1 /* $NetBSD: uipc_socket.c,v 1.115 2005/12/27 00:00:29 yamt Exp $ */ 2 3 /*- 4 * Copyright (c) 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1988, 1990, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.115 2005/12/27 00:00:29 yamt Exp $"); 72 73 #include "opt_sock_counters.h" 74 #include "opt_sosend_loan.h" 75 #include "opt_mbuftrace.h" 76 #include "opt_somaxkva.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/file.h> 82 #include <sys/malloc.h> 83 #include <sys/mbuf.h> 84 #include <sys/domain.h> 85 #include <sys/kernel.h> 86 #include <sys/protosw.h> 87 #include <sys/socket.h> 88 #include <sys/socketvar.h> 89 #include <sys/signalvar.h> 90 #include <sys/resourcevar.h> 91 #include <sys/pool.h> 92 #include <sys/event.h> 93 #include <sys/poll.h> 94 95 #include <uvm/uvm.h> 96 97 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL); 98 99 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 100 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 101 102 extern int somaxconn; /* patchable (XXX sysctl) */ 103 int somaxconn = SOMAXCONN; 104 105 #ifdef SOSEND_COUNTERS 106 #include <sys/device.h> 107 108 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 109 NULL, "sosend", "loan big"); 110 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 111 NULL, "sosend", "copy big"); 112 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 113 NULL, "sosend", "copy small"); 114 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 115 NULL, "sosend", "kva limit"); 116 117 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 118 119 EVCNT_ATTACH_STATIC(sosend_loan_big); 120 EVCNT_ATTACH_STATIC(sosend_copy_big); 121 EVCNT_ATTACH_STATIC(sosend_copy_small); 122 EVCNT_ATTACH_STATIC(sosend_kvalimit); 123 #else 124 125 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 126 127 #endif /* SOSEND_COUNTERS */ 128 129 void 130 soinit(void) 131 { 132 133 /* Set the initial adjusted socket buffer size. */ 134 if (sb_max_set(sb_max)) 135 panic("bad initial sb_max value: %lu", sb_max); 136 137 } 138 139 #ifdef SOSEND_NO_LOAN 140 int use_sosend_loan = 0; 141 #else 142 int use_sosend_loan = 1; 143 #endif 144 145 static struct simplelock so_pendfree_slock = SIMPLELOCK_INITIALIZER; 146 static struct mbuf *so_pendfree; 147 148 #ifndef SOMAXKVA 149 #define SOMAXKVA (16 * 1024 * 1024) 150 #endif 151 int somaxkva = SOMAXKVA; 152 static int socurkva; 153 static int sokvawaiters; 154 155 #define SOCK_LOAN_THRESH 4096 156 #define SOCK_LOAN_CHUNK 65536 157 158 static size_t sodopendfree(struct socket *); 159 static size_t sodopendfreel(struct socket *); 160 161 static vsize_t 162 sokvareserve(struct socket *so, vsize_t len) 163 { 164 int s; 165 int error; 166 167 s = splvm(); 168 simple_lock(&so_pendfree_slock); 169 while (socurkva + len > somaxkva) { 170 size_t freed; 171 172 /* 173 * try to do pendfree. 174 */ 175 176 freed = sodopendfreel(so); 177 178 /* 179 * if some kva was freed, try again. 180 */ 181 182 if (freed) 183 continue; 184 185 SOSEND_COUNTER_INCR(&sosend_kvalimit); 186 sokvawaiters++; 187 error = ltsleep(&socurkva, PVM | PCATCH, "sokva", 0, 188 &so_pendfree_slock); 189 sokvawaiters--; 190 if (error) { 191 len = 0; 192 break; 193 } 194 } 195 socurkva += len; 196 simple_unlock(&so_pendfree_slock); 197 splx(s); 198 return len; 199 } 200 201 static void 202 sokvaunreserve(vsize_t len) 203 { 204 int s; 205 206 s = splvm(); 207 simple_lock(&so_pendfree_slock); 208 socurkva -= len; 209 if (sokvawaiters) 210 wakeup(&socurkva); 211 simple_unlock(&so_pendfree_slock); 212 splx(s); 213 } 214 215 /* 216 * sokvaalloc: allocate kva for loan. 217 */ 218 219 vaddr_t 220 sokvaalloc(vsize_t len, struct socket *so) 221 { 222 vaddr_t lva; 223 224 /* 225 * reserve kva. 226 */ 227 228 if (sokvareserve(so, len) == 0) 229 return 0; 230 231 /* 232 * allocate kva. 233 */ 234 235 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 236 if (lva == 0) { 237 sokvaunreserve(len); 238 return (0); 239 } 240 241 return lva; 242 } 243 244 /* 245 * sokvafree: free kva for loan. 246 */ 247 248 void 249 sokvafree(vaddr_t sva, vsize_t len) 250 { 251 252 /* 253 * free kva. 254 */ 255 256 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 257 258 /* 259 * unreserve kva. 260 */ 261 262 sokvaunreserve(len); 263 } 264 265 static void 266 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size) 267 { 268 vaddr_t va, sva, eva; 269 vsize_t len; 270 paddr_t pa; 271 int i, npgs; 272 273 eva = round_page((vaddr_t) buf + size); 274 sva = trunc_page((vaddr_t) buf); 275 len = eva - sva; 276 npgs = len >> PAGE_SHIFT; 277 278 if (__predict_false(pgs == NULL)) { 279 pgs = alloca(npgs * sizeof(*pgs)); 280 281 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) { 282 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) 283 panic("sodoloanfree: va 0x%lx not mapped", va); 284 pgs[i] = PHYS_TO_VM_PAGE(pa); 285 } 286 } 287 288 pmap_kremove(sva, len); 289 pmap_update(pmap_kernel()); 290 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 291 sokvafree(sva, len); 292 } 293 294 static size_t 295 sodopendfree(struct socket *so) 296 { 297 int s; 298 size_t rv; 299 300 s = splvm(); 301 simple_lock(&so_pendfree_slock); 302 rv = sodopendfreel(so); 303 simple_unlock(&so_pendfree_slock); 304 splx(s); 305 306 return rv; 307 } 308 309 /* 310 * sodopendfreel: free mbufs on "pendfree" list. 311 * unlock and relock so_pendfree_slock when freeing mbufs. 312 * 313 * => called with so_pendfree_slock held. 314 * => called at splvm. 