 197 return len; 198 } 199 200 static void 201 sokvaunreserve(vsize_t len) 202 { 203 204 mutex_enter(&so_pendfree_lock); 205 socurkva -= len; 206 cv_broadcast(&socurkva_cv); 207 mutex_exit(&so_pendfree_lock); 208 } 209 210 /* 211 * sokvaalloc: allocate kva for loan. 212 */ 213 214 vaddr_t 215 sokvaalloc(vsize_t len, struct socket *so) 216 { 217 vaddr_t lva; 218 219 /* 220 * reserve kva. 221 */ 222 223 if (sokvareserve(so, len) == 0) 224 return 0; 225 226 /* 227 * allocate kva. 228 */ 229 230 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 231 if (lva == 0) { 232 sokvaunreserve(len); 233 return (0); 234 } 235 236 return lva; 237 } 238 239 /* 240 * sokvafree: free kva for loan. 241 */ 242 243 void 244 sokvafree(vaddr_t sva, vsize_t len) 245 { 246 247 /* 248 * free kva. 249 */ 250 251 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 252 253 /* 254 * unreserve kva. 255 */ 256 257 sokvaunreserve(len); 258 } 259 260 static void 261 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 262 { 263 vaddr_t sva, eva; 264 vsize_t len; 265 int npgs; 266 267 KASSERT(pgs != NULL); 268 269 eva = round_page((vaddr_t) buf + size); 270 sva = trunc_page((vaddr_t) buf); 271 len = eva - sva; 272 npgs = len >> PAGE_SHIFT; 273 274 pmap_kremove(sva, len); 275 pmap_update(pmap_kernel()); 276 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 277 sokvafree(sva, len); 278 } 279 280 static size_t 281 sodopendfree(void) 282 { 283 size_t rv; 284 285 if (__predict_true(so_pendfree == NULL)) 286 return 0; 287 288 mutex_enter(&so_pendfree_lock); 289 rv = sodopendfreel(); 290 mutex_exit(&so_pendfree_lock); 291 292 return rv; 293 } 294 295 /* 296 * sodopendfreel: free mbufs on "pendfree" list. 297 * unlock and relock so_pendfree_lock when freeing mbufs. 298 * 299 * => called with so_pendfree_lock held. 300 */ 301 302 static size_t 303 sodopendfreel(void) 304 { 305 struct mbuf *m, *next; 306 size_t rv = 0; 307 308 KASSERT(mutex_owned(&so_pendfree_lock)); 309 310 while (so_pendfree != NULL) { 311 m = so_pendfree; 312 so_pendfree = NULL; 313 mutex_exit(&so_pendfree_lock); 314 315 for (; m != NULL; m = next) { 316 next = m->m_next; 317 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 318 KASSERT(m->m_ext.ext_refcnt == 0); 319 320 rv += m->m_ext.ext_size; 321 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 322 m->m_ext.ext_size); 323 pool_cache_put(mb_cache, m); 324 } 325 326 mutex_enter(&so_pendfree_lock); 327 } 328 329 return (rv); 330 } 331 332 void 333 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 334 { 335 336 KASSERT(m != NULL); 337 338 /* 339 * postpone freeing mbuf. 340 * 341 * we can't do it in interrupt context 342 * because we need to put kva back to kernel_map. 343 */ 344 345 mutex_enter(&so_pendfree_lock); 346 m->m_next = so_pendfree; 347 so_pendfree = m; 348 cv_broadcast(&socurkva_cv); 349 mutex_exit(&so_pendfree_lock); 350 } 351 352 static long 353 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 354 { 355 struct iovec *iov = uio->uio_iov; 356 vaddr_t sva, eva; 357 vsize_t len; 358 vaddr_t lva; 359 int npgs, error; 360 vaddr_t va; 361 int i; 362 363 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 364 return (0); 365 366 if (iov->iov_len < (size_t) space) 367 space = iov->iov_len; 368 if (space > SOCK_LOAN_CHUNK) 369 space = SOCK_LOAN_CHUNK; 370 371 eva = round_page((vaddr_t) iov->iov_base + space); 372 sva = trunc_page((vaddr_t) iov->iov_base); 373 len = eva - sva; 374 npgs = len >> PAGE_SHIFT; 375 376 KASSERT(npgs <= M_EXT_MAXPAGES); 377 378 lva = sokvaalloc(len, so); 379 if (lva == 0) 380 return 0; 381 382 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 383 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 384 if (error) { 385 sokvafree(lva, len); 386 return (0); 387 } 388 389 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 390 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 391 VM_PROT_READ, 0); 392 pmap_update(pmap_kernel()); 393 394 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 395 396 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 397 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 398 399 uio->uio_resid -= space; 400 /* uio_offset not updated, not set/used for write(2) */ 401 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 402 uio->uio_iov->iov_len -= space; 403 if (uio->uio_iov->iov_len == 0) { 404 uio->uio_iov++; 405 uio->uio_iovcnt--; 406 } 407 408 return (space); 409 } 410 411 static int 412 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 413 { 414 415 KASSERT(ce == &sokva_reclaimerentry); 416 KASSERT(obj == NULL); 417 418 sodopendfree(); 419 if (!vm_map_starved_p(kernel_map)) { 420 return CALLBACK_CHAIN_ABORT; 421 } 422 return CALLBACK_CHAIN_CONTINUE; 423 } 424 425 struct mbuf * 426 getsombuf(struct socket *so, int type) 427 { 428 struct mbuf *m; 429 430 m = m_get(M_WAIT, type); 431 MCLAIM(m, so->so_mowner); 432 return m; 433 } 434 435 static int 436 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 437 void *arg0, void *arg1, void *arg2, void *arg3) 438 { 439 int result; 440 enum kauth_network_req req; 441 442 result = KAUTH_RESULT_DEFER; 443 req = (enum kauth_network_req)arg0; 444 445 if ((action != KAUTH_NETWORK_SOCKET) && 446 (action != KAUTH_NETWORK_BIND)) 447 return result; 448 449 switch (req) { 450 case KAUTH_REQ_NETWORK_BIND_PORT: 451 result = KAUTH_RESULT_ALLOW; 452 break; 453 454 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 455 /* Normal users can only drop their own connections. */ 456 struct socket *so = (struct socket *)arg1; 457 458 if (proc_uidmatch(cred, so->so_cred)) 459 result = KAUTH_RESULT_ALLOW; 460 461 break; 462 } 463 464 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 465 /* We allow "raw" routing/bluetooth sockets to anyone. */ 466 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH) 467 result = KAUTH_RESULT_ALLOW; 468 else { 469 /* Privileged, let secmodel handle this. */ 470 if ((u_long)arg2 == SOCK_RAW) 471 break; 472 } 473 474 result = KAUTH_RESULT_ALLOW; 475 476 break; 477 478 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 479 result = KAUTH_RESULT_ALLOW; 480 481 break; 482 483 default: 484 break; 485 } 486 487 return result; 488 } 489 490 void 491 soinit(void) 492 { 493 494 sysctl_kern_somaxkva_setup(); 495 496 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 497 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 498 cv_init(&socurkva_cv, "sokva"); 499 soinit2(); 500 501 /* Set the initial adjusted socket buffer size. */ 502 if (sb_max_set(sb_max)) 503 panic("bad initial sb_max value: %lu", sb_max); 504 505 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 506 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 507 508 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 509 socket_listener_cb, NULL); 510 } 511 512 /* 513 * Socket operation routines. 514 * These routines are called by the routines in 515 * sys_socket.c or from a system process, and 516 * implement the semantics of socket operations by 517 * switching out to the protocol specific routines. 