1 /* $NetBSD: uipc_socket.c,v 1.200 2009/12/30 22:12:12 elad Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.200 2009/12/30 22:12:12 elad Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 96 #ifdef COMPAT_50 97 #include <compat/sys/time.h> 98 #include <compat/sys/socket.h> 99 #endif 100 101 #include <uvm/uvm.h> 102 103 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 104 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 105 106 extern const struct fileops socketops; 107 108 extern int somaxconn; /* patchable (XXX sysctl) */ 109 int somaxconn = SOMAXCONN; 110 kmutex_t *softnet_lock; 111 112 #ifdef SOSEND_COUNTERS 113 #include <sys/device.h> 114 115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "loan big"); 117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "copy big"); 119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 120 NULL, "sosend", "copy small"); 121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 122 NULL, "sosend", "kva limit"); 123 124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 125 126 EVCNT_ATTACH_STATIC(sosend_loan_big); 127 EVCNT_ATTACH_STATIC(sosend_copy_big); 128 EVCNT_ATTACH_STATIC(sosend_copy_small); 129 EVCNT_ATTACH_STATIC(sosend_kvalimit); 130 #else 131 132 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 133 134 #endif /* SOSEND_COUNTERS */ 135 136 static struct callback_entry sokva_reclaimerentry; 137 138 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 139 int sock_loan_thresh = -1; 140 #else 141 int sock_loan_thresh = 4096; 142 #endif 143 144 static kmutex_t so_pendfree_lock; 145 static struct mbuf *so_pendfree; 146 147 #ifndef SOMAXKVA 148 #define SOMAXKVA (16 * 1024 * 1024) 149 #endif 150 int somaxkva = SOMAXKVA; 151 static int socurkva; 152 static kcondvar_t socurkva_cv; 153 154 static kauth_listener_t socket_listener; 155 156 #define SOCK_LOAN_CHUNK 65536 157 158 static size_t sodopendfree(void); 159 static size_t sodopendfreel(void); 160 161 static void sysctl_kern_somaxkva_setup(void); 162 static struct sysctllog *socket_sysctllog; 163 164 static vsize_t 165 sokvareserve(struct socket *so, vsize_t len) 166 { 167 int error; 168 169 mutex_enter(&so_pendfree_lock); 170 while (socurkva + len > somaxkva) { 171 size_t freed; 172 173 /* 174 * try to do pendfree. 175 */ 176 177 freed = sodopendfreel(); 178 179 /* 180 * if some kva was freed, try again. 181 */ 182 183 if (freed) 184 continue; 185 186 SOSEND_COUNTER_INCR(&sosend_kvalimit); 187 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 188 if (error) { 189 len = 0; 190 break; 191 } 192 } 193 socurkva += len; 194 mutex_exit(&so_pendfree_lock); 195 return len; 196 } 197 198 static void 199 sokvaunreserve(vsize_t len) 200 { 201 202 mutex_enter(&so_pendfree_lock); 203 socurkva -= len; 204 cv_broadcast(&socurkva_cv); 205 mutex_exit(&so_pendfree_lock); 206 } 207 208 /* 209 * sokvaalloc: allocate kva for loan. 210 */ 211 212 vaddr_t 213 sokvaalloc(vsize_t len, struct socket *so) 214 { 215 vaddr_t lva; 216 217 /* 218 * reserve kva. 219 */ 220 221 if (sokvareserve(so, len) == 0) 222 return 0; 223 224 /* 225 * allocate kva. 226 */ 227 228 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 229 if (lva == 0) { 230 sokvaunreserve(len); 231 return (0); 232 } 233 234 return lva; 235 } 236 237 /* 238 * sokvafree: free kva for loan. 239 */ 240 241 void 242 sokvafree(vaddr_t sva, vsize_t len) 243 { 244 245 /* 246 * free kva. 247 */ 248 249 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 250 251 /* 252 * unreserve kva. 253 */ 254 255 sokvaunreserve(len); 256 } 257 258 static void 259 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 260 { 261 vaddr_t sva, eva; 262 vsize_t len; 263 int npgs; 264 265 KASSERT(pgs != NULL); 266 267 eva = round_page((vaddr_t) buf + size); 268 sva = trunc_page((vaddr_t) buf); 269 len = eva - sva; 270 npgs = len >> PAGE_SHIFT; 271 272 pmap_kremove(sva, len); 273 pmap_update(pmap_kernel()); 274 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 275 sokvafree(sva, len); 276 } 277 278 static size_t 279 sodopendfree(void) 280 { 281 size_t rv; 282 283 if (__predict_true(so_pendfree == NULL)) 284 return 0; 285 286 mutex_enter(&so_pendfree_lock); 287 rv = sodopendfreel(); 288 mutex_exit(&so_pendfree_lock); 289 290 return rv; 291 } 292 293 /* 294 * sodopendfreel: free mbufs on "pendfree" list. 295 * unlock and relock so_pendfree_lock when freeing mbufs. 296 * 297 * => called with so_pendfree_lock held. 298 */ 299 300 static size_t 301 sodopendfreel(void) 302 { 303 struct mbuf *m, *next; 304 size_t rv = 0; 305 306 KASSERT(mutex_owned(&so_pendfree_lock)); 307 308 while (so_pendfree != NULL) { 309 m = so_pendfree; 310 so_pendfree = NULL; 311 mutex_exit(&so_pendfree_lock); 312 313 for (; m != NULL; m = next) { 314 next = m->m_next; 315 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 316 KASSERT(m->m_ext.ext_refcnt == 0); 317 318 rv += m->m_ext.ext_size; 319 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 320 m->m_ext.ext_size); 321 pool_cache_put(mb_cache, m); 322 } 323 324 mutex_enter(&so_pendfree_lock); 325 } 326 327 return (rv); 328 } 329 330 void 331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 332 { 333 334 KASSERT(m != NULL); 335 336 /* 337 * postpone freeing mbuf. 338 * 339 * we can't do it in interrupt context 340 * because we need to put kva back to kernel_map. 341 */ 342 343 mutex_enter(&so_pendfree_lock); 344 m->m_next = so_pendfree; 345 so_pendfree = m; 346 cv_broadcast(&socurkva_cv); 347 mutex_exit(&so_pendfree_lock); 348 } 349 350 static long 351 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 352 { 353 struct iovec *iov = uio->uio_iov; 354 vaddr_t sva, eva; 355 vsize_t len; 356 vaddr_t lva; 357 int npgs, error; 358 vaddr_t va; 359 int i; 360 361 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 362 return (0); 363 364 if (iov->iov_len < (size_t) space) 365 space = iov->iov_len; 366 if (space > SOCK_LOAN_CHUNK) 367 space = SOCK_LOAN_CHUNK; 368 369 eva = round_page((vaddr_t) iov->iov_base + space); 370 sva = trunc_page((vaddr_t) iov->iov_base); 371 len = eva - sva; 372 npgs = len >> PAGE_SHIFT; 373 374 KASSERT(npgs <= M_EXT_MAXPAGES); 375 376 lva = sokvaalloc(len, so); 377 if (lva == 0) 378 return 0; 379 380 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 381 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 382 if (error) { 383 sokvafree(lva, len); 384 return (0); 385 } 386 387 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 388 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 389 VM_PROT_READ, 0); 390 pmap_update(pmap_kernel()); 391 392 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 393 394 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 395 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 396 397 uio->uio_resid -= space; 398 /* uio_offset not updated, not set/used for write(2) */ 399 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 400 uio->uio_iov->iov_len -= space; 401 if (uio->uio_iov->iov_len == 0) { 402 uio->uio_iov++; 403 uio->uio_iovcnt--; 404 } 405 406 return (space); 407 } 408 409 static int 410 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 411 { 412 413 KASSERT(ce == &sokva_reclaimerentry); 414 KASSERT(obj == NULL); 415 416 sodopendfree(); 417 if (!vm_map_starved_p(kernel_map)) { 418 return CALLBACK_CHAIN_ABORT; 419 } 420 return CALLBACK_CHAIN_CONTINUE; 421 } 422 423 struct mbuf * 424 getsombuf(struct socket *so, int type) 425 { 426 struct mbuf *m; 427 428 m = m_get(M_WAIT, type); 429 MCLAIM(m, so->so_mowner); 430 return m; 431 } 432 433 static int 434 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 435 void *arg0, void *arg1, void *arg2, void *arg3) 436 { 437 int result; 438 enum kauth_network_req req; 439 440 result = KAUTH_RESULT_DEFER; 441 req = (enum kauth_network_req)arg0; 442 443 if ((action != KAUTH_NETWORK_SOCKET) && 444 (action != KAUTH_NETWORK_BIND)) 445 return result; 446 447 switch (req) { 448 case KAUTH_REQ_NETWORK_BIND_PORT: 449 result = KAUTH_RESULT_ALLOW; 450 break; 451 452 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 453 /* Normal users can only drop their own connections. */ 454 struct socket *so = (struct socket *)arg1; 455 456 if (proc_uidmatch(cred, so->so_cred)) 457 result = KAUTH_RESULT_ALLOW; 458 459 break; 460 } 461 462 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 463 /* We allow "raw" routing/bluetooth sockets to anyone. */ 464 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_BLUETOOTH) 465 result = KAUTH_RESULT_ALLOW; 466 else { 467 /* Privileged, let secmodel handle this. */ 468 if ((u_long)arg2 == SOCK_RAW) 469 break; 470 } 471 472 result = KAUTH_RESULT_ALLOW; 473 474 break; 475 476 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 477 result = KAUTH_RESULT_ALLOW; 478 479 break; 480 481 default: 482 break; 483 } 484 485 return result; 486 } 487 488 void 489 soinit(void) 490 { 491 492 sysctl_kern_somaxkva_setup(); 493 494 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 495 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 496 cv_init(&socurkva_cv, "sokva"); 497 soinit2(); 498 499 /* Set the initial adjusted socket buffer size. */ 500 if (sb_max_set(sb_max)) 501 panic("bad initial sb_max value: %lu", sb_max); 502 503 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 504 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 505 506 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 507 socket_listener_cb, NULL); 508 } 509 510 /* 511 * Socket operation routines. 512 * These routines are called by the routines in 513 * sys_socket.c or from a system process, and 514 * implement the semantics of socket operations by 515 * switching out to the protocol specific routines. 516 */ 517 /*ARGSUSED*/ 518 int 519 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 520 struct socket *lockso) 521 { 522 const struct protosw *prp; 523 struct socket *so; 524 uid_t uid; 525 int error; 526 kmutex_t *lock; 527 528 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 529 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 530 KAUTH_ARG(proto)); 531 if (error != 0) 532 return error; 533 534 if (proto) 535 prp = pffindproto(dom, proto, type); 536 else 537 prp = pffindtype(dom, type); 538 if (prp == NULL) { 539 /* no support for domain */ 540 if (pffinddomain(dom) == 0) 541 return EAFNOSUPPORT; 542 /* no support for socket type */ 543 if (proto == 0 && type != 0) 544 return EPROTOTYPE; 545 return EPROTONOSUPPORT; 546 } 547 if (prp->pr_usrreq == NULL) 548 return EPROTONOSUPPORT; 549 if (prp->pr_type != type) 550 return EPROTOTYPE; 551 552 so = soget(true); 553 so->so_type = type; 554 so->so_proto = prp; 555 so->so_send = sosend; 556 so->so_receive = soreceive; 557 #ifdef MBUFTRACE 558 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 559 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 560 so->so_mowner = &prp->pr_domain->dom_mowner; 561 #endif 562 uid = kauth_cred_geteuid(l->l_cred); 563 so->so_uidinfo = uid_find(uid); 564 so->so_cpid = l->l_proc->p_pid; 565 if (lockso != NULL) { 566 /* Caller wants us to share a lock. */ 567 lock = lockso->so_lock; 568 so->so_lock = lock; 569 mutex_obj_hold(lock); 570 mutex_enter(lock); 571 } else { 572 /* Lock assigned and taken during PRU_ATTACH. */ 573 } 574 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 575 (struct mbuf *)(long)proto, NULL, l); 576 KASSERT(solocked(so)); 577 if (error != 0) { 578 so->so_state |= SS_NOFDREF; 579 sofree(so); 580 return error; 581 } 582 so->so_cred = kauth_cred_dup(l->l_cred); 583 sounlock(so); 584 *aso = so; 585 return 0; 586 } 587 588 /* On success, write file descriptor to fdout and return zero. On 589 * failure, return non-zero; *fdout will be undefined. 590 */ 591 int 592 fsocreate(int domain, struct socket **sop, int type, int protocol, 593 struct lwp *l, int *fdout) 594 { 595 struct socket *so; 596 struct file *fp; 597 int fd, error; 598 599 if ((error = fd_allocfile(&fp, &fd)) != 0) 600 return (error); 601 fp->f_flag = FREAD|FWRITE; 602 fp->f_type = DTYPE_SOCKET; 603 fp->f_ops = &socketops; 604 error = socreate(domain, &so, type, protocol, l, NULL); 605 if (error != 0) { 606 fd_abort(curproc, fp, fd); 607 } else { 608 if (sop != NULL) 609 *sop = so; 610 fp->f_data = so; 611 fd_affix(curproc, fp, fd); 612 *fdout = fd; 613 } 614 return error; 615 } 616 617 int 618 sofamily(const struct socket *so) 619 { 620 const struct protosw *pr; 621 const struct domain *dom; 622 623 if ((pr = so->so_proto) == NULL) 624 return AF_UNSPEC; 625 if ((dom = pr->pr_domain) == NULL) 626 return AF_UNSPEC; 627 return dom->dom_family; 628 } 629 630 int 631 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 632 { 633 int error; 634 635 solock(so); 636 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 637 sounlock(so); 638 return error; 639 } 640 641 int 642 solisten(struct socket *so, int backlog, struct lwp *l) 643 { 644 int error; 645 646 solock(so); 647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 648 SS_ISDISCONNECTING)) != 0) { 649 sounlock(so); 650 return (EOPNOTSUPP); 651 } 652 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 653 NULL, NULL, l); 654 if (error != 0) { 655 sounlock(so); 656 return error; 657 } 658 if (TAILQ_EMPTY(&so->so_q)) 659 so->so_options |= SO_ACCEPTCONN; 660 if (backlog < 0) 661 backlog = 0; 662 so->so_qlimit = min(backlog, somaxconn); 663 sounlock(so); 664 return 0; 665 } 666 667 void 668 sofree(struct socket *so) 669 { 670 u_int refs; 671 672 KASSERT(solocked(so)); 673 674 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 675 sounlock(so); 676 return; 677 } 678 if (so->so_head) { 679 /* 680 * We must not decommission a socket that's on the accept(2) 681 * queue. If we do, then accept(2) may hang after select(2) 682 * indicated that the listening socket was ready. 683 */ 684 if (!soqremque(so, 0)) { 685 sounlock(so); 686 return; 687 } 688 } 689 if (so->so_rcv.sb_hiwat) 690 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 691 RLIM_INFINITY); 692 if (so->so_snd.sb_hiwat) 693 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 694 RLIM_INFINITY); 695 sbrelease(&so->so_snd, so); 696 KASSERT(!cv_has_waiters(&so->so_cv)); 697 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 698 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 699 sorflush(so); 700 refs = so->so_aborting; /* XXX */ 701 /* Remove acccept filter if one is present. */ 702 if (so->so_accf != NULL) 703 (void)accept_filt_clear(so); 704 sounlock(so); 705 if (refs == 0) /* XXX */ 706 soput(so); 707 } 708 709 /* 710 * Close a socket on last file table reference removal. 711 * Initiate disconnect if connected. 712 * Free socket when disconnect complete. 