315 */ 316 317 static size_t 318 sodopendfreel(struct socket *so) 319 { 320 size_t rv = 0; 321 322 LOCK_ASSERT(simple_lock_held(&so_pendfree_slock)); 323 324 for (;;) { 325 struct mbuf *m; 326 struct mbuf *next; 327 328 m = so_pendfree; 329 if (m == NULL) 330 break; 331 so_pendfree = NULL; 332 simple_unlock(&so_pendfree_slock); 333 /* XXX splx */ 334 335 for (; m != NULL; m = next) { 336 next = m->m_next; 337 338 rv += m->m_ext.ext_size; 339 sodoloanfree((m->m_flags & M_EXT_PAGES) ? 340 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf, 341 m->m_ext.ext_size); 342 pool_cache_put(&mbpool_cache, m); 343 } 344 345 /* XXX splvm */ 346 simple_lock(&so_pendfree_slock); 347 } 348 349 return (rv); 350 } 351 352 void 353 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg) 354 { 355 int s; 356 357 if (m == NULL) { 358 359 /* 360 * called from MEXTREMOVE. 361 */ 362 363 sodoloanfree(NULL, buf, size); 364 return; 365 } 366 367 /* 368 * postpone freeing mbuf. 369 * 370 * we can't do it in interrupt context 371 * because we need to put kva back to kernel_map. 372 */ 373 374 s = splvm(); 375 simple_lock(&so_pendfree_slock); 376 m->m_next = so_pendfree; 377 so_pendfree = m; 378 if (sokvawaiters) 379 wakeup(&socurkva); 380 simple_unlock(&so_pendfree_slock); 381 splx(s); 382 } 383 384 static long 385 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 386 { 387 struct iovec *iov = uio->uio_iov; 388 vaddr_t sva, eva; 389 vsize_t len; 390 vaddr_t lva, va; 391 int npgs, i, error; 392 393 if (uio->uio_segflg != UIO_USERSPACE) 394 return (0); 395 396 if (iov->iov_len < (size_t) space) 397 space = iov->iov_len; 398 if (space > SOCK_LOAN_CHUNK) 399 space = SOCK_LOAN_CHUNK; 400 401 eva = round_page((vaddr_t) iov->iov_base + space); 402 sva = trunc_page((vaddr_t) iov->iov_base); 403 len = eva - sva; 404 npgs = len >> PAGE_SHIFT; 405 406 /* XXX KDASSERT */ 407 KASSERT(npgs <= M_EXT_MAXPAGES); 408 KASSERT(uio->uio_lwp != NULL); 409 410 lva = sokvaalloc(len, so); 411 if (lva == 0) 412 return 0; 413 414 error = uvm_loan(&uio->uio_lwp->l_proc->p_vmspace->vm_map, sva, len, 415 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 416 if (error) { 417 sokvafree(lva, len); 418 return (0); 419 } 420 421 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 422 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 423 VM_PROT_READ); 424 pmap_update(pmap_kernel()); 425 426 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 427 428 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so); 429 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 430 431 uio->uio_resid -= space; 432 /* uio_offset not updated, not set/used for write(2) */ 433 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space; 434 uio->uio_iov->iov_len -= space; 435 if (uio->uio_iov->iov_len == 0) { 436 uio->uio_iov++; 437 uio->uio_iovcnt--; 438 } 439 440 return (space); 441 } 442 443 /* 444 * Socket operation routines. 445 * These routines are called by the routines in 446 * sys_socket.c or from a system process, and 447 * implement the semantics of socket operations by 448 * switching out to the protocol specific routines. 449 */ 450 /*ARGSUSED*/ 451 int 452 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l) 453 { 454 const struct protosw *prp; 455 struct socket *so; 456 uid_t uid; 457 int error, s; 458 459 if (proto) 460 prp = pffindproto(dom, proto, type); 461 else 462 prp = pffindtype(dom, type); 463 if (prp == 0 || prp->pr_usrreq == 0) 464 return (EPROTONOSUPPORT); 465 if (prp->pr_type != type) 466 return (EPROTOTYPE); 467 s = splsoftnet(); 468 so = pool_get(&socket_pool, PR_WAITOK); 469 memset((caddr_t)so, 0, sizeof(*so)); 470 TAILQ_INIT(&so->so_q0); 471 TAILQ_INIT(&so->so_q); 472 so->so_type = type; 473 so->so_proto = prp; 474 so->so_send = sosend; 475 so->so_receive = soreceive; 476 #ifdef MBUFTRACE 477 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 478 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 479 so->so_mowner = &prp->pr_domain->dom_mowner; 480 #endif 481 if (l != NULL) { 482 uid = l->l_proc->p_ucred->cr_uid; 483 } else { 484 uid = 0; 485 } 486 so->so_uidinfo = uid_find(uid); 487 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0, 488 (struct mbuf *)(long)proto, (struct mbuf *)0, l); 489 if (error) { 490 so->so_state |= SS_NOFDREF; 491 sofree(so); 492 splx(s); 493 return (error); 494 } 495 splx(s); 496 *aso = so; 497 return (0); 498 } 499 500 int 501 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 502 { 503 int s, error; 504 505 s = splsoftnet(); 506 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0, 507 nam, (struct mbuf *)0, l); 508 splx(s); 509 return (error); 510 } 511 512 int 513 solisten(struct socket *so, int backlog) 514 { 515 int s, error; 516 517 s = splsoftnet(); 518 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0, 519 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); 520 if (error) { 521 splx(s); 522 return (error); 523 } 524 if (TAILQ_EMPTY(&so->so_q)) 525 so->so_options |= SO_ACCEPTCONN; 526 if (backlog < 0) 527 backlog = 0; 528 so->so_qlimit = min(backlog, somaxconn); 529 splx(s); 530 return (0); 531 } 532 533 void 534 sofree(struct socket *so) 535 { 536 537 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 538 return; 539 if (so->so_head) { 540 /* 541 * We must not decommission a socket that's on the accept(2) 542 * queue. If we do, then accept(2) may hang after select(2) 543 * indicated that the listening socket was ready. 