1 /* $NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.171 2008/08/06 15:01:23 plunky Exp $"); 67 68 #include "opt_inet.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/event.h> 90 #include <sys/poll.h> 91 #include <sys/kauth.h> 92 #include <sys/mutex.h> 93 #include <sys/condvar.h> 94 95 #include <uvm/uvm.h> 96 97 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 98 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 99 100 extern const struct fileops socketops; 101 102 extern int somaxconn; /* patchable (XXX sysctl) */ 103 int somaxconn = SOMAXCONN; 104 kmutex_t *softnet_lock; 105 106 #ifdef SOSEND_COUNTERS 107 #include <sys/device.h> 108 109 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 110 NULL, "sosend", "loan big"); 111 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 112 NULL, "sosend", "copy big"); 113 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 114 NULL, "sosend", "copy small"); 115 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "kva limit"); 117 118 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 119 120 EVCNT_ATTACH_STATIC(sosend_loan_big); 121 EVCNT_ATTACH_STATIC(sosend_copy_big); 122 EVCNT_ATTACH_STATIC(sosend_copy_small); 123 EVCNT_ATTACH_STATIC(sosend_kvalimit); 124 #else 125 126 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 127 128 #endif /* SOSEND_COUNTERS */ 129 130 static struct callback_entry sokva_reclaimerentry; 131 132 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 133 int sock_loan_thresh = -1; 134 #else 135 int sock_loan_thresh = 4096; 136 #endif 137 138 static kmutex_t so_pendfree_lock; 139 static struct mbuf *so_pendfree; 140 141 #ifndef SOMAXKVA 142 #define SOMAXKVA (16 * 1024 * 1024) 143 #endif 144 int somaxkva = SOMAXKVA; 145 static int socurkva; 146 static kcondvar_t socurkva_cv; 147 148 #define SOCK_LOAN_CHUNK 65536 149 150 static size_t sodopendfree(void); 151 static size_t sodopendfreel(void); 152 153 static vsize_t 154 sokvareserve(struct socket *so, vsize_t len) 155 { 156 int error; 157 158 mutex_enter(&so_pendfree_lock); 159 while (socurkva + len > somaxkva) { 160 size_t freed; 161 162 /* 163 * try to do pendfree. 164 */ 165 166 freed = sodopendfreel(); 167 168 /* 169 * if some kva was freed, try again. 170 */ 171 172 if (freed) 173 continue; 174 175 SOSEND_COUNTER_INCR(&sosend_kvalimit); 176 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 177 if (error) { 178 len = 0; 179 break; 180 } 181 } 182 socurkva += len; 183 mutex_exit(&so_pendfree_lock); 184 return len; 185 } 186 187 static void 188 sokvaunreserve(vsize_t len) 189 { 190 191 mutex_enter(&so_pendfree_lock); 192 socurkva -= len; 193 cv_broadcast(&socurkva_cv); 194 mutex_exit(&so_pendfree_lock); 195 } 196 197 /* 198 * sokvaalloc: allocate kva for loan. 199 */ 200 201 vaddr_t 202 sokvaalloc(vsize_t len, struct socket *so) 203 { 204 vaddr_t lva; 205 206 /* 207 * reserve kva. 208 */ 209 210 if (sokvareserve(so, len) == 0) 211 return 0; 212 213 /* 214 * allocate kva. 215 */ 216 217 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 218 if (lva == 0) { 219 sokvaunreserve(len); 220 return (0); 221 } 222 223 return lva; 224 } 225 226 /* 227 * sokvafree: free kva for loan. 228 */ 229 230 void 231 sokvafree(vaddr_t sva, vsize_t len) 232 { 233 234 /* 235 * free kva. 236 */ 237 238 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 239 240 /* 241 * unreserve kva. 242 */ 243 244 sokvaunreserve(len); 245 } 246 247 static void 248 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 249 { 250 vaddr_t sva, eva; 251 vsize_t len; 252 int npgs; 253 254 KASSERT(pgs != NULL); 255 256 eva = round_page((vaddr_t) buf + size); 257 sva = trunc_page((vaddr_t) buf); 258 len = eva - sva; 259 npgs = len >> PAGE_SHIFT; 260 261 pmap_kremove(sva, len); 262 pmap_update(pmap_kernel()); 263 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 264 sokvafree(sva, len); 265 } 266 267 static size_t 268 sodopendfree(void) 269 { 270 size_t rv; 271 272 if (__predict_true(so_pendfree == NULL)) 273 return 0; 274 275 mutex_enter(&so_pendfree_lock); 276 rv = sodopendfreel(); 277 mutex_exit(&so_pendfree_lock); 278 279 return rv; 280 } 281 282 /* 283 * sodopendfreel: free mbufs on "pendfree" list. 284 * unlock and relock so_pendfree_lock when freeing mbufs. 285 * 286 * => called with so_pendfree_lock held. 287 */ 288 289 static size_t 290 sodopendfreel(void) 291 { 292 struct mbuf *m, *next; 293 size_t rv = 0; 294 295 KASSERT(mutex_owned(&so_pendfree_lock)); 296 297 while (so_pendfree != NULL) { 298 m = so_pendfree; 299 so_pendfree = NULL; 300 mutex_exit(&so_pendfree_lock); 301 302 for (; m != NULL; m = next) { 303 next = m->m_next; 304 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 305 KASSERT(m->m_ext.ext_refcnt == 0); 306 307 rv += m->m_ext.ext_size; 308 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 309 m->m_ext.ext_size); 310 pool_cache_put(mb_cache, m); 311 } 312 313 mutex_enter(&so_pendfree_lock); 314 } 315 316 return (rv); 317 } 318 319 void 320 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 321 { 322 323 KASSERT(m != NULL); 324 325 /* 326 * postpone freeing mbuf. 327 * 328 * we can't do it in interrupt context 329 * because we need to put kva back to kernel_map. 330 */ 331 332 mutex_enter(&so_pendfree_lock); 333 m->m_next = so_pendfree; 334 so_pendfree = m; 335 cv_broadcast(&socurkva_cv); 336 mutex_exit(&so_pendfree_lock); 337 } 338 339 static long 340 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 341 { 342 struct iovec *iov = uio->uio_iov; 343 vaddr_t sva, eva; 344 vsize_t len; 345 vaddr_t lva; 346 int npgs, error; 347 vaddr_t va; 348 int i; 349 350 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 351 return (0); 352 353 if (iov->iov_len < (size_t) space) 354 space = iov->iov_len; 355 if (space > SOCK_LOAN_CHUNK) 356 space = SOCK_LOAN_CHUNK; 357 358 eva = round_page((vaddr_t) iov->iov_base + space); 359 sva = trunc_page((vaddr_t) iov->iov_base); 360 len = eva - sva; 361 npgs = len >> PAGE_SHIFT; 362 363 KASSERT(npgs <= M_EXT_MAXPAGES); 364 365 lva = sokvaalloc(len, so); 366 if (lva == 0) 367 return 0; 368 369 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 370 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 371 if (error) { 372 sokvafree(lva, len); 373 return (0); 374 } 375 376 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 377 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 378 VM_PROT_READ); 379 pmap_update(pmap_kernel()); 380 381 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 382 383 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 384 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 385 386 uio->uio_resid -= space; 387 /* uio_offset not updated, not set/used for write(2) */ 388 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 389 uio->uio_iov->iov_len -= space; 390 if (uio->uio_iov->iov_len == 0) { 391 uio->uio_iov++; 