1 /* $NetBSD: uipc_socket.c,v 1.247 2015/10/13 21:28:35 rjs Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.247 2015/10/13 21:28:35 rjs Exp $"); 75 76 #ifdef _KERNEL_OPT 77 #include "opt_compat_netbsd.h" 78 #include "opt_sock_counters.h" 79 #include "opt_sosend_loan.h" 80 #include "opt_mbuftrace.h" 81 #include "opt_somaxkva.h" 82 #include "opt_multiprocessor.h" /* XXX */ 83 #include "opt_sctp.h" 84 #endif 85 86 #include <sys/param.h> 87 #include <sys/systm.h> 88 #include <sys/proc.h> 89 #include <sys/file.h> 90 #include <sys/filedesc.h> 91 #include <sys/kmem.h> 92 #include <sys/mbuf.h> 93 #include <sys/domain.h> 94 #include <sys/kernel.h> 95 #include <sys/protosw.h> 96 #include <sys/socket.h> 97 #include <sys/socketvar.h> 98 #include <sys/signalvar.h> 99 #include <sys/resourcevar.h> 100 #include <sys/uidinfo.h> 101 #include <sys/event.h> 102 #include <sys/poll.h> 103 #include <sys/kauth.h> 104 #include <sys/mutex.h> 105 #include <sys/condvar.h> 106 #include <sys/kthread.h> 107 108 #ifdef COMPAT_50 109 #include <compat/sys/time.h> 110 #include <compat/sys/socket.h> 111 #endif 112 113 #include <uvm/uvm_extern.h> 114 #include <uvm/uvm_loan.h> 115 #include <uvm/uvm_page.h> 116 117 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 118 119 extern const struct fileops socketops; 120 121 extern int somaxconn; /* patchable (XXX sysctl) */ 122 int somaxconn = SOMAXCONN; 123 kmutex_t *softnet_lock; 124 125 #ifdef SOSEND_COUNTERS 126 #include <sys/device.h> 127 128 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 129 NULL, "sosend", "loan big"); 130 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 131 NULL, "sosend", "copy big"); 132 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 133 NULL, "sosend", "copy small"); 134 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 135 NULL, "sosend", "kva limit"); 136 137 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 138 139 EVCNT_ATTACH_STATIC(sosend_loan_big); 140 EVCNT_ATTACH_STATIC(sosend_copy_big); 141 EVCNT_ATTACH_STATIC(sosend_copy_small); 142 EVCNT_ATTACH_STATIC(sosend_kvalimit); 143 #else 144 145 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 146 147 #endif /* SOSEND_COUNTERS */ 148 149 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 150 int sock_loan_thresh = -1; 151 #else 152 int sock_loan_thresh = 4096; 153 #endif 154 155 static kmutex_t so_pendfree_lock; 156 static struct mbuf *so_pendfree = NULL; 157 158 #ifndef SOMAXKVA 159 #define SOMAXKVA (16 * 1024 * 1024) 160 #endif 161 int somaxkva = SOMAXKVA; 162 static int socurkva; 163 static kcondvar_t socurkva_cv; 164 165 static kauth_listener_t socket_listener; 166 167 #define SOCK_LOAN_CHUNK 65536 168 169 static void sopendfree_thread(void *); 170 static kcondvar_t pendfree_thread_cv; 171 static lwp_t *sopendfree_lwp; 172 173 static void sysctl_kern_socket_setup(void); 174 static struct sysctllog *socket_sysctllog; 175 176 static vsize_t 177 sokvareserve(struct socket *so, vsize_t len) 178 { 179 int error; 180 181 mutex_enter(&so_pendfree_lock); 182 while (socurkva + len > somaxkva) { 183 SOSEND_COUNTER_INCR(&sosend_kvalimit); 184 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 185 if (error) { 186 len = 0; 187 break; 188 } 189 } 190 socurkva += len; 191 mutex_exit(&so_pendfree_lock); 192 return len; 193 } 194 195 static void 196 sokvaunreserve(vsize_t len) 197 { 198 199 mutex_enter(&so_pendfree_lock); 200 socurkva -= len; 201 cv_broadcast(&socurkva_cv); 202 mutex_exit(&so_pendfree_lock); 203 } 204 205 /* 206 * sokvaalloc: allocate kva for loan. 207 */ 208 209 vaddr_t 210 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 211 { 212 vaddr_t lva; 213 214 /* 215 * reserve kva. 216 */ 217 218 if (sokvareserve(so, len) == 0) 219 return 0; 220 221 /* 222 * allocate kva. 223 */ 224 225 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 226 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 227 if (lva == 0) { 228 sokvaunreserve(len); 229 return (0); 230 } 231 232 return lva; 233 } 234 235 /* 236 * sokvafree: free kva for loan. 237 */ 238 239 