713 */ 714 int 715 soclose(struct socket *so) 716 { 717 struct socket *so2; 718 int error; 719 int error2; 720 721 error = 0; 722 solock(so); 723 if (so->so_options & SO_ACCEPTCONN) { 724 for (;;) { 725 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 726 KASSERT(solocked2(so, so2)); 727 (void) soqremque(so2, 0); 728 /* soabort drops the lock. */ 729 (void) soabort(so2); 730 solock(so); 731 continue; 732 } 733 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 734 KASSERT(solocked2(so, so2)); 735 (void) soqremque(so2, 1); 736 /* soabort drops the lock. */ 737 (void) soabort(so2); 738 solock(so); 739 continue; 740 } 741 break; 742 } 743 } 744 if (so->so_pcb == 0) 745 goto discard; 746 if (so->so_state & SS_ISCONNECTED) { 747 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 748 error = sodisconnect(so); 749 if (error) 750 goto drop; 751 } 752 if (so->so_options & SO_LINGER) { 753 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio) 754 goto drop; 755 while (so->so_state & SS_ISCONNECTED) { 756 error = sowait(so, true, so->so_linger * hz); 757 if (error) 758 break; 759 } 760 } 761 } 762 drop: 763 if (so->so_pcb) { 764 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 765 NULL, NULL, NULL, NULL); 766 if (error == 0) 767 error = error2; 768 } 769 discard: 770 if (so->so_state & SS_NOFDREF) 771 panic("soclose: NOFDREF"); 772 kauth_cred_free(so->so_cred); 773 so->so_state |= SS_NOFDREF; 774 sofree(so); 775 return (error); 776 } 777 778 /* 779 * Must be called with the socket locked.. Will return with it unlocked. 780 */ 781 int 782 soabort(struct socket *so) 783 { 784 u_int refs; 785 int error; 786 787 KASSERT(solocked(so)); 788 KASSERT(so->so_head == NULL); 789 790 so->so_aborting++; /* XXX */ 791 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 792 NULL, NULL, NULL); 793 refs = --so->so_aborting; /* XXX */ 794 if (error || (refs == 0)) { 795 sofree(so); 796 } else { 797 sounlock(so); 798 } 799 return error; 800 } 801 802 int 803 soaccept(struct socket *so, struct mbuf *nam) 804 { 805 int error; 806 807 KASSERT(solocked(so)); 808 809 error = 0; 810 if ((so->so_state & SS_NOFDREF) == 0) 811 panic("soaccept: !NOFDREF"); 812 so->so_state &= ~SS_NOFDREF; 813 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 814 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 815 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 816 NULL, nam, NULL, NULL); 817 else 818 error = ECONNABORTED; 819 820 return (error); 821 } 822 823 int 824 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 825 { 826 int error; 827 828 KASSERT(solocked(so)); 829 830 if (so->so_options & SO_ACCEPTCONN) 831 return (EOPNOTSUPP); 832 /* 833 * If protocol is connection-based, can only connect once. 834 * Otherwise, if connected, try to disconnect first. 835 * This allows user to disconnect by connecting to, e.g., 836 * a null address. 837 */ 838 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 839 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 840 (error = sodisconnect(so)))) 841 error = EISCONN; 842 else 843 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 844 NULL, nam, NULL, l); 845 return (error); 846 } 847 848 int 849 soconnect2(struct socket *so1, struct socket *so2) 850 { 851 int error; 852 853 KASSERT(solocked2(so1, so2)); 854 855 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 856 NULL, (struct mbuf *)so2, NULL, NULL); 857 return (error); 858 } 859 860 int 861 sodisconnect(struct socket *so) 862 { 863 int error; 864 865 KASSERT(solocked(so)); 866 867 if ((so->so_state & SS_ISCONNECTED) == 0) { 868 error = ENOTCONN; 869 } else if (so->so_state & SS_ISDISCONNECTING) { 870 error = EALREADY; 871 } else { 872 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 873 NULL, NULL, NULL, NULL); 874 } 875 sodopendfree(); 876 return (error); 877 } 878 879 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 880 /* 881 * Send on a socket. 882 * If send must go all at once and message is larger than 883 * send buffering, then hard error. 884 * Lock against other senders. 885 * If must go all at once and not enough room now, then 886 * inform user that this would block and do nothing. 887 * Otherwise, if nonblocking, send as much as possible. 888 * The data to be sent is described by "uio" if nonzero, 889 * otherwise by the mbuf chain "top" (which must be null 890 * if uio is not). Data provided in mbuf chain must be small 891 * enough to send all at once. 892 * 893 * Returns nonzero on error, timeout or signal; callers 894 * must check for short counts if EINTR/ERESTART are returned. 895 * Data and control buffers are freed on return. 896 */ 897 int 898 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 899 struct mbuf *control, int flags, struct lwp *l) 900 { 901 struct mbuf **mp, *m; 902 struct proc *p; 903 long space, len, resid, clen, mlen; 904 int error, s, dontroute, atomic; 905 short wakeup_state = 0; 906 907 p = l->l_proc; 908 sodopendfree(); 909 clen = 0; 910 911 /* 912 * solock() provides atomicity of access. splsoftnet() prevents 913 * protocol processing soft interrupts from interrupting us and 914 * blocking (expensive). 915 */ 916 s = splsoftnet(); 917 solock(so); 918 atomic = sosendallatonce(so) || top; 919 if (uio) 920 resid = uio->uio_resid; 921 else 922 resid = top->m_pkthdr.len; 923 /* 924 * In theory resid should be unsigned. 925 * However, space must be signed, as it might be less than 0 926 * if we over-committed, and we must use a signed comparison 927 * of space and resid. On the other hand, a negative resid 928 * causes us to loop sending 0-length segments to the protocol. 929 */ 930 if (resid < 0) { 931 error = EINVAL; 932 goto out; 933 } 934 dontroute = 935 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 936 (so->so_proto->pr_flags & PR_ATOMIC); 937 l->l_ru.ru_msgsnd++; 938 if (control) 939 clen = control->m_len; 940 restart: 941 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 942 goto out; 943 do { 944 if (so->so_state & SS_CANTSENDMORE) { 945 error = EPIPE; 946 goto release; 947 } 948 if (so->so_error) { 949 error = so->so_error; 950 so->so_error = 0; 951 goto release; 952 } 953 if ((so->so_state & SS_ISCONNECTED) == 0) { 954 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 955 if ((so->so_state & SS_ISCONFIRMING) == 0 && 956 !(resid == 0 && clen != 0)) { 957 error = ENOTCONN; 958 goto release; 959 } 960 } else if (addr == 0) { 961 error = EDESTADDRREQ; 962 goto release; 963 } 964 } 965 space = sbspace(&so->so_snd); 966 if (flags & MSG_OOB) 967 space += 1024; 968 if ((atomic && resid > so->so_snd.sb_hiwat) || 969 clen > so->so_snd.sb_hiwat) { 970 error = EMSGSIZE; 971 goto release; 972 } 973 if (space < resid + clen && 974 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 975 if (so->so_nbio) { 976 error = EWOULDBLOCK; 977 goto release; 978 } 979 sbunlock(&so->so_snd); 980 if (wakeup_state & SS_RESTARTSYS) { 981 error = ERESTART; 982 goto out; 983 } 984 error = sbwait(&so->so_snd); 985 if (error) 986 goto out; 987 wakeup_state = so->so_state; 988 goto restart; 989 } 990 wakeup_state = 0; 991 mp = ⊤ 992 space -= clen; 993 do { 994 if (uio == NULL) { 995 /* 996 * Data is prepackaged in "top". 