392 uio->uio_iovcnt--; 393 } 394 395 return (space); 396 } 397 398 static int 399 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 400 { 401 402 KASSERT(ce == &sokva_reclaimerentry); 403 KASSERT(obj == NULL); 404 405 sodopendfree(); 406 if (!vm_map_starved_p(kernel_map)) { 407 return CALLBACK_CHAIN_ABORT; 408 } 409 return CALLBACK_CHAIN_CONTINUE; 410 } 411 412 struct mbuf * 413 getsombuf(struct socket *so, int type) 414 { 415 struct mbuf *m; 416 417 m = m_get(M_WAIT, type); 418 MCLAIM(m, so->so_mowner); 419 return m; 420 } 421 422 void 423 soinit(void) 424 { 425 426 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 427 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 428 cv_init(&socurkva_cv, "sokva"); 429 soinit2(); 430 431 /* Set the initial adjusted socket buffer size. */ 432 if (sb_max_set(sb_max)) 433 panic("bad initial sb_max value: %lu", sb_max); 434 435 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 436 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 437 } 438 439 /* 440 * Socket operation routines. 441 * These routines are called by the routines in 442 * sys_socket.c or from a system process, and 443 * implement the semantics of socket operations by 444 * switching out to the protocol specific routines. 445 */ 446 /*ARGSUSED*/ 447 int 448 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 449 struct socket *lockso) 450 { 451 const struct protosw *prp; 452 struct socket *so; 453 uid_t uid; 454 int error; 455 kmutex_t *lock; 456 457 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 458 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 459 KAUTH_ARG(proto)); 460 if (error != 0) 461 return error; 462 463 if (proto) 464 prp = pffindproto(dom, proto, type); 465 else 466 prp = pffindtype(dom, type); 467 if (prp == NULL) { 468 /* no support for domain */ 469 if (pffinddomain(dom) == 0) 470 return EAFNOSUPPORT; 471 /* no support for socket type */ 472 if (proto == 0 && type != 0) 473 return EPROTOTYPE; 474 return EPROTONOSUPPORT; 475 } 476 if (prp->pr_usrreq == NULL) 477 return EPROTONOSUPPORT; 478 if (prp->pr_type != type) 479 return EPROTOTYPE; 480 481 so = soget(true); 482 so->so_type = type; 483 so->so_proto = prp; 484 so->so_send = sosend; 485 so->so_receive = soreceive; 486 #ifdef MBUFTRACE 487 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 488 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 489 so->so_mowner = &prp->pr_domain->dom_mowner; 490 #endif 491 uid = kauth_cred_geteuid(l->l_cred); 492 so->so_uidinfo = uid_find(uid); 493 so->so_egid = kauth_cred_getegid(l->l_cred); 494 so->so_cpid = l->l_proc->p_pid; 495 if (lockso != NULL) { 496 /* Caller wants us to share a lock. */ 497 lock = lockso->so_lock; 498 so->so_lock = lock; 499 mutex_obj_hold(lock); 500 mutex_enter(lock); 501 } else { 502 /* Lock assigned and taken during PRU_ATTACH. */ 503 } 504 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 505 (struct mbuf *)(long)proto, NULL, l); 506 KASSERT(solocked(so)); 507 if (error != 0) { 508 so->so_state |= SS_NOFDREF; 509 sofree(so); 510 return error; 511 } 512 sounlock(so); 513 *aso = so; 514 return 0; 515 } 516 517 /* On success, write file descriptor to fdout and return zero. On 518 * failure, return non-zero; *fdout will be undefined. 519 */ 520 int 521 fsocreate(int domain, struct socket **sop, int type, int protocol, 522 struct lwp *l, int *fdout) 523 { 524 struct socket *so; 525 struct file *fp; 526 int fd, error; 527 528 if ((error = fd_allocfile(&fp, &fd)) != 0) 529 return (error); 530 fp->f_flag = FREAD|FWRITE; 531 fp->f_type = DTYPE_SOCKET; 532 fp->f_ops = &socketops; 533 error = socreate(domain, &so, type, protocol, l, NULL); 534 if (error != 0) { 535 fd_abort(curproc, fp, fd); 536 } else { 537 if (sop != NULL) 538 *sop = so; 539 fp->f_data = so; 540 fd_affix(curproc, fp, fd); 541 *fdout = fd; 542 } 543 return error; 544 } 545 546 int 547 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 548 { 549 int error; 550 551 solock(so); 552 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 553 sounlock(so); 554 return error; 555 } 556 557 int 558 solisten(struct socket *so, int backlog, struct lwp *l) 559 { 560 int error; 561 562 solock(so); 563 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 564 SS_ISDISCONNECTING)) != 0) { 565 sounlock(so); 566 return (EOPNOTSUPP); 567 } 568 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 569 NULL, NULL, l); 570 if (error != 0) { 571 sounlock(so); 572 return error; 573 } 574 if (TAILQ_EMPTY(&so->so_q)) 575 so->so_options |= SO_ACCEPTCONN; 576 if (backlog < 0) 577 backlog = 0; 578 so->so_qlimit = min(backlog, somaxconn); 579 sounlock(so); 580 return 0; 581 } 582 583 void 584 sofree(struct socket *so) 585 { 586 u_int refs; 587 588 KASSERT(solocked(so)); 589 590 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 591 sounlock(so); 592 return; 593 } 594 if (so->so_head) { 595 /* 596 * We must not decommission a socket that's on the accept(2) 597 * queue. If we do, then accept(2) may hang after select(2) 598 * indicated that the listening socket was ready. 599 */ 600 if (!soqremque(so, 0)) { 601 sounlock(so); 602 return; 603 } 604 } 605 if (so->so_rcv.sb_hiwat) 606 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 607 RLIM_INFINITY); 608 if (so->so_snd.sb_hiwat) 609 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 610 RLIM_INFINITY); 611 sbrelease(&so->so_snd, so); 612 KASSERT(!cv_has_waiters(&so->so_cv)); 613 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 614 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 615 sorflush(so); 616 refs = so->so_aborting; /* XXX */ 617 #ifdef INET 618 /* remove acccept filter if one is present. */ 619 if (so->so_accf != NULL) 620 do_setopt_accept_filter(so, NULL); 621 #endif 622 sounlock(so); 623 if (refs == 0) /* XXX */ 624 soput(so); 625 } 626 627 /* 628 * Close a socket on last file table reference removal. 629 * Initiate disconnect if connected. 630 * Free socket when disconnect complete. 631 */ 632 int 633 soclose(struct socket *so) 634 { 635 struct socket *so2; 636 int error; 637 int error2; 638 639 error = 0; 640 solock(so); 641 if (so->so_options & SO_ACCEPTCONN) { 642 do { 643 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 644 KASSERT(solocked2(so, so2)); 645 (void) soqremque(so2, 0); 646 /* soabort drops the lock. */ 647 (void) soabort(so2); 648 solock(so); 649 } 650 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 651 KASSERT(solocked2(so, so2)); 652 (void) soqremque(so2, 1); 653 /* soabort drops the lock. */ 654 (void) soabort(so2); 655 solock(so); 656 } 657 } while (!TAILQ_EMPTY(&so->so_q0)); 658 } 659 if (so->so_pcb == 0) 660 goto discard; 661 if (so->so_state & SS_ISCONNECTED) { 662 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 663 error = sodisconnect(so); 664 if (error) 665 goto drop; 666 } 667 if (so->so_options & SO_LINGER) { 668 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio) 669 goto drop; 670 while (so->so_state & SS_ISCONNECTED) { 671 error = sowait(so, so->so_linger * hz); 672 if (error) 673 break; 674 } 675 } 676 } 677 drop: 678 if (so->so_pcb) { 679 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 680 NULL, NULL, NULL, NULL); 681 if (error == 0) 682 error = error2; 683 } 684 discard: 685 if (so->so_state & SS_NOFDREF) 686 panic("soclose: NOFDREF"); 687 so->so_state |= SS_NOFDREF; 688 sofree(so); 689 return (error); 690 } 691 692 /* 693 * Must be called with the socket locked.. Will return with it unlocked. 