1 /* $NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.224 2014/05/19 02:51:24 rmind Exp $"); 75 76 #include "opt_compat_netbsd.h" 77 #include "opt_sock_counters.h" 78 #include "opt_sosend_loan.h" 79 #include "opt_mbuftrace.h" 80 #include "opt_somaxkva.h" 81 #include "opt_multiprocessor.h" /* XXX */ 82 83 #include <sys/param.h> 84 #include <sys/systm.h> 85 #include <sys/proc.h> 86 #include <sys/file.h> 87 #include <sys/filedesc.h> 88 #include <sys/kmem.h> 89 #include <sys/mbuf.h> 90 #include <sys/domain.h> 91 #include <sys/kernel.h> 92 #include <sys/protosw.h> 93 #include <sys/socket.h> 94 #include <sys/socketvar.h> 95 #include <sys/signalvar.h> 96 #include <sys/resourcevar.h> 97 #include <sys/uidinfo.h> 98 #include <sys/event.h> 99 #include <sys/poll.h> 100 #include <sys/kauth.h> 101 #include <sys/mutex.h> 102 #include <sys/condvar.h> 103 #include <sys/kthread.h> 104 105 #ifdef COMPAT_50 106 #include <compat/sys/time.h> 107 #include <compat/sys/socket.h> 108 #endif 109 110 #include <uvm/uvm_extern.h> 111 #include <uvm/uvm_loan.h> 112 #include <uvm/uvm_page.h> 113 114 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 115 116 extern const struct fileops socketops; 117 118 extern int somaxconn; /* patchable (XXX sysctl) */ 119 int somaxconn = SOMAXCONN; 120 kmutex_t *softnet_lock; 121 122 #ifdef SOSEND_COUNTERS 123 #include <sys/device.h> 124 125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 126 NULL, "sosend", "loan big"); 127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 128 NULL, "sosend", "copy big"); 129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 130 NULL, "sosend", "copy small"); 131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 132 NULL, "sosend", "kva limit"); 133 134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 135 136 EVCNT_ATTACH_STATIC(sosend_loan_big); 137 EVCNT_ATTACH_STATIC(sosend_copy_big); 138 EVCNT_ATTACH_STATIC(sosend_copy_small); 139 EVCNT_ATTACH_STATIC(sosend_kvalimit); 140 #else 141 142 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 143 144 #endif /* SOSEND_COUNTERS */ 145 146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 147 int sock_loan_thresh = -1; 148 #else 149 int sock_loan_thresh = 4096; 150 #endif 151 152 static kmutex_t so_pendfree_lock; 153 static struct mbuf *so_pendfree = NULL; 154 155 #ifndef SOMAXKVA 156 #define SOMAXKVA (16 * 1024 * 1024) 157 #endif 158 int somaxkva = SOMAXKVA; 159 static int socurkva; 160 static kcondvar_t socurkva_cv; 161 162 static kauth_listener_t socket_listener; 163 164 #define SOCK_LOAN_CHUNK 65536 165 166 static void sopendfree_thread(void *); 167 static kcondvar_t pendfree_thread_cv; 168 static lwp_t *sopendfree_lwp; 169 170 static void sysctl_kern_socket_setup(void); 171 static struct sysctllog *socket_sysctllog; 172 173 static vsize_t 174 sokvareserve(struct socket *so, vsize_t len) 175 { 176 int error; 177 178 mutex_enter(&so_pendfree_lock); 179 while (socurkva + len > somaxkva) { 180 SOSEND_COUNTER_INCR(&sosend_kvalimit); 181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 182 if (error) { 183 len = 0; 184 break; 185 } 186 } 187 socurkva += len; 188 mutex_exit(&so_pendfree_lock); 189 return len; 190 } 191 192 static void 193 sokvaunreserve(vsize_t len) 194 { 195 196 mutex_enter(&so_pendfree_lock); 197 socurkva -= len; 198 cv_broadcast(&socurkva_cv); 199 mutex_exit(&so_pendfree_lock); 200 } 201 202 /* 203 * sokvaalloc: allocate kva for loan. 204 */ 205 206 vaddr_t 207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 208 { 209 vaddr_t lva; 210 211 /* 212 * reserve kva. 213 */ 214 215 if (sokvareserve(so, len) == 0) 216 return 0; 217 218 /* 219 * allocate kva. 220 */ 221 222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 224 if (lva == 0) { 225 sokvaunreserve(len); 226 return (0); 227 } 228 229 return lva; 230 } 231 232 /* 233 * sokvafree: free kva for loan. 234 */ 235 236 void 237 sokvafree(vaddr_t sva, vsize_t len) 238 { 239 240 /* 241 * free kva. 242 */ 243 244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 245 246 /* 247 * unreserve kva. 248 */ 249 250 sokvaunreserve(len); 251 } 252 253 static void 254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 255 { 256 vaddr_t sva, eva; 257 vsize_t len; 258 int npgs; 259 260 KASSERT(pgs != NULL); 261 262 eva = round_page((vaddr_t) buf + size); 263 sva = trunc_page((vaddr_t) buf); 264 len = eva - sva; 265 npgs = len >> PAGE_SHIFT; 266 267 pmap_kremove(sva, len); 268 pmap_update(pmap_kernel()); 269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 270 sokvafree(sva, len); 271 } 272 273 /* 274 * sopendfree_thread: free mbufs on "pendfree" list. 275 * unlock and relock so_pendfree_lock when freeing mbufs. 276 */ 277 278 static void 279 sopendfree_thread(void *v) 280 { 281 struct mbuf *m, *next; 282 size_t rv; 283 284 mutex_enter(&so_pendfree_lock); 285 286 for (;;) { 287 rv = 0; 288 while (so_pendfree != NULL) { 289 m = so_pendfree; 290 so_pendfree = NULL; 291 mutex_exit(&so_pendfree_lock); 292 293 for (; m != NULL; m = next) { 294 next = m->m_next; 295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 296 KASSERT(m->m_ext.ext_refcnt == 0); 297 298 rv += m->m_ext.ext_size; 299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 300 m->m_ext.ext_size); 301 pool_cache_put(mb_cache, m); 302 } 303 304 mutex_enter(&so_pendfree_lock); 305 } 306 if (rv) 307 cv_broadcast(&socurkva_cv); 308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 309 } 310 panic("sopendfree_thread"); 311 /* NOTREACHED */ 312 } 313 314 void 315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 316 { 317 318 KASSERT(m != NULL); 319 320 /* 321 * postpone freeing mbuf. 322 * 323 * we can't do it in interrupt context 324 * because we need to put kva back to kernel_map. 325 */ 326 327 mutex_enter(&so_pendfree_lock); 328 m->m_next = so_pendfree; 329 so_pendfree = m; 330 cv_signal(&pendfree_thread_cv); 331 mutex_exit(&so_pendfree_lock); 332 } 333 334 static long 335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 336 { 337 struct iovec *iov = uio->uio_iov; 338 vaddr_t sva, eva; 339 vsize_t len; 340 vaddr_t lva; 341 int npgs, error; 342 vaddr_t va; 343 int i; 344 345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 346 return (0); 347 348 if (iov->iov_len < (size_t) space) 349 space = iov->iov_len; 350 if (space > SOCK_LOAN_CHUNK) 351 space = SOCK_LOAN_CHUNK; 352 353 eva = round_page((vaddr_t) iov->iov_base + space); 354 sva = trunc_page((vaddr_t) iov->iov_base); 355 len = eva - sva; 356 npgs = len >> PAGE_SHIFT; 357 358 KASSERT(npgs <= M_EXT_MAXPAGES); 359 360 lva = sokvaalloc(sva, len, so); 361 if (lva == 0) 362 return 0; 363 364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 366 if (error) { 367 sokvafree(lva, len); 368 return (0); 369 } 370 371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 373 VM_PROT_READ, 0); 374 pmap_update(pmap_kernel()); 375 376 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 377 378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 380 381 uio->uio_resid -= space; 382 /* uio_offset not updated, not set/used for write(2) */ 383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 384 uio->uio_iov->iov_len -= space; 385 if (uio->uio_iov->iov_len == 0) { 386 uio->uio_iov++; 387 uio->uio_iovcnt--; 388 } 389 390 return (space); 391 } 392 393 struct mbuf * 394 getsombuf(struct socket *so, int type) 395 { 396 struct mbuf *m; 397 398 m = m_get(M_WAIT, type); 399 MCLAIM(m, so->so_mowner); 400 return m; 401 } 402 403 static int 404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 