544 */ 545 if (!soqremque(so, 0)) 546 return; 547 } 548 if (so->so_rcv.sb_hiwat) 549 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 550 RLIM_INFINITY); 551 if (so->so_snd.sb_hiwat) 552 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 553 RLIM_INFINITY); 554 sbrelease(&so->so_snd, so); 555 sorflush(so); 556 pool_put(&socket_pool, so); 557 } 558 559 /* 560 * Close a socket on last file table reference removal. 561 * Initiate disconnect if connected. 562 * Free socket when disconnect complete. 563 */ 564 int 565 soclose(struct socket *so) 566 { 567 struct socket *so2; 568 int s, error; 569 570 error = 0; 571 s = splsoftnet(); /* conservative */ 572 if (so->so_options & SO_ACCEPTCONN) { 573 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 574 (void) soqremque(so2, 0); 575 (void) soabort(so2); 576 } 577 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 578 (void) soqremque(so2, 1); 579 (void) soabort(so2); 580 } 581 } 582 if (so->so_pcb == 0) 583 goto discard; 584 if (so->so_state & SS_ISCONNECTED) { 585 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 586 error = sodisconnect(so); 587 if (error) 588 goto drop; 589 } 590 if (so->so_options & SO_LINGER) { 591 if ((so->so_state & SS_ISDISCONNECTING) && 592 (so->so_state & SS_NBIO)) 593 goto drop; 594 while (so->so_state & SS_ISCONNECTED) { 595 error = tsleep((caddr_t)&so->so_timeo, 596 PSOCK | PCATCH, netcls, 597 so->so_linger * hz); 598 if (error) 599 break; 600 } 601 } 602 } 603 drop: 604 if (so->so_pcb) { 605 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 606 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0, 607 (struct lwp *)0); 608 if (error == 0) 609 error = error2; 610 } 611 discard: 612 if (so->so_state & SS_NOFDREF) 613 panic("soclose: NOFDREF"); 614 so->so_state |= SS_NOFDREF; 615 sofree(so); 616 splx(s); 617 return (error); 618 } 619 620 /* 621 * Must be called at splsoftnet... 622 */ 623 int 624 soabort(struct socket *so) 625 { 626 627 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0, 628 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); 629 } 630 631 int 632 soaccept(struct socket *so, struct mbuf *nam) 633 { 634 int s, error; 635 636 error = 0; 637 s = splsoftnet(); 638 if ((so->so_state & SS_NOFDREF) == 0) 639 panic("soaccept: !NOFDREF"); 640 so->so_state &= ~SS_NOFDREF; 641 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 642 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 643 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 644 (struct mbuf *)0, nam, (struct mbuf *)0, (struct lwp *)0); 645 else 646 error = ECONNABORTED; 647 648 splx(s); 649 return (error); 650 } 651 652 int 653 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 654 { 655 int s, error; 656 657 if (so->so_options & SO_ACCEPTCONN) 658 return (EOPNOTSUPP); 659 s = splsoftnet(); 660 /* 661 * If protocol is connection-based, can only connect once. 662 * Otherwise, if connected, try to disconnect first. 663 * This allows user to disconnect by connecting to, e.g., 664 * a null address. 665 */ 666 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 667 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 668 (error = sodisconnect(so)))) 669 error = EISCONN; 670 else 671 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 672 (struct mbuf *)0, nam, (struct mbuf *)0, l); 673 splx(s); 674 return (error); 675 } 676 677 int 678 soconnect2(struct socket *so1, struct socket *so2) 679 { 680 int s, error; 681 682 s = splsoftnet(); 683 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 684 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0, 685 (struct lwp *)0); 686 splx(s); 687 return (error); 688 } 689 690 int 691 sodisconnect(struct socket *so) 692 { 693 int s, error; 694 695 s = splsoftnet(); 696 if ((so->so_state & SS_ISCONNECTED) == 0) { 697 error = ENOTCONN; 698 goto bad; 699 } 700 if (so->so_state & SS_ISDISCONNECTING) { 701 error = EALREADY; 702 goto bad; 703 } 704 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 705 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0, 706 (struct lwp *)0); 707 bad: 708 splx(s); 709 sodopendfree(so); 710 return (error); 711 } 712 713 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 714 /* 715 * Send on a socket. 716 * If send must go all at once and message is larger than 717 * send buffering, then hard error. 718 * Lock against other senders. 719 * If must go all at once and not enough room now, then 720 * inform user that this would block and do nothing. 721 * Otherwise, if nonblocking, send as much as possible. 722 * The data to be sent is described by "uio" if nonzero, 723 * otherwise by the mbuf chain "top" (which must be null 724 * if uio is not). Data provided in mbuf chain must be small 725 * enough to send all at once. 726 * 727 * Returns nonzero on error, timeout or signal; callers 728 * must check for short counts if EINTR/ERESTART are returned. 729 * Data and control buffers are freed on return. 730 */ 731 int 732 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 733 struct mbuf *control, int flags, struct lwp *l) 734 { 735 struct mbuf **mp, *m; 736 struct proc *p; 737 long space, len, resid, clen, mlen; 738 int error, s, dontroute, atomic; 739 740 p = l->l_proc; 741 sodopendfree(so); 742 743 clen = 0; 744 atomic = sosendallatonce(so) || top; 745 if (uio) 746 resid = uio->uio_resid; 747 else 748 resid = top->m_pkthdr.len; 749 /* 750 * In theory resid should be unsigned. 751 * However, space must be signed, as it might be less than 0 752 * if we over-committed, and we must use a signed comparison 753 * of space and resid. On the other hand, a negative resid 754 * causes us to loop sending 0-length segments to the protocol. 