694 */ 695 int 696 soabort(struct socket *so) 697 { 698 u_int refs; 699 int error; 700 701 KASSERT(solocked(so)); 702 KASSERT(so->so_head == NULL); 703 704 so->so_aborting++; /* XXX */ 705 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 706 NULL, NULL, NULL); 707 refs = --so->so_aborting; /* XXX */ 708 if (error || (refs == 0)) { 709 sofree(so); 710 } else { 711 sounlock(so); 712 } 713 return error; 714 } 715 716 int 717 soaccept(struct socket *so, struct mbuf *nam) 718 { 719 int error; 720 721 KASSERT(solocked(so)); 722 723 error = 0; 724 if ((so->so_state & SS_NOFDREF) == 0) 725 panic("soaccept: !NOFDREF"); 726 so->so_state &= ~SS_NOFDREF; 727 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 728 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 729 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 730 NULL, nam, NULL, NULL); 731 else 732 error = ECONNABORTED; 733 734 return (error); 735 } 736 737 int 738 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 739 { 740 int error; 741 742 KASSERT(solocked(so)); 743 744 if (so->so_options & SO_ACCEPTCONN) 745 return (EOPNOTSUPP); 746 /* 747 * If protocol is connection-based, can only connect once. 748 * Otherwise, if connected, try to disconnect first. 749 * This allows user to disconnect by connecting to, e.g., 750 * a null address. 751 */ 752 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 753 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 754 (error = sodisconnect(so)))) 755 error = EISCONN; 756 else 757 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 758 NULL, nam, NULL, l); 759 return (error); 760 } 761 762 int 763 soconnect2(struct socket *so1, struct socket *so2) 764 { 765 int error; 766 767 KASSERT(solocked2(so1, so2)); 768 769 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 770 NULL, (struct mbuf *)so2, NULL, NULL); 771 return (error); 772 } 773 774 int 775 sodisconnect(struct socket *so) 776 { 777 int error; 778 779 KASSERT(solocked(so)); 780 781 if ((so->so_state & SS_ISCONNECTED) == 0) { 782 error = ENOTCONN; 783 } else if (so->so_state & SS_ISDISCONNECTING) { 784 error = EALREADY; 785 } else { 786 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 787 NULL, NULL, NULL, NULL); 788 } 789 sodopendfree(); 790 return (error); 791 } 792 793 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 794 /* 795 * Send on a socket. 796 * If send must go all at once and message is larger than 797 * send buffering, then hard error. 798 * Lock against other senders. 799 * If must go all at once and not enough room now, then 800 * inform user that this would block and do nothing. 801 * Otherwise, if nonblocking, send as much as possible. 802 * The data to be sent is described by "uio" if nonzero, 803 * otherwise by the mbuf chain "top" (which must be null 804 * if uio is not). Data provided in mbuf chain must be small 805 * enough to send all at once. 806 * 807 * Returns nonzero on error, timeout or signal; callers 808 * must check for short counts if EINTR/ERESTART are returned. 809 * Data and control buffers are freed on return. 810 */ 811 int 812 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 813 struct mbuf *control, int flags, struct lwp *l) 814 { 815 struct mbuf **mp, *m; 816 struct proc *p; 817 long space, len, resid, clen, mlen; 818 int error, s, dontroute, atomic; 819 820 p = l->l_proc; 821 sodopendfree(); 822 clen = 0; 823 824 /* 825 * solock() provides atomicity of access. splsoftnet() prevents 826 * protocol processing soft interrupts from interrupting us and 827 * blocking (expensive). 828 */ 829 s = splsoftnet(); 830 solock(so); 831 atomic = sosendallatonce(so) || top; 832 if (uio) 833 resid = uio->uio_resid; 834 else 835 resid = top->m_pkthdr.len; 836 /* 837 * In theory resid should be unsigned. 838 * However, space must be signed, as it might be less than 0 839 * if we over-committed, and we must use a signed comparison 840 * of space and resid. On the other hand, a negative resid 841 * causes us to loop sending 0-length segments to the protocol. 842 */ 843 if (resid < 0) { 844 error = EINVAL; 845 goto out; 846 } 847 dontroute = 848 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 849 (so->so_proto->pr_flags & PR_ATOMIC); 850 l->l_ru.ru_msgsnd++; 851 if (control) 852 clen = control->m_len; 853 restart: 854 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 855 goto out; 856 do { 857 if (so->so_state & SS_CANTSENDMORE) { 858 error = EPIPE; 859 goto release; 860 } 861 if (so->so_error) { 862 error = so->so_error; 863 so->so_error = 0; 864 goto release; 865 } 866 if ((so->so_state & SS_ISCONNECTED) == 0) { 867 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 868 if ((so->so_state & SS_ISCONFIRMING) == 0 && 869 !(resid == 0 && clen != 0)) { 870 error = ENOTCONN; 871 goto release; 872 } 873 } else if (addr == 0) { 874 error = EDESTADDRREQ; 875 goto release; 876 } 877 } 878 space = sbspace(&so->so_snd); 879 if (flags & MSG_OOB) 880 space += 1024; 881 if ((atomic && resid > so->so_snd.sb_hiwat) || 882 clen > so->so_snd.sb_hiwat) { 883 error = EMSGSIZE; 884 goto release; 885 } 886 if (space < resid + clen && 887 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 888 if (so->so_nbio) { 889 error = EWOULDBLOCK; 890 goto release; 891 } 892 sbunlock(&so->so_snd); 893 error = sbwait(&so->so_snd); 894 if (error) 895 goto out; 896 goto restart; 897 } 898 mp = ⊤ 899 space -= clen; 900 do { 901 if (uio == NULL) { 902 /* 903 * Data is prepackaged in "top". 