405 void *arg0, void *arg1, void *arg2, void *arg3) 406 { 407 int result; 408 enum kauth_network_req req; 409 410 result = KAUTH_RESULT_DEFER; 411 req = (enum kauth_network_req)arg0; 412 413 if ((action != KAUTH_NETWORK_SOCKET) && 414 (action != KAUTH_NETWORK_BIND)) 415 return result; 416 417 switch (req) { 418 case KAUTH_REQ_NETWORK_BIND_PORT: 419 result = KAUTH_RESULT_ALLOW; 420 break; 421 422 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 423 /* Normal users can only drop their own connections. */ 424 struct socket *so = (struct socket *)arg1; 425 426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 427 result = KAUTH_RESULT_ALLOW; 428 429 break; 430 } 431 432 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 433 /* We allow "raw" routing/bluetooth sockets to anyone. */ 434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 435 || (u_long)arg1 == PF_BLUETOOTH) { 436 result = KAUTH_RESULT_ALLOW; 437 } else { 438 /* Privileged, let secmodel handle this. */ 439 if ((u_long)arg2 == SOCK_RAW) 440 break; 441 } 442 443 result = KAUTH_RESULT_ALLOW; 444 445 break; 446 447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 448 result = KAUTH_RESULT_ALLOW; 449 450 break; 451 452 default: 453 break; 454 } 455 456 return result; 457 } 458 459 void 460 soinit(void) 461 { 462 463 sysctl_kern_socket_setup(); 464 465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 467 cv_init(&socurkva_cv, "sokva"); 468 cv_init(&pendfree_thread_cv, "sopendfr"); 469 soinit2(); 470 471 /* Set the initial adjusted socket buffer size. */ 472 if (sb_max_set(sb_max)) 473 panic("bad initial sb_max value: %lu", sb_max); 474 475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 476 socket_listener_cb, NULL); 477 } 478 479 void 480 soinit1(void) 481 { 482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 484 if (error) 485 panic("soinit1 %d", error); 486 } 487 488 /* 489 * socreate: create a new socket of the specified type and the protocol. 490 * 491 * => Caller may specify another socket for lock sharing (must not be held). 492 * => Returns the new socket without lock held. 493 */ 494 int 495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 496 struct socket *lockso) 497 { 498 const struct protosw *prp; 499 struct socket *so; 500 uid_t uid; 501 int error; 502 kmutex_t *lock; 503 504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 506 KAUTH_ARG(proto)); 507 if (error != 0) 508 return error; 509 510 if (proto) 511 prp = pffindproto(dom, proto, type); 512 else 513 prp = pffindtype(dom, type); 514 if (prp == NULL) { 515 /* no support for domain */ 516 if (pffinddomain(dom) == 0) 517 return EAFNOSUPPORT; 518 /* no support for socket type */ 519 if (proto == 0 && type != 0) 520 return EPROTOTYPE; 521 return EPROTONOSUPPORT; 522 } 523 if (prp->pr_usrreqs == NULL) 524 return EPROTONOSUPPORT; 525 if (prp->pr_type != type) 526 return EPROTOTYPE; 527 528 so = soget(true); 529 so->so_type = type; 530 so->so_proto = prp; 531 so->so_send = sosend; 532 so->so_receive = soreceive; 533 #ifdef MBUFTRACE 534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 536 so->so_mowner = &prp->pr_domain->dom_mowner; 537 #endif 538 uid = kauth_cred_geteuid(l->l_cred); 539 so->so_uidinfo = uid_find(uid); 540 so->so_cpid = l->l_proc->p_pid; 541 542 /* 543 * Lock assigned and taken during PCB attach, unless we share 544 * the lock with another socket, e.g. socketpair(2) case. 545 */ 546 if (lockso) { 547 lock = lockso->so_lock; 548 so->so_lock = lock; 549 mutex_obj_hold(lock); 550 mutex_enter(lock); 551 } 552 553 /* Attach the PCB (returns with the socket lock held). */ 554 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 555 KASSERT(solocked(so)); 556 557 if (error) { 558 KASSERT(so->so_pcb == NULL); 559 so->so_state |= SS_NOFDREF; 560 sofree(so); 561 return error; 562 } 563 so->so_cred = kauth_cred_dup(l->l_cred); 564 sounlock(so); 565 566 *aso = so; 567 return 0; 568 } 569 570 /* 571 * fsocreate: create a socket and a file descriptor associated with it. 572 * 573 * => On success, write file descriptor to fdout and return zero. 574 * => On failure, return non-zero; *fdout will be undefined. 575 */ 576 int 577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 578 { 579 lwp_t *l = curlwp; 580 int error, fd, flags; 581 struct socket *so; 582 struct file *fp; 583 584 if ((error = fd_allocfile(&fp, &fd)) != 0) { 585 return error; 586 } 587 flags = type & SOCK_FLAGS_MASK; 588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 591 fp->f_type = DTYPE_SOCKET; 592 fp->f_ops = &socketops; 593 594 type &= ~SOCK_FLAGS_MASK; 595 error = socreate(domain, &so, type, proto, l, NULL); 596 if (error) { 597 fd_abort(curproc, fp, fd); 598 return error; 599 } 600 if (flags & SOCK_NONBLOCK) { 601 so->so_state |= SS_NBIO; 602 } 603 fp->f_data = so; 604 fd_affix(curproc, fp, fd); 605 606 if (sop != NULL) { 607 *sop = so; 608 } 609 *fdout = fd; 610 return error; 611 } 612 613 int 614 sofamily(const struct socket *so) 615 { 616 const struct protosw *pr; 617 const struct domain *dom; 618 619 if ((pr = so->so_proto) == NULL) 620 return AF_UNSPEC; 621 if ((dom = pr->pr_domain) == NULL) 622 return AF_UNSPEC; 623 return dom->dom_family; 624 } 625 626 int 627 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 628 { 629 int error; 630 631 solock(so); 632 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 633 PRU_BIND, NULL, nam, NULL, l); 634 sounlock(so); 635 return error; 636 } 637 638 int 639 solisten(struct socket *so, int backlog, struct lwp *l) 640 { 641 int error; 642 643 solock(so); 644 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 645 SS_ISDISCONNECTING)) != 0) { 646 sounlock(so); 647 return EINVAL; 648 } 649 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 650 PRU_LISTEN, NULL, NULL, NULL, l); 651 if (error != 0) { 652 sounlock(so); 653 return error; 654 } 655 if (TAILQ_EMPTY(&so->so_q)) 656 so->so_options |= SO_ACCEPTCONN; 657 if (backlog < 0) 658 backlog = 0; 659 so->so_qlimit = min(backlog, somaxconn); 660 sounlock(so); 661 return 0; 662 } 663 664 void 665 sofree(struct socket *so) 666 { 667 u_int refs; 668 669 KASSERT(solocked(so)); 670 671 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 672 sounlock(so); 673 return; 674 } 675 if (so->so_head) { 676 /* 677 * We must not decommission a socket that's on the accept(2) 678 * queue. If we do, then accept(2) may hang after select(2) 679 * indicated that the listening socket was ready. 680 */ 681 if (!soqremque(so, 0)) { 682 sounlock(so); 683 return; 684 } 685 } 686 if (so->so_rcv.sb_hiwat) 687 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 688 RLIM_INFINITY); 689 if (so->so_snd.sb_hiwat) 690 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 691 RLIM_INFINITY); 692 sbrelease(&so->so_snd, so); 693 KASSERT(!cv_has_waiters(&so->so_cv)); 694 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 695 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 696 sorflush(so); 697 refs = so->so_aborting; /* XXX */ 698 /* Remove acccept filter if one is present. */ 699 if (so->so_accf != NULL) 700 (void)accept_filt_clear(so); 701 sounlock(so); 702 if (refs == 0) /* XXX */ 703 soput(so); 704 } 705 706 /* 707 * soclose: close a socket on last file table reference removal. 708 * Initiate disconnect if connected. Free socket when disconnect complete. 