997 */ 998 resid = 0; 999 if (flags & MSG_EOR) 1000 top->m_flags |= M_EOR; 1001 } else do { 1002 sounlock(so); 1003 splx(s); 1004 if (top == NULL) { 1005 m = m_gethdr(M_WAIT, MT_DATA); 1006 mlen = MHLEN; 1007 m->m_pkthdr.len = 0; 1008 m->m_pkthdr.rcvif = NULL; 1009 } else { 1010 m = m_get(M_WAIT, MT_DATA); 1011 mlen = MLEN; 1012 } 1013 MCLAIM(m, so->so_snd.sb_mowner); 1014 if (sock_loan_thresh >= 0 && 1015 uio->uio_iov->iov_len >= sock_loan_thresh && 1016 space >= sock_loan_thresh && 1017 (len = sosend_loan(so, uio, m, 1018 space)) != 0) { 1019 SOSEND_COUNTER_INCR(&sosend_loan_big); 1020 space -= len; 1021 goto have_data; 1022 } 1023 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1024 SOSEND_COUNTER_INCR(&sosend_copy_big); 1025 m_clget(m, M_WAIT); 1026 if ((m->m_flags & M_EXT) == 0) 1027 goto nopages; 1028 mlen = MCLBYTES; 1029 if (atomic && top == 0) { 1030 len = lmin(MCLBYTES - max_hdr, 1031 resid); 1032 m->m_data += max_hdr; 1033 } else 1034 len = lmin(MCLBYTES, resid); 1035 space -= len; 1036 } else { 1037 nopages: 1038 SOSEND_COUNTER_INCR(&sosend_copy_small); 1039 len = lmin(lmin(mlen, resid), space); 1040 space -= len; 1041 /* 1042 * For datagram protocols, leave room 1043 * for protocol headers in first mbuf. 1044 */ 1045 if (atomic && top == 0 && len < mlen) 1046 MH_ALIGN(m, len); 1047 } 1048 error = uiomove(mtod(m, void *), (int)len, uio); 1049 have_data: 1050 resid = uio->uio_resid; 1051 m->m_len = len; 1052 *mp = m; 1053 top->m_pkthdr.len += len; 1054 s = splsoftnet(); 1055 solock(so); 1056 if (error != 0) 1057 goto release; 1058 mp = &m->m_next; 1059 if (resid <= 0) { 1060 if (flags & MSG_EOR) 1061 top->m_flags |= M_EOR; 1062 break; 1063 } 1064 } while (space > 0 && atomic); 1065 1066 if (so->so_state & SS_CANTSENDMORE) { 1067 error = EPIPE; 1068 goto release; 1069 } 1070 if (dontroute) 1071 so->so_options |= SO_DONTROUTE; 1072 if (resid > 0) 1073 so->so_state |= SS_MORETOCOME; 1074 error = (*so->so_proto->pr_usrreq)(so, 1075 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1076 top, addr, control, curlwp); 1077 if (dontroute) 1078 so->so_options &= ~SO_DONTROUTE; 1079 if (resid > 0) 1080 so->so_state &= ~SS_MORETOCOME; 1081 clen = 0; 1082 control = NULL; 1083 top = NULL; 1084 mp = ⊤ 1085 if (error != 0) 1086 goto release; 1087 } while (resid && space > 0); 1088 } while (resid); 1089 1090 release: 1091 sbunlock(&so->so_snd); 1092 out: 1093 sounlock(so); 1094 splx(s); 1095 if (top) 1096 m_freem(top); 1097 if (control) 1098 m_freem(control); 1099 return (error); 1100 } 1101 1102 /* 1103 * Following replacement or removal of the first mbuf on the first 1104 * mbuf chain of a socket buffer, push necessary state changes back 1105 * into the socket buffer so that other consumers see the values 1106 * consistently. 'nextrecord' is the callers locally stored value of 1107 * the original value of sb->sb_mb->m_nextpkt which must be restored 1108 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1109 */ 1110 static void 1111 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1112 { 1113 1114 KASSERT(solocked(sb->sb_so)); 1115 1116 /* 1117 * First, update for the new value of nextrecord. If necessary, 1118 * make it the first record. 1119 */ 1120 if (sb->sb_mb != NULL) 1121 sb->sb_mb->m_nextpkt = nextrecord; 1122 else 1123 sb->sb_mb = nextrecord; 1124 1125 /* 1126 * Now update any dependent socket buffer fields to reflect 1127 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1128 * the addition of a second clause that takes care of the 1129 * case where sb_mb has been updated, but remains the last 1130 * record. 1131 */ 1132 if (sb->sb_mb == NULL) { 1133 sb->sb_mbtail = NULL; 1134 sb->sb_lastrecord = NULL; 1135 } else if (sb->sb_mb->m_nextpkt == NULL) 1136 sb->sb_lastrecord = sb->sb_mb; 1137 } 1138 1139 /* 1140 * Implement receive operations on a socket. 1141 * We depend on the way that records are added to the sockbuf 1142 * by sbappend*. In particular, each record (mbufs linked through m_next) 1143 * must begin with an address if the protocol so specifies, 1144 * followed by an optional mbuf or mbufs containing ancillary data, 1145 * and then zero or more mbufs of data. 1146 * In order to avoid blocking network interrupts for the entire time here, 1147 * we splx() while doing the actual copy to user space. 1148 * Although the sockbuf is locked, new data may still be appended, 1149 * and thus we must maintain consistency of the sockbuf during that time. 1150 * 1151 * The caller may receive the data as a single mbuf chain by supplying 1152 * an mbuf **mp0 for use in returning the chain. The uio is then used 1153 * only for the count in uio_resid. 1154 */ 1155 int 1156 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1157 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1158 { 1159 struct lwp *l = curlwp; 1160 struct mbuf *m, **mp, *mt; 1161 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1162 const struct protosw *pr; 1163 struct mbuf *nextrecord; 1164 int mbuf_removed = 0; 1165 const struct domain *dom; 1166 short wakeup_state = 0; 1167 1168 pr = so->so_proto; 1169 atomic = pr->pr_flags & PR_ATOMIC; 1170 dom = pr->pr_domain; 1171 mp = mp0; 1172 type = 0; 1173 orig_resid = uio->uio_resid; 1174 1175 if (paddr != NULL) 1176 *paddr = NULL; 1177 if (controlp != NULL) 1178 *controlp = NULL; 1179 if (flagsp != NULL) 1180 flags = *flagsp &~ MSG_EOR; 1181 else 1182 flags = 0; 1183 1184 if ((flags & MSG_DONTWAIT) == 0) 1185 sodopendfree(); 1186 1187 if (flags & MSG_OOB) { 1188 m = m_get(M_WAIT, MT_DATA); 1189 solock(so); 1190 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1191 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1192 sounlock(so); 1193 if (error) 1194 goto bad; 1195 do { 1196 error = uiomove(mtod(m, void *), 1197 (int) min(uio->uio_resid, m->m_len), uio); 1198 m = m_free(m); 1199 } while (uio->uio_resid > 0 && error == 0 && m); 1200 bad: 1201 if (m != NULL) 1202 m_freem(m); 1203 return error; 1204 } 1205 if (mp != NULL) 1206 *mp = NULL; 1207 1208 /* 1209 * solock() provides atomicity of access. splsoftnet() prevents 1210 * protocol processing soft interrupts from interrupting us and 1211 * blocking (expensive). 1212 */ 1213 s = splsoftnet(); 1214 solock(so); 1215 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1216 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1217 1218 restart: 1219 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1220 sounlock(so); 1221 splx(s); 1222 return error; 1223 } 1224 1225 m = so->so_rcv.sb_mb; 1226 /* 1227 * If we have less data than requested, block awaiting more 1228 * (subject to any timeout) if: 1229 * 1. the current count is less than the low water mark, 1230 * 2. MSG_WAITALL is set, and it is possible to do the entire 1231 * receive operation at once if we block (resid <= hiwat), or 1232 * 3. MSG_DONTWAIT is not set. 1233 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1234 * we have to do the receive in sections, and thus risk returning 1235 * a short count if a timeout or signal occurs after we start. 1236 */ 1237 if (m == NULL || 1238 ((flags & MSG_DONTWAIT) == 0 && 1239 so->so_rcv.sb_cc < uio->uio_resid && 1240 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1241 ((flags & MSG_WAITALL) && 1242 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1243 m->m_nextpkt == NULL && !atomic)) { 1244 #ifdef DIAGNOSTIC 1245 if (m == NULL && so->so_rcv.sb_cc) 1246 panic("receive 1"); 1247 #endif 1248 if (so->so_error) { 1249 if (m != NULL) 1250 goto dontblock; 1251 error = so->so_error; 1252 if ((flags & MSG_PEEK) == 0) 1253 so->so_error = 0; 1254 goto release; 1255 } 1256 if (so->so_state & SS_CANTRCVMORE) { 1257 if (m != NULL) 1258 goto dontblock; 1259 else 1260 goto release; 1261 } 1262 for (; m != NULL; m = m->m_next) 1263 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1264 m = so->so_rcv.sb_mb; 1265 goto dontblock; 1266 } 1267 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1268 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1269 error = ENOTCONN; 1270 goto release; 1271 } 1272 if (uio->uio_resid == 0) 1273 goto release; 1274 if (so->so_nbio || (flags & MSG_DONTWAIT)) { 1275 error = EWOULDBLOCK; 1276 goto release; 1277 } 1278 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1279 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1280 sbunlock(&so->so_rcv); 1281 if (wakeup_state & SS_RESTARTSYS) 1282 error = ERESTART; 1283 else 1284 error = sbwait(&so->so_rcv); 1285 if (error != 0) { 1286 sounlock(so); 1287 splx(s); 1288 return error; 1289 } 1290 wakeup_state = so->so_state; 1291 goto restart; 1292 } 1293 dontblock: 1294 /* 1295 * On entry here, m points to the first record of the socket buffer. 