518 */ 519 /*ARGSUSED*/ 520 int 521 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 522 struct socket *lockso) 523 { 524 const struct protosw *prp; 525 struct socket *so; 526 uid_t uid; 527 int error; 528 kmutex_t *lock; 529 530 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 531 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 532 KAUTH_ARG(proto)); 533 if (error != 0) 534 return error; 535 536 if (proto) 537 prp = pffindproto(dom, proto, type); 538 else 539 prp = pffindtype(dom, type); 540 if (prp == NULL) { 541 /* no support for domain */ 542 if (pffinddomain(dom) == 0) 543 return EAFNOSUPPORT; 544 /* no support for socket type */ 545 if (proto == 0 && type != 0) 546 return EPROTOTYPE; 547 return EPROTONOSUPPORT; 548 } 549 if (prp->pr_usrreq == NULL) 550 return EPROTONOSUPPORT; 551 if (prp->pr_type != type) 552 return EPROTOTYPE; 553 554 so = soget(true); 555 so->so_type = type; 556 so->so_proto = prp; 557 so->so_send = sosend; 558 so->so_receive = soreceive; 559 #ifdef MBUFTRACE 560 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 561 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 562 so->so_mowner = &prp->pr_domain->dom_mowner; 563 #endif 564 uid = kauth_cred_geteuid(l->l_cred); 565 so->so_uidinfo = uid_find(uid); 566 so->so_cpid = l->l_proc->p_pid; 567 if (lockso != NULL) { 568 /* Caller wants us to share a lock. */ 569 lock = lockso->so_lock; 570 so->so_lock = lock; 571 mutex_obj_hold(lock); 572 mutex_enter(lock); 573 } else { 574 /* Lock assigned and taken during PRU_ATTACH. */ 575 } 576 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 577 (struct mbuf *)(long)proto, NULL, l); 578 KASSERT(solocked(so)); 579 if (error != 0) { 580 so->so_state |= SS_NOFDREF; 581 sofree(so); 582 return error; 583 } 584 so->so_cred = kauth_cred_dup(l->l_cred); 585 sounlock(so); 586 *aso = so; 587 return 0; 588 } 589 590 /* On success, write file descriptor to fdout and return zero. On 591 * failure, return non-zero; *fdout will be undefined. 592 */ 593 int 594 fsocreate(int domain, struct socket **sop, int type, int protocol, 595 struct lwp *l, int *fdout) 596 { 597 struct socket *so; 598 struct file *fp; 599 int fd, error; 600 601 if ((error = fd_allocfile(&fp, &fd)) != 0) 602 return (error); 603 fp->f_flag = FREAD|FWRITE; 604 fp->f_type = DTYPE_SOCKET; 605 fp->f_ops = &socketops; 606 error = socreate(domain, &so, type, protocol, l, NULL); 607 if (error != 0) { 608 fd_abort(curproc, fp, fd); 609 } else { 610 if (sop != NULL) 611 *sop = so; 612 fp->f_data = so; 613 fd_affix(curproc, fp, fd); 614 *fdout = fd; 615 } 616 return error; 617 } 618 619 int 620 sofamily(const struct socket *so) 621 { 622 const struct protosw *pr; 623 const struct domain *dom; 624 625 if ((pr = so->so_proto) == NULL) 626 return AF_UNSPEC; 627 if ((dom = pr->pr_domain) == NULL) 628 return AF_UNSPEC; 629 return dom->dom_family; 630 } 631 632 int 633 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 634 { 635 int error; 636 637 solock(so); 638 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 639 sounlock(so); 640 return error; 641 } 642 643 int 644 solisten(struct socket *so, int backlog, struct lwp *l) 645 { 646 int error; 647 648 solock(so); 649 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 650 SS_ISDISCONNECTING)) != 0) { 651 sounlock(so); 652 return (EOPNOTSUPP); 653 } 654 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 655 NULL, NULL, l); 656 if (error != 0) { 657 sounlock(so); 658 return error; 659 } 660 if (TAILQ_EMPTY(&so->so_q)) 661 so->so_options |= SO_ACCEPTCONN; 662 if (backlog < 0) 663 backlog = 0; 664 so->so_qlimit = min(backlog, somaxconn); 665 sounlock(so); 666 return 0; 667 } 668 669 void 670 sofree(struct socket *so) 671 { 672 u_int refs; 673 674 KASSERT(solocked(so)); 675 676 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 677 sounlock(so); 678 return; 679 } 680 if (so->so_head) { 681 /* 682 * We must not decommission a socket that's on the accept(2) 683 * queue. If we do, then accept(2) may hang after select(2) 684 * indicated that the listening socket was ready. 685 */ 686 if (!soqremque(so, 0)) { 687 sounlock(so); 688 return; 689 } 690 } 691 if (so->so_rcv.sb_hiwat) 692 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 693 RLIM_INFINITY); 694 if (so->so_snd.sb_hiwat) 695 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 696 RLIM_INFINITY); 697 sbrelease(&so->so_snd, so); 698 KASSERT(!cv_has_waiters(&so->so_cv)); 699 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 700 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 701 sorflush(so); 702 refs = so->so_aborting; /* XXX */ 703 /* Remove acccept filter if one is present. */ 704 if (so->so_accf != NULL) 705 (void)accept_filt_clear(so); 706 sounlock(so); 707 if (refs == 0) /* XXX */ 708 soput(so); 709 } 710 711 /* 712 * Close a socket on last file table reference removal. 713 * Initiate disconnect if connected. 714 * Free socket when disconnect complete. 715 */ 716 int 717 soclose(struct socket *so) 718 { 719 struct socket *so2; 720 int error; 721 int error2; 722 723 error = 0; 724 solock(so); 725 if (so->so_options & SO_ACCEPTCONN) { 726 for (;;) { 727 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 728 KASSERT(solocked2(so, so2)); 729 (void) soqremque(so2, 0); 730 /* soabort drops the lock. */ 731 (void) soabort(so2); 732 solock(so); 733 continue; 734 } 735 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 736 KASSERT(solocked2(so, so2)); 737 (void) soqremque(so2, 1); 738 /* soabort drops the lock. */ 739 (void) soabort(so2); 740 solock(so); 741 continue; 742 } 743 break; 744 } 745 } 746 if (so->so_pcb == 0) 747 goto discard; 748 if (so->so_state & SS_ISCONNECTED) { 749 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 750 error = sodisconnect(so); 751 if (error) 752 goto drop; 753 } 754 if (so->so_options & SO_LINGER) { 755 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio) 756 goto drop; 757 while (so->so_state & SS_ISCONNECTED) { 758 error = sowait(so, true, so->so_linger * hz); 759 if (error) 760 break; 761 } 762 } 763 } 764 drop: 765 if (so->so_pcb) { 766 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 767 NULL, NULL, NULL, NULL); 768 if (error == 0) 769 error = error2; 770 } 771 discard: 772 if (so->so_state & SS_NOFDREF) 773 panic("soclose: NOFDREF"); 774 kauth_cred_free(so->so_cred); 775 so->so_state |= SS_NOFDREF; 776 sofree(so); 777 return (error); 778 } 779 780 /* 781 * Must be called with the socket locked.. Will return with it unlocked. 782 */ 783 int 784 soabort(struct socket *so) 785 { 786 u_int refs; 787 int error; 788 789 KASSERT(solocked(so)); 790 KASSERT(so->so_head == NULL); 791 792 so->so_aborting++; /* XXX */ 793 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 794 NULL, NULL, NULL); 795 refs = --so->so_aborting; /* XXX */ 796 if (error || (refs == 0)) { 797 sofree(so); 798 } else { 799 sounlock(so); 800 } 801 return error; 802 } 803 804 int 805 soaccept(struct socket *so, struct mbuf *nam) 806 { 807 int error; 808 809 KASSERT(solocked(so)); 810 811 error = 0; 812 if ((so->so_state & SS_NOFDREF) == 0) 813 panic("soaccept: !NOFDREF"); 814 so->so_state &= ~SS_NOFDREF; 815 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 816 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 817 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 818 NULL, nam, NULL, NULL); 819 else 820 error = ECONNABORTED; 821 822 return (error); 823 } 824 825 int 826 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 827 { 828 int error; 829 830 KASSERT(solocked(so)); 831 832 if (so->so_options & SO_ACCEPTCONN) 833 return (EOPNOTSUPP); 834 /* 835 * If protocol is connection-based, can only connect once. 836 * Otherwise, if connected, try to disconnect first. 