709 */ 710 int 711 soclose(struct socket *so) 712 { 713 struct socket *so2; 714 int error = 0; 715 716 solock(so); 717 if (so->so_options & SO_ACCEPTCONN) { 718 for (;;) { 719 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 720 KASSERT(solocked2(so, so2)); 721 (void) soqremque(so2, 0); 722 /* soabort drops the lock. */ 723 (void) soabort(so2); 724 solock(so); 725 continue; 726 } 727 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 728 KASSERT(solocked2(so, so2)); 729 (void) soqremque(so2, 1); 730 /* soabort drops the lock. */ 731 (void) soabort(so2); 732 solock(so); 733 continue; 734 } 735 break; 736 } 737 } 738 if (so->so_pcb == NULL) 739 goto discard; 740 if (so->so_state & SS_ISCONNECTED) { 741 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 742 error = sodisconnect(so); 743 if (error) 744 goto drop; 745 } 746 if (so->so_options & SO_LINGER) { 747 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 748 (SS_ISDISCONNECTING|SS_NBIO)) 749 goto drop; 750 while (so->so_state & SS_ISCONNECTED) { 751 error = sowait(so, true, so->so_linger * hz); 752 if (error) 753 break; 754 } 755 } 756 } 757 drop: 758 if (so->so_pcb) { 759 KASSERT(solocked(so)); 760 (*so->so_proto->pr_usrreqs->pr_detach)(so); 761 } 762 discard: 763 KASSERT((so->so_state & SS_NOFDREF) == 0); 764 kauth_cred_free(so->so_cred); 765 so->so_state |= SS_NOFDREF; 766 sofree(so); 767 return error; 768 } 769 770 /* 771 * Must be called with the socket locked.. Will return with it unlocked. 772 */ 773 int 774 soabort(struct socket *so) 775 { 776 u_int refs; 777 int error; 778 779 KASSERT(solocked(so)); 780 KASSERT(so->so_head == NULL); 781 782 so->so_aborting++; /* XXX */ 783 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 784 PRU_ABORT, NULL, NULL, NULL, NULL); 785 refs = --so->so_aborting; /* XXX */ 786 if (error || (refs == 0)) { 787 sofree(so); 788 } else { 789 sounlock(so); 790 } 791 return error; 792 } 793 794 int 795 soaccept(struct socket *so, struct mbuf *nam) 796 { 797 int error; 798 799 KASSERT(solocked(so)); 800 KASSERT((so->so_state & SS_NOFDREF) != 0); 801 802 so->so_state &= ~SS_NOFDREF; 803 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 804 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 805 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 806 PRU_ACCEPT, NULL, nam, NULL, NULL); 807 else 808 error = ECONNABORTED; 809 810 return error; 811 } 812 813 int 814 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 815 { 816 int error; 817 818 KASSERT(solocked(so)); 819 820 if (so->so_options & SO_ACCEPTCONN) 821 return EOPNOTSUPP; 822 /* 823 * If protocol is connection-based, can only connect once. 824 * Otherwise, if connected, try to disconnect first. 825 * This allows user to disconnect by connecting to, e.g., 826 * a null address. 827 */ 828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 830 (error = sodisconnect(so)))) 831 error = EISCONN; 832 else 833 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 834 PRU_CONNECT, NULL, nam, NULL, l); 835 836 return error; 837 } 838 839 int 840 soconnect2(struct socket *so1, struct socket *so2) 841 { 842 KASSERT(solocked2(so1, so2)); 843 844 return (*so1->so_proto->pr_usrreqs->pr_generic)(so1, 845 PRU_CONNECT2, NULL, (struct mbuf *)so2, NULL, NULL); 846 } 847 848 int 849 sodisconnect(struct socket *so) 850 { 851 int error; 852 853 KASSERT(solocked(so)); 854 855 if ((so->so_state & SS_ISCONNECTED) == 0) { 856 error = ENOTCONN; 857 } else if (so->so_state & SS_ISDISCONNECTING) { 858 error = EALREADY; 859 } else { 860 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 861 PRU_DISCONNECT, NULL, NULL, NULL, NULL); 862 } 863 return (error); 864 } 865 866 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 867 /* 868 * Send on a socket. 869 * If send must go all at once and message is larger than 870 * send buffering, then hard error. 871 * Lock against other senders. 872 * If must go all at once and not enough room now, then 873 * inform user that this would block and do nothing. 874 * Otherwise, if nonblocking, send as much as possible. 875 * The data to be sent is described by "uio" if nonzero, 876 * otherwise by the mbuf chain "top" (which must be null 877 * if uio is not). Data provided in mbuf chain must be small 878 * enough to send all at once. 879 * 880 * Returns nonzero on error, timeout or signal; callers 881 * must check for short counts if EINTR/ERESTART are returned. 882 * Data and control buffers are freed on return. 883 */ 884 int 885 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 886 struct mbuf *control, int flags, struct lwp *l) 887 { 888 struct mbuf **mp, *m; 889 long space, len, resid, clen, mlen; 890 int error, s, dontroute, atomic; 891 short wakeup_state = 0; 892 893 clen = 0; 894 895 /* 896 * solock() provides atomicity of access. splsoftnet() prevents 897 * protocol processing soft interrupts from interrupting us and 898 * blocking (expensive). 899 */ 900 s = splsoftnet(); 901 solock(so); 902 atomic = sosendallatonce(so) || top; 903 if (uio) 904 resid = uio->uio_resid; 905 else 906 resid = top->m_pkthdr.len; 907 /* 908 * In theory resid should be unsigned. 909 * However, space must be signed, as it might be less than 0 910 * if we over-committed, and we must use a signed comparison 911 * of space and resid. On the other hand, a negative resid 912 * causes us to loop sending 0-length segments to the protocol. 913 */ 914 if (resid < 0) { 915 error = EINVAL; 916 goto out; 917 } 918 dontroute = 919 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 920 (so->so_proto->pr_flags & PR_ATOMIC); 921 l->l_ru.ru_msgsnd++; 922 if (control) 923 clen = control->m_len; 924 restart: 925 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 926 goto out; 927 do { 928 if (so->so_state & SS_CANTSENDMORE) { 929 error = EPIPE; 930 goto release; 931 } 932 if (so->so_error) { 933 error = so->so_error; 934 so->so_error = 0; 935 goto release; 936 } 937 if ((so->so_state & SS_ISCONNECTED) == 0) { 938 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 939 if (resid || clen == 0) { 940 error = ENOTCONN; 941 goto release; 942 } 943 } else if (addr == 0) { 944 error = EDESTADDRREQ; 945 goto release; 946 } 947 } 948 space = sbspace(&so->so_snd); 949 if (flags & MSG_OOB) 950 space += 1024; 951 if ((atomic && resid > so->so_snd.sb_hiwat) || 952 clen > so->so_snd.sb_hiwat) { 953 error = EMSGSIZE; 954 goto release; 955 } 956 if (space < resid + clen && 957 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 958 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 959 error = EWOULDBLOCK; 960 goto release; 961 } 962 sbunlock(&so->so_snd); 963 if (wakeup_state & SS_RESTARTSYS) { 964 error = ERESTART; 965 goto out; 966 } 967 error = sbwait(&so->so_snd); 968 if (error) 969 goto out; 970 wakeup_state = so->so_state; 971 goto restart; 972 } 973 wakeup_state = 0; 974 mp = ⊤ 975 space -= clen; 976 do { 977 if (uio == NULL) { 978 /* 979 * Data is prepackaged in "top". 