755 */ 756 if (resid < 0) { 757 error = EINVAL; 758 goto out; 759 } 760 dontroute = 761 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 762 (so->so_proto->pr_flags & PR_ATOMIC); 763 if (p) 764 p->p_stats->p_ru.ru_msgsnd++; 765 if (control) 766 clen = control->m_len; 767 #define snderr(errno) { error = errno; splx(s); goto release; } 768 769 restart: 770 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 771 goto out; 772 do { 773 s = splsoftnet(); 774 if (so->so_state & SS_CANTSENDMORE) 775 snderr(EPIPE); 776 if (so->so_error) { 777 error = so->so_error; 778 so->so_error = 0; 779 splx(s); 780 goto release; 781 } 782 if ((so->so_state & SS_ISCONNECTED) == 0) { 783 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 784 if ((so->so_state & SS_ISCONFIRMING) == 0 && 785 !(resid == 0 && clen != 0)) 786 snderr(ENOTCONN); 787 } else if (addr == 0) 788 snderr(EDESTADDRREQ); 789 } 790 space = sbspace(&so->so_snd); 791 if (flags & MSG_OOB) 792 space += 1024; 793 if ((atomic && resid > so->so_snd.sb_hiwat) || 794 clen > so->so_snd.sb_hiwat) 795 snderr(EMSGSIZE); 796 if (space < resid + clen && 797 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 798 if (so->so_state & SS_NBIO) 799 snderr(EWOULDBLOCK); 800 sbunlock(&so->so_snd); 801 error = sbwait(&so->so_snd); 802 splx(s); 803 if (error) 804 goto out; 805 goto restart; 806 } 807 splx(s); 808 mp = ⊤ 809 space -= clen; 810 do { 811 if (uio == NULL) { 812 /* 813 * Data is prepackaged in "top". 814 */ 815 resid = 0; 816 if (flags & MSG_EOR) 817 top->m_flags |= M_EOR; 818 } else do { 819 if (top == 0) { 820 m = m_gethdr(M_WAIT, MT_DATA); 821 mlen = MHLEN; 822 m->m_pkthdr.len = 0; 823 m->m_pkthdr.rcvif = (struct ifnet *)0; 824 } else { 825 m = m_get(M_WAIT, MT_DATA); 826 mlen = MLEN; 827 } 828 MCLAIM(m, so->so_snd.sb_mowner); 829 if (use_sosend_loan && 830 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH && 831 space >= SOCK_LOAN_THRESH && 832 (len = sosend_loan(so, uio, m, 833 space)) != 0) { 834 SOSEND_COUNTER_INCR(&sosend_loan_big); 835 space -= len; 836 goto have_data; 837 } 838 if (resid >= MINCLSIZE && space >= MCLBYTES) { 839 SOSEND_COUNTER_INCR(&sosend_copy_big); 840 m_clget(m, M_WAIT); 841 if ((m->m_flags & M_EXT) == 0) 842 goto nopages; 843 mlen = MCLBYTES; 844 if (atomic && top == 0) { 845 len = lmin(MCLBYTES - max_hdr, 846 resid); 847 m->m_data += max_hdr; 848 } else 849 len = lmin(MCLBYTES, resid); 850 space -= len; 851 } else { 852 nopages: 853 SOSEND_COUNTER_INCR(&sosend_copy_small); 854 len = lmin(lmin(mlen, resid), space); 855 space -= len; 856 /* 857 * For datagram protocols, leave room 858 * for protocol headers in first mbuf. 859 */ 860 if (atomic && top == 0 && len < mlen) 861 MH_ALIGN(m, len); 862 } 863 error = uiomove(mtod(m, caddr_t), (int)len, 864 uio); 865 have_data: 866 resid = uio->uio_resid; 867 m->m_len = len; 868 *mp = m; 869 top->m_pkthdr.len += len; 870 if (error) 871 goto release; 872 mp = &m->m_next; 873 if (resid <= 0) { 874 if (flags & MSG_EOR) 875 top->m_flags |= M_EOR; 876 break; 877 } 878 } while (space > 0 && atomic); 879 880 s = splsoftnet(); 881 882 if (so->so_state & SS_CANTSENDMORE) 883 snderr(EPIPE); 884 885 if (dontroute) 886 so->so_options |= SO_DONTROUTE; 887 if (resid > 0) 888 so->so_state |= SS_MORETOCOME; 889 error = (*so->so_proto->pr_usrreq)(so, 890 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 891 top, addr, control, curlwp); /* XXX */ 892 if (dontroute) 893 so->so_options &= ~SO_DONTROUTE; 894 if (resid > 0) 895 so->so_state &= ~SS_MORETOCOME; 896 splx(s); 897 898 clen = 0; 899 control = 0; 900 top = 0; 901 mp = ⊤ 902 if (error) 903 goto release; 904 } while (resid && space > 0); 905 } while (resid); 906 907 release: 908 sbunlock(&so->so_snd); 909 out: 910 if (top) 911 m_freem(top); 912 if (control) 913 m_freem(control); 914 return (error); 915 } 916 917 /* 918 * Implement receive operations on a socket. 919 * We depend on the way that records are added to the sockbuf 920 * by sbappend*. In particular, each record (mbufs linked through m_next) 921 * must begin with an address if the protocol so specifies, 922 * followed by an optional mbuf or mbufs containing ancillary data, 923 * and then zero or more mbufs of data. 924 * In order to avoid blocking network interrupts for the entire time here, 925 * we splx() while doing the actual copy to user space. 926 * Although the sockbuf is locked, new data may still be appended, 927 * and thus we must maintain consistency of the sockbuf during that time. 928 * 929 * The caller may receive the data as a single mbuf chain by supplying 930 * an mbuf **mp0 for use in returning the chain. The uio is then used 931 * only for the count in uio_resid. 932 */ 933 int 934 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 935 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 936 { 937 struct lwp *l; 938 struct mbuf *m, **mp; 939 int flags, len, error, s, offset, moff, type, orig_resid; 940 const struct protosw *pr; 941 struct mbuf *nextrecord; 942 int mbuf_removed = 0; 943 944 pr = so->so_proto; 945 mp = mp0; 946 type = 0; 947 orig_resid = uio->uio_resid; 948 l = uio->uio_lwp; 949 950 if (paddr) 951 *paddr = 0; 952 if (controlp) 953 *controlp = 0; 954 if (flagsp) 955 flags = *flagsp &~ MSG_EOR; 956 else 957 flags = 0; 958 959 if ((flags & MSG_DONTWAIT) == 0) 960 sodopendfree(so); 961 962 if (flags & MSG_OOB) { 963 m = m_get(M_WAIT, MT_DATA); 964 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 965 (struct mbuf *)(long)(flags & MSG_PEEK), 966 (struct mbuf *)0, l); 967 if (error) 968 goto