837 * This allows user to disconnect by connecting to, e.g., 838 * a null address. 839 */ 840 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 841 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 842 (error = sodisconnect(so)))) 843 error = EISCONN; 844 else 845 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 846 NULL, nam, NULL, l); 847 return (error); 848 } 849 850 int 851 soconnect2(struct socket *so1, struct socket *so2) 852 { 853 int error; 854 855 KASSERT(solocked2(so1, so2)); 856 857 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 858 NULL, (struct mbuf *)so2, NULL, NULL); 859 return (error); 860 } 861 862 int 863 sodisconnect(struct socket *so) 864 { 865 int error; 866 867 KASSERT(solocked(so)); 868 869 if ((so->so_state & SS_ISCONNECTED) == 0) { 870 error = ENOTCONN; 871 } else if (so->so_state & SS_ISDISCONNECTING) { 872 error = EALREADY; 873 } else { 874 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 875 NULL, NULL, NULL, NULL); 876 } 877 sodopendfree(); 878 return (error); 879 } 880 881 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 882 /* 883 * Send on a socket. 884 * If send must go all at once and message is larger than 885 * send buffering, then hard error. 886 * Lock against other senders. 887 * If must go all at once and not enough room now, then 888 * inform user that this would block and do nothing. 889 * Otherwise, if nonblocking, send as much as possible. 890 * The data to be sent is described by "uio" if nonzero, 891 * otherwise by the mbuf chain "top" (which must be null 892 * if uio is not). Data provided in mbuf chain must be small 893 * enough to send all at once. 894 * 895 * Returns nonzero on error, timeout or signal; callers 896 * must check for short counts if EINTR/ERESTART are returned. 897 * Data and control buffers are freed on return. 898 */ 899 int 900 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 901 struct mbuf *control, int flags, struct lwp *l) 902 { 903 struct mbuf **mp, *m; 904 struct proc *p; 905 long space, len, resid, clen, mlen; 906 int error, s, dontroute, atomic; 907 short wakeup_state = 0; 908 909 p = l->l_proc; 910 sodopendfree(); 911 clen = 0; 912 913 /* 914 * solock() provides atomicity of access. splsoftnet() prevents 915 * protocol processing soft interrupts from interrupting us and 916 * blocking (expensive). 917 */ 918 s = splsoftnet(); 919 solock(so); 920 atomic = sosendallatonce(so) || top; 921 if (uio) 922 resid = uio->uio_resid; 923 else 924 resid = top->m_pkthdr.len; 925 /* 926 * In theory resid should be unsigned. 927 * However, space must be signed, as it might be less than 0 928 * if we over-committed, and we must use a signed comparison 929 * of space and resid. On the other hand, a negative resid 930 * causes us to loop sending 0-length segments to the protocol. 931 */ 932 if (resid < 0) { 933 error = EINVAL; 934 goto out; 935 } 936 dontroute = 937 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 938 (so->so_proto->pr_flags & PR_ATOMIC); 939 l->l_ru.ru_msgsnd++; 940 if (control) 941 clen = control->m_len; 942 restart: 943 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 944 goto out; 945 do { 946 if (so->so_state & SS_CANTSENDMORE) { 947 error = EPIPE; 948 goto release; 949 } 950 if (so->so_error) { 951 error = so->so_error; 952 so->so_error = 0; 953 goto release; 954 } 955 if ((so->so_state & SS_ISCONNECTED) == 0) { 956 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 957 if ((so->so_state & SS_ISCONFIRMING) == 0 && 958 !(resid == 0 && clen != 0)) { 959 error = ENOTCONN; 960 goto release; 961 } 962 } else if (addr == 0) { 963 error = EDESTADDRREQ; 964 goto release; 965 } 966 } 967 space = sbspace(&so->so_snd); 968 if (flags & MSG_OOB) 969 space += 1024; 970 if ((atomic && resid > so->so_snd.sb_hiwat) || 971 clen > so->so_snd.sb_hiwat) { 972 error = EMSGSIZE; 973 goto release; 974 } 975 if (space < resid + clen && 976 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 977 if (so->so_nbio) { 978 error = EWOULDBLOCK; 979 goto release; 980 } 981 sbunlock(&so->so_snd); 982 if (wakeup_state & SS_RESTARTSYS) { 983 error = ERESTART; 984 goto out; 985 } 986 error = sbwait(&so->so_snd); 987 if (error) 988 goto out; 989 wakeup_state = so->so_state; 990 goto restart; 991 } 992 wakeup_state = 0; 993 mp = ⊤ 994 space -= clen; 995 do { 996 if (uio == NULL) { 997 /* 998 * Data is prepackaged in "top". 999 */ 1000 resid = 0; 1001 if (flags & MSG_EOR) 1002 top->m_flags |= M_EOR; 1003 } else do { 1004 sounlock(so); 1005 splx(s); 1006 if (top == NULL) { 1007 m = m_gethdr(M_WAIT, MT_DATA); 1008 mlen = MHLEN; 1009 m->m_pkthdr.len = 0; 1010 m->m_pkthdr.rcvif = NULL; 1011 } else { 1012 m = m_get(M_WAIT, MT_DATA); 1013 mlen = MLEN; 1014 } 1015 MCLAIM(m, so->so_snd.sb_mowner); 1016 if (sock_loan_thresh >= 0 && 1017 uio->uio_iov->iov_len >= sock_loan_thresh && 1018 space >= sock_loan_thresh && 1019 (len = sosend_loan(so, uio, m, 1020 space)) != 0) { 1021 SOSEND_COUNTER_INCR(&sosend_loan_big); 1022 space -= len; 1023 goto have_data; 1024 } 1025 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1026 SOSEND_COUNTER_INCR(&sosend_copy_big); 1027 m_clget(m, M_DONTWAIT); 1028 if ((m->m_flags & M_EXT) == 0) 1029 goto nopages; 1030 mlen = MCLBYTES; 1031 if (atomic && top == 0) { 1032 len = lmin(MCLBYTES - max_hdr, 1033 resid); 1034 m->m_data += max_hdr; 1035 } else 1036 len = lmin(MCLBYTES, resid); 1037 space -= len; 1038 } else { 1039 nopages: 1040 SOSEND_COUNTER_INCR(&sosend_copy_small); 1041 len = lmin(lmin(mlen, resid), space); 1042 space -= len; 1043 /* 1044 * For datagram protocols, leave room 1045 * for protocol headers in first mbuf. 1046 */ 1047 if (atomic && top == 0 && len < mlen) 1048 MH_ALIGN(m, len); 1049 } 1050 error = uiomove(mtod(m, void *), (int)len, uio); 1051 have_data: 1052 resid = uio->uio_resid; 1053 m->m_len = len; 1054 *mp = m; 1055 top->m_pkthdr.len += len; 1056 s = splsoftnet(); 1057 solock(so); 1058 if (error != 0) 1059 goto release; 1060 mp = &m->m_next; 1061 if (resid <= 0) { 1062 if (flags & MSG_EOR) 1063 top->m_flags |= M_EOR; 1064 break; 1065 } 1066 } while (space > 0 && atomic); 1067 1068 if (so->so_state & SS_CANTSENDMORE) { 1069 error = EPIPE; 1070 goto release; 1071 } 1072 if (dontroute) 1073 so->so_options |= SO_DONTROUTE; 1074 if (resid > 0) 1075 so->so_state |= SS_MORETOCOME; 1076 error = (*so->so_proto->pr_usrreq)(so, 1077 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1078 top, addr, control, curlwp); 1079 if (dontroute) 1080 so->so_options &= ~SO_DONTROUTE; 1081 if (resid > 0) 1082 so->so_state &= ~SS_MORETOCOME; 1083 clen = 0; 1084 control = NULL; 1085 top = NULL; 1086 mp = ⊤ 1087 if (error != 0) 1088 goto release; 1089 } while (resid && space > 0); 1090 } while (resid); 1091 1092 release: 1093 sbunlock(&so->so_snd); 1094 out: 1095 sounlock(so); 1096 splx(s); 1097 if (top) 1098 m_freem(top); 1099 if (control) 1100 m_freem(control); 1101 return (error); 1102 } 1103 1104 /* 1105 * Following replacement or removal of the first mbuf on the first 1106 * mbuf chain of a socket buffer, push necessary state changes back 1107 * into the socket buffer so that other consumers see the values 1108 * consistently. 