1296 * From this point onward, we maintain 'nextrecord' as a cache of the 1297 * pointer to the next record in the socket buffer. We must keep the 1298 * various socket buffer pointers and local stack versions of the 1299 * pointers in sync, pushing out modifications before dropping the 1300 * socket lock, and re-reading them when picking it up. 1301 * 1302 * Otherwise, we will race with the network stack appending new data 1303 * or records onto the socket buffer by using inconsistent/stale 1304 * versions of the field, possibly resulting in socket buffer 1305 * corruption. 1306 * 1307 * By holding the high-level sblock(), we prevent simultaneous 1308 * readers from pulling off the front of the socket buffer. 1309 */ 1310 if (l != NULL) 1311 l->l_ru.ru_msgrcv++; 1312 KASSERT(m == so->so_rcv.sb_mb); 1313 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1314 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1315 nextrecord = m->m_nextpkt; 1316 if (pr->pr_flags & PR_ADDR) { 1317 #ifdef DIAGNOSTIC 1318 if (m->m_type != MT_SONAME) 1319 panic("receive 1a"); 1320 #endif 1321 orig_resid = 0; 1322 if (flags & MSG_PEEK) { 1323 if (paddr) 1324 *paddr = m_copy(m, 0, m->m_len); 1325 m = m->m_next; 1326 } else { 1327 sbfree(&so->so_rcv, m); 1328 mbuf_removed = 1; 1329 if (paddr != NULL) { 1330 *paddr = m; 1331 so->so_rcv.sb_mb = m->m_next; 1332 m->m_next = NULL; 1333 m = so->so_rcv.sb_mb; 1334 } else { 1335 MFREE(m, so->so_rcv.sb_mb); 1336 m = so->so_rcv.sb_mb; 1337 } 1338 sbsync(&so->so_rcv, nextrecord); 1339 } 1340 } 1341 1342 /* 1343 * Process one or more MT_CONTROL mbufs present before any data mbufs 1344 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1345 * just copy the data; if !MSG_PEEK, we call into the protocol to 1346 * perform externalization (or freeing if controlp == NULL). 1347 */ 1348 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1349 struct mbuf *cm = NULL, *cmn; 1350 struct mbuf **cme = &cm; 1351 1352 do { 1353 if (flags & MSG_PEEK) { 1354 if (controlp != NULL) { 1355 *controlp = m_copy(m, 0, m->m_len); 1356 controlp = &(*controlp)->m_next; 1357 } 1358 m = m->m_next; 1359 } else { 1360 sbfree(&so->so_rcv, m); 1361 so->so_rcv.sb_mb = m->m_next; 1362 m->m_next = NULL; 1363 *cme = m; 1364 cme = &(*cme)->m_next; 1365 m = so->so_rcv.sb_mb; 1366 } 1367 } while (m != NULL && m->m_type == MT_CONTROL); 1368 if ((flags & MSG_PEEK) == 0) 1369 sbsync(&so->so_rcv, nextrecord); 1370 for (; cm != NULL; cm = cmn) { 1371 cmn = cm->m_next; 1372 cm->m_next = NULL; 1373 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1374 if (controlp != NULL) { 1375 if (dom->dom_externalize != NULL && 1376 type == SCM_RIGHTS) { 1377 sounlock(so); 1378 splx(s); 1379 error = (*dom->dom_externalize)(cm, l); 1380 s = splsoftnet(); 1381 solock(so); 1382 } 1383 *controlp = cm; 1384 while (*controlp != NULL) 1385 controlp = &(*controlp)->m_next; 1386 } else { 1387 /* 1388 * Dispose of any SCM_RIGHTS message that went 1389 * through the read path rather than recv. 1390 */ 1391 if (dom->dom_dispose != NULL && 1392 type == SCM_RIGHTS) { 1393 sounlock(so); 1394 (*dom->dom_dispose)(cm); 1395 solock(so); 1396 } 1397 m_freem(cm); 1398 } 1399 } 1400 if (m != NULL) 1401 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1402 else 1403 nextrecord = so->so_rcv.sb_mb; 1404 orig_resid = 0; 1405 } 1406 1407 /* If m is non-NULL, we have some data to read. */ 1408 if (__predict_true(m != NULL)) { 1409 type = m->m_type; 1410 if (type == MT_OOBDATA) 1411 flags |= MSG_OOB; 1412 } 1413 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1414 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1415 1416 moff = 0; 1417 offset = 0; 1418 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1419 if (m->m_type == MT_OOBDATA) { 1420 if (type != MT_OOBDATA) 1421 break; 1422 } else if (type == MT_OOBDATA) 1423 break; 1424 #ifdef DIAGNOSTIC 1425 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1426 panic("receive 3"); 1427 #endif 1428 so->so_state &= ~SS_RCVATMARK; 1429 wakeup_state = 0; 1430 len = uio->uio_resid; 1431 if (so->so_oobmark && len > so->so_oobmark - offset) 1432 len = so->so_oobmark - offset; 1433 if (len > m->m_len - moff) 1434 len = m->m_len - moff; 1435 /* 1436 * If mp is set, just pass back the mbufs. 1437 * Otherwise copy them out via the uio, then free. 1438 * Sockbuf must be consistent here (points to current mbuf, 1439 * it points to next record) when we drop priority; 1440 * we must note any additions to the sockbuf when we 1441 * block interrupts again. 1442 */ 1443 if (mp == NULL) { 1444 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1445 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1446 sounlock(so); 1447 splx(s); 1448 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1449 s = splsoftnet(); 1450 solock(so); 1451 if (error != 0) { 1452 /* 1453 * If any part of the record has been removed 1454 * (such as the MT_SONAME mbuf, which will 1455 * happen when PR_ADDR, and thus also 1456 * PR_ATOMIC, is set), then drop the entire 1457 * record to maintain the atomicity of the 1458 * receive operation. 1459 * 1460 * This avoids a later panic("receive 1a") 1461 * when compiled with DIAGNOSTIC. 1462 */ 1463 if (m && mbuf_removed && atomic) 1464 (void) sbdroprecord(&so->so_rcv); 1465 1466 goto release; 1467 } 1468 } else 1469 uio->uio_resid -= len; 1470 if (len == m->m_len - moff) { 1471 if (m->m_flags & M_EOR) 1472 flags |= MSG_EOR; 1473 if (flags & MSG_PEEK) { 1474 m = m->m_next; 1475 moff = 0; 1476 } else { 1477 nextrecord = m->m_nextpkt; 1478 sbfree(&so->so_rcv, m); 1479 if (mp) { 1480 *mp = m; 1481 mp = &m->m_next; 1482 so->so_rcv.sb_mb = m = m->m_next; 1483 *mp = NULL; 1484 } else { 1485 MFREE(m, so->so_rcv.sb_mb); 1486 m = so->so_rcv.sb_mb; 1487 } 1488 /* 1489 * If m != NULL, we also know that 1490 * so->so_rcv.sb_mb != NULL. 1491 */ 1492 KASSERT(so->so_rcv.sb_mb == m); 1493 if (m) { 1494 m->m_nextpkt = nextrecord; 1495 if (nextrecord == NULL) 1496 so->so_rcv.sb_lastrecord = m; 1497 } else { 1498 so->so_rcv.sb_mb = nextrecord; 1499 SB_EMPTY_FIXUP(&so->so_rcv); 1500 } 1501 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1502 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1503 } 1504 } else if (flags & MSG_PEEK) 1505 moff += len; 1506 else { 1507 if (mp != NULL) { 1508 mt = m_copym(m, 0, len, M_NOWAIT); 1509 if (__predict_false(mt == NULL)) { 1510 sounlock(so); 1511 mt = m_copym(m, 0, len, M_WAIT); 1512 solock(so); 1513 } 1514 *mp = mt; 1515 } 1516 m->m_data += len; 1517 m->m_len -= len; 1518 so->so_rcv.sb_cc -= len; 1519 } 1520 if (so->so_oobmark) { 1521 if ((flags & MSG_PEEK) == 0) { 1522 so->so_oobmark -= len; 1523 if (so->so_oobmark == 0) { 1524 so->so_state |= SS_RCVATMARK; 1525 break; 1526 } 1527 } else { 1528 offset += len; 1529 if (offset == so->so_oobmark) 1530 break; 1531 } 1532 } 1533 if (flags & MSG_EOR) 1534 break; 1535 /* 1536 * If the MSG_WAITALL flag is set (for non-atomic socket), 1537 * we must not quit until "uio->uio_resid == 0" or an error 1538 * termination. If a signal/timeout occurs, return 1539 * with a short count but without error. 