904 */ 905 resid = 0; 906 if (flags & MSG_EOR) 907 top->m_flags |= M_EOR; 908 } else do { 909 sounlock(so); 910 splx(s); 911 if (top == NULL) { 912 m = m_gethdr(M_WAIT, MT_DATA); 913 mlen = MHLEN; 914 m->m_pkthdr.len = 0; 915 m->m_pkthdr.rcvif = NULL; 916 } else { 917 m = m_get(M_WAIT, MT_DATA); 918 mlen = MLEN; 919 } 920 MCLAIM(m, so->so_snd.sb_mowner); 921 if (sock_loan_thresh >= 0 && 922 uio->uio_iov->iov_len >= sock_loan_thresh && 923 space >= sock_loan_thresh && 924 (len = sosend_loan(so, uio, m, 925 space)) != 0) { 926 SOSEND_COUNTER_INCR(&sosend_loan_big); 927 space -= len; 928 goto have_data; 929 } 930 if (resid >= MINCLSIZE && space >= MCLBYTES) { 931 SOSEND_COUNTER_INCR(&sosend_copy_big); 932 m_clget(m, M_WAIT); 933 if ((m->m_flags & M_EXT) == 0) 934 goto nopages; 935 mlen = MCLBYTES; 936 if (atomic && top == 0) { 937 len = lmin(MCLBYTES - max_hdr, 938 resid); 939 m->m_data += max_hdr; 940 } else 941 len = lmin(MCLBYTES, resid); 942 space -= len; 943 } else { 944 nopages: 945 SOSEND_COUNTER_INCR(&sosend_copy_small); 946 len = lmin(lmin(mlen, resid), space); 947 space -= len; 948 /* 949 * For datagram protocols, leave room 950 * for protocol headers in first mbuf. 951 */ 952 if (atomic && top == 0 && len < mlen) 953 MH_ALIGN(m, len); 954 } 955 error = uiomove(mtod(m, void *), (int)len, uio); 956 have_data: 957 resid = uio->uio_resid; 958 m->m_len = len; 959 *mp = m; 960 top->m_pkthdr.len += len; 961 s = splsoftnet(); 962 solock(so); 963 if (error != 0) 964 goto release; 965 mp = &m->m_next; 966 if (resid <= 0) { 967 if (flags & MSG_EOR) 968 top->m_flags |= M_EOR; 969 break; 970 } 971 } while (space > 0 && atomic); 972 973 if (so->so_state & SS_CANTSENDMORE) { 974 error = EPIPE; 975 goto release; 976 } 977 if (dontroute) 978 so->so_options |= SO_DONTROUTE; 979 if (resid > 0) 980 so->so_state |= SS_MORETOCOME; 981 error = (*so->so_proto->pr_usrreq)(so, 982 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 983 top, addr, control, curlwp); 984 if (dontroute) 985 so->so_options &= ~SO_DONTROUTE; 986 if (resid > 0) 987 so->so_state &= ~SS_MORETOCOME; 988 clen = 0; 989 control = NULL; 990 top = NULL; 991 mp = ⊤ 992 if (error != 0) 993 goto release; 994 } while (resid && space > 0); 995 } while (resid); 996 997 release: 998 sbunlock(&so->so_snd); 999 out: 1000 sounlock(so); 1001 splx(s); 1002 if (top) 1003 m_freem(top); 1004 if (control) 1005 m_freem(control); 1006 return (error); 1007 } 1008 1009 /* 1010 * Following replacement or removal of the first mbuf on the first 1011 * mbuf chain of a socket buffer, push necessary state changes back 1012 * into the socket buffer so that other consumers see the values 1013 * consistently. 'nextrecord' is the callers locally stored value of 1014 * the original value of sb->sb_mb->m_nextpkt which must be restored 1015 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1016 */ 1017 static void 1018 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1019 { 1020 1021 KASSERT(solocked(sb->sb_so)); 1022 1023 /* 1024 * First, update for the new value of nextrecord. If necessary, 1025 * make it the first record. 1026 */ 1027 if (sb->sb_mb != NULL) 1028 sb->sb_mb->m_nextpkt = nextrecord; 1029 else 1030 sb->sb_mb = nextrecord; 1031 1032 /* 1033 * Now update any dependent socket buffer fields to reflect 1034 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1035 * the addition of a second clause that takes care of the 1036 * case where sb_mb has been updated, but remains the last 1037 * record. 1038 */ 1039 if (sb->sb_mb == NULL) { 1040 sb->sb_mbtail = NULL; 1041 sb->sb_lastrecord = NULL; 1042 } else if (sb->sb_mb->m_nextpkt == NULL) 1043 sb->sb_lastrecord = sb->sb_mb; 1044 } 1045 1046 /* 1047 * Implement receive operations on a socket. 1048 * We depend on the way that records are added to the sockbuf 1049 * by sbappend*. In particular, each record (mbufs linked through m_next) 1050 * must begin with an address if the protocol so specifies, 1051 * followed by an optional mbuf or mbufs containing ancillary data, 1052 * and then zero or more mbufs of data. 1053 * In order to avoid blocking network interrupts for the entire time here, 1054 * we splx() while doing the actual copy to user space. 1055 * Although the sockbuf is locked, new data may still be appended, 1056 * and thus we must maintain consistency of the sockbuf during that time. 1057 * 1058 * The caller may receive the data as a single mbuf chain by supplying 1059 * an mbuf **mp0 for use in returning the chain. The uio is then used 1060 * only for the count in uio_resid. 1061 */ 1062 int 1063 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1064 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1065 { 1066 struct lwp *l = curlwp; 1067 struct mbuf *m, **mp, *mt; 1068 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1069 const struct protosw *pr; 1070 struct mbuf *nextrecord; 1071 int mbuf_removed = 0; 1072 const struct domain *dom; 1073 1074 pr = so->so_proto; 1075 atomic = pr->pr_flags & PR_ATOMIC; 1076 dom = pr->pr_domain; 1077 mp = mp0; 1078 type = 0; 1079 orig_resid = uio->uio_resid; 1080 1081 if (paddr != NULL) 1082 *paddr = NULL; 1083 if (controlp != NULL) 1084 *controlp = NULL; 1085 if (flagsp != NULL) 1086 flags = *flagsp &~ MSG_EOR; 1087 else 1088 flags = 0; 1089 1090 if ((flags & MSG_DONTWAIT) == 0) 1091 sodopendfree(); 1092 1093 if (flags & MSG_OOB) { 1094 m = m_get(M_WAIT, MT_DATA); 1095 solock(so); 1096 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1097 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1098 sounlock(so); 1099 if (error) 1100 goto bad; 1101 do { 1102 error = uiomove(mtod(m, void *), 1103 (int) min(uio->uio_resid, m->m_len), uio); 1104 m = m_free(m); 1105 } while (uio->uio_resid > 0 && error == 0 && m); 1106 bad: 1107 if (m != NULL) 1108 m_freem(m); 1109 return error; 1110 } 1111 if (mp != NULL) 1112 *mp = NULL; 1113 1114 /* 1115 * solock() provides atomicity of access. splsoftnet() prevents 1116 * protocol processing soft interrupts from interrupting us and 1117 * blocking (expensive). 1118 */ 1119 s = splsoftnet(); 1120 solock(so); 1121 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1122 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1123 1124 restart: 1125 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1126 sounlock(so); 1127 splx(s); 1128 return error; 1129 } 1130 1131 m = so->so_rcv.sb_mb; 1132 /* 1133 * If we have less data than requested, block awaiting more 1134 * (subject to any timeout) if: 1135 * 1. the current count is less than the low water mark, 1136 * 2. MSG_WAITALL is set, and it is possible to do the entire 1137 * receive operation at once if we block (resid <= hiwat), or 1138 * 3. MSG_DONTWAIT is not set. 1139 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1140 * we have to do the receive in sections, and thus risk returning 1141 * a short count if a timeout or signal occurs after we start. 