'nextrecord' is the callers locally stored value of 1109 * the original value of sb->sb_mb->m_nextpkt which must be restored 1110 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1111 */ 1112 static void 1113 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1114 { 1115 1116 KASSERT(solocked(sb->sb_so)); 1117 1118 /* 1119 * First, update for the new value of nextrecord. If necessary, 1120 * make it the first record. 1121 */ 1122 if (sb->sb_mb != NULL) 1123 sb->sb_mb->m_nextpkt = nextrecord; 1124 else 1125 sb->sb_mb = nextrecord; 1126 1127 /* 1128 * Now update any dependent socket buffer fields to reflect 1129 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1130 * the addition of a second clause that takes care of the 1131 * case where sb_mb has been updated, but remains the last 1132 * record. 1133 */ 1134 if (sb->sb_mb == NULL) { 1135 sb->sb_mbtail = NULL; 1136 sb->sb_lastrecord = NULL; 1137 } else if (sb->sb_mb->m_nextpkt == NULL) 1138 sb->sb_lastrecord = sb->sb_mb; 1139 } 1140 1141 /* 1142 * Implement receive operations on a socket. 1143 * We depend on the way that records are added to the sockbuf 1144 * by sbappend*. In particular, each record (mbufs linked through m_next) 1145 * must begin with an address if the protocol so specifies, 1146 * followed by an optional mbuf or mbufs containing ancillary data, 1147 * and then zero or more mbufs of data. 1148 * In order to avoid blocking network interrupts for the entire time here, 1149 * we splx() while doing the actual copy to user space. 1150 * Although the sockbuf is locked, new data may still be appended, 1151 * and thus we must maintain consistency of the sockbuf during that time. 1152 * 1153 * The caller may receive the data as a single mbuf chain by supplying 1154 * an mbuf **mp0 for use in returning the chain. The uio is then used 1155 * only for the count in uio_resid. 1156 */ 1157 int 1158 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1159 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1160 { 1161 struct lwp *l = curlwp; 1162 struct mbuf *m, **mp, *mt; 1163 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1164 const struct protosw *pr; 1165 struct mbuf *nextrecord; 1166 int mbuf_removed = 0; 1167 const struct domain *dom; 1168 short wakeup_state = 0; 1169 1170 pr = so->so_proto; 1171 atomic = pr->pr_flags & PR_ATOMIC; 1172 dom = pr->pr_domain; 1173 mp = mp0; 1174 type = 0; 1175 orig_resid = uio->uio_resid; 1176 1177 if (paddr != NULL) 1178 *paddr = NULL; 1179 if (controlp != NULL) 1180 *controlp = NULL; 1181 if (flagsp != NULL) 1182 flags = *flagsp &~ MSG_EOR; 1183 else 1184 flags = 0; 1185 1186 if ((flags & MSG_DONTWAIT) == 0) 1187 sodopendfree(); 1188 1189 if (flags & MSG_OOB) { 1190 m = m_get(M_WAIT, MT_DATA); 1191 solock(so); 1192 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1193 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1194 sounlock(so); 1195 if (error) 1196 goto bad; 1197 do { 1198 error = uiomove(mtod(m, void *), 1199 (int) min(uio->uio_resid, m->m_len), uio); 1200 m = m_free(m); 1201 } while (uio->uio_resid > 0 && error == 0 && m); 1202 bad: 1203 if (m != NULL) 1204 m_freem(m); 1205 return error; 1206 } 1207 if (mp != NULL) 1208 *mp = NULL; 1209 1210 /* 1211 * solock() provides atomicity of access. splsoftnet() prevents 1212 * protocol processing soft interrupts from interrupting us and 1213 * blocking (expensive). 1214 */ 1215 s = splsoftnet(); 1216 solock(so); 1217 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1218 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1219 1220 restart: 1221 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1222 sounlock(so); 1223 splx(s); 1224 return error; 1225 } 1226 1227 m = so->so_rcv.sb_mb; 1228 /* 1229 * If we have less data than requested, block awaiting more 1230 * (subject to any timeout) if: 1231 * 1. the current count is less than the low water mark, 1232 * 2. MSG_WAITALL is set, and it is possible to do the entire 1233 * receive operation at once if we block (resid <= hiwat), or 1234 * 3. MSG_DONTWAIT is not set. 1235 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1236 * we have to do the receive in sections, and thus risk returning 1237 * a short count if a timeout or signal occurs after we start. 1238 */ 1239 if (m == NULL || 1240 ((flags & MSG_DONTWAIT) == 0 && 1241 so->so_rcv.sb_cc < uio->uio_resid && 1242 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1243 ((flags & MSG_WAITALL) && 1244 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1245 m->m_nextpkt == NULL && !atomic)) { 1246 #ifdef DIAGNOSTIC 1247 if (m == NULL && so->so_rcv.sb_cc) 1248 panic("receive 1"); 1249 #endif 1250 if (so->so_error) { 1251 if (m != NULL) 1252 goto dontblock; 1253 error = so->so_error; 1254 if ((flags & MSG_PEEK) == 0) 1255 so->so_error = 0; 1256 goto release; 1257 } 1258 if (so->so_state & SS_CANTRCVMORE) { 1259 if (m != NULL) 1260 goto dontblock; 1261 else 1262 goto release; 1263 } 1264 for (; m != NULL; m = m->m_next) 1265 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1266 m = so->so_rcv.sb_mb; 1267 goto dontblock; 1268 } 1269 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1270 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1271 error = ENOTCONN; 1272 goto release; 1273 } 1274 if (uio->uio_resid == 0) 1275 goto release; 1276 if (so->so_nbio || (flags & MSG_DONTWAIT)) { 1277 error = EWOULDBLOCK; 1278 goto release; 1279 } 1280 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1281 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1282 sbunlock(&so->so_rcv); 1283 if (wakeup_state & SS_RESTARTSYS) 1284 error = ERESTART; 1285 else 1286 error = sbwait(&so->so_rcv); 1287 if (error != 0) { 1288 sounlock(so); 1289 splx(s); 1290 return error; 1291 } 1292 wakeup_state = so->so_state; 1293 goto restart; 1294 } 1295 dontblock: 1296 /* 1297 * On entry here, m points to the first record of the socket buffer. 1298 * From this point onward, we maintain 'nextrecord' as a cache of the 1299 * pointer to the next record in the socket buffer. We must keep the 1300 * various socket buffer pointers and local stack versions of the 1301 * pointers in sync, pushing out modifications before dropping the 1302 * socket lock, and re-reading them when picking it up. 1303 * 1304 * Otherwise, we will race with the network stack appending new data 1305 * or records onto the socket buffer by using inconsistent/stale 1306 * versions of the field, possibly resulting in socket buffer 1307 * corruption. 