void 240 sokvafree(vaddr_t sva, vsize_t len) 241 { 242 243 /* 244 * free kva. 245 */ 246 247 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 248 249 /* 250 * unreserve kva. 251 */ 252 253 sokvaunreserve(len); 254 } 255 256 static void 257 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 258 { 259 vaddr_t sva, eva; 260 vsize_t len; 261 int npgs; 262 263 KASSERT(pgs != NULL); 264 265 eva = round_page((vaddr_t) buf + size); 266 sva = trunc_page((vaddr_t) buf); 267 len = eva - sva; 268 npgs = len >> PAGE_SHIFT; 269 270 pmap_kremove(sva, len); 271 pmap_update(pmap_kernel()); 272 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 273 sokvafree(sva, len); 274 } 275 276 /* 277 * sopendfree_thread: free mbufs on "pendfree" list. 278 * unlock and relock so_pendfree_lock when freeing mbufs. 279 */ 280 281 static void 282 sopendfree_thread(void *v) 283 { 284 struct mbuf *m, *next; 285 size_t rv; 286 287 mutex_enter(&so_pendfree_lock); 288 289 for (;;) { 290 rv = 0; 291 while (so_pendfree != NULL) { 292 m = so_pendfree; 293 so_pendfree = NULL; 294 mutex_exit(&so_pendfree_lock); 295 296 for (; m != NULL; m = next) { 297 next = m->m_next; 298 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 299 KASSERT(m->m_ext.ext_refcnt == 0); 300 301 rv += m->m_ext.ext_size; 302 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 303 m->m_ext.ext_size); 304 pool_cache_put(mb_cache, m); 305 } 306 307 mutex_enter(&so_pendfree_lock); 308 } 309 if (rv) 310 cv_broadcast(&socurkva_cv); 311 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 312 } 313 panic("sopendfree_thread"); 314 /* NOTREACHED */ 315 } 316 317 void 318 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 319 { 320 321 KASSERT(m != NULL); 322 323 /* 324 * postpone freeing mbuf. 325 * 326 * we can't do it in interrupt context 327 * because we need to put kva back to kernel_map. 328 */ 329 330 mutex_enter(&so_pendfree_lock); 331 m->m_next = so_pendfree; 332 so_pendfree = m; 333 cv_signal(&pendfree_thread_cv); 334 mutex_exit(&so_pendfree_lock); 335 } 336 337 static long 338 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 339 { 340 struct iovec *iov = uio->uio_iov; 341 vaddr_t sva, eva; 342 vsize_t len; 343 vaddr_t lva; 344 int npgs, error; 345 vaddr_t va; 346 int i; 347 348 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 349 return (0); 350 351 if (iov->iov_len < (size_t) space) 352 space = iov->iov_len; 353 if (space > SOCK_LOAN_CHUNK) 354 space = SOCK_LOAN_CHUNK; 355 356 eva = round_page((vaddr_t) iov->iov_base + space); 357 sva = trunc_page((vaddr_t) iov->iov_base); 358 len = eva - sva; 359 npgs = len >> PAGE_SHIFT; 360 361 KASSERT(npgs <= M_EXT_MAXPAGES); 362 363 lva = sokvaalloc(sva, len, so); 364 if (lva == 0) 365 return 0; 366 367 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 368 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 369 if (error) { 370 sokvafree(lva, len); 371 return (0); 372 } 373 374 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 375 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 376 VM_PROT_READ, 0); 377 pmap_update(pmap_kernel()); 378 379 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 380 381 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 382 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 383 384 uio->uio_resid -= space; 385 /* uio_offset not updated, not set/used for write(2) */ 386 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 387 uio->uio_iov->iov_len -= space; 388 if (uio->uio_iov->iov_len == 0) { 389 uio->uio_iov++; 390 uio->uio_iovcnt--; 391 } 392 393 return (space); 394 } 395 396 struct mbuf * 397 getsombuf(struct socket *so, int type) 398 { 399 struct mbuf *m; 400 401 m = m_get(M_WAIT, type); 402 MCLAIM(m, so->so_mowner); 403 return m; 404 } 405 406 static int 407 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 408 void *arg0, void *arg1, void *arg2, void *arg3) 409 { 410 int result; 411 enum kauth_network_req req; 412 413 result = KAUTH_RESULT_DEFER; 414 req = (enum kauth_network_req)arg0; 415 416 if ((action != KAUTH_NETWORK