1142 */ 1143 if (m == NULL || 1144 ((flags & MSG_DONTWAIT) == 0 && 1145 so->so_rcv.sb_cc < uio->uio_resid && 1146 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1147 ((flags & MSG_WAITALL) && 1148 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1149 m->m_nextpkt == NULL && !atomic)) { 1150 #ifdef DIAGNOSTIC 1151 if (m == NULL && so->so_rcv.sb_cc) 1152 panic("receive 1"); 1153 #endif 1154 if (so->so_error) { 1155 if (m != NULL) 1156 goto dontblock; 1157 error = so->so_error; 1158 if ((flags & MSG_PEEK) == 0) 1159 so->so_error = 0; 1160 goto release; 1161 } 1162 if (so->so_state & SS_CANTRCVMORE) { 1163 if (m != NULL) 1164 goto dontblock; 1165 else 1166 goto release; 1167 } 1168 for (; m != NULL; m = m->m_next) 1169 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1170 m = so->so_rcv.sb_mb; 1171 goto dontblock; 1172 } 1173 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1174 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1175 error = ENOTCONN; 1176 goto release; 1177 } 1178 if (uio->uio_resid == 0) 1179 goto release; 1180 if (so->so_nbio || (flags & MSG_DONTWAIT)) { 1181 error = EWOULDBLOCK; 1182 goto release; 1183 } 1184 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1185 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1186 sbunlock(&so->so_rcv); 1187 error = sbwait(&so->so_rcv); 1188 if (error != 0) { 1189 sounlock(so); 1190 splx(s); 1191 return error; 1192 } 1193 goto restart; 1194 } 1195 dontblock: 1196 /* 1197 * On entry here, m points to the first record of the socket buffer. 1198 * From this point onward, we maintain 'nextrecord' as a cache of the 1199 * pointer to the next record in the socket buffer. We must keep the 1200 * various socket buffer pointers and local stack versions of the 1201 * pointers in sync, pushing out modifications before dropping the 1202 * socket lock, and re-reading them when picking it up. 1203 * 1204 * Otherwise, we will race with the network stack appending new data 1205 * or records onto the socket buffer by using inconsistent/stale 1206 * versions of the field, possibly resulting in socket buffer 1207 * corruption. 1208 * 1209 * By holding the high-level sblock(), we prevent simultaneous 1210 * readers from pulling off the front of the socket buffer. 1211 */ 1212 if (l != NULL) 1213 l->l_ru.ru_msgrcv++; 1214 KASSERT(m == so->so_rcv.sb_mb); 1215 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1216 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1217 nextrecord = m->m_nextpkt; 1218 if (pr->pr_flags & PR_ADDR) { 1219 #ifdef DIAGNOSTIC 1220 if (m->m_type != MT_SONAME) 1221 panic("receive 1a"); 1222 #endif 1223 orig_resid = 0; 1224 if (flags & MSG_PEEK) { 1225 if (paddr) 1226 *paddr = m_copy(m, 0, m->m_len); 1227 m = m->m_next; 1228 } else { 1229 sbfree(&so->so_rcv, m); 1230 mbuf_removed = 1; 1231 if (paddr != NULL) { 1232 *paddr = m; 1233 so->so_rcv.sb_mb = m->m_next; 1234 m->m_next = NULL; 1235 m = so->so_rcv.sb_mb; 1236 } else { 1237 MFREE(m, so->so_rcv.sb_mb); 1238 m = so->so_rcv.sb_mb; 1239 } 1240 sbsync(&so->so_rcv, nextrecord); 1241 } 1242 } 1243 1244 /* 1245 * Process one or more MT_CONTROL mbufs present before any data mbufs 1246 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1247 * just copy the data; if !MSG_PEEK, we call into the protocol to 1248 * perform externalization (or freeing if controlp == NULL). 1249 */ 1250 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1251 struct mbuf *cm = NULL, *cmn; 1252 struct mbuf **cme = &cm; 1253 1254 do { 1255 if (flags & MSG_PEEK) { 1256 if (controlp != NULL) { 1257 *controlp = m_copy(m, 0, m->m_len); 1258 controlp = &(*controlp)->m_next; 1259 } 1260 m = m->m_next; 1261 } else { 1262 sbfree(&so->so_rcv, m); 1263 so->so_rcv.sb_mb = m->m_next; 1264 m->m_next = NULL; 1265 *cme = m; 1266 cme = &(*cme)->m_next; 1267 m = so->so_rcv.sb_mb; 1268 } 1269 } while (m != NULL && m->m_type == MT_CONTROL); 1270 if ((flags & MSG_PEEK) == 0) 1271 sbsync(&so->so_rcv, nextrecord); 1272 for (; cm != NULL; cm = cmn) { 1273 cmn = cm->m_next; 1274 cm->m_next = NULL; 1275 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1276 if (controlp != NULL) { 1277 if (dom->dom_externalize != NULL && 1278 type == SCM_RIGHTS) { 1279 sounlock(so); 1280 splx(s); 1281 error = (*dom->dom_externalize)(cm, l); 1282 s = splsoftnet(); 1283 solock(so); 1284 } 1285 *controlp = cm; 1286 while (*controlp != NULL) 1287 controlp = &(*controlp)->m_next; 1288 } else { 1289 /* 1290 * Dispose of any SCM_RIGHTS message that went 1291 * through the read path rather than recv. 1292 */ 1293 if (dom->dom_dispose != NULL && 1294 type == SCM_RIGHTS) { 1295 sounlock(so); 1296 (*dom->dom_dispose)(cm); 1297 solock(so); 1298 } 1299 m_freem(cm); 1300 } 1301 } 1302 if (m != NULL) 1303 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1304 else 1305 nextrecord = so->so_rcv.sb_mb; 1306 orig_resid = 0; 1307 } 1308 1309 /* If m is non-NULL, we have some data to read. */ 1310 if (__predict_true(m != NULL)) { 1311 type = m->m_type; 1312 if (type == MT_OOBDATA) 1313 flags |= MSG_OOB; 1314 } 1315 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1316 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1317 1318 moff = 0; 1319 offset = 0; 1320 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1321 if (m->m_type == MT_OOBDATA) { 1322 if (type != MT_OOBDATA) 1323 break; 1324 } else if (type == MT_OOBDATA) 1325 break; 1326 #ifdef DIAGNOSTIC 1327 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1328 panic("receive 3"); 1329 #endif 1330 so->so_state &= ~SS_RCVATMARK; 1331 len = uio->uio_resid; 1332 if (so->so_oobmark && len > so->so_oobmark - offset) 1333 len = so->so_oobmark - offset; 1334 if (len > m->m_len - moff) 1335 len = m->m_len - moff; 1336 /* 1337 * If mp is set, just pass back the mbufs. 1338 * Otherwise copy them out via the uio, then free. 1339 * Sockbuf must be consistent here (points to current mbuf, 1340 * it points to next record) when we drop priority; 1341 * we must note any additions to the sockbuf when we 1342 * block interrupts again. 1343 */ 1344 if (mp == NULL) { 1345 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1346 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1347 sounlock(so); 1348 splx(s); 1349 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1350 s = splsoftnet(); 1351 solock(so); 1352 if (error != 0) { 1353 /* 1354 * If any part of the record has been removed 1355 * (such as the MT_SONAME mbuf, which will 1356 * happen when PR_ADDR, and thus also 1357 * PR_ATOMIC, is set), then drop the entire 1358 * record to maintain the atomicity of the 1359 * receive operation. 1360 * 1361 * This avoids a later panic("receive 1a") 1362 * when compiled with DIAGNOSTIC. 