980 */ 981 resid = 0; 982 if (flags & MSG_EOR) 983 top->m_flags |= M_EOR; 984 } else do { 985 sounlock(so); 986 splx(s); 987 if (top == NULL) { 988 m = m_gethdr(M_WAIT, MT_DATA); 989 mlen = MHLEN; 990 m->m_pkthdr.len = 0; 991 m->m_pkthdr.rcvif = NULL; 992 } else { 993 m = m_get(M_WAIT, MT_DATA); 994 mlen = MLEN; 995 } 996 MCLAIM(m, so->so_snd.sb_mowner); 997 if (sock_loan_thresh >= 0 && 998 uio->uio_iov->iov_len >= sock_loan_thresh && 999 space >= sock_loan_thresh && 1000 (len = sosend_loan(so, uio, m, 1001 space)) != 0) { 1002 SOSEND_COUNTER_INCR(&sosend_loan_big); 1003 space -= len; 1004 goto have_data; 1005 } 1006 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1007 SOSEND_COUNTER_INCR(&sosend_copy_big); 1008 m_clget(m, M_DONTWAIT); 1009 if ((m->m_flags & M_EXT) == 0) 1010 goto nopages; 1011 mlen = MCLBYTES; 1012 if (atomic && top == 0) { 1013 len = lmin(MCLBYTES - max_hdr, 1014 resid); 1015 m->m_data += max_hdr; 1016 } else 1017 len = lmin(MCLBYTES, resid); 1018 space -= len; 1019 } else { 1020 nopages: 1021 SOSEND_COUNTER_INCR(&sosend_copy_small); 1022 len = lmin(lmin(mlen, resid), space); 1023 space -= len; 1024 /* 1025 * For datagram protocols, leave room 1026 * for protocol headers in first mbuf. 1027 */ 1028 if (atomic && top == 0 && len < mlen) 1029 MH_ALIGN(m, len); 1030 } 1031 error = uiomove(mtod(m, void *), (int)len, uio); 1032 have_data: 1033 resid = uio->uio_resid; 1034 m->m_len = len; 1035 *mp = m; 1036 top->m_pkthdr.len += len; 1037 s = splsoftnet(); 1038 solock(so); 1039 if (error != 0) 1040 goto release; 1041 mp = &m->m_next; 1042 if (resid <= 0) { 1043 if (flags & MSG_EOR) 1044 top->m_flags |= M_EOR; 1045 break; 1046 } 1047 } while (space > 0 && atomic); 1048 1049 if (so->so_state & SS_CANTSENDMORE) { 1050 error = EPIPE; 1051 goto release; 1052 } 1053 if (dontroute) 1054 so->so_options |= SO_DONTROUTE; 1055 if (resid > 0) 1056 so->so_state |= SS_MORETOCOME; 1057 error = (*so->so_proto->pr_usrreqs->pr_generic)(so, 1058 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1059 top, addr, control, curlwp); 1060 if (dontroute) 1061 so->so_options &= ~SO_DONTROUTE; 1062 if (resid > 0) 1063 so->so_state &= ~SS_MORETOCOME; 1064 clen = 0; 1065 control = NULL; 1066 top = NULL; 1067 mp = ⊤ 1068 if (error != 0) 1069 goto release; 1070 } while (resid && space > 0); 1071 } while (resid); 1072 1073 release: 1074 sbunlock(&so->so_snd); 1075 out: 1076 sounlock(so); 1077 splx(s); 1078 if (top) 1079 m_freem(top); 1080 if (control) 1081 m_freem(control); 1082 return (error); 1083 } 1084 1085 /* 1086 * Following replacement or removal of the first mbuf on the first 1087 * mbuf chain of a socket buffer, push necessary state changes back 1088 * into the socket buffer so that other consumers see the values 1089 * consistently. 'nextrecord' is the callers locally stored value of 1090 * the original value of sb->sb_mb->m_nextpkt which must be restored 1091 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1092 */ 1093 static void 1094 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1095 { 1096 1097 KASSERT(solocked(sb->sb_so)); 1098 1099 /* 1100 * First, update for the new value of nextrecord. If necessary, 1101 * make it the first record. 1102 */ 1103 if (sb->sb_mb != NULL) 1104 sb->sb_mb->m_nextpkt = nextrecord; 1105 else 1106 sb->sb_mb = nextrecord; 1107 1108 /* 1109 * Now update any dependent socket buffer fields to reflect 1110 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1111 * the addition of a second clause that takes care of the 1112 * case where sb_mb has been updated, but remains the last 1113 * record. 1114 */ 1115 if (sb->sb_mb == NULL) { 1116 sb->sb_mbtail = NULL; 1117 sb->sb_lastrecord = NULL; 1118 } else if (sb->sb_mb->m_nextpkt == NULL) 1119 sb->sb_lastrecord = sb->sb_mb; 1120 } 1121 1122 /* 1123 * Implement receive operations on a socket. 1124 * We depend on the way that records are added to the sockbuf 1125 * by sbappend*. In particular, each record (mbufs linked through m_next) 1126 * must begin with an address if the protocol so specifies, 1127 * followed by an optional mbuf or mbufs containing ancillary data, 1128 * and then zero or more mbufs of data. 1129 * In order to avoid blocking network interrupts for the entire time here, 1130 * we splx() while doing the actual copy to user space. 1131 * Although the sockbuf is locked, new data may still be appended, 1132 * and thus we must maintain consistency of the sockbuf during that time. 1133 * 1134 * The caller may receive the data as a single mbuf chain by supplying 1135 * an mbuf **mp0 for use in returning the chain. The uio is then used 1136 * only for the count in uio_resid. 1137 */ 1138 int 1139 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1140 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1141 { 1142 struct lwp *l = curlwp; 1143 struct mbuf *m, **mp, *mt; 1144 size_t len, offset, moff, orig_resid; 1145 int atomic, flags, error, s, type; 1146 const struct protosw *pr; 1147 struct mbuf *nextrecord; 1148 int mbuf_removed = 0; 1149 const struct domain *dom; 1150 short wakeup_state = 0; 1151 1152 pr = so->so_proto; 1153 atomic = pr->pr_flags & PR_ATOMIC; 1154 dom = pr->pr_domain; 1155 mp = mp0; 1156 type = 0; 1157 orig_resid = uio->uio_resid; 1158 1159 if (paddr != NULL) 1160 *paddr = NULL; 1161 if (controlp != NULL) 1162 *controlp = NULL; 1163 if (flagsp != NULL) 1164 flags = *flagsp &~ MSG_EOR; 1165 else 1166 flags = 0; 1167 1168 if (flags & MSG_OOB) { 1169 m = m_get(M_WAIT, MT_DATA); 1170 solock(so); 1171 error = (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVOOB, m, 1172 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1173 sounlock(so); 1174 if (error) 1175 goto bad; 1176 do { 1177 error = uiomove(mtod(m, void *), 1178 MIN(uio->uio_resid, m->m_len), uio); 1179 m = m_free(m); 1180 } while (uio->uio_resid > 0 && error == 0 && m); 1181 bad: 1182 if (m != NULL) 1183 m_freem(m); 1184 return error; 1185 } 1186 if (mp != NULL) 1187 *mp = NULL; 1188 1189 /* 1190 * solock() provides atomicity of access. splsoftnet() prevents 1191 * protocol processing soft interrupts from interrupting us and 1192 * blocking (expensive). 1193 */ 1194 s = splsoftnet(); 1195 solock(so); 1196 restart: 1197 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1198 sounlock(so); 1199 splx(s); 1200 return error; 1201 } 1202 1203 m = so->so_rcv.sb_mb; 1204 /* 1205 * If we have less data than requested, block awaiting more 1206 * (subject to any timeout) if: 1207 * 1. the current count is less than the low water mark, 1208 * 2. MSG_WAITALL is set, and it is possible to do the entire 1209 * receive operation at once if we block (resid <= hiwat), or 1210 * 3. MSG_DONTWAIT is not set. 1211 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1212 * we have to do the receive in sections, and thus risk returning 1213 * a short count if a timeout or signal occurs after we start. 1214 */ 1215 if (m == NULL || 1216 ((flags & MSG_DONTWAIT) == 0 && 1217 so->so_rcv.sb_cc < uio->uio_resid && 1218 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1219 ((flags & MSG_WAITALL) && 1220 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1221 m->m_nextpkt == NULL && !atomic)) { 1222 #ifdef DIAGNOSTIC 1223 if (m == NULL && so->so_rcv.sb_cc) 1224 panic("receive 1"); 1225 #endif 1226 if (so->so_error) { 1227 if (m != NULL) 1228 goto dontblock; 1229 error = so->so_error; 1230 if ((flags & MSG_PEEK) == 0) 1231 so->so_error = 0; 1232 goto release; 1233 } 1234 if (so->so_state & SS_CANTRCVMORE) { 1235 if (m != NULL) 1236 goto dontblock; 1237 else 1238 goto release; 1239 } 1240 for (; m != NULL; m = m->m_next) 1241 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1242 m = so->so_rcv.sb_mb; 1243 goto dontblock; 1244 } 1245 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1246 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1247 error = ENOTCONN; 1248 goto release; 1249 } 1250 if (uio->uio_resid == 0) 1251 goto release; 1252 if ((so->so_state & SS_NBIO) || 1253 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1254 error = EWOULDBLOCK; 1255 goto release; 1256 } 1257 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1258 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1259 sbunlock(&so->so_rcv); 1260 if (wakeup_state & SS_RESTARTSYS) 1261 error = ERESTART; 1262 else 1263 error = sbwait(&so->so_rcv); 1264 if (error != 0) { 1265 sounlock(so); 1266 splx(s); 1267 return error; 1268 } 1269 wakeup_state = so->so_state; 1270 goto restart; 1271 } 1272 dontblock: 1273 /* 1274 * On entry here, m points to the first record of the socket buffer. 