1308 * 1309 * By holding the high-level sblock(), we prevent simultaneous 1310 * readers from pulling off the front of the socket buffer. 1311 */ 1312 if (l != NULL) 1313 l->l_ru.ru_msgrcv++; 1314 KASSERT(m == so->so_rcv.sb_mb); 1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1317 nextrecord = m->m_nextpkt; 1318 if (pr->pr_flags & PR_ADDR) { 1319 #ifdef DIAGNOSTIC 1320 if (m->m_type != MT_SONAME) 1321 panic("receive 1a"); 1322 #endif 1323 orig_resid = 0; 1324 if (flags & MSG_PEEK) { 1325 if (paddr) 1326 *paddr = m_copy(m, 0, m->m_len); 1327 m = m->m_next; 1328 } else { 1329 sbfree(&so->so_rcv, m); 1330 mbuf_removed = 1; 1331 if (paddr != NULL) { 1332 *paddr = m; 1333 so->so_rcv.sb_mb = m->m_next; 1334 m->m_next = NULL; 1335 m = so->so_rcv.sb_mb; 1336 } else { 1337 MFREE(m, so->so_rcv.sb_mb); 1338 m = so->so_rcv.sb_mb; 1339 } 1340 sbsync(&so->so_rcv, nextrecord); 1341 } 1342 } 1343 1344 /* 1345 * Process one or more MT_CONTROL mbufs present before any data mbufs 1346 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1347 * just copy the data; if !MSG_PEEK, we call into the protocol to 1348 * perform externalization (or freeing if controlp == NULL). 1349 */ 1350 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1351 struct mbuf *cm = NULL, *cmn; 1352 struct mbuf **cme = &cm; 1353 1354 do { 1355 if (flags & MSG_PEEK) { 1356 if (controlp != NULL) { 1357 *controlp = m_copy(m, 0, m->m_len); 1358 controlp = &(*controlp)->m_next; 1359 } 1360 m = m->m_next; 1361 } else { 1362 sbfree(&so->so_rcv, m); 1363 so->so_rcv.sb_mb = m->m_next; 1364 m->m_next = NULL; 1365 *cme = m; 1366 cme = &(*cme)->m_next; 1367 m = so->so_rcv.sb_mb; 1368 } 1369 } while (m != NULL && m->m_type == MT_CONTROL); 1370 if ((flags & MSG_PEEK) == 0) 1371 sbsync(&so->so_rcv, nextrecord); 1372 for (; cm != NULL; cm = cmn) { 1373 cmn = cm->m_next; 1374 cm->m_next = NULL; 1375 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1376 if (controlp != NULL) { 1377 if (dom->dom_externalize != NULL && 1378 type == SCM_RIGHTS) { 1379 sounlock(so); 1380 splx(s); 1381 error = (*dom->dom_externalize)(cm, l); 1382 s = splsoftnet(); 1383 solock(so); 1384 } 1385 *controlp = cm; 1386 while (*controlp != NULL) 1387 controlp = &(*controlp)->m_next; 1388 } else { 1389 /* 1390 * Dispose of any SCM_RIGHTS message that went 1391 * through the read path rather than recv. 1392 */ 1393 if (dom->dom_dispose != NULL && 1394 type == SCM_RIGHTS) { 1395 sounlock(so); 1396 (*dom->dom_dispose)(cm); 1397 solock(so); 1398 } 1399 m_freem(cm); 1400 } 1401 } 1402 if (m != NULL) 1403 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1404 else 1405 nextrecord = so->so_rcv.sb_mb; 1406 orig_resid = 0; 1407 } 1408 1409 /* If m is non-NULL, we have some data to read. */ 1410 if (__predict_true(m != NULL)) { 1411 type = m->m_type; 1412 if (type == MT_OOBDATA) 1413 flags |= MSG_OOB; 1414 } 1415 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1416 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1417 1418 moff = 0; 1419 offset = 0; 1420 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1421 if (m->m_type == MT_OOBDATA) { 1422 if (type != MT_OOBDATA) 1423 break; 1424 } else if (type == MT_OOBDATA) 1425 break; 1426 #ifdef DIAGNOSTIC 1427 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1428 panic("receive 3"); 1429 #endif 1430 so->so_state &= ~SS_RCVATMARK; 1431 wakeup_state = 0; 1432 len = uio->uio_resid; 1433 if (so->so_oobmark && len > so->so_oobmark - offset) 1434 len = so->so_oobmark - offset; 1435 if (len > m->m_len - moff) 1436 len = m->m_len - moff; 1437 /* 1438 * If mp is set, just pass back the mbufs. 1439 * Otherwise copy them out via the uio, then free. 1440 * Sockbuf must be consistent here (points to current mbuf, 1441 * it points to next record) when we drop priority; 1442 * we must note any additions to the sockbuf when we 1443 * block interrupts again. 1444 */ 1445 if (mp == NULL) { 1446 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1447 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1448 sounlock(so); 1449 splx(s); 1450 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1451 s = splsoftnet(); 1452 solock(so); 1453 if (error != 0) { 1454 /* 1455 * If any part of the record has been removed 1456 * (such as the MT_SONAME mbuf, which will 1457 * happen when PR_ADDR, and thus also 1458 * PR_ATOMIC, is set), then drop the entire 1459 * record to maintain the atomicity of the 1460 * receive operation. 1461 * 1462 * This avoids a later panic("receive 1a") 1463 * when compiled with DIAGNOSTIC. 1464 */ 1465 if (m && mbuf_removed && atomic) 1466 (void) sbdroprecord(&so->so_rcv); 1467 1468 goto release; 1469 } 1470 } else 1471 uio->uio_resid -= len; 1472 if (len == m->m_len - moff) { 1473 if (m->m_flags & M_EOR) 1474 flags |= MSG_EOR; 1475 if (flags & MSG_PEEK) { 1476 m = m->m_next; 1477 moff = 0; 1478 } else { 1479 nextrecord = m->m_nextpkt; 1480 sbfree(&so->so_rcv, m); 1481 if (mp) { 1482 *mp = m; 1483 mp = &m->m_next; 1484 so->so_rcv.sb_mb = m = m->m_next; 1485 *mp = NULL; 1486 } else { 1487 MFREE(m, so->so_rcv.sb_mb); 1488 m = so->so_rcv.sb_mb; 1489 } 1490 /* 1491 * If m != NULL, we also know that 1492 * so->so_rcv.sb_mb != NULL. 1493 */ 1494 KASSERT(so->so_rcv.sb_mb == m); 1495 if (m) { 1496 m->m_nextpkt = nextrecord; 1497 if (nextrecord == NULL) 1498 so->so_rcv.sb_lastrecord = m; 1499 } else { 1500 so->so_rcv.sb_mb = nextrecord; 1501 SB_EMPTY_FIXUP(&so->so_rcv); 1502 } 1503 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1504 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1505 } 1506 } else if (flags & MSG_PEEK) 1507 moff += len; 1508 else { 1509 if (mp != NULL) { 1510 mt = m_copym(m, 0, len, M_NOWAIT); 1511 if (__predict_false(mt == NULL)) { 1512 sounlock(so); 1513 mt = m_copym(m, 0, len, M_WAIT); 1514 solock(so); 1515 } 1516 *mp = mt; 1517 } 1518 m->m_data += len; 1519 m->m_len -= len; 1520 so->so_rcv.sb_cc -= len; 1521 } 1522 if (so->so_oobmark) { 1523 if ((flags & MSG_PEEK) == 0) { 1524 so->so_oobmark -= len; 1525 if (so->so_oobmark == 0) { 1526 so->so_state |= SS_RCVATMARK; 1527 break; 1528 } 1529 } else { 1530 offset += len; 1531 if (offset == so->so_oobmark) 1532 break; 1533 } 1534 } 1535 if (flags & MSG_EOR) 1536 break; 1537 /* 1538 * If the MSG_WAITALL flag is set (for non-atomic socket), 1539 * we must not quit until "uio->uio_resid == 0" or an error 1540 * termination. If a signal/timeout occurs, return 1541 * with a short count but without error. 1542 * Keep sockbuf locked against other readers. 1543 */ 1544 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1545 !sosendallatonce(so) && !nextrecord) { 1546 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1547 break; 1548 /* 1549 * If we are peeking and the socket receive buffer is 1550 * full, stop since we can't get more data to peek at. 1551 */ 1552 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1553 break; 1554 /* 1555 * If we've drained the socket buffer, tell the 1556 * protocol in case it needs to do something to 1557 * get it filled again. 