1363 */ 1364 if (m && mbuf_removed && atomic) 1365 (void) sbdroprecord(&so->so_rcv); 1366 1367 goto release; 1368 } 1369 } else 1370 uio->uio_resid -= len; 1371 if (len == m->m_len - moff) { 1372 if (m->m_flags & M_EOR) 1373 flags |= MSG_EOR; 1374 if (flags & MSG_PEEK) { 1375 m = m->m_next; 1376 moff = 0; 1377 } else { 1378 nextrecord = m->m_nextpkt; 1379 sbfree(&so->so_rcv, m); 1380 if (mp) { 1381 *mp = m; 1382 mp = &m->m_next; 1383 so->so_rcv.sb_mb = m = m->m_next; 1384 *mp = NULL; 1385 } else { 1386 MFREE(m, so->so_rcv.sb_mb); 1387 m = so->so_rcv.sb_mb; 1388 } 1389 /* 1390 * If m != NULL, we also know that 1391 * so->so_rcv.sb_mb != NULL. 1392 */ 1393 KASSERT(so->so_rcv.sb_mb == m); 1394 if (m) { 1395 m->m_nextpkt = nextrecord; 1396 if (nextrecord == NULL) 1397 so->so_rcv.sb_lastrecord = m; 1398 } else { 1399 so->so_rcv.sb_mb = nextrecord; 1400 SB_EMPTY_FIXUP(&so->so_rcv); 1401 } 1402 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1403 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1404 } 1405 } else if (flags & MSG_PEEK) 1406 moff += len; 1407 else { 1408 if (mp != NULL) { 1409 mt = m_copym(m, 0, len, M_NOWAIT); 1410 if (__predict_false(mt == NULL)) { 1411 sounlock(so); 1412 mt = m_copym(m, 0, len, M_WAIT); 1413 solock(so); 1414 } 1415 *mp = mt; 1416 } 1417 m->m_data += len; 1418 m->m_len -= len; 1419 so->so_rcv.sb_cc -= len; 1420 } 1421 if (so->so_oobmark) { 1422 if ((flags & MSG_PEEK) == 0) { 1423 so->so_oobmark -= len; 1424 if (so->so_oobmark == 0) { 1425 so->so_state |= SS_RCVATMARK; 1426 break; 1427 } 1428 } else { 1429 offset += len; 1430 if (offset == so->so_oobmark) 1431 break; 1432 } 1433 } 1434 if (flags & MSG_EOR) 1435 break; 1436 /* 1437 * If the MSG_WAITALL flag is set (for non-atomic socket), 1438 * we must not quit until "uio->uio_resid == 0" or an error 1439 * termination. If a signal/timeout occurs, return 1440 * with a short count but without error. 1441 * Keep sockbuf locked against other readers. 1442 */ 1443 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1444 !sosendallatonce(so) && !nextrecord) { 1445 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1446 break; 1447 /* 1448 * If we are peeking and the socket receive buffer is 1449 * full, stop since we can't get more data to peek at. 1450 */ 1451 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1452 break; 1453 /* 1454 * If we've drained the socket buffer, tell the 1455 * protocol in case it needs to do something to 1456 * get it filled again. 1457 */ 1458 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1459 (*pr->pr_usrreq)(so, PRU_RCVD, 1460 NULL, (struct mbuf *)(long)flags, NULL, l); 1461 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1462 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1463 error = sbwait(&so->so_rcv); 1464 if (error != 0) { 1465 sbunlock(&so->so_rcv); 1466 sounlock(so); 1467 splx(s); 1468 return 0; 1469 } 1470 if ((m = so->so_rcv.sb_mb) != NULL) 1471 nextrecord = m->m_nextpkt; 1472 } 1473 } 1474 1475 if (m && atomic) { 1476 flags |= MSG_TRUNC; 1477 if ((flags & MSG_PEEK) == 0) 1478 (void) sbdroprecord(&so->so_rcv); 1479 } 1480 if ((flags & MSG_PEEK) == 0) { 1481 if (m == NULL) { 1482 /* 1483 * First part is an inline SB_EMPTY_FIXUP(). Second 1484 * part makes sure sb_lastrecord is up-to-date if 1485 * there is still data in the socket buffer. 1486 */ 1487 so->so_rcv.sb_mb = nextrecord; 1488 if (so->so_rcv.sb_mb == NULL) { 1489 so->so_rcv.sb_mbtail = NULL; 1490 so->so_rcv.sb_lastrecord = NULL; 1491 } else if (nextrecord->m_nextpkt == NULL) 1492 so->so_rcv.sb_lastrecord = nextrecord; 1493 } 1494 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1495 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1496 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1497 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1498 (struct mbuf *)(long)flags, NULL, l); 1499 } 1500 if (orig_resid == uio->uio_resid && orig_resid && 1501 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1502 sbunlock(&so->so_rcv); 1503 goto restart; 1504 } 1505 1506 if (flagsp != NULL) 1507 *flagsp |= flags; 1508 release: 1509 sbunlock(&so->so_rcv); 1510 sounlock(so); 1511 splx(s); 1512 return error; 1513 } 1514 1515 int 1516 soshutdown(struct socket *so, int how) 1517 { 1518 const struct protosw *pr; 1519 int error; 1520 1521 KASSERT(solocked(so)); 1522 1523 pr = so->so_proto; 1524 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1525 return (EINVAL); 1526 1527 if (how == SHUT_RD || how == SHUT_RDWR) { 1528 sorflush(so); 1529 error = 0; 1530 } 1531 if (how == SHUT_WR || how == SHUT_RDWR) 1532 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1533 NULL, NULL, NULL); 1534 1535 return error; 1536 } 1537 1538 void 1539 sorflush(struct socket *so) 1540 { 1541 struct sockbuf *sb, asb; 1542 const struct protosw *pr; 1543 1544 KASSERT(solocked(so)); 1545 1546 sb = &so->so_rcv; 1547 pr = so->so_proto; 1548 socantrcvmore(so); 1549 sb->sb_flags |= SB_NOINTR; 1550 (void )sblock(sb, M_WAITOK); 1551 sbunlock(sb); 1552 asb = *sb; 1553 /* 1554 * Clear most of the sockbuf structure, but leave some of the 1555 * fields valid. 1556 */ 1557 memset(&sb->sb_startzero, 0, 1558 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1559 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1560 sounlock(so); 1561 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1562 solock(so); 1563 } 1564 sbrelease(&asb, so); 1565 } 1566 1567 /* 1568 * internal set SOL_SOCKET options 1569 */ 1570 static int 1571 sosetopt1(struct socket *so, const struct sockopt *sopt) 1572 { 1573 int error, optval; 1574 struct linger l; 1575 struct timeval tv; 1576 1577 switch (sopt->sopt_name) { 1578 1579 #ifdef INET 1580 case SO_ACCEPTFILTER: 1581 error = do_setopt_accept_filter(so, sopt); 1582 if (error) 1583 return error; 1584 break; 1585 #endif 1586 1587 case SO_LINGER: 1588 error = sockopt_get(sopt, &l, sizeof(l)); 1589 if (error) 1590 return (error); 1591 1592 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1593 l.l_linger > (INT_MAX / hz)) 1594 return EDOM; 1595 so->so_linger = l.l_linger; 1596 if (l.l_onoff) 1597 so->so_options |= SO_LINGER; 1598 else 1599 so->so_options &= ~SO_LINGER; 1600 1601 break; 1602 1603 case SO_DEBUG: 1604 case SO_KEEPALIVE: 1605 case SO_DONTROUTE: 1606 case SO_USELOOPBACK: 1607 case SO_BROADCAST: 1608 case SO_REUSEADDR: 1609 case SO_REUSEPORT: 1610 case SO_OOBINLINE: 1611 case SO_TIMESTAMP: 1612 error = sockopt_getint(sopt, &optval); 1613 if (error) 1614 return (error); 1615 1616 if (optval) 1617 so->so_options |= sopt->sopt_name; 1618 else 1619 so->so_options &= ~sopt->sopt_name; 1620 break; 1621 1622 case SO_SNDBUF: 1623 case SO_RCVBUF: 1624 case SO_SNDLOWAT: 1625 case SO_RCVLOWAT: 1626 error = sockopt_getint(sopt, &optval); 1627 if (error) 1628 return (error); 1629 1630 /* 1631 * Values < 1 make no sense for any of these 1632 * options, so disallow them. 1633 */ 1634 if (optval < 1) 1635 return EINVAL; 1636 1637 switch (sopt->sopt_name) { 1638 case SO_SNDBUF: 1639 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) 1640 return ENOBUFS; 1641 1642 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1643 break; 1644 1645 case SO_RCVBUF: 1646 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) 1647 return ENOBUFS; 1648 1649 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1650 break; 1651 1652 /* 1653 * Make sure the low-water is never greater than 1654 * the high-water. 