1275 * From this point onward, we maintain 'nextrecord' as a cache of the 1276 * pointer to the next record in the socket buffer. We must keep the 1277 * various socket buffer pointers and local stack versions of the 1278 * pointers in sync, pushing out modifications before dropping the 1279 * socket lock, and re-reading them when picking it up. 1280 * 1281 * Otherwise, we will race with the network stack appending new data 1282 * or records onto the socket buffer by using inconsistent/stale 1283 * versions of the field, possibly resulting in socket buffer 1284 * corruption. 1285 * 1286 * By holding the high-level sblock(), we prevent simultaneous 1287 * readers from pulling off the front of the socket buffer. 1288 */ 1289 if (l != NULL) 1290 l->l_ru.ru_msgrcv++; 1291 KASSERT(m == so->so_rcv.sb_mb); 1292 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1293 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1294 nextrecord = m->m_nextpkt; 1295 if (pr->pr_flags & PR_ADDR) { 1296 #ifdef DIAGNOSTIC 1297 if (m->m_type != MT_SONAME) 1298 panic("receive 1a"); 1299 #endif 1300 orig_resid = 0; 1301 if (flags & MSG_PEEK) { 1302 if (paddr) 1303 *paddr = m_copy(m, 0, m->m_len); 1304 m = m->m_next; 1305 } else { 1306 sbfree(&so->so_rcv, m); 1307 mbuf_removed = 1; 1308 if (paddr != NULL) { 1309 *paddr = m; 1310 so->so_rcv.sb_mb = m->m_next; 1311 m->m_next = NULL; 1312 m = so->so_rcv.sb_mb; 1313 } else { 1314 MFREE(m, so->so_rcv.sb_mb); 1315 m = so->so_rcv.sb_mb; 1316 } 1317 sbsync(&so->so_rcv, nextrecord); 1318 } 1319 } 1320 1321 /* 1322 * Process one or more MT_CONTROL mbufs present before any data mbufs 1323 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1324 * just copy the data; if !MSG_PEEK, we call into the protocol to 1325 * perform externalization (or freeing if controlp == NULL). 1326 */ 1327 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1328 struct mbuf *cm = NULL, *cmn; 1329 struct mbuf **cme = &cm; 1330 1331 do { 1332 if (flags & MSG_PEEK) { 1333 if (controlp != NULL) { 1334 *controlp = m_copy(m, 0, m->m_len); 1335 controlp = &(*controlp)->m_next; 1336 } 1337 m = m->m_next; 1338 } else { 1339 sbfree(&so->so_rcv, m); 1340 so->so_rcv.sb_mb = m->m_next; 1341 m->m_next = NULL; 1342 *cme = m; 1343 cme = &(*cme)->m_next; 1344 m = so->so_rcv.sb_mb; 1345 } 1346 } while (m != NULL && m->m_type == MT_CONTROL); 1347 if ((flags & MSG_PEEK) == 0) 1348 sbsync(&so->so_rcv, nextrecord); 1349 for (; cm != NULL; cm = cmn) { 1350 cmn = cm->m_next; 1351 cm->m_next = NULL; 1352 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1353 if (controlp != NULL) { 1354 if (dom->dom_externalize != NULL && 1355 type == SCM_RIGHTS) { 1356 sounlock(so); 1357 splx(s); 1358 error = (*dom->dom_externalize)(cm, l, 1359 (flags & MSG_CMSG_CLOEXEC) ? 1360 O_CLOEXEC : 0); 1361 s = splsoftnet(); 1362 solock(so); 1363 } 1364 *controlp = cm; 1365 while (*controlp != NULL) 1366 controlp = &(*controlp)->m_next; 1367 } else { 1368 /* 1369 * Dispose of any SCM_RIGHTS message that went 1370 * through the read path rather than recv. 1371 */ 1372 if (dom->dom_dispose != NULL && 1373 type == SCM_RIGHTS) { 1374 sounlock(so); 1375 (*dom->dom_dispose)(cm); 1376 solock(so); 1377 } 1378 m_freem(cm); 1379 } 1380 } 1381 if (m != NULL) 1382 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1383 else 1384 nextrecord = so->so_rcv.sb_mb; 1385 orig_resid = 0; 1386 } 1387 1388 /* If m is non-NULL, we have some data to read. */ 1389 if (__predict_true(m != NULL)) { 1390 type = m->m_type; 1391 if (type == MT_OOBDATA) 1392 flags |= MSG_OOB; 1393 } 1394 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1395 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1396 1397 moff = 0; 1398 offset = 0; 1399 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1400 if (m->m_type == MT_OOBDATA) { 1401 if (type != MT_OOBDATA) 1402 break; 1403 } else if (type == MT_OOBDATA) 1404 break; 1405 #ifdef DIAGNOSTIC 1406 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1407 panic("receive 3"); 1408 #endif 1409 so->so_state &= ~SS_RCVATMARK; 1410 wakeup_state = 0; 1411 len = uio->uio_resid; 1412 if (so->so_oobmark && len > so->so_oobmark - offset) 1413 len = so->so_oobmark - offset; 1414 if (len > m->m_len - moff) 1415 len = m->m_len - moff; 1416 /* 1417 * If mp is set, just pass back the mbufs. 1418 * Otherwise copy them out via the uio, then free. 1419 * Sockbuf must be consistent here (points to current mbuf, 1420 * it points to next record) when we drop priority; 1421 * we must note any additions to the sockbuf when we 1422 * block interrupts again. 1423 */ 1424 if (mp == NULL) { 1425 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1426 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1427 sounlock(so); 1428 splx(s); 1429 error = uiomove(mtod(m, char *) + moff, len, uio); 1430 s = splsoftnet(); 1431 solock(so); 1432 if (error != 0) { 1433 /* 1434 * If any part of the record has been removed 1435 * (such as the MT_SONAME mbuf, which will 1436 * happen when PR_ADDR, and thus also 1437 * PR_ATOMIC, is set), then drop the entire 1438 * record to maintain the atomicity of the 1439 * receive operation. 1440 * 1441 * This avoids a later panic("receive 1a") 1442 * when compiled with DIAGNOSTIC. 1443 */ 1444 if (m && mbuf_removed && atomic) 1445 (void) sbdroprecord(&so->so_rcv); 1446 1447 goto release; 1448 } 1449 } else 1450 uio->uio_resid -= len; 1451 if (len == m->m_len - moff) { 1452 if (m->m_flags & M_EOR) 1453 flags |= MSG_EOR; 1454 if (flags & MSG_PEEK) { 1455 m = m->m_next; 1456 moff = 0; 1457 } else { 1458 nextrecord = m->m_nextpkt; 1459 sbfree(&so->so_rcv, m); 1460 if (mp) { 1461 *mp = m; 1462 mp = &m->m_next; 1463 so->so_rcv.sb_mb = m = m->m_next; 1464 *mp = NULL; 1465 } else { 1466 MFREE(m, so->so_rcv.sb_mb); 1467 m = so->so_rcv.sb_mb; 1468 } 1469 /* 1470 * If m != NULL, we also know that 1471 * so->so_rcv.sb_mb != NULL. 1472 */ 1473 KASSERT(so->so_rcv.sb_mb == m); 1474 if (m) { 1475 m->m_nextpkt = nextrecord; 1476 if (nextrecord == NULL) 1477 so->so_rcv.sb_lastrecord = m; 1478 } else { 1479 so->so_rcv.sb_mb = nextrecord; 1480 SB_EMPTY_FIXUP(&so->so_rcv); 1481 } 1482 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1483 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1484 } 1485 } else if (flags & MSG_PEEK) 1486 moff += len; 1487 else { 1488 if (mp != NULL) { 1489 mt = m_copym(m, 0, len, M_NOWAIT); 1490 if (__predict_false(mt == NULL)) { 1491 sounlock(so); 1492 mt = m_copym(m, 0, len, M_WAIT); 1493 solock(so); 1494 } 1495 *mp = mt; 1496 } 1497 m->m_data += len; 1498 m->m_len -= len; 1499 so->so_rcv.sb_cc -= len; 1500 } 1501 if (so->so_oobmark) { 1502 if ((flags & MSG_PEEK) == 0) { 1503 so->so_oobmark -= len; 1504 if (so->so_oobmark == 0) { 1505 so->so_state |= SS_RCVATMARK; 1506 break; 1507 } 1508 } else { 1509 offset += len; 1510 if (offset == so->so_oobmark) 1511 break; 1512 } 1513 } 1514 if (flags & MSG_EOR) 1515 break; 1516 /* 1517 * If the MSG_WAITALL flag is set (for non-atomic socket), 1518 * we must not quit until "uio->uio_resid == 0" or an error 1519 * termination. If a signal/timeout occurs, return 1520 * with a short count but without error. 1521 * Keep sockbuf locked against other readers. 