1558 */ 1559 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1560 (*pr->pr_usrreq)(so, PRU_RCVD, 1561 NULL, (struct mbuf *)(long)flags, NULL, l); 1562 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1563 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1564 if (wakeup_state & SS_RESTARTSYS) 1565 error = ERESTART; 1566 else 1567 error = sbwait(&so->so_rcv); 1568 if (error != 0) { 1569 sbunlock(&so->so_rcv); 1570 sounlock(so); 1571 splx(s); 1572 return 0; 1573 } 1574 if ((m = so->so_rcv.sb_mb) != NULL) 1575 nextrecord = m->m_nextpkt; 1576 wakeup_state = so->so_state; 1577 } 1578 } 1579 1580 if (m && atomic) { 1581 flags |= MSG_TRUNC; 1582 if ((flags & MSG_PEEK) == 0) 1583 (void) sbdroprecord(&so->so_rcv); 1584 } 1585 if ((flags & MSG_PEEK) == 0) { 1586 if (m == NULL) { 1587 /* 1588 * First part is an inline SB_EMPTY_FIXUP(). Second 1589 * part makes sure sb_lastrecord is up-to-date if 1590 * there is still data in the socket buffer. 1591 */ 1592 so->so_rcv.sb_mb = nextrecord; 1593 if (so->so_rcv.sb_mb == NULL) { 1594 so->so_rcv.sb_mbtail = NULL; 1595 so->so_rcv.sb_lastrecord = NULL; 1596 } else if (nextrecord->m_nextpkt == NULL) 1597 so->so_rcv.sb_lastrecord = nextrecord; 1598 } 1599 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1600 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1601 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1602 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1603 (struct mbuf *)(long)flags, NULL, l); 1604 } 1605 if (orig_resid == uio->uio_resid && orig_resid && 1606 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1607 sbunlock(&so->so_rcv); 1608 goto restart; 1609 } 1610 1611 if (flagsp != NULL) 1612 *flagsp |= flags; 1613 release: 1614 sbunlock(&so->so_rcv); 1615 sounlock(so); 1616 splx(s); 1617 return error; 1618 } 1619 1620 int 1621 soshutdown(struct socket *so, int how) 1622 { 1623 const struct protosw *pr; 1624 int error; 1625 1626 KASSERT(solocked(so)); 1627 1628 pr = so->so_proto; 1629 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1630 return (EINVAL); 1631 1632 if (how == SHUT_RD || how == SHUT_RDWR) { 1633 sorflush(so); 1634 error = 0; 1635 } 1636 if (how == SHUT_WR || how == SHUT_RDWR) 1637 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1638 NULL, NULL, NULL); 1639 1640 return error; 1641 } 1642 1643 void 1644 sorestart(struct socket *so) 1645 { 1646 /* 1647 * An application has called close() on an fd on which another 1648 * of its threads has called a socket system call. 1649 * Mark this and wake everyone up, and code that would block again 1650 * instead returns ERESTART. 1651 * On system call re-entry the fd is validated and EBADF returned. 1652 * Any other fd will block again on the 2nd syscall. 1653 */ 1654 solock(so); 1655 so->so_state |= SS_RESTARTSYS; 1656 cv_broadcast(&so->so_cv); 1657 cv_broadcast(&so->so_snd.sb_cv); 1658 cv_broadcast(&so->so_rcv.sb_cv); 1659 sounlock(so); 1660 } 1661 1662 void 1663 sorflush(struct socket *so) 1664 { 1665 struct sockbuf *sb, asb; 1666 const struct protosw *pr; 1667 1668 KASSERT(solocked(so)); 1669 1670 sb = &so->so_rcv; 1671 pr = so->so_proto; 1672 socantrcvmore(so); 1673 sb->sb_flags |= SB_NOINTR; 1674 (void )sblock(sb, M_WAITOK); 1675 sbunlock(sb); 1676 asb = *sb; 1677 /* 1678 * Clear most of the sockbuf structure, but leave some of the 1679 * fields valid. 1680 */ 1681 memset(&sb->sb_startzero, 0, 1682 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1683 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1684 sounlock(so); 1685 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1686 solock(so); 1687 } 1688 sbrelease(&asb, so); 1689 } 1690 1691 /* 1692 * internal set SOL_SOCKET options 1693 */ 1694 static int 1695 sosetopt1(struct socket *so, const struct sockopt *sopt) 1696 { 1697 int error = EINVAL, optval, opt; 1698 struct linger l; 1699 struct timeval tv; 1700 1701 switch ((opt = sopt->sopt_name)) { 1702 1703 case SO_ACCEPTFILTER: 1704 error = accept_filt_setopt(so, sopt); 1705 KASSERT(solocked(so)); 1706 break; 1707 1708 case SO_LINGER: 1709 error = sockopt_get(sopt, &l, sizeof(l)); 1710 solock(so); 1711 if (error) 1712 break; 1713 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1714 l.l_linger > (INT_MAX / hz)) { 1715 error = EDOM; 1716 break; 1717 } 1718 so->so_linger = l.l_linger; 1719 if (l.l_onoff) 1720 so->so_options |= SO_LINGER; 1721 else 1722 so->so_options &= ~SO_LINGER; 1723 break; 1724 1725 case SO_DEBUG: 1726 case SO_KEEPALIVE: 1727 case SO_DONTROUTE: 1728 case SO_USELOOPBACK: 1729 case SO_BROADCAST: 1730 case SO_REUSEADDR: 1731 case SO_REUSEPORT: 1732 case SO_OOBINLINE: 1733 case SO_TIMESTAMP: 1734 #ifdef SO_OTIMESTAMP 1735 case SO_OTIMESTAMP: 1736 #endif 1737 error = sockopt_getint(sopt, &optval); 1738 solock(so); 1739 if (error) 1740 break; 1741 if (optval) 1742 so->so_options |= opt; 1743 else 1744 so->so_options &= ~opt; 1745 break; 1746 1747 case SO_SNDBUF: 1748 case SO_RCVBUF: 1749 case SO_SNDLOWAT: 1750 case SO_RCVLOWAT: 1751 error = sockopt_getint(sopt, &optval); 1752 solock(so); 1753 if (error) 1754 break; 1755 1756 /* 1757 * Values < 1 make no sense for any of these 1758 * options, so disallow them. 1759 */ 1760 if (optval < 1) { 1761 error = EINVAL; 1762 break; 1763 } 1764 1765 switch (opt) { 1766 case SO_SNDBUF: 1767 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1768 error = ENOBUFS; 1769 break; 1770 } 1771 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1772 break; 1773 1774 case SO_RCVBUF: 1775 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1776 error = ENOBUFS; 1777 break; 1778 } 1779 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1780 break; 1781 1782 /* 1783 * Make sure the low-water is never greater than 1784 * the high-water. 1785 */ 1786 case SO_SNDLOWAT: 1787 if (optval > so->so_snd.sb_hiwat) 1788 optval = so->so_snd.sb_hiwat; 1789 1790 so->so_snd.sb_lowat = optval; 1791 break; 1792 1793 case SO_RCVLOWAT: 1794 if (optval > so->so_rcv.sb_hiwat) 1795 optval = so->so_rcv.sb_hiwat; 1796 1797 so->so_rcv.sb_lowat = optval; 1798 break; 1799 } 1800 break; 1801 1802 #ifdef COMPAT_50 1803 case SO_OSNDTIMEO: 1804 case SO_ORCVTIMEO: { 1805 struct timeval50 otv; 1806 error = sockopt_get(sopt, &otv, sizeof(otv)); 1807 if (error) { 1808 solock(so); 1809 break; 1810 } 1811 timeval50_to_timeval(&otv, &tv); 1812 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1813 error = 0; 1814 /*FALLTHROUGH*/ 1815 } 1816 #endif /* COMPAT_50 */ 1817 1818 case SO_SNDTIMEO: 1819 case SO_RCVTIMEO: 1820 if (error) 1821 error = sockopt_get(sopt, &tv, sizeof(tv)); 1822 solock(so); 1823 if (error) 1824 break; 1825 1826 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1827 error = EDOM; 1828 break; 1829 } 1830 1831 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1832 if (optval == 0 && tv.tv_usec != 0) 1833 optval = 1; 1834 1835 switch (opt) { 1836 case SO_SNDTIMEO: 1837 so->so_snd.sb_timeo = optval; 1838 break; 1839 case SO_RCVTIMEO: 1840 so->so_rcv.sb_timeo = optval; 1841 break; 1842 } 1843 break; 1844 1845 