bad; 969 do { 970 error = uiomove(mtod(m, caddr_t), 971 (int) min(uio->uio_resid, m->m_len), uio); 972 m = m_free(m); 973 } while (uio->uio_resid && error == 0 && m); 974 bad: 975 if (m) 976 m_freem(m); 977 return (error); 978 } 979 if (mp) 980 *mp = (struct mbuf *)0; 981 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 982 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0, 983 (struct mbuf *)0, (struct mbuf *)0, l); 984 985 restart: 986 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 987 return (error); 988 s = splsoftnet(); 989 990 m = so->so_rcv.sb_mb; 991 /* 992 * If we have less data than requested, block awaiting more 993 * (subject to any timeout) if: 994 * 1. the current count is less than the low water mark, 995 * 2. MSG_WAITALL is set, and it is possible to do the entire 996 * receive operation at once if we block (resid <= hiwat), or 997 * 3. MSG_DONTWAIT is not set. 998 * If MSG_WAITALL is set but resid is larger than the receive buffer, 999 * we have to do the receive in sections, and thus risk returning 1000 * a short count if a timeout or signal occurs after we start. 1001 */ 1002 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && 1003 so->so_rcv.sb_cc < uio->uio_resid) && 1004 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1005 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1006 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { 1007 #ifdef DIAGNOSTIC 1008 if (m == 0 && so->so_rcv.sb_cc) 1009 panic("receive 1"); 1010 #endif 1011 if (so->so_error) { 1012 if (m) 1013 goto dontblock; 1014 error = so->so_error; 1015 if ((flags & MSG_PEEK) == 0) 1016 so->so_error = 0; 1017 goto release; 1018 } 1019 if (so->so_state & SS_CANTRCVMORE) { 1020 if (m) 1021 goto dontblock; 1022 else 1023 goto release; 1024 } 1025 for (; m; m = m->m_next) 1026 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1027 m = so->so_rcv.sb_mb; 1028 goto dontblock; 1029 } 1030 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1031 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1032 error = ENOTCONN; 1033 goto release; 1034 } 1035 if (uio->uio_resid == 0) 1036 goto release; 1037 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 1038 error = EWOULDBLOCK; 1039 goto release; 1040 } 1041 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1042 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1043 sbunlock(&so->so_rcv); 1044 error = sbwait(&so->so_rcv); 1045 splx(s); 1046 if (error) 1047 return (error); 1048 goto restart; 1049 } 1050 dontblock: 1051 /* 1052 * On entry here, m points to the first record of the socket buffer. 1053 * While we process the initial mbufs containing address and control 1054 * info, we save a copy of m->m_nextpkt into nextrecord. 1055 */ 1056 if (l) 1057 l->l_proc->p_stats->p_ru.ru_msgrcv++; 1058 KASSERT(m == so->so_rcv.sb_mb); 1059 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1060 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1061 nextrecord = m->m_nextpkt; 1062 if (pr->pr_flags & PR_ADDR) { 1063 #ifdef DIAGNOSTIC 1064 if (m->m_type != MT_SONAME) 1065 panic("receive 1a"); 1066 #endif 1067 orig_resid = 0; 1068 if (flags & MSG_PEEK) { 1069 if (paddr) 1070 *paddr = m_copy(m, 0, m->m_len); 1071 m = m->m_next; 1072 } else { 1073 sbfree(&so->so_rcv, m); 1074 mbuf_removed = 1; 1075 if (paddr) { 1076 *paddr = m; 1077 so->so_rcv.sb_mb = m->m_next; 1078 m->m_next = 0; 1079 m = so->so_rcv.sb_mb; 1080 } else { 1081 MFREE(m, so->so_rcv.sb_mb); 1082 m = so->so_rcv.sb_mb; 1083 } 1084 } 1085 } 1086 while (m && m->m_type == MT_CONTROL && error == 0) { 1087 if (flags & MSG_PEEK) { 1088 if (controlp) 1089 *controlp = m_copy(m, 0, m->m_len); 1090 m = m->m_next; 1091 } else { 1092 sbfree(&so->so_rcv, m); 1093 mbuf_removed = 1; 1094 if (controlp) { 1095 struct domain *dom = pr->pr_domain; 1096 if (dom->dom_externalize && l && 1097 mtod(m, struct cmsghdr *)->cmsg_type == 1098 SCM_RIGHTS) 1099 error = (*dom->dom_externalize)(m, l); 1100 *controlp = m; 1101 so->so_rcv.sb_mb = m->m_next; 1102 m->m_next = 0; 1103 m = so->so_rcv.sb_mb; 1104 } else { 1105 /* 1106 * Dispose of any SCM_RIGHTS message that went 1107 * through the read path rather than recv. 1108 */ 1109 if (pr->pr_domain->dom_dispose && 1110 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 1111 (*pr->pr_domain->dom_dispose)(m); 1112 MFREE(m, so->so_rcv.sb_mb); 1113 m = so->so_rcv.sb_mb; 1114 } 1115 } 1116 if (controlp) { 1117 orig_resid = 0; 1118 controlp = &(*controlp)->m_next; 1119 } 1120 } 1121 1122 /* 1123 * If m is non-NULL, we have some data to read. From now on, 1124 * make sure to keep sb_lastrecord consistent when working on 1125 * the last packet on the chain (nextrecord == NULL) and we 1126 * change m->m_nextpkt. 1127 */ 1128 if (m) { 1129 if ((flags & MSG_PEEK) == 0) { 1130 m->m_nextpkt = nextrecord; 1131 /* 1132 * If nextrecord == NULL (this is a single chain), 1133 * then sb_lastrecord may not be valid here if m 1134 * was changed earlier. 1135 */ 1136 if (nextrecord == NULL) { 1137 KASSERT(so->so_rcv.sb_mb == m); 1138 so->so_rcv.sb_lastrecord = m; 1139 } 1140 } 1141 type = m->m_type; 1142 if (type == MT_OOBDATA) 1143 flags |= MSG_OOB; 1144 } else { 1145 if ((flags & MSG_PEEK) == 0) { 1146 KASSERT(so->so_rcv.sb_mb == m); 1147 so->so_rcv.sb_mb = nextrecord; 1148 SB_EMPTY_FIXUP(&so->so_rcv); 1149 } 1150 } 1151 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1152 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1153 1154 moff = 0; 1155 offset = 0; 1156 while (m && uio->uio_resid > 0 && error == 0) { 1157 if (m->m_type == MT_OOBDATA) { 1158 if (type != MT_OOBDATA) 1159 break; 1160 } else if (type == MT_OOBDATA) 1161 break; 1162 #ifdef DIAGNOSTIC 1163 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1164 panic("receive 3"); 1165 #endif 1166 so->so_state &= ~SS_RCVATMARK; 1167 len = uio->uio_resid; 1168 if (so->so_oobmark && len > so->so_oobmark - offset) 1169 len = so->so_oobmark - offset; 1170 if (len > m->m_len - moff) 1171 len = m->m_len - moff; 1172 /* 1173 * If mp is set, just pass back the mbufs. 