1522 */ 1523 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1524 !sosendallatonce(so) && !nextrecord) { 1525 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1526 break; 1527 /* 1528 * If we are peeking and the socket receive buffer is 1529 * full, stop since we can't get more data to peek at. 1530 */ 1531 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1532 break; 1533 /* 1534 * If we've drained the socket buffer, tell the 1535 * protocol in case it needs to do something to 1536 * get it filled again. 1537 */ 1538 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1539 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, 1540 NULL, (struct mbuf *)(long)flags, NULL, l); 1541 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1542 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1543 if (wakeup_state & SS_RESTARTSYS) 1544 error = ERESTART; 1545 else 1546 error = sbwait(&so->so_rcv); 1547 if (error != 0) { 1548 sbunlock(&so->so_rcv); 1549 sounlock(so); 1550 splx(s); 1551 return 0; 1552 } 1553 if ((m = so->so_rcv.sb_mb) != NULL) 1554 nextrecord = m->m_nextpkt; 1555 wakeup_state = so->so_state; 1556 } 1557 } 1558 1559 if (m && atomic) { 1560 flags |= MSG_TRUNC; 1561 if ((flags & MSG_PEEK) == 0) 1562 (void) sbdroprecord(&so->so_rcv); 1563 } 1564 if ((flags & MSG_PEEK) == 0) { 1565 if (m == NULL) { 1566 /* 1567 * First part is an inline SB_EMPTY_FIXUP(). Second 1568 * part makes sure sb_lastrecord is up-to-date if 1569 * there is still data in the socket buffer. 1570 */ 1571 so->so_rcv.sb_mb = nextrecord; 1572 if (so->so_rcv.sb_mb == NULL) { 1573 so->so_rcv.sb_mbtail = NULL; 1574 so->so_rcv.sb_lastrecord = NULL; 1575 } else if (nextrecord->m_nextpkt == NULL) 1576 so->so_rcv.sb_lastrecord = nextrecord; 1577 } 1578 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1579 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1580 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1581 (*pr->pr_usrreqs->pr_generic)(so, PRU_RCVD, NULL, 1582 (struct mbuf *)(long)flags, NULL, l); 1583 } 1584 if (orig_resid == uio->uio_resid && orig_resid && 1585 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1586 sbunlock(&so->so_rcv); 1587 goto restart; 1588 } 1589 1590 if (flagsp != NULL) 1591 *flagsp |= flags; 1592 release: 1593 sbunlock(&so->so_rcv); 1594 sounlock(so); 1595 splx(s); 1596 return error; 1597 } 1598 1599 int 1600 soshutdown(struct socket *so, int how) 1601 { 1602 const struct protosw *pr; 1603 int error; 1604 1605 KASSERT(solocked(so)); 1606 1607 pr = so->so_proto; 1608 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1609 return (EINVAL); 1610 1611 if (how == SHUT_RD || how == SHUT_RDWR) { 1612 sorflush(so); 1613 error = 0; 1614 } 1615 if (how == SHUT_WR || how == SHUT_RDWR) 1616 error = (*pr->pr_usrreqs->pr_generic)(so, 1617 PRU_SHUTDOWN, NULL, NULL, NULL, NULL); 1618 1619 return error; 1620 } 1621 1622 void 1623 sorestart(struct socket *so) 1624 { 1625 /* 1626 * An application has called close() on an fd on which another 1627 * of its threads has called a socket system call. 1628 * Mark this and wake everyone up, and code that would block again 1629 * instead returns ERESTART. 1630 * On system call re-entry the fd is validated and EBADF returned. 1631 * Any other fd will block again on the 2nd syscall. 1632 */ 1633 solock(so); 1634 so->so_state |= SS_RESTARTSYS; 1635 cv_broadcast(&so->so_cv); 1636 cv_broadcast(&so->so_snd.sb_cv); 1637 cv_broadcast(&so->so_rcv.sb_cv); 1638 sounlock(so); 1639 } 1640 1641 void 1642 sorflush(struct socket *so) 1643 { 1644 struct sockbuf *sb, asb; 1645 const struct protosw *pr; 1646 1647 KASSERT(solocked(so)); 1648 1649 sb = &so->so_rcv; 1650 pr = so->so_proto; 1651 socantrcvmore(so); 1652 sb->sb_flags |= SB_NOINTR; 1653 (void )sblock(sb, M_WAITOK); 1654 sbunlock(sb); 1655 asb = *sb; 1656 /* 1657 * Clear most of the sockbuf structure, but leave some of the 1658 * fields valid. 1659 */ 1660 memset(&sb->sb_startzero, 0, 1661 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1662 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1663 sounlock(so); 1664 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1665 solock(so); 1666 } 1667 sbrelease(&asb, so); 1668 } 1669 1670 /* 1671 * internal set SOL_SOCKET options 1672 */ 1673 static int 1674 sosetopt1(struct socket *so, const struct sockopt *sopt) 1675 { 1676 int error = EINVAL, opt; 1677 int optval = 0; /* XXX: gcc */ 1678 struct linger l; 1679 struct timeval tv; 1680 1681 switch ((opt = sopt->sopt_name)) { 1682 1683 case SO_ACCEPTFILTER: 1684 error = accept_filt_setopt(so, sopt); 1685 KASSERT(solocked(so)); 1686 break; 1687 1688 case SO_LINGER: 1689 error = sockopt_get(sopt, &l, sizeof(l)); 1690 solock(so); 1691 if (error) 1692 break; 1693 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1694 l.l_linger > (INT_MAX / hz)) { 1695 error = EDOM; 1696 break; 1697 } 1698 so->so_linger = l.l_linger; 1699 if (l.l_onoff) 1700 so->so_options |= SO_LINGER; 1701 else 1702 so->so_options &= ~SO_LINGER; 1703 break; 1704 1705 case SO_DEBUG: 1706 case SO_KEEPALIVE: 1707 case SO_DONTROUTE: 1708 case SO_USELOOPBACK: 1709 case SO_BROADCAST: 1710 case SO_REUSEADDR: 1711 case SO_REUSEPORT: 1712 case SO_OOBINLINE: 1713 case SO_TIMESTAMP: 1714 case SO_NOSIGPIPE: 1715 #ifdef SO_OTIMESTAMP 1716 case SO_OTIMESTAMP: 1717 #endif 1718 error = sockopt_getint(sopt, &optval); 1719 solock(so); 1720 if (error) 1721 break; 1722 if (optval) 1723 so->so_options |= opt; 1724 else 1725 so->so_options &= ~opt; 1726 break; 1727 1728 case SO_SNDBUF: 1729 case SO_RCVBUF: 1730 case SO_SNDLOWAT: 1731 case SO_RCVLOWAT: 1732 error = sockopt_getint(sopt, &optval); 1733 solock(so); 1734 if (error) 1735 break; 1736 1737 /* 1738 * Values < 1 make no sense for any of these 1739 * options, so disallow them. 1740 */ 1741 if (optval < 1) { 1742 error = EINVAL; 1743 break; 1744 } 1745 1746 switch (opt) { 1747 case SO_SNDBUF: 1748 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1749 error = ENOBUFS; 1750 break; 1751 } 1752 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1753 break; 1754 1755 case SO_RCVBUF: 1756 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1757 error = ENOBUFS; 1758 break; 1759 } 1760 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1761 break; 1762 1763 /* 1764 * Make sure the low-water is never greater than 1765 * the high-water. 1766 */ 1767 case SO_SNDLOWAT: 1768 if (optval > so->so_snd.sb_hiwat) 1769 optval = so->so_snd.sb_hiwat; 1770 1771 so->so_snd.sb_lowat = optval; 1772 break; 1773 1774 case SO_RCVLOWAT: 1775 if (optval > so->so_rcv.sb_hiwat) 1776 optval = so->so_rcv.sb_hiwat; 1777 1778 so->so_rcv.sb_lowat = optval; 1779 break; 1780 } 1781 break; 1782 1783 #ifdef COMPAT_50 1784 case SO_OSNDTIMEO: 1785 case SO_ORCVTIMEO: { 1786 struct timeval50 otv; 1787 error = sockopt_get(sopt, &otv, sizeof(otv)); 1788 if (error) { 1789 solock(so); 1790 break; 1791 } 1792 timeval50_to_timeval(&otv, &tv); 1793 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1794 error = 0; 1795 /*FALLTHROUGH*/ 1796 } 1797 #endif /* COMPAT_50 */ 1798 1799 case SO_SNDTIMEO: 1800 case SO_RCVTIMEO: 1801 if (error) 1802 error = sockopt_get(sopt, &tv, sizeof(tv)); 1803 solock(so); 1804 if (error) 1805 break; 1806 1807 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1808 error = EDOM; 1809 break; 1810 } 1811 1812 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1813 if (optval == 0 && tv.tv_usec != 0) 1814 optval = 1; 1815 1816 switch (opt) { 1817 case SO_SNDTIMEO: 1818 so->so_snd.sb_timeo = optval; 1819 break; 1820 case SO_RCVTIMEO: 1821 