1540 * Keep sockbuf locked against other readers. 1541 */ 1542 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1543 !sosendallatonce(so) && !nextrecord) { 1544 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1545 break; 1546 /* 1547 * If we are peeking and the socket receive buffer is 1548 * full, stop since we can't get more data to peek at. 1549 */ 1550 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1551 break; 1552 /* 1553 * If we've drained the socket buffer, tell the 1554 * protocol in case it needs to do something to 1555 * get it filled again. 1556 */ 1557 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1558 (*pr->pr_usrreq)(so, PRU_RCVD, 1559 NULL, (struct mbuf *)(long)flags, NULL, l); 1560 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1561 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1562 if (wakeup_state & SS_RESTARTSYS) 1563 error = ERESTART; 1564 else 1565 error = sbwait(&so->so_rcv); 1566 if (error != 0) { 1567 sbunlock(&so->so_rcv); 1568 sounlock(so); 1569 splx(s); 1570 return 0; 1571 } 1572 if ((m = so->so_rcv.sb_mb) != NULL) 1573 nextrecord = m->m_nextpkt; 1574 wakeup_state = so->so_state; 1575 } 1576 } 1577 1578 if (m && atomic) { 1579 flags |= MSG_TRUNC; 1580 if ((flags & MSG_PEEK) == 0) 1581 (void) sbdroprecord(&so->so_rcv); 1582 } 1583 if ((flags & MSG_PEEK) == 0) { 1584 if (m == NULL) { 1585 /* 1586 * First part is an inline SB_EMPTY_FIXUP(). Second 1587 * part makes sure sb_lastrecord is up-to-date if 1588 * there is still data in the socket buffer. 1589 */ 1590 so->so_rcv.sb_mb = nextrecord; 1591 if (so->so_rcv.sb_mb == NULL) { 1592 so->so_rcv.sb_mbtail = NULL; 1593 so->so_rcv.sb_lastrecord = NULL; 1594 } else if (nextrecord->m_nextpkt == NULL) 1595 so->so_rcv.sb_lastrecord = nextrecord; 1596 } 1597 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1598 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1599 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1600 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1601 (struct mbuf *)(long)flags, NULL, l); 1602 } 1603 if (orig_resid == uio->uio_resid && orig_resid && 1604 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1605 sbunlock(&so->so_rcv); 1606 goto restart; 1607 } 1608 1609 if (flagsp != NULL) 1610 *flagsp |= flags; 1611 release: 1612 sbunlock(&so->so_rcv); 1613 sounlock(so); 1614 splx(s); 1615 return error; 1616 } 1617 1618 int 1619 soshutdown(struct socket *so, int how) 1620 { 1621 const struct protosw *pr; 1622 int error; 1623 1624 KASSERT(solocked(so)); 1625 1626 pr = so->so_proto; 1627 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1628 return (EINVAL); 1629 1630 if (how == SHUT_RD || how == SHUT_RDWR) { 1631 sorflush(so); 1632 error = 0; 1633 } 1634 if (how == SHUT_WR || how == SHUT_RDWR) 1635 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1636 NULL, NULL, NULL); 1637 1638 return error; 1639 } 1640 1641 void 1642 sorestart(struct socket *so) 1643 { 1644 /* 1645 * An application has called close() on an fd on which another 1646 * of its threads has called a socket system call. 1647 * Mark this and wake everyone up, and code that would block again 1648 * instead returns ERESTART. 1649 * On system call re-entry the fd is validated and EBADF returned. 1650 * Any other fd will block again on the 2nd syscall. 1651 */ 1652 solock(so); 1653 so->so_state |= SS_RESTARTSYS; 1654 cv_broadcast(&so->so_cv); 1655 cv_broadcast(&so->so_snd.sb_cv); 1656 cv_broadcast(&so->so_rcv.sb_cv); 1657 sounlock(so); 1658 } 1659 1660 void 1661 sorflush(struct socket *so) 1662 { 1663 struct sockbuf *sb, asb; 1664 const struct protosw *pr; 1665 1666 KASSERT(solocked(so)); 1667 1668 sb = &so->so_rcv; 1669 pr = so->so_proto; 1670 socantrcvmore(so); 1671 sb->sb_flags |= SB_NOINTR; 1672 (void )sblock(sb, M_WAITOK); 1673 sbunlock(sb); 1674 asb = *sb; 1675 /* 1676 * Clear most of the sockbuf structure, but leave some of the 1677 * fields valid. 1678 */ 1679 memset(&sb->sb_startzero, 0, 1680 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1681 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1682 sounlock(so); 1683 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1684 solock(so); 1685 } 1686 sbrelease(&asb, so); 1687 } 1688 1689 /* 1690 * internal set SOL_SOCKET options 1691 */ 1692 static int 1693 sosetopt1(struct socket *so, const struct sockopt *sopt) 1694 { 1695 int error = EINVAL, optval, opt; 1696 struct linger l; 1697 struct timeval tv; 1698 1699 switch ((opt = sopt->sopt_name)) { 1700 1701 case SO_ACCEPTFILTER: 1702 error = accept_filt_setopt(so, sopt); 1703 KASSERT(solocked(so)); 1704 break; 1705 1706 case SO_LINGER: 1707 error = sockopt_get(sopt, &l, sizeof(l)); 1708 solock(so); 1709 if (error) 1710 break; 1711 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1712 l.l_linger > (INT_MAX / hz)) { 1713 error = EDOM; 1714 break; 1715 } 1716 so->so_linger = l.l_linger; 1717 if (l.l_onoff) 1718 so->so_options |= SO_LINGER; 1719 else 1720 so->so_options &= ~SO_LINGER; 1721 break; 1722 1723 case SO_DEBUG: 1724 case SO_KEEPALIVE: 1725 case SO_DONTROUTE: 1726 case SO_USELOOPBACK: 1727 case SO_BROADCAST: 1728 case SO_REUSEADDR: 1729 case SO_REUSEPORT: 1730 case SO_OOBINLINE: 1731 case SO_TIMESTAMP: 1732 #ifdef SO_OTIMESTAMP 1733 case SO_OTIMESTAMP: 1734 #endif 1735 error = sockopt_getint(sopt, &optval); 1736 solock(so); 1737 if (error) 1738 break; 1739 if (optval) 1740 so->so_options |= opt; 1741 else 1742 so->so_options &= ~opt; 1743 break; 1744 1745 case SO_SNDBUF: 1746 case SO_RCVBUF: 1747 case SO_SNDLOWAT: 1748 case SO_RCVLOWAT: 1749 error = sockopt_getint(sopt, &optval); 1750 solock(so); 1751 if (error) 1752 break; 1753 1754 /* 1755 * Values < 1 make no sense for any of these 1756 * options, so disallow them. 1757 */ 1758 if (optval < 1) { 1759 error = EINVAL; 1760 break; 1761 } 1762 1763 switch (opt) { 1764 case SO_SNDBUF: 1765 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1766 error = ENOBUFS; 1767 break; 1768 } 1769 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1770 break; 1771 1772 case SO_RCVBUF: 1773 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1774 error = ENOBUFS; 1775 break; 1776 } 1777 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1778 break; 1779 1780 /* 1781 * Make sure the low-water is never greater than 1782 * the high-water. 