default: 1846 solock(so); 1847 error = ENOPROTOOPT; 1848 break; 1849 } 1850 KASSERT(solocked(so)); 1851 return error; 1852 } 1853 1854 int 1855 sosetopt(struct socket *so, struct sockopt *sopt) 1856 { 1857 int error, prerr; 1858 1859 if (sopt->sopt_level == SOL_SOCKET) { 1860 error = sosetopt1(so, sopt); 1861 KASSERT(solocked(so)); 1862 } else { 1863 error = ENOPROTOOPT; 1864 solock(so); 1865 } 1866 1867 if ((error == 0 || error == ENOPROTOOPT) && 1868 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1869 /* give the protocol stack a shot */ 1870 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1871 if (prerr == 0) 1872 error = 0; 1873 else if (prerr != ENOPROTOOPT) 1874 error = prerr; 1875 } 1876 sounlock(so); 1877 return error; 1878 } 1879 1880 /* 1881 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1882 */ 1883 int 1884 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1885 const void *val, size_t valsize) 1886 { 1887 struct sockopt sopt; 1888 int error; 1889 1890 KASSERT(valsize == 0 || val != NULL); 1891 1892 sockopt_init(&sopt, level, name, valsize); 1893 sockopt_set(&sopt, val, valsize); 1894 1895 error = sosetopt(so, &sopt); 1896 1897 sockopt_destroy(&sopt); 1898 1899 return error; 1900 } 1901 1902 /* 1903 * internal get SOL_SOCKET options 1904 */ 1905 static int 1906 sogetopt1(struct socket *so, struct sockopt *sopt) 1907 { 1908 int error, optval, opt; 1909 struct linger l; 1910 struct timeval tv; 1911 1912 switch ((opt = sopt->sopt_name)) { 1913 1914 case SO_ACCEPTFILTER: 1915 error = accept_filt_getopt(so, sopt); 1916 break; 1917 1918 case SO_LINGER: 1919 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1920 l.l_linger = so->so_linger; 1921 1922 error = sockopt_set(sopt, &l, sizeof(l)); 1923 break; 1924 1925 case SO_USELOOPBACK: 1926 case SO_DONTROUTE: 1927 case SO_DEBUG: 1928 case SO_KEEPALIVE: 1929 case SO_REUSEADDR: 1930 case SO_REUSEPORT: 1931 case SO_BROADCAST: 1932 case SO_OOBINLINE: 1933 case SO_TIMESTAMP: 1934 #ifdef SO_OTIMESTAMP 1935 case SO_OTIMESTAMP: 1936 #endif 1937 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1938 break; 1939 1940 case SO_TYPE: 1941 error = sockopt_setint(sopt, so->so_type); 1942 break; 1943 1944 case SO_ERROR: 1945 error = sockopt_setint(sopt, so->so_error); 1946 so->so_error = 0; 1947 break; 1948 1949 case SO_SNDBUF: 1950 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1951 break; 1952 1953 case SO_RCVBUF: 1954 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1955 break; 1956 1957 case SO_SNDLOWAT: 1958 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1959 break; 1960 1961 case SO_RCVLOWAT: 1962 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1963 break; 1964 1965 #ifdef COMPAT_50 1966 case SO_OSNDTIMEO: 1967 case SO_ORCVTIMEO: { 1968 struct timeval50 otv; 1969 1970 optval = (opt == SO_OSNDTIMEO ? 1971 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1972 1973 otv.tv_sec = optval / hz; 1974 otv.tv_usec = (optval % hz) * tick; 1975 1976 error = sockopt_set(sopt, &otv, sizeof(otv)); 1977 break; 1978 } 1979 #endif /* COMPAT_50 */ 1980 1981 case SO_SNDTIMEO: 1982 case SO_RCVTIMEO: 1983 optval = (opt == SO_SNDTIMEO ? 1984 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1985 1986 tv.tv_sec = optval / hz; 1987 tv.tv_usec = (optval % hz) * tick; 1988 1989 error = sockopt_set(sopt, &tv, sizeof(tv)); 1990 break; 1991 1992 case SO_OVERFLOWED: 1993 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1994 break; 1995 1996 default: 1997 error = ENOPROTOOPT; 1998 break; 1999 } 2000 2001 return (error); 2002 } 2003 2004 int 2005 sogetopt(struct socket *so, struct sockopt *sopt) 2006 { 2007 int error; 2008 2009 solock(so); 2010 if (sopt->sopt_level != SOL_SOCKET) { 2011 if (so->so_proto && so->so_proto->pr_ctloutput) { 2012 error = ((*so->so_proto->pr_ctloutput) 2013 (PRCO_GETOPT, so, sopt)); 2014 } else 2015 error = (ENOPROTOOPT); 2016 } else { 2017 error = sogetopt1(so, sopt); 2018 } 2019 sounlock(so); 2020 return (error); 2021 } 2022 2023 /* 2024 * alloc sockopt data buffer buffer 2025 * - will be released at destroy 2026 */ 2027 static int 2028 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2029 { 2030 2031 KASSERT(sopt->sopt_size == 0); 2032 2033 if (len > sizeof(sopt->sopt_buf)) { 2034 sopt->sopt_data = kmem_zalloc(len, kmflag); 2035 if (sopt->sopt_data == NULL) 2036 return ENOMEM; 2037 } else 2038 sopt->sopt_data = sopt->sopt_buf; 2039 2040 sopt->sopt_size = len; 2041 return 0; 2042 } 2043 2044 /* 2045 * initialise sockopt storage 2046 * - MAY sleep during allocation 2047 */ 2048 void 2049 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2050 { 2051 2052 memset(sopt, 0, sizeof(*sopt)); 2053 2054 sopt->sopt_level = level; 2055 sopt->sopt_name = name; 2056 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2057 } 2058 2059 /* 2060 * destroy sockopt storage 2061 * - will release any held memory references 2062 */ 2063 void 2064 sockopt_destroy(struct sockopt *sopt) 2065 { 2066 2067 if (sopt->sopt_data != sopt->sopt_buf) 2068 kmem_free(sopt->sopt_data, sopt->sopt_size); 2069 2070 memset(sopt, 0, sizeof(*sopt)); 2071 } 2072 2073 /* 2074 * set sockopt value 2075 * - value is copied into sockopt 2076 * - memory is allocated when necessary, will not sleep 2077 */ 2078 int 2079 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2080 { 2081 int error; 2082 2083 if (sopt->sopt_size == 0) { 2084 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2085 if (error) 2086 return error; 2087 } 2088 2089 KASSERT(sopt->sopt_size == len); 2090 memcpy(sopt->sopt_data, buf, len); 2091 return 0; 2092 } 2093 2094 /* 2095 * common case of set sockopt integer value 2096 */ 2097 int 2098 sockopt_setint(struct sockopt *sopt, int val) 2099 { 2100 2101 return sockopt_set(sopt, &val, sizeof(int)); 2102 } 2103 2104 /* 2105 * get sockopt value 2106 * - correct size must be given 2107 */ 2108 int 2109 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2110 { 2111 2112 if (sopt->sopt_size != len) 2113 return EINVAL; 2114 2115 memcpy(buf, sopt->sopt_data, len); 2116 return 0; 2117 } 2118 2119 /* 2120 * common case of get sockopt integer value 2121 */ 2122 int 2123 sockopt_getint(const struct sockopt *sopt, int *valp) 2124 { 2125 2126 return sockopt_get(sopt, valp, sizeof(int)); 2127 } 2128 2129 /* 2130 * set sockopt value from mbuf 2131 * - ONLY for legacy code 2132 * - mbuf is released by sockopt 2133 * - will not sleep 2134 */ 2135 int 2136 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2137 { 2138 size_t len; 2139 int error; 2140 2141 len = m_length(m); 2142 2143 if (sopt->sopt_size == 0) { 2144 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2145 if (error) 2146 return error; 2147 } 2148 2149 KASSERT(sopt->sopt_size == len); 2150 m_copydata(m, 0, len, sopt->sopt_data); 2151 m_freem(m); 2152 2153 return 0; 2154 } 2155 2156 /* 2157 * get sockopt value into mbuf 2158 * - ONLY for legacy code 2159 * - mbuf to be released by the caller 2160 * - will not sleep 2161 */ 2162 struct mbuf * 2163 sockopt_getmbuf(const struct sockopt *sopt) 2164 { 2165 struct mbuf *m; 2166 2167 if (sopt->sopt_size > MCLBYTES) 2168 return NULL; 2169 2170 m = m_get(M_DONTWAIT, MT_SOOPTS); 2171 if (m == NULL) 2172 return NULL; 2173 2174 if (sopt->sopt_size > MLEN) { 2175 MCLGET(m, M_DONTWAIT); 2176 if ((m->m_flags & M_EXT) == 0) { 2177 m_free(m); 2178 return NULL; 2179 } 2180 } 2181 2182 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2183 m->m_len = sopt->sopt_size; 2184 2185 return m; 2186 } 2187 2188 void 2189 sohasoutofband(struct socket *so) 2190 { 2191 2192 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2193 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2194 } 2195 2196 static void 2197 filt_sordetach(struct knote *kn) 2198 { 2199 struct socket *so; 2200 2201 so = ((file_t *)kn->kn_obj)->f_data; 2202 solock(so); 2203 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2204 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2205 so->so_rcv.sb_flags &= ~SB_KNOTE; 2206 sounlock(so); 2207 } 2208 2209 /*ARGSUSED*/ 2210 static int 2211 filt_soread(struct knote *kn, long hint) 2212 { 2213 struct socket *so; 2214 int rv; 2215 2216 so = ((file_t *)kn->kn_obj)->f_data; 2217 if (hint != NOTE_SUBMIT) 2218 solock(so); 2219 kn->kn_data = so->so_rcv.sb_cc; 2220 if (so->so_state & SS_CANTRCVMORE) { 2221 kn->kn_flags |= EV_EOF; 2222 kn->kn_fflags = so->so_error; 2223 rv = 1; 2224 } else if (so->so_error) /* temporary udp error */ 2225 rv = 1; 2226 else if (kn->kn_sfflags & NOTE_LOWAT) 2227 rv = (kn->kn_data >= kn->kn_sdata); 2228 else 2229 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2230 if (hint != NOTE_SUBMIT) 2231 sounlock(so); 2232 return rv; 2233 } 2234 2235 static void 2236 filt_sowdetach(struct knote *kn) 2237 { 2238 struct socket *so; 2239 2240 so = ((file_t *)kn->kn_obj)->f_data; 2241 solock(so); 2242 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2243 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2244 so->so_snd.sb_flags &= ~SB_KNOTE; 2245 sounlock(so); 2246 } 2247 2248 /*ARGSUSED*/ 2249 static int 2250 filt_sowrite(struct knote *kn, long hint) 2251 { 2252 struct socket *so; 2253 int rv; 2254 2255 so = ((file_t *)kn->kn_obj)->f_data; 2256 if (hint != NOTE_SUBMIT) 2257 solock(so); 2258 kn->kn_data = sbspace(&so->so_snd); 2259 if (so->so_state & SS_CANTSENDMORE) { 2260 kn->kn_flags |= EV_EOF; 2261 kn->kn_fflags = so->so_error; 2262 rv = 1; 2263 } else if (so->so_error) /* temporary udp error */ 2264 rv = 1; 2265 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2266 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2267 rv = 0; 2268 else if (kn->kn_sfflags & NOTE_LOWAT) 2269 rv = (kn->kn_data >= kn->kn_sdata); 2270 else 2271 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2272 if (hint != NOTE_SUBMIT) 2273 sounlock(so); 2274 return rv; 2275 } 2276 2277 /*ARGSUSED*/ 2278 static int 2279 filt_solisten(struct knote *kn, long hint) 2280 { 2281 struct socket *so; 2282 int rv; 2283 2284 so = ((file_t *)kn->kn_obj)->f_data; 2285 2286 /* 2287 * Set kn_data to number of incoming connections, not 2288 * counting partial (incomplete) connections. 2289 */ 2290 if (hint != NOTE_SUBMIT) 2291 solock(so); 2292 kn->kn_data = so->so_qlen; 2293 rv = (kn->kn_data > 0); 2294 if (hint != NOTE_SUBMIT) 2295 sounlock(so); 2296 return rv; 2297 } 2298 2299 static const struct filterops solisten_filtops = 2300 { 1, NULL, filt_sordetach, filt_solisten }; 2301 static const struct filterops soread_filtops = 2302 { 1, NULL, filt_sordetach, filt_soread }; 2303 static const struct filterops sowrite_filtops = 2304 { 1, NULL, filt_sowdetach, filt_sowrite }; 2305 2306 int 2307 soo_kqfilter(struct file *fp, struct knote *kn) 2308 { 2309 struct socket *so; 2310 struct sockbuf *sb; 2311 2312 so = ((file_t *)kn->kn_obj)->f_data; 2313 solock(so); 2314 switch (kn->kn_filter) { 2315 case EVFILT_READ: 2316 if (so->so_options & SO_ACCEPTCONN) 2317 kn->kn_fop = &solisten_filtops; 2318 else 2319 kn->kn_fop = &soread_filtops; 2320 sb = &so->so_rcv; 2321 break; 2322 case EVFILT_WRITE: 2323 kn->kn_fop = &sowrite_filtops; 2324 sb = &so->so_snd; 2325 break; 2326 default: 2327 sounlock(so); 2328 return (EINVAL); 2329 } 2330 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2331 sb->sb_flags |= SB_KNOTE; 2332 sounlock(so); 2333 return (0); 2334 } 2335 2336 static int 2337 sodopoll(struct socket *so, int events) 2338 { 2339 int revents; 2340 2341 revents = 0; 2342 2343 if (events & (POLLIN | POLLRDNORM)) 2344 if (soreadable(so)) 2345 revents |= events & (POLLIN | POLLRDNORM); 2346 2347 if (events & (POLLOUT | POLLWRNORM)) 2348 if (sowritable(so)) 2349 revents |= events & (POLLOUT | POLLWRNORM); 2350 2351 if (events & (POLLPRI | POLLRDBAND)) 2352 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2353 revents |= events & (POLLPRI | POLLRDBAND); 2354 2355 return revents; 2356 } 2357 2358 int 2359 sopoll(struct socket *so, int events) 2360 { 2361 int revents = 0; 2362 2363 #ifndef DIAGNOSTIC 2364 /* 2365 * Do a quick, unlocked check in expectation that the socket 2366 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2367 * as the solocked() assertions will fail. 2368 */ 2369 if ((revents = sodopoll(so, events)) != 0) 2370 return revents; 2371 #endif 2372 2373 solock(so); 2374 if ((revents = sodopoll(so, events)) == 0) { 2375 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2376 selrecord(curlwp, &so->so_rcv.sb_sel); 2377 so->so_rcv.sb_flags |= SB_NOTIFY; 2378 } 2379 2380 if (events & (POLLOUT | POLLWRNORM)) { 2381 selrecord(curlwp, &so->so_snd.sb_sel); 2382 so->so_snd.sb_flags |= SB_NOTIFY; 2383 } 2384 } 2385 sounlock(so); 2386 2387 return revents; 2388 } 2389 2390 2391 #include <sys/sysctl.h> 2392 2393 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2394 2395 /* 2396 * sysctl helper routine for kern.somaxkva. ensures that the given 2397 * value is not too small. 2398 * (XXX should we maybe make sure it's not too large as well?) 2399 */ 2400 static int 2401 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2402 { 2403 int error, new_somaxkva; 2404 struct sysctlnode node; 2405 2406 new_somaxkva = somaxkva; 2407 node = *rnode; 2408 node.sysctl_data = &new_somaxkva; 2409 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2410 if (error || newp == NULL) 2411 return (error); 2412 2413 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2414 return (EINVAL); 2415 2416 mutex_enter(&so_pendfree_lock); 2417 somaxkva = new_somaxkva; 2418 cv_broadcast(&socurkva_cv); 2419 mutex_exit(&so_pendfree_lock); 2420 2421 return (error); 2422 } 2423 2424 static void 2425 sysctl_kern_somaxkva_setup(void) 2426 { 2427 2428 KASSERT(socket_sysctllog == NULL); 2429 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2430 CTLFLAG_PERMANENT, 2431 CTLTYPE_NODE, "kern", NULL, 2432 NULL, 0, NULL, 0, 2433 CTL_KERN, CTL_EOL); 2434 2435 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2436 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2437 CTLTYPE_INT, "somaxkva", 2438 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2439 "used for socket buffers"), 2440 sysctl_kern_somaxkva, 0, NULL, 0, 2441 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2442 } 2443