so->so_rcv.sb_timeo = optval; 1822 break; 1823 } 1824 break; 1825 1826 default: 1827 solock(so); 1828 error = ENOPROTOOPT; 1829 break; 1830 } 1831 KASSERT(solocked(so)); 1832 return error; 1833 } 1834 1835 int 1836 sosetopt(struct socket *so, struct sockopt *sopt) 1837 { 1838 int error, prerr; 1839 1840 if (sopt->sopt_level == SOL_SOCKET) { 1841 error = sosetopt1(so, sopt); 1842 KASSERT(solocked(so)); 1843 } else { 1844 error = ENOPROTOOPT; 1845 solock(so); 1846 } 1847 1848 if ((error == 0 || error == ENOPROTOOPT) && 1849 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1850 /* give the protocol stack a shot */ 1851 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1852 if (prerr == 0) 1853 error = 0; 1854 else if (prerr != ENOPROTOOPT) 1855 error = prerr; 1856 } 1857 sounlock(so); 1858 return error; 1859 } 1860 1861 /* 1862 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1863 */ 1864 int 1865 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1866 const void *val, size_t valsize) 1867 { 1868 struct sockopt sopt; 1869 int error; 1870 1871 KASSERT(valsize == 0 || val != NULL); 1872 1873 sockopt_init(&sopt, level, name, valsize); 1874 sockopt_set(&sopt, val, valsize); 1875 1876 error = sosetopt(so, &sopt); 1877 1878 sockopt_destroy(&sopt); 1879 1880 return error; 1881 } 1882 1883 /* 1884 * internal get SOL_SOCKET options 1885 */ 1886 static int 1887 sogetopt1(struct socket *so, struct sockopt *sopt) 1888 { 1889 int error, optval, opt; 1890 struct linger l; 1891 struct timeval tv; 1892 1893 switch ((opt = sopt->sopt_name)) { 1894 1895 case SO_ACCEPTFILTER: 1896 error = accept_filt_getopt(so, sopt); 1897 break; 1898 1899 case SO_LINGER: 1900 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1901 l.l_linger = so->so_linger; 1902 1903 error = sockopt_set(sopt, &l, sizeof(l)); 1904 break; 1905 1906 case SO_USELOOPBACK: 1907 case SO_DONTROUTE: 1908 case SO_DEBUG: 1909 case SO_KEEPALIVE: 1910 case SO_REUSEADDR: 1911 case SO_REUSEPORT: 1912 case SO_BROADCAST: 1913 case SO_OOBINLINE: 1914 case SO_TIMESTAMP: 1915 case SO_NOSIGPIPE: 1916 #ifdef SO_OTIMESTAMP 1917 case SO_OTIMESTAMP: 1918 #endif 1919 case SO_ACCEPTCONN: 1920 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1921 break; 1922 1923 case SO_TYPE: 1924 error = sockopt_setint(sopt, so->so_type); 1925 break; 1926 1927 case SO_ERROR: 1928 error = sockopt_setint(sopt, so->so_error); 1929 so->so_error = 0; 1930 break; 1931 1932 case SO_SNDBUF: 1933 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1934 break; 1935 1936 case SO_RCVBUF: 1937 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1938 break; 1939 1940 case SO_SNDLOWAT: 1941 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1942 break; 1943 1944 case SO_RCVLOWAT: 1945 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1946 break; 1947 1948 #ifdef COMPAT_50 1949 case SO_OSNDTIMEO: 1950 case SO_ORCVTIMEO: { 1951 struct timeval50 otv; 1952 1953 optval = (opt == SO_OSNDTIMEO ? 1954 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1955 1956 otv.tv_sec = optval / hz; 1957 otv.tv_usec = (optval % hz) * tick; 1958 1959 error = sockopt_set(sopt, &otv, sizeof(otv)); 1960 break; 1961 } 1962 #endif /* COMPAT_50 */ 1963 1964 case SO_SNDTIMEO: 1965 case SO_RCVTIMEO: 1966 optval = (opt == SO_SNDTIMEO ? 1967 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1968 1969 tv.tv_sec = optval / hz; 1970 tv.tv_usec = (optval % hz) * tick; 1971 1972 error = sockopt_set(sopt, &tv, sizeof(tv)); 1973 break; 1974 1975 case SO_OVERFLOWED: 1976 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1977 break; 1978 1979 default: 1980 error = ENOPROTOOPT; 1981 break; 1982 } 1983 1984 return (error); 1985 } 1986 1987 int 1988 sogetopt(struct socket *so, struct sockopt *sopt) 1989 { 1990 int error; 1991 1992 solock(so); 1993 if (sopt->sopt_level != SOL_SOCKET) { 1994 if (so->so_proto && so->so_proto->pr_ctloutput) { 1995 error = ((*so->so_proto->pr_ctloutput) 1996 (PRCO_GETOPT, so, sopt)); 1997 } else 1998 error = (ENOPROTOOPT); 1999 } else { 2000 error = sogetopt1(so, sopt); 2001 } 2002 sounlock(so); 2003 return (error); 2004 } 2005 2006 /* 2007 * alloc sockopt data buffer buffer 2008 * - will be released at destroy 2009 */ 2010 static int 2011 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2012 { 2013 2014 KASSERT(sopt->sopt_size == 0); 2015 2016 if (len > sizeof(sopt->sopt_buf)) { 2017 sopt->sopt_data = kmem_zalloc(len, kmflag); 2018 if (sopt->sopt_data == NULL) 2019 return ENOMEM; 2020 } else 2021 sopt->sopt_data = sopt->sopt_buf; 2022 2023 sopt->sopt_size = len; 2024 return 0; 2025 } 2026 2027 /* 2028 * initialise sockopt storage 2029 * - MAY sleep during allocation 2030 */ 2031 void 2032 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2033 { 2034 2035 memset(sopt, 0, sizeof(*sopt)); 2036 2037 sopt->sopt_level = level; 2038 sopt->sopt_name = name; 2039 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2040 } 2041 2042 /* 2043 * destroy sockopt storage 2044 * - will release any held memory references 2045 */ 2046 void 2047 sockopt_destroy(struct sockopt *sopt) 2048 { 2049 2050 if (sopt->sopt_data != sopt->sopt_buf) 2051 kmem_free(sopt->sopt_data, sopt->sopt_size); 2052 2053 memset(sopt, 0, sizeof(*sopt)); 2054 } 2055 2056 /* 2057 * set sockopt value 2058 * - value is copied into sockopt 2059 * - memory is allocated when necessary, will not sleep 2060 */ 2061 int 2062 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2063 { 2064 int error; 2065 2066 if (sopt->sopt_size == 0) { 2067 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2068 if (error) 2069 return error; 2070 } 2071 2072 KASSERT(sopt->sopt_size == len); 2073 memcpy(sopt->sopt_data, buf, len); 2074 return 0; 2075 } 2076 2077 /* 2078 * common case of set sockopt integer value 2079 */ 2080 int 2081 sockopt_setint(struct sockopt *sopt, int val) 2082 { 2083 2084 return sockopt_set(sopt, &val, sizeof(int)); 2085 } 2086 2087 /* 2088 * get sockopt value 2089 * - correct size must be given 2090 */ 2091 int 2092 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2093 { 2094 2095 if (sopt->sopt_size != len) 2096 return EINVAL; 2097 2098 memcpy(buf, sopt->sopt_data, len); 2099 return 0; 2100 } 2101 2102 /* 2103 * common case of get sockopt integer value 2104 */ 2105 int 2106 sockopt_getint(const struct sockopt *sopt, int *valp) 2107 { 2108 2109 return sockopt_get(sopt, valp, sizeof(int)); 2110 } 2111 2112 /* 2113 * set sockopt value from mbuf 2114 * - ONLY for legacy code 2115 * - mbuf is released by sockopt 2116 * - will not sleep 2117 */ 2118 int 2119 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2120 { 2121 size_t len; 2122 int error; 2123 2124 len = m_length(m); 2125 2126 if (sopt->sopt_size == 0) { 2127 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2128 if (error) 2129 return error; 2130 } 2131 2132 KASSERT(sopt->sopt_size == len); 2133 m_copydata(m, 0, len, sopt->sopt_data); 2134 m_freem(m); 2135 2136 return 0; 2137 } 2138 2139 /* 2140 * get sockopt value into mbuf 2141 * - ONLY for legacy code 2142 * - mbuf to be released by the caller 2143 * - will not sleep 2144 */ 2145 struct mbuf * 2146 sockopt_getmbuf(const struct sockopt *sopt) 2147 { 2148 struct mbuf *m; 2149 2150 if (sopt->sopt_size > MCLBYTES) 2151 return NULL; 2152 2153 m = m_get(M_DONTWAIT, MT_SOOPTS); 2154 if (m == NULL) 2155 return NULL; 2156 2157 if (sopt->sopt_size > MLEN) { 2158 MCLGET(m, M_DONTWAIT); 2159 if ((m->m_flags & M_EXT) == 0) { 2160 m_free(m); 2161 return NULL; 2162 } 2163 } 2164 2165 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2166 