1783 */ 1784 case SO_SNDLOWAT: 1785 if (optval > so->so_snd.sb_hiwat) 1786 optval = so->so_snd.sb_hiwat; 1787 1788 so->so_snd.sb_lowat = optval; 1789 break; 1790 1791 case SO_RCVLOWAT: 1792 if (optval > so->so_rcv.sb_hiwat) 1793 optval = so->so_rcv.sb_hiwat; 1794 1795 so->so_rcv.sb_lowat = optval; 1796 break; 1797 } 1798 break; 1799 1800 #ifdef COMPAT_50 1801 case SO_OSNDTIMEO: 1802 case SO_ORCVTIMEO: { 1803 struct timeval50 otv; 1804 error = sockopt_get(sopt, &otv, sizeof(otv)); 1805 if (error) { 1806 solock(so); 1807 break; 1808 } 1809 timeval50_to_timeval(&otv, &tv); 1810 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1811 error = 0; 1812 /*FALLTHROUGH*/ 1813 } 1814 #endif /* COMPAT_50 */ 1815 1816 case SO_SNDTIMEO: 1817 case SO_RCVTIMEO: 1818 if (error) 1819 error = sockopt_get(sopt, &tv, sizeof(tv)); 1820 solock(so); 1821 if (error) 1822 break; 1823 1824 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1825 error = EDOM; 1826 break; 1827 } 1828 1829 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1830 if (optval == 0 && tv.tv_usec != 0) 1831 optval = 1; 1832 1833 switch (opt) { 1834 case SO_SNDTIMEO: 1835 so->so_snd.sb_timeo = optval; 1836 break; 1837 case SO_RCVTIMEO: 1838 so->so_rcv.sb_timeo = optval; 1839 break; 1840 } 1841 break; 1842 1843 default: 1844 solock(so); 1845 error = ENOPROTOOPT; 1846 break; 1847 } 1848 KASSERT(solocked(so)); 1849 return error; 1850 } 1851 1852 int 1853 sosetopt(struct socket *so, struct sockopt *sopt) 1854 { 1855 int error, prerr; 1856 1857 if (sopt->sopt_level == SOL_SOCKET) { 1858 error = sosetopt1(so, sopt); 1859 KASSERT(solocked(so)); 1860 } else { 1861 error = ENOPROTOOPT; 1862 solock(so); 1863 } 1864 1865 if ((error == 0 || error == ENOPROTOOPT) && 1866 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1867 /* give the protocol stack a shot */ 1868 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1869 if (prerr == 0) 1870 error = 0; 1871 else if (prerr != ENOPROTOOPT) 1872 error = prerr; 1873 } 1874 sounlock(so); 1875 return error; 1876 } 1877 1878 /* 1879 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1880 */ 1881 int 1882 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1883 const void *val, size_t valsize) 1884 { 1885 struct sockopt sopt; 1886 int error; 1887 1888 KASSERT(valsize == 0 || val != NULL); 1889 1890 sockopt_init(&sopt, level, name, valsize); 1891 sockopt_set(&sopt, val, valsize); 1892 1893 error = sosetopt(so, &sopt); 1894 1895 sockopt_destroy(&sopt); 1896 1897 return error; 1898 } 1899 1900 /* 1901 * internal get SOL_SOCKET options 1902 */ 1903 static int 1904 sogetopt1(struct socket *so, struct sockopt *sopt) 1905 { 1906 int error, optval, opt; 1907 struct linger l; 1908 struct timeval tv; 1909 1910 switch ((opt = sopt->sopt_name)) { 1911 1912 case SO_ACCEPTFILTER: 1913 error = accept_filt_getopt(so, sopt); 1914 break; 1915 1916 case SO_LINGER: 1917 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1918 l.l_linger = so->so_linger; 1919 1920 error = sockopt_set(sopt, &l, sizeof(l)); 1921 break; 1922 1923 case SO_USELOOPBACK: 1924 case SO_DONTROUTE: 1925 case SO_DEBUG: 1926 case SO_KEEPALIVE: 1927 case SO_REUSEADDR: 1928 case SO_REUSEPORT: 1929 case SO_BROADCAST: 1930 case SO_OOBINLINE: 1931 case SO_TIMESTAMP: 1932 #ifdef SO_OTIMESTAMP 1933 case SO_OTIMESTAMP: 1934 #endif 1935 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1936 break; 1937 1938 case SO_TYPE: 1939 error = sockopt_setint(sopt, so->so_type); 1940 break; 1941 1942 case SO_ERROR: 1943 error = sockopt_setint(sopt, so->so_error); 1944 so->so_error = 0; 1945 break; 1946 1947 case SO_SNDBUF: 1948 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1949 break; 1950 1951 case SO_RCVBUF: 1952 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1953 break; 1954 1955 case SO_SNDLOWAT: 1956 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1957 break; 1958 1959 case SO_RCVLOWAT: 1960 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1961 break; 1962 1963 #ifdef COMPAT_50 1964 case SO_OSNDTIMEO: 1965 case SO_ORCVTIMEO: { 1966 struct timeval50 otv; 1967 1968 optval = (opt == SO_OSNDTIMEO ? 1969 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1970 1971 otv.tv_sec = optval / hz; 1972 otv.tv_usec = (optval % hz) * tick; 1973 1974 error = sockopt_set(sopt, &otv, sizeof(otv)); 1975 break; 1976 } 1977 #endif /* COMPAT_50 */ 1978 1979 case SO_SNDTIMEO: 1980 case SO_RCVTIMEO: 1981 optval = (opt == SO_SNDTIMEO ? 1982 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1983 1984 tv.tv_sec = optval / hz; 1985 tv.tv_usec = (optval % hz) * tick; 1986 1987 error = sockopt_set(sopt, &tv, sizeof(tv)); 1988 break; 1989 1990 case SO_OVERFLOWED: 1991 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1992 break; 1993 1994 default: 1995 error = ENOPROTOOPT; 1996 break; 1997 } 1998 1999 return (error); 2000 } 2001 2002 int 2003 sogetopt(struct socket *so, struct sockopt *sopt) 2004 { 2005 int error; 2006 2007 solock(so); 2008 if (sopt->sopt_level != SOL_SOCKET) { 2009 if (so->so_proto && so->so_proto->pr_ctloutput) { 2010 error = ((*so->so_proto->pr_ctloutput) 2011 (PRCO_GETOPT, so, sopt)); 2012 } else 2013 error = (ENOPROTOOPT); 2014 } else { 2015 error = sogetopt1(so, sopt); 2016 } 2017 sounlock(so); 2018 return (error); 2019 } 2020 2021 /* 2022 * alloc sockopt data buffer buffer 2023 * - will be released at destroy 2024 */ 2025 static int 2026 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2027 { 2028 2029 KASSERT(sopt->sopt_size == 0); 2030 2031 if (len > sizeof(sopt->sopt_buf)) { 2032 sopt->sopt_data = kmem_zalloc(len, kmflag); 2033 if (sopt->sopt_data == NULL) 2034 return ENOMEM; 2035 } else 2036 sopt->sopt_data = sopt->sopt_buf; 2037 2038 sopt->sopt_size = len; 2039 return 0; 2040 } 2041 2042 /* 2043 * initialise sockopt storage 2044 * - MAY sleep during allocation 2045 */ 2046 void 2047 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2048 { 2049 2050 memset(sopt, 0, sizeof(*sopt)); 2051 2052 sopt->sopt_level = level; 2053 sopt->sopt_name = name; 2054 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2055 } 2056 2057 /* 2058 * destroy sockopt storage 2059 * - will release any held memory references 2060 */ 2061 void 2062 sockopt_destroy(struct sockopt *sopt) 2063 { 2064 2065 if (sopt->sopt_data != sopt->sopt_buf) 2066 kmem_free(sopt->sopt_data, sopt->sopt_size); 2067 2068 memset(sopt, 0, sizeof(*sopt)); 2069 } 2070 2071 /* 2072 * set sockopt value 2073 * - value is copied into sockopt 2074 * - memory is allocated when necessary, will not sleep 2075 */ 2076 int 2077 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2078 { 2079 int error; 2080 2081 if (sopt->sopt_size == 0) { 2082 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2083 if (error) 2084 return error; 2085 } 2086 2087 KASSERT(sopt->sopt_size == len); 2088 memcpy(sopt->sopt_data, buf, len); 2089 return 0; 2090 } 2091 2092 /* 2093 * common case of set sockopt integer value 2094 */ 2095 int 2096 sockopt_setint(struct sockopt *sopt, int val) 2097 { 2098 2099 return sockopt_set(sopt, &val, sizeof(int)); 2100 } 2101 2102 /* 2103 * get sockopt value 2104 * - correct size must be given 2105 */ 2106 int 2107 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2108 { 2109 2110 if (sopt->sopt_size != len) 2111 return EINVAL; 2112 2113 memcpy(buf, sopt->sopt_data, len); 2114 return 0; 2115 } 2116 2117 /* 2118 * common case of get sockopt integer value 2119 */ 2120 int 2121 sockopt_getint(const struct sockopt *sopt, int *valp) 2122 { 2123 2124 return sockopt_get(sopt, valp, sizeof(int)); 2125 } 2126 2127 /* 2128 * set sockopt value from mbuf 2129 * - ONLY for legacy code 2130 * - mbuf is released by sockopt 2131 * - will not sleep 2132 */ 2133 int 2134 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2135 { 2136 size_t len; 2137 int error; 2138 2139 len = m_length(m); 2140 2141 if (sopt->sopt_size == 0) { 2142 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2143 if (error) 2144 return error; 2145 } 2146 2147 KASSERT(sopt->sopt_size == len); 2148 m_copydata(m, 