1655 */ 1656 case SO_SNDLOWAT: 1657 if (optval > so->so_snd.sb_hiwat) 1658 optval = so->so_snd.sb_hiwat; 1659 1660 so->so_snd.sb_lowat = optval; 1661 break; 1662 1663 case SO_RCVLOWAT: 1664 if (optval > so->so_rcv.sb_hiwat) 1665 optval = so->so_rcv.sb_hiwat; 1666 1667 so->so_rcv.sb_lowat = optval; 1668 break; 1669 } 1670 break; 1671 1672 case SO_SNDTIMEO: 1673 case SO_RCVTIMEO: 1674 error = sockopt_get(sopt, &tv, sizeof(tv)); 1675 if (error) 1676 return (error); 1677 1678 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) 1679 return EDOM; 1680 1681 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1682 if (optval == 0 && tv.tv_usec != 0) 1683 optval = 1; 1684 1685 switch (sopt->sopt_name) { 1686 case SO_SNDTIMEO: 1687 so->so_snd.sb_timeo = optval; 1688 break; 1689 case SO_RCVTIMEO: 1690 so->so_rcv.sb_timeo = optval; 1691 break; 1692 } 1693 break; 1694 1695 default: 1696 return ENOPROTOOPT; 1697 } 1698 return 0; 1699 } 1700 1701 int 1702 sosetopt(struct socket *so, struct sockopt *sopt) 1703 { 1704 int error, prerr; 1705 1706 solock(so); 1707 if (sopt->sopt_level == SOL_SOCKET) 1708 error = sosetopt1(so, sopt); 1709 else 1710 error = ENOPROTOOPT; 1711 1712 if ((error == 0 || error == ENOPROTOOPT) && 1713 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1714 /* give the protocol stack a shot */ 1715 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1716 if (prerr == 0) 1717 error = 0; 1718 else if (prerr != ENOPROTOOPT) 1719 error = prerr; 1720 } 1721 sounlock(so); 1722 return error; 1723 } 1724 1725 /* 1726 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1727 */ 1728 int 1729 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1730 const void *val, size_t valsize) 1731 { 1732 struct sockopt sopt; 1733 int error; 1734 1735 KASSERT(valsize == 0 || val != NULL); 1736 1737 sockopt_init(&sopt, level, name, valsize); 1738 sockopt_set(&sopt, val, valsize); 1739 1740 error = sosetopt(so, &sopt); 1741 1742 sockopt_destroy(&sopt); 1743 1744 return error; 1745 } 1746 1747 /* 1748 * internal get SOL_SOCKET options 1749 */ 1750 static int 1751 sogetopt1(struct socket *so, struct sockopt *sopt) 1752 { 1753 int error, optval; 1754 struct linger l; 1755 struct timeval tv; 1756 1757 switch (sopt->sopt_name) { 1758 1759 #ifdef INET 1760 case SO_ACCEPTFILTER: 1761 error = do_getopt_accept_filter(so, sopt); 1762 break; 1763 #endif 1764 1765 case SO_LINGER: 1766 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1767 l.l_linger = so->so_linger; 1768 1769 error = sockopt_set(sopt, &l, sizeof(l)); 1770 break; 1771 1772 case SO_USELOOPBACK: 1773 case SO_DONTROUTE: 1774 case SO_DEBUG: 1775 case SO_KEEPALIVE: 1776 case SO_REUSEADDR: 1777 case SO_REUSEPORT: 1778 case SO_BROADCAST: 1779 case SO_OOBINLINE: 1780 case SO_TIMESTAMP: 1781 error = sockopt_setint(sopt, 1782 (so->so_options & sopt->sopt_name) ? 1 : 0); 1783 break; 1784 1785 case SO_TYPE: 1786 error = sockopt_setint(sopt, so->so_type); 1787 break; 1788 1789 case SO_ERROR: 1790 error = sockopt_setint(sopt, so->so_error); 1791 so->so_error = 0; 1792 break; 1793 1794 case SO_SNDBUF: 1795 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1796 break; 1797 1798 case SO_RCVBUF: 1799 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1800 break; 1801 1802 case SO_SNDLOWAT: 1803 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1804 break; 1805 1806 case SO_RCVLOWAT: 1807 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1808 break; 1809 1810 case SO_SNDTIMEO: 1811 case SO_RCVTIMEO: 1812 optval = (sopt->sopt_name == SO_SNDTIMEO ? 1813 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1814 1815 tv.tv_sec = optval / hz; 1816 tv.tv_usec = (optval % hz) * tick; 1817 1818 error = sockopt_set(sopt, &tv, sizeof(tv)); 1819 break; 1820 1821 case SO_OVERFLOWED: 1822 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1823 break; 1824 1825 default: 1826 error = ENOPROTOOPT; 1827 break; 1828 } 1829 1830 return (error); 1831 } 1832 1833 int 1834 sogetopt(struct socket *so, struct sockopt *sopt) 1835 { 1836 int error; 1837 1838 solock(so); 1839 if (sopt->sopt_level != SOL_SOCKET) { 1840 if (so->so_proto && so->so_proto->pr_ctloutput) { 1841 error = ((*so->so_proto->pr_ctloutput) 1842 (PRCO_GETOPT, so, sopt)); 1843 } else 1844 error = (ENOPROTOOPT); 1845 } else { 1846 error = sogetopt1(so, sopt); 1847 } 1848 sounlock(so); 1849 return (error); 1850 } 1851 1852 /* 1853 * alloc sockopt data buffer buffer 1854 * - will be released at destroy 1855 */ 1856 static void 1857 sockopt_alloc(struct sockopt *sopt, size_t len) 1858 { 1859 1860 KASSERT(sopt->sopt_size == 0); 1861 1862 if (len > sizeof(sopt->sopt_buf)) 1863 sopt->sopt_data = malloc(len, M_SOOPTS, M_WAITOK | M_ZERO); 1864 else 1865 sopt->sopt_data = sopt->sopt_buf; 1866 1867 sopt->sopt_size = len; 1868 } 1869 1870 /* 1871 * initialise sockopt storage 1872 */ 1873 void 1874 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 1875 { 1876 1877 memset(sopt, 0, sizeof(*sopt)); 1878 1879 sopt->sopt_level = level; 1880 sopt->sopt_name = name; 1881 sockopt_alloc(sopt, size); 1882 } 1883 1884 /* 1885 * destroy sockopt storage 1886 * - will release any held memory references 1887 */ 1888 void 1889 sockopt_destroy(struct sockopt *sopt) 1890 { 1891 1892 if (sopt->sopt_data != sopt->sopt_buf) 1893 free(sopt->sopt_data, M_SOOPTS); 1894 1895 memset(sopt, 0, sizeof(*sopt)); 1896 } 1897 1898 /* 1899 * set sockopt value 1900 * - value is copied into sockopt 1901 * - memory is allocated when necessary 1902 */ 1903 int 1904 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 1905 { 1906 1907 if (sopt->sopt_size == 0) 1908 sockopt_alloc(sopt, len); 1909 1910 KASSERT(sopt->sopt_size == len); 1911 memcpy(sopt->sopt_data, buf, len); 1912 return 0; 1913 } 1914 1915 /* 1916 * common case of set sockopt integer value 1917 */ 1918 int 1919 sockopt_setint(struct sockopt *sopt, int val) 1920 { 1921 1922 return sockopt_set(sopt, &val, sizeof(int)); 1923 } 1924 1925 /* 1926 * get sockopt value 1927 * - correct size must be given 1928 */ 1929 int 1930 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 1931 { 1932 1933 if (sopt->sopt_size != len) 1934 return EINVAL; 1935 1936 memcpy(buf, sopt->sopt_data, len); 1937 return 0; 1938 } 1939 1940 /* 1941 * common case of get sockopt integer value 1942 */ 1943 int 1944 sockopt_getint(const struct sockopt *sopt, int *valp) 1945 { 1946 1947 return sockopt_get(sopt, valp, sizeof(int)); 1948 } 1949 1950 /* 1951 * set sockopt value from mbuf 1952 * - ONLY for legacy code 1953 * - mbuf is released by sockopt 1954 */ 1955 int 1956 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 1957 { 1958 size_t len; 1959 1960 len = m_length(m); 1961 1962 if (sopt->sopt_size == 0) 1963 sockopt_alloc(sopt, len); 1964 1965 KASSERT(sopt->sopt_size == len); 1966 m_copydata(m, 0, len, sopt->sopt_data); 1967 m_freem(m); 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * get sockopt value into mbuf 1974 * - ONLY for legacy code 1975 * - mbuf to be released by the caller 1976 */ 1977 struct mbuf * 1978 sockopt_getmbuf(const struct sockopt *sopt) 1979 { 1980 struct mbuf *m; 1981 1982 m = m_get(M_WAIT, MT_SOOPTS); 1983 if (m == NULL) 1984 return NULL; 1985 1986 