m->m_len = sopt->sopt_size; 2167 2168 return m; 2169 } 2170 2171 void 2172 sohasoutofband(struct socket *so) 2173 { 2174 2175 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2176 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2177 } 2178 2179 static void 2180 filt_sordetach(struct knote *kn) 2181 { 2182 struct socket *so; 2183 2184 so = ((file_t *)kn->kn_obj)->f_data; 2185 solock(so); 2186 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2187 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2188 so->so_rcv.sb_flags &= ~SB_KNOTE; 2189 sounlock(so); 2190 } 2191 2192 /*ARGSUSED*/ 2193 static int 2194 filt_soread(struct knote *kn, long hint) 2195 { 2196 struct socket *so; 2197 int rv; 2198 2199 so = ((file_t *)kn->kn_obj)->f_data; 2200 if (hint != NOTE_SUBMIT) 2201 solock(so); 2202 kn->kn_data = so->so_rcv.sb_cc; 2203 if (so->so_state & SS_CANTRCVMORE) { 2204 kn->kn_flags |= EV_EOF; 2205 kn->kn_fflags = so->so_error; 2206 rv = 1; 2207 } else if (so->so_error) /* temporary udp error */ 2208 rv = 1; 2209 else if (kn->kn_sfflags & NOTE_LOWAT) 2210 rv = (kn->kn_data >= kn->kn_sdata); 2211 else 2212 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2213 if (hint != NOTE_SUBMIT) 2214 sounlock(so); 2215 return rv; 2216 } 2217 2218 static void 2219 filt_sowdetach(struct knote *kn) 2220 { 2221 struct socket *so; 2222 2223 so = ((file_t *)kn->kn_obj)->f_data; 2224 solock(so); 2225 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2226 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2227 so->so_snd.sb_flags &= ~SB_KNOTE; 2228 sounlock(so); 2229 } 2230 2231 /*ARGSUSED*/ 2232 static int 2233 filt_sowrite(struct knote *kn, long hint) 2234 { 2235 struct socket *so; 2236 int rv; 2237 2238 so = ((file_t *)kn->kn_obj)->f_data; 2239 if (hint != NOTE_SUBMIT) 2240 solock(so); 2241 kn->kn_data = sbspace(&so->so_snd); 2242 if (so->so_state & SS_CANTSENDMORE) { 2243 kn->kn_flags |= EV_EOF; 2244 kn->kn_fflags = so->so_error; 2245 rv = 1; 2246 } else if (so->so_error) /* temporary udp error */ 2247 rv = 1; 2248 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2249 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2250 rv = 0; 2251 else if (kn->kn_sfflags & NOTE_LOWAT) 2252 rv = (kn->kn_data >= kn->kn_sdata); 2253 else 2254 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2255 if (hint != NOTE_SUBMIT) 2256 sounlock(so); 2257 return rv; 2258 } 2259 2260 /*ARGSUSED*/ 2261 static int 2262 filt_solisten(struct knote *kn, long hint) 2263 { 2264 struct socket *so; 2265 int rv; 2266 2267 so = ((file_t *)kn->kn_obj)->f_data; 2268 2269 /* 2270 * Set kn_data to number of incoming connections, not 2271 * counting partial (incomplete) connections. 2272 */ 2273 if (hint != NOTE_SUBMIT) 2274 solock(so); 2275 kn->kn_data = so->so_qlen; 2276 rv = (kn->kn_data > 0); 2277 if (hint != NOTE_SUBMIT) 2278 sounlock(so); 2279 return rv; 2280 } 2281 2282 static const struct filterops solisten_filtops = 2283 { 1, NULL, filt_sordetach, filt_solisten }; 2284 static const struct filterops soread_filtops = 2285 { 1, NULL, filt_sordetach, filt_soread }; 2286 static const struct filterops sowrite_filtops = 2287 { 1, NULL, filt_sowdetach, filt_sowrite }; 2288 2289 int 2290 soo_kqfilter(struct file *fp, struct knote *kn) 2291 { 2292 struct socket *so; 2293 struct sockbuf *sb; 2294 2295 so = ((file_t *)kn->kn_obj)->f_data; 2296 solock(so); 2297 switch (kn->kn_filter) { 2298 case EVFILT_READ: 2299 if (so->so_options & SO_ACCEPTCONN) 2300 kn->kn_fop = &solisten_filtops; 2301 else 2302 kn->kn_fop = &soread_filtops; 2303 sb = &so->so_rcv; 2304 break; 2305 case EVFILT_WRITE: 2306 kn->kn_fop = &sowrite_filtops; 2307 sb = &so->so_snd; 2308 break; 2309 default: 2310 sounlock(so); 2311 return (EINVAL); 2312 } 2313 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2314 sb->sb_flags |= SB_KNOTE; 2315 sounlock(so); 2316 return (0); 2317 } 2318 2319 static int 2320 sodopoll(struct socket *so, int events) 2321 { 2322 int revents; 2323 2324 revents = 0; 2325 2326 if (events & (POLLIN | POLLRDNORM)) 2327 if (soreadable(so)) 2328 revents |= events & (POLLIN | POLLRDNORM); 2329 2330 if (events & (POLLOUT | POLLWRNORM)) 2331 if (sowritable(so)) 2332 revents |= events & (POLLOUT | POLLWRNORM); 2333 2334 if (events & (POLLPRI | POLLRDBAND)) 2335 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2336 revents |= events & (POLLPRI | POLLRDBAND); 2337 2338 return revents; 2339 } 2340 2341 int 2342 sopoll(struct socket *so, int events) 2343 { 2344 int revents = 0; 2345 2346 #ifndef DIAGNOSTIC 2347 /* 2348 * Do a quick, unlocked check in expectation that the socket 2349 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2350 * as the solocked() assertions will fail. 2351 */ 2352 if ((revents = sodopoll(so, events)) != 0) 2353 return revents; 2354 #endif 2355 2356 solock(so); 2357 if ((revents = sodopoll(so, events)) == 0) { 2358 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2359 selrecord(curlwp, &so->so_rcv.sb_sel); 2360 so->so_rcv.sb_flags |= SB_NOTIFY; 2361 } 2362 2363 if (events & (POLLOUT | POLLWRNORM)) { 2364 selrecord(curlwp, &so->so_snd.sb_sel); 2365 so->so_snd.sb_flags |= SB_NOTIFY; 2366 } 2367 } 2368 sounlock(so); 2369 2370 return revents; 2371 } 2372 2373 2374 #include <sys/sysctl.h> 2375 2376 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2377 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2378 2379 /* 2380 * sysctl helper routine for kern.somaxkva. ensures that the given 2381 * value is not too small. 2382 * (XXX should we maybe make sure it's not too large as well?) 2383 */ 2384 static int 2385 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2386 { 2387 int error, new_somaxkva; 2388 struct sysctlnode node; 2389 2390 new_somaxkva = somaxkva; 2391 node = *rnode; 2392 node.sysctl_data = &new_somaxkva; 2393 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2394 if (error || newp == NULL) 2395 return (error); 2396 2397 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2398 return (EINVAL); 2399 2400 mutex_enter(&so_pendfree_lock); 2401 somaxkva = new_somaxkva; 2402 cv_broadcast(&socurkva_cv); 2403 mutex_exit(&so_pendfree_lock); 2404 2405 return (error); 2406 } 2407 2408 /* 2409 * sysctl helper routine for kern.sbmax. Basically just ensures that 2410 * any new value is not too small. 2411 */ 2412 static int 2413 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2414 { 2415 int error, new_sbmax; 2416 struct sysctlnode node; 2417 2418 new_sbmax = sb_max; 2419 node = *rnode; 2420 node.sysctl_data = &new_sbmax; 2421 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2422 if (error || newp == NULL) 2423 return (error); 2424 2425 KERNEL_LOCK(1, NULL); 2426 error = sb_max_set(new_sbmax); 2427 KERNEL_UNLOCK_ONE(NULL); 2428 2429 return (error); 2430 } 2431 2432 static void 2433 sysctl_kern_socket_setup(void) 2434 { 2435 2436 KASSERT(socket_sysctllog == NULL); 2437 2438 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2439 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2440 CTLTYPE_INT, "somaxkva", 2441 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2442 "used for socket buffers"), 2443 sysctl_kern_somaxkva, 0, NULL, 0, 2444 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2445 2446 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2447 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2448 CTLTYPE_INT, "sbmax", 2449 SYSCTL_DESCR("Maximum socket buffer size"), 2450 sysctl_kern_sbmax, 0, NULL, 0, 2451 CTL_KERN, KERN_SBMAX, CTL_EOL); 2452 } 2453