1174 * Otherwise copy them out via the uio, then free. 1175 * Sockbuf must be consistent here (points to current mbuf, 1176 * it points to next record) when we drop priority; 1177 * we must note any additions to the sockbuf when we 1178 * block interrupts again. 1179 */ 1180 if (mp == 0) { 1181 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1182 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1183 splx(s); 1184 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); 1185 s = splsoftnet(); 1186 if (error) { 1187 /* 1188 * If any part of the record has been removed 1189 * (such as the MT_SONAME mbuf, which will 1190 * happen when PR_ADDR, and thus also 1191 * PR_ATOMIC, is set), then drop the entire 1192 * record to maintain the atomicity of the 1193 * receive operation. 1194 * 1195 * This avoids a later panic("receive 1a") 1196 * when compiled with DIAGNOSTIC. 1197 */ 1198 if (m && mbuf_removed 1199 && (pr->pr_flags & PR_ATOMIC)) 1200 (void) sbdroprecord(&so->so_rcv); 1201 1202 goto release; 1203 } 1204 } else 1205 uio->uio_resid -= len; 1206 if (len == m->m_len - moff) { 1207 if (m->m_flags & M_EOR) 1208 flags |= MSG_EOR; 1209 if (flags & MSG_PEEK) { 1210 m = m->m_next; 1211 moff = 0; 1212 } else { 1213 nextrecord = m->m_nextpkt; 1214 sbfree(&so->so_rcv, m); 1215 if (mp) { 1216 *mp = m; 1217 mp = &m->m_next; 1218 so->so_rcv.sb_mb = m = m->m_next; 1219 *mp = (struct mbuf *)0; 1220 } else { 1221 MFREE(m, so->so_rcv.sb_mb); 1222 m = so->so_rcv.sb_mb; 1223 } 1224 /* 1225 * If m != NULL, we also know that 1226 * so->so_rcv.sb_mb != NULL. 1227 */ 1228 KASSERT(so->so_rcv.sb_mb == m); 1229 if (m) { 1230 m->m_nextpkt = nextrecord; 1231 if (nextrecord == NULL) 1232 so->so_rcv.sb_lastrecord = m; 1233 } else { 1234 so->so_rcv.sb_mb = nextrecord; 1235 SB_EMPTY_FIXUP(&so->so_rcv); 1236 } 1237 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1238 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1239 } 1240 } else { 1241 if (flags & MSG_PEEK) 1242 moff += len; 1243 else { 1244 if (mp) 1245 *mp = m_copym(m, 0, len, M_WAIT); 1246 m->m_data += len; 1247 m->m_len -= len; 1248 so->so_rcv.sb_cc -= len; 1249 } 1250 } 1251 if (so->so_oobmark) { 1252 if ((flags & MSG_PEEK) == 0) { 1253 so->so_oobmark -= len; 1254 if (so->so_oobmark == 0) { 1255 so->so_state |= SS_RCVATMARK; 1256 break; 1257 } 1258 } else { 1259 offset += len; 1260 if (offset == so->so_oobmark) 1261 break; 1262 } 1263 } 1264 if (flags & MSG_EOR) 1265 break; 1266 /* 1267 * If the MSG_WAITALL flag is set (for non-atomic socket), 1268 * we must not quit until "uio->uio_resid == 0" or an error 1269 * termination. If a signal/timeout occurs, return 1270 * with a short count but without error. 1271 * Keep sockbuf locked against other readers. 1272 */ 1273 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && 1274 !sosendallatonce(so) && !nextrecord) { 1275 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1276 break; 1277 /* 1278 * If we are peeking and the socket receive buffer is 1279 * full, stop since we can't get more data to peek at. 1280 */ 1281 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1282 break; 1283 /* 1284 * If we've drained the socket buffer, tell the 1285 * protocol in case it needs to do something to 1286 * get it filled again. 1287 */ 1288 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1289 (*pr->pr_usrreq)(so, PRU_RCVD, 1290 (struct mbuf *)0, 1291 (struct mbuf *)(long)flags, 1292 (struct mbuf *)0, l); 1293 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1294 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1295 error = sbwait(&so->so_rcv); 1296 if (error) { 1297 sbunlock(&so->so_rcv); 1298 splx(s); 1299 return (0); 1300 } 1301 if ((m = so->so_rcv.sb_mb) != NULL) 1302 nextrecord = m->m_nextpkt; 1303 } 1304 } 1305 1306 if (m && pr->pr_flags & PR_ATOMIC) { 1307 flags |= MSG_TRUNC; 1308 if ((flags & MSG_PEEK) == 0) 1309 (void) sbdroprecord(&so->so_rcv); 1310 } 1311 if ((flags & MSG_PEEK) == 0) { 1312 if (m == 0) { 1313 /* 1314 * First part is an inline SB_EMPTY_FIXUP(). Second 1315 * part makes sure sb_lastrecord is up-to-date if 1316 * there is still data in the socket buffer. 1317 */ 1318 so->so_rcv.sb_mb = nextrecord; 1319 if (so->so_rcv.sb_mb == NULL) { 1320 so->so_rcv.sb_mbtail = NULL; 1321 so->so_rcv.sb_lastrecord = NULL; 1322 } else if (nextrecord->m_nextpkt == NULL) 1323 so->so_rcv.sb_lastrecord = nextrecord; 1324 } 1325 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1326 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1327 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1328 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0, 1329 (struct mbuf *)(long)flags, (struct mbuf *)0, l); 1330 } 1331 if (orig_resid == uio->uio_resid && orig_resid && 1332 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1333 sbunlock(&so->so_rcv); 1334 splx(s); 1335 goto restart; 1336 } 1337 1338 if (flagsp) 1339 *flagsp |= flags; 1340 release: 1341 sbunlock(&so->so_rcv); 1342 splx(s); 1343 return (error); 1344 } 1345 1346 int 1347 