0, len, sopt->sopt_data); 2149 m_freem(m); 2150 2151 return 0; 2152 } 2153 2154 /* 2155 * get sockopt value into mbuf 2156 * - ONLY for legacy code 2157 * - mbuf to be released by the caller 2158 * - will not sleep 2159 */ 2160 struct mbuf * 2161 sockopt_getmbuf(const struct sockopt *sopt) 2162 { 2163 struct mbuf *m; 2164 2165 if (sopt->sopt_size > MCLBYTES) 2166 return NULL; 2167 2168 m = m_get(M_DONTWAIT, MT_SOOPTS); 2169 if (m == NULL) 2170 return NULL; 2171 2172 if (sopt->sopt_size > MLEN) { 2173 MCLGET(m, M_DONTWAIT); 2174 if ((m->m_flags & M_EXT) == 0) { 2175 m_free(m); 2176 return NULL; 2177 } 2178 } 2179 2180 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2181 m->m_len = sopt->sopt_size; 2182 2183 return m; 2184 } 2185 2186 void 2187 sohasoutofband(struct socket *so) 2188 { 2189 2190 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2191 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2192 } 2193 2194 static void 2195 filt_sordetach(struct knote *kn) 2196 { 2197 struct socket *so; 2198 2199 so = ((file_t *)kn->kn_obj)->f_data; 2200 solock(so); 2201 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2202 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2203 so->so_rcv.sb_flags &= ~SB_KNOTE; 2204 sounlock(so); 2205 } 2206 2207 /*ARGSUSED*/ 2208 static int 2209 filt_soread(struct knote *kn, long hint) 2210 { 2211 struct socket *so; 2212 int rv; 2213 2214 so = ((file_t *)kn->kn_obj)->f_data; 2215 if (hint != NOTE_SUBMIT) 2216 solock(so); 2217 kn->kn_data = so->so_rcv.sb_cc; 2218 if (so->so_state & SS_CANTRCVMORE) { 2219 kn->kn_flags |= EV_EOF; 2220 kn->kn_fflags = so->so_error; 2221 rv = 1; 2222 } else if (so->so_error) /* temporary udp error */ 2223 rv = 1; 2224 else if (kn->kn_sfflags & NOTE_LOWAT) 2225 rv = (kn->kn_data >= kn->kn_sdata); 2226 else 2227 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2228 if (hint != NOTE_SUBMIT) 2229 sounlock(so); 2230 return rv; 2231 } 2232 2233 static void 2234 filt_sowdetach(struct knote *kn) 2235 { 2236 struct socket *so; 2237 2238 so = ((file_t *)kn->kn_obj)->f_data; 2239 solock(so); 2240 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2241 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2242 so->so_snd.sb_flags &= ~SB_KNOTE; 2243 sounlock(so); 2244 } 2245 2246 /*ARGSUSED*/ 2247 static int 2248 filt_sowrite(struct knote *kn, long hint) 2249 { 2250 struct socket *so; 2251 int rv; 2252 2253 so = ((file_t *)kn->kn_obj)->f_data; 2254 if (hint != NOTE_SUBMIT) 2255 solock(so); 2256 kn->kn_data = sbspace(&so->so_snd); 2257 if (so->so_state & SS_CANTSENDMORE) { 2258 kn->kn_flags |= EV_EOF; 2259 kn->kn_fflags = so->so_error; 2260 rv = 1; 2261 } else if (so->so_error) /* temporary udp error */ 2262 rv = 1; 2263 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2264 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2265 rv = 0; 2266 else if (kn->kn_sfflags & NOTE_LOWAT) 2267 rv = (kn->kn_data >= kn->kn_sdata); 2268 else 2269 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2270 if (hint != NOTE_SUBMIT) 2271 sounlock(so); 2272 return rv; 2273 } 2274 2275 /*ARGSUSED*/ 2276 static int 2277 filt_solisten(struct knote *kn, long hint) 2278 { 2279 struct socket *so; 2280 int rv; 2281 2282 so = ((file_t *)kn->kn_obj)->f_data; 2283 2284 /* 2285 * Set kn_data to number of incoming connections, not 2286 * counting partial (incomplete) connections. 2287 */ 2288 if (hint != NOTE_SUBMIT) 2289 solock(so); 2290 kn->kn_data = so->so_qlen; 2291 rv = (kn->kn_data > 0); 2292 if (hint != NOTE_SUBMIT) 2293 sounlock(so); 2294 return rv; 2295 } 2296 2297 static const struct filterops solisten_filtops = 2298 { 1, NULL, filt_sordetach, filt_solisten }; 2299 static const struct filterops soread_filtops = 2300 { 1, NULL, filt_sordetach, filt_soread }; 2301 static const struct filterops sowrite_filtops = 2302 { 1, NULL, filt_sowdetach, filt_sowrite }; 2303 2304 int 2305 soo_kqfilter(struct file *fp, struct knote *kn) 2306 { 2307 struct socket *so; 2308 struct sockbuf *sb; 2309 2310 so = ((file_t *)kn->kn_obj)->f_data; 2311 solock(so); 2312 switch (kn->kn_filter) { 2313 case EVFILT_READ: 2314 if (so->so_options & SO_ACCEPTCONN) 2315 kn->kn_fop = &solisten_filtops; 2316 else 2317 kn->kn_fop = &soread_filtops; 2318 sb = &so->so_rcv; 2319 break; 2320 case EVFILT_WRITE: 2321 kn->kn_fop = &sowrite_filtops; 2322 sb = &so->so_snd; 2323 break; 2324 default: 2325 sounlock(so); 2326 return (EINVAL); 2327 } 2328 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2329 sb->sb_flags |= SB_KNOTE; 2330 sounlock(so); 2331 return (0); 2332 } 2333 2334 static int 2335 sodopoll(struct socket *so, int events) 2336 { 2337 int revents; 2338 2339 revents = 0; 2340 2341 if (events & (POLLIN | POLLRDNORM)) 2342 if (soreadable(so)) 2343 revents |= events & (POLLIN | POLLRDNORM); 2344 2345 if (events & (POLLOUT | POLLWRNORM)) 2346 if (sowritable(so)) 2347 revents |= events & (POLLOUT | POLLWRNORM); 2348 2349 if (events & (POLLPRI | POLLRDBAND)) 2350 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2351 revents |= events & (POLLPRI | POLLRDBAND); 2352 2353 return revents; 2354 } 2355 2356 int 2357 sopoll(struct socket *so, int events) 2358 { 2359 int revents = 0; 2360 2361 #ifndef DIAGNOSTIC 2362 /* 2363 * Do a quick, unlocked check in expectation that the socket 2364 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2365 * as the solocked() assertions will fail. 2366 */ 2367 if ((revents = sodopoll(so, events)) != 0) 2368 return revents; 2369 #endif 2370 2371 solock(so); 2372 if ((revents = sodopoll(so, events)) == 0) { 2373 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2374 selrecord(curlwp, &so->so_rcv.sb_sel); 2375 so->so_rcv.sb_flags |= SB_NOTIFY; 2376 } 2377 2378 if (events & (POLLOUT | POLLWRNORM)) { 2379 selrecord(curlwp, &so->so_snd.sb_sel); 2380 so->so_snd.sb_flags |= SB_NOTIFY; 2381 } 2382 } 2383 sounlock(so); 2384 2385 return revents; 2386 } 2387 2388 2389 #include <sys/sysctl.h> 2390 2391 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2392 2393 /* 2394 * sysctl helper routine for kern.somaxkva. ensures that the given 2395 * value is not too small. 2396 * (XXX should we maybe make sure it's not too large as well?) 2397 */ 2398 static int 2399 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2400 { 2401 int error, new_somaxkva; 2402 struct sysctlnode node; 2403 2404 new_somaxkva = somaxkva; 2405 node = *rnode; 2406 node.sysctl_data = &new_somaxkva; 2407 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2408 if (error || newp == NULL) 2409 return (error); 2410 2411 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2412 return (EINVAL); 2413 2414 mutex_enter(&so_pendfree_lock); 2415 somaxkva = new_somaxkva; 2416 cv_broadcast(&socurkva_cv); 2417 mutex_exit(&so_pendfree_lock); 2418 2419 return (error); 2420 } 2421 2422 static void 2423 sysctl_kern_somaxkva_setup(void) 2424 { 2425 2426 KASSERT(socket_sysctllog == NULL); 2427 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2428 CTLFLAG_PERMANENT, 2429 CTLTYPE_NODE, "kern", NULL, 2430 NULL, 0, NULL, 0, 2431 CTL_KERN, CTL_EOL); 2432 2433 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2434 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2435 CTLTYPE_INT, "somaxkva", 2436 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2437 "used for socket buffers"), 2438 sysctl_kern_somaxkva, 0, NULL, 0, 2439 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2440 } 2441