m->m_len = MLEN; 1987 m_copyback(m, 0, sopt->sopt_size, sopt->sopt_data); 1988 if (m_length(m) != max(sopt->sopt_size, MLEN)) { 1989 m_freem(m); 1990 return NULL; 1991 } 1992 m->m_len = min(sopt->sopt_size, MLEN); 1993 1994 return m; 1995 } 1996 1997 void 1998 sohasoutofband(struct socket *so) 1999 { 2000 2001 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2002 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, 0); 2003 } 2004 2005 static void 2006 filt_sordetach(struct knote *kn) 2007 { 2008 struct socket *so; 2009 2010 so = ((file_t *)kn->kn_obj)->f_data; 2011 solock(so); 2012 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2013 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2014 so->so_rcv.sb_flags &= ~SB_KNOTE; 2015 sounlock(so); 2016 } 2017 2018 /*ARGSUSED*/ 2019 static int 2020 filt_soread(struct knote *kn, long hint) 2021 { 2022 struct socket *so; 2023 int rv; 2024 2025 so = ((file_t *)kn->kn_obj)->f_data; 2026 if (hint != NOTE_SUBMIT) 2027 solock(so); 2028 kn->kn_data = so->so_rcv.sb_cc; 2029 if (so->so_state & SS_CANTRCVMORE) { 2030 kn->kn_flags |= EV_EOF; 2031 kn->kn_fflags = so->so_error; 2032 rv = 1; 2033 } else if (so->so_error) /* temporary udp error */ 2034 rv = 1; 2035 else if (kn->kn_sfflags & NOTE_LOWAT) 2036 rv = (kn->kn_data >= kn->kn_sdata); 2037 else 2038 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2039 if (hint != NOTE_SUBMIT) 2040 sounlock(so); 2041 return rv; 2042 } 2043 2044 static void 2045 filt_sowdetach(struct knote *kn) 2046 { 2047 struct socket *so; 2048 2049 so = ((file_t *)kn->kn_obj)->f_data; 2050 solock(so); 2051 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2052 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2053 so->so_snd.sb_flags &= ~SB_KNOTE; 2054 sounlock(so); 2055 } 2056 2057 /*ARGSUSED*/ 2058 static int 2059 filt_sowrite(struct knote *kn, long hint) 2060 { 2061 struct socket *so; 2062 int rv; 2063 2064 so = ((file_t *)kn->kn_obj)->f_data; 2065 if (hint != NOTE_SUBMIT) 2066 solock(so); 2067 kn->kn_data = sbspace(&so->so_snd); 2068 if (so->so_state & SS_CANTSENDMORE) { 2069 kn->kn_flags |= EV_EOF; 2070 kn->kn_fflags = so->so_error; 2071 rv = 1; 2072 } else if (so->so_error) /* temporary udp error */ 2073 rv = 1; 2074 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2075 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2076 rv = 0; 2077 else if (kn->kn_sfflags & NOTE_LOWAT) 2078 rv = (kn->kn_data >= kn->kn_sdata); 2079 else 2080 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2081 if (hint != NOTE_SUBMIT) 2082 sounlock(so); 2083 return rv; 2084 } 2085 2086 /*ARGSUSED*/ 2087 static int 2088 filt_solisten(struct knote *kn, long hint) 2089 { 2090 struct socket *so; 2091 int rv; 2092 2093 so = ((file_t *)kn->kn_obj)->f_data; 2094 2095 /* 2096 * Set kn_data to number of incoming connections, not 2097 * counting partial (incomplete) connections. 2098 */ 2099 if (hint != NOTE_SUBMIT) 2100 solock(so); 2101 kn->kn_data = so->so_qlen; 2102 rv = (kn->kn_data > 0); 2103 if (hint != NOTE_SUBMIT) 2104 sounlock(so); 2105 return rv; 2106 } 2107 2108 static const struct filterops solisten_filtops = 2109 { 1, NULL, filt_sordetach, filt_solisten }; 2110 static const struct filterops soread_filtops = 2111 { 1, NULL, filt_sordetach, filt_soread }; 2112 static const struct filterops sowrite_filtops = 2113 { 1, NULL, filt_sowdetach, filt_sowrite }; 2114 2115 int 2116 soo_kqfilter(struct file *fp, struct knote *kn) 2117 { 2118 struct socket *so; 2119 struct sockbuf *sb; 2120 2121 so = ((file_t *)kn->kn_obj)->f_data; 2122 solock(so); 2123 switch (kn->kn_filter) { 2124 case EVFILT_READ: 2125 if (so->so_options & SO_ACCEPTCONN) 2126 kn->kn_fop = &solisten_filtops; 2127 else 2128 kn->kn_fop = &soread_filtops; 2129 sb = &so->so_rcv; 2130 break; 2131 case EVFILT_WRITE: 2132 kn->kn_fop = &sowrite_filtops; 2133 sb = &so->so_snd; 2134 break; 2135 default: 2136 sounlock(so); 2137 return (EINVAL); 2138 } 2139 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2140 sb->sb_flags |= SB_KNOTE; 2141 sounlock(so); 2142 return (0); 2143 } 2144 2145 static int 2146 sodopoll(struct socket *so, int events) 2147 { 2148 int revents; 2149 2150 revents = 0; 2151 2152 if (events & (POLLIN | POLLRDNORM)) 2153 if (soreadable(so)) 2154 revents |= events & (POLLIN | POLLRDNORM); 2155 2156 if (events & (POLLOUT | POLLWRNORM)) 2157 if (sowritable(so)) 2158 revents |= events & (POLLOUT | POLLWRNORM); 2159 2160 if (events & (POLLPRI | POLLRDBAND)) 2161 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2162 revents |= events & (POLLPRI | POLLRDBAND); 2163 2164 return revents; 2165 } 2166 2167 int 2168 sopoll(struct socket *so, int events) 2169 { 2170 int revents = 0; 2171 2172 #ifndef DIAGNOSTIC 2173 /* 2174 * Do a quick, unlocked check in expectation that the socket 2175 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2176 * as the solocked() assertions will fail. 2177 */ 2178 if ((revents = sodopoll(so, events)) != 0) 2179 return revents; 2180 #endif 2181 2182 solock(so); 2183 if ((revents = sodopoll(so, events)) == 0) { 2184 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2185 selrecord(curlwp, &so->so_rcv.sb_sel); 2186 so->so_rcv.sb_flags |= SB_NOTIFY; 2187 } 2188 2189 if (events & (POLLOUT | POLLWRNORM)) { 2190 selrecord(curlwp, &so->so_snd.sb_sel); 2191 so->so_snd.sb_flags |= SB_NOTIFY; 2192 } 2193 } 2194 sounlock(so); 2195 2196 return revents; 2197 } 2198 2199 2200 #include <sys/sysctl.h> 2201 2202 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2203 2204 /* 2205 * sysctl helper routine for kern.somaxkva. ensures that the given 2206 * value is not too small. 2207 * (XXX should we maybe make sure it's not too large as well?) 2208 */ 2209 static int 2210 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2211 { 2212 int error, new_somaxkva; 2213 struct sysctlnode node; 2214 2215 new_somaxkva = somaxkva; 2216 node = *rnode; 2217 node.sysctl_data = &new_somaxkva; 2218 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2219 if (error || newp == NULL) 2220 return (error); 2221 2222 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2223 return (EINVAL); 2224 2225 mutex_enter(&so_pendfree_lock); 2226 somaxkva = new_somaxkva; 2227 cv_broadcast(&socurkva_cv); 2228 mutex_exit(&so_pendfree_lock); 2229 2230 return (error); 2231 } 2232 2233 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup") 2234 { 2235 2236 sysctl_createv(clog, 0, NULL, NULL, 2237 CTLFLAG_PERMANENT, 2238 CTLTYPE_NODE, "kern", NULL, 2239 NULL, 0, NULL, 0, 2240 CTL_KERN, CTL_EOL); 2241 2242 sysctl_createv(clog, 0, NULL, NULL, 2243 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2244 CTLTYPE_INT, "somaxkva", 2245 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2246 "used for socket buffers"), 2247 sysctl_kern_somaxkva, 0, NULL, 0, 2248 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2249 } 2250