soshutdown(struct socket *so, int how) 1348 { 1349 const struct protosw *pr; 1350 1351 pr = so->so_proto; 1352 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1353 return (EINVAL); 1354 1355 if (how == SHUT_RD || how == SHUT_RDWR) 1356 sorflush(so); 1357 if (how == SHUT_WR || how == SHUT_RDWR) 1358 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0, 1359 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0); 1360 return (0); 1361 } 1362 1363 void 1364 sorflush(struct socket *so) 1365 { 1366 struct sockbuf *sb, asb; 1367 const struct protosw *pr; 1368 int s; 1369 1370 sb = &so->so_rcv; 1371 pr = so->so_proto; 1372 sb->sb_flags |= SB_NOINTR; 1373 (void) sblock(sb, M_WAITOK); 1374 s = splnet(); 1375 socantrcvmore(so); 1376 sbunlock(sb); 1377 asb = *sb; 1378 /* 1379 * Clear most of the sockbuf structure, but leave some of the 1380 * fields valid. 1381 */ 1382 memset(&sb->sb_startzero, 0, 1383 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1384 splx(s); 1385 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1386 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1387 sbrelease(&asb, so); 1388 } 1389 1390 int 1391 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0) 1392 { 1393 int error; 1394 struct mbuf *m; 1395 1396 error = 0; 1397 m = m0; 1398 if (level != SOL_SOCKET) { 1399 if (so->so_proto && so->so_proto->pr_ctloutput) 1400 return ((*so->so_proto->pr_ctloutput) 1401 (PRCO_SETOPT, so, level, optname, &m0)); 1402 error = ENOPROTOOPT; 1403 } else { 1404 switch (optname) { 1405 1406 case SO_LINGER: 1407 if (m == NULL || m->m_len != sizeof(struct linger)) { 1408 error = EINVAL; 1409 goto bad; 1410 } 1411 if (mtod(m, struct linger *)->l_linger < 0 || 1412 mtod(m, struct linger *)->l_linger > (INT_MAX / hz)) { 1413 error = EDOM; 1414 goto bad; 1415 } 1416 so->so_linger = mtod(m, struct linger *)->l_linger; 1417 /* fall thru... */ 1418 1419 case SO_DEBUG: 1420 case SO_KEEPALIVE: 1421 case SO_DONTROUTE: 1422 case SO_USELOOPBACK: 1423 case SO_BROADCAST: 1424 case SO_REUSEADDR: 1425 case SO_REUSEPORT: 1426 case SO_OOBINLINE: 1427 case SO_TIMESTAMP: 1428 if (m == NULL || m->m_len < sizeof(int)) { 1429 error = EINVAL; 1430 goto bad; 1431 } 1432 if (*mtod(m, int *)) 1433 so->so_options |= optname; 1434 else 1435 so->so_options &= ~optname; 1436 break; 1437 1438 case SO_SNDBUF: 1439 case SO_RCVBUF: 1440 case SO_SNDLOWAT: 1441 case SO_RCVLOWAT: 1442 { 1443 int optval; 1444 1445 if (m == NULL || m->m_len < sizeof(int)) { 1446 error = EINVAL; 1447 goto bad; 1448 } 1449 1450 /* 1451 * Values < 1 make no sense for any of these 1452 * options, so disallow them. 1453 */ 1454 optval = *mtod(m, int *); 1455 if (optval < 1) { 1456 error = EINVAL; 1457 goto bad; 1458 } 1459 1460 switch (optname) { 1461 1462 case SO_SNDBUF: 1463 case SO_RCVBUF: 1464 if (sbreserve(optname == SO_SNDBUF ? 1465 &so->so_snd : &so->so_rcv, 1466 (u_long) optval, so) == 0) { 1467 error = ENOBUFS; 1468 goto bad; 1469 } 1470 break; 1471 1472 /* 1473 * Make sure the low-water is never greater than 1474 * the high-water. 1475 */ 1476 case SO_SNDLOWAT: 1477 so->so_snd.sb_lowat = 1478 (optval > so->so_snd.sb_hiwat) ? 1479 so->so_snd.sb_hiwat : optval; 1480 break; 1481 case SO_RCVLOWAT: 1482 so->so_rcv.sb_lowat = 1483 (optval > so->so_rcv.sb_hiwat) ? 1484 so->so_rcv.sb_hiwat : optval; 1485 break; 1486 } 1487 break; 1488 } 1489 1490 case SO_SNDTIMEO: 1491 case SO_RCVTIMEO: 1492 { 1493 struct timeval *tv; 1494 int val; 1495 1496 if (m == NULL || m->m_len < sizeof(*tv)) { 1497 error = EINVAL; 1498 goto bad; 1499 } 1500 tv = mtod(m, struct timeval *); 1501 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) { 1502 error = EDOM; 1503 goto bad; 1504 } 1505 val = tv->tv_sec * hz + tv->tv_usec / tick; 1506 if (val == 0 && tv->tv_usec != 0) 1507 val = 1; 1508 1509 switch (optname) { 1510 1511 case SO_SNDTIMEO: 1512 so->so_snd.sb_timeo = val; 1513 break; 1514 case SO_RCVTIMEO: 1515 so->so_rcv.sb_timeo = val; 1516 break; 1517 } 1518 break; 1519 } 1520 1521 default: 1522 error = ENOPROTOOPT; 1523 break; 1524 } 1525 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1526 (void) ((*so->so_proto->pr_ctloutput) 1527 (PRCO_SETOPT, so, level, optname, &m0)); 1528 m = NULL; /* freed by protocol */ 1529 } 1530 } 1531 bad: 1532 if (m) 1533 (void) m_free(m); 1534 return (error); 1535 } 1536 1537 int 1538 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1539 { 1540 struct mbuf *m; 1541 1542 if (level != SOL_SOCKET) { 1543 if (so->so_proto && so->so_proto->pr_ctloutput) { 1544 return ((*so->so_proto->pr_ctloutput) 1545 (PRCO_GETOPT, so, level, optname, mp)); 1546 } else 1547 return (ENOPROTOOPT); 1548 } else { 1549 m = m_get(M_WAIT, MT_SOOPTS); 1550 m->m_len = sizeof(int); 1551 1552 switch (optname) { 1553 1554 case SO_LINGER: 1555 m->m_len = sizeof(struct linger); 1556 mtod(m, struct linger *)->l_onoff = 1557 so->so_options & SO_LINGER; 1558 mtod(m, struct linger *)->l_linger = so->so_linger; 1559 break; 1560 1561 case SO_USELOOPBACK: 1562 case SO_DONTROUTE: 1563 case SO_DEBUG: 1564 case SO_KEEPALIVE: 1565 case SO_REUSEADDR: 1566 case SO_REUSEPORT: 1567 case SO_BROADCAST: 1568 case SO_OOBINLINE: 1569 case SO_TIMESTAMP: 1570 *mtod(m, int *) = so->so_options & optname; 1571 break; 1572 1573 case SO_TYPE: 1574 *mtod(m, int *) = so->so_type; 1575 break; 1576 1577 case SO_ERROR: 1578 *mtod(m, int *) = so->so_error; 1579 so->so_error = 0; 1580 break; 1581 1582 case SO_SNDBUF: 1583 *mtod(m, int *) = so->so_snd.sb_hiwat; 1584 break; 1585 1586 case SO_RCVBUF: 1587 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1588 break; 1589 1590 case SO_SNDLOWAT: 1591 *mtod(m, int *) = so->so_snd.sb_lowat; 1592 break; 1593 1594 case SO_RCVLOWAT: 1595 *mtod(m, int *) = so->so_rcv.sb_lowat; 1596 break; 1597 1598 case SO_SNDTIMEO: 1599 case SO_RCVTIMEO: 1600 { 1601 int val = (optname == SO_SNDTIMEO ? 1602 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1603 1604 m->m_len = sizeof(struct timeval); 1605 mtod(m, struct timeval *)->tv_sec = val / hz; 1606 mtod(m, struct timeval *)->tv_usec = 1607 (val % hz) * tick; 1608 break; 1609 } 1610 1611 case SO_OVERFLOWED: 1612 *mtod(m, int *) = so->so_rcv.sb_overflowed; 1613 break; 1614 1615 default: 1616 (void)m_free(m); 1617 return (ENOPROTOOPT); 1618 } 1619 *mp = m; 1620 return (0); 1621 } 1622 } 1623 1624 void 1625 sohasoutofband(struct socket *so) 1626 { 1627 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 1628 selwakeup(&so->so_rcv.sb_sel); 1629 } 1630 1631 static void 1632 filt_sordetach(struct knote *kn) 1633 { 1634 struct socket *so; 1635 1636 so = (struct socket *)kn->kn_fp->f_data; 1637 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 1638 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 1639 so->so_rcv.sb_flags &= ~SB_KNOTE; 1640 } 1641 1642 /*ARGSUSED*/ 1643 static int 1644 filt_soread(struct knote *kn, long hint) 1645 { 1646 struct socket *so; 1647 1648 so = (struct socket *)kn->kn_fp->f_data; 1649 kn->kn_data = so->so_rcv.sb_cc; 1650 if (so->so_state & SS_CANTRCVMORE) { 1651 kn->kn_flags |= EV_EOF; 1652 kn->kn_fflags = so->so_error; 1653 return (1); 1654 } 1655 if (so->so_error) /* temporary udp error */ 1656 return (1); 1657 if (kn->kn_sfflags & NOTE_LOWAT) 1658 return (kn->kn_data >= kn->kn_sdata); 1659 return (kn->kn_data >= so->so_rcv.sb_lowat); 1660 } 1661 1662 static void 1663 filt_sowdetach(struct knote *kn) 1664 { 1665 struct socket *so; 1666 1667 so = (struct socket *)kn->kn_fp->f_data; 1668 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 1669 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 1670 so->so_snd.sb_flags &= ~SB_KNOTE; 1671 } 1672 1673 /*ARGSUSED*/ 1674 static int 1675 filt_sowrite(struct knote *kn, long hint) 1676 { 1677 struct socket *so; 1678 1679 so = (struct socket *)kn->kn_fp->f_data; 1680 kn->kn_data = sbspace(&so->so_snd); 1681 if (so->so_state & SS_CANTSENDMORE) { 1682 kn->kn_flags |= EV_EOF; 1683 kn->kn_fflags = so->so_error; 1684 return (1); 1685 } 1686 if (so->so_error) /* temporary udp error */ 1687 return (1); 1688 if (((so->so_state & SS_ISCONNECTED) == 0) && 1689 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1690 return (0); 1691 if (kn->kn_sfflags & NOTE_LOWAT) 1692 return (kn->kn_data >= kn->kn_sdata); 1693 return (kn->kn_data >= so->so_snd.sb_lowat); 1694 } 1695 1696 /*ARGSUSED*/ 1697 static int 1698 filt_solisten(struct knote *kn, long hint) 1699 { 1700 struct socket *so; 1701 1702 so = (struct socket *)kn->kn_fp->f_data; 1703 1704 /* 1705 * Set kn_data to number of incoming connections, not 1706 * counting partial (incomplete) connections. 1707 */ 1708 kn->kn_data = so->so_qlen; 1709 return (kn->kn_data > 0); 1710 } 1711 1712 static const struct filterops solisten_filtops = 1713 { 1, NULL, filt_sordetach, filt_solisten }; 1714 static const struct filterops soread_filtops = 1715 { 1, NULL, filt_sordetach, filt_soread }; 1716 static const struct filterops sowrite_filtops = 1717 { 1, NULL, filt_sowdetach, filt_sowrite }; 1718 1719 int 1720 soo_kqfilter(struct file *fp, struct knote *kn) 1721 { 1722 struct socket *so; 1723 struct sockbuf *sb; 1724 1725 so = (struct socket *)kn->kn_fp->f_data; 1726 switch (kn->kn_filter) { 1727 case EVFILT_READ: 1728 if (so->so_options & SO_ACCEPTCONN) 1729 kn->kn_fop = &solisten_filtops; 1730 else 1731 kn->kn_fop = &soread_filtops; 1732 sb = &so->so_rcv; 1733 break; 1734 case EVFILT_WRITE: 1735 kn->kn_fop = &sowrite_filtops; 1736 sb = &so->so_snd; 1737 break; 1738 default: 1739 return (1); 1740 } 1741 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 1742 sb->sb_flags |= SB_KNOTE; 1743 return (0); 1744 } 1745 1746 #include <sys/sysctl.h> 1747 1748 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 1749 1750 /* 1751 * sysctl helper routine for kern.somaxkva. ensures that the given 1752 * value is not too small. 1753 * (XXX should we maybe make sure it's not too large as well?) 1754 */ 1755 static int 1756 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 1757 { 1758 int error, new_somaxkva; 1759 struct sysctlnode node; 1760 int s; 1761 1762 new_somaxkva = somaxkva; 1763 node = *rnode; 1764 node.sysctl_data = &new_somaxkva; 1765 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1766 if (error || newp == NULL) 1767 return (error); 1768 1769 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 1770 return (EINVAL); 1771 1772 s = splvm(); 1773 simple_lock(&so_pendfree_slock); 1774 somaxkva = new_somaxkva; 1775 wakeup(&socurkva); 1776 simple_unlock(&so_pendfree_slock); 1777 splx(s); 1778 1779 return (error); 1780 } 1781 1782 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup") 1783 { 1784 1785 sysctl_createv(clog, 0, NULL, NULL, 1786 CTLFLAG_PERMANENT, 1787 CTLTYPE_NODE, "kern", NULL, 1788 NULL, 0, NULL, 0, 1789 CTL_KERN, CTL_EOL); 1790 1791 sysctl_createv(clog, 0, NULL, NULL, 1792 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1793 CTLTYPE_INT, "somaxkva", 1794 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1795 "used for socket buffers"), 1796 sysctl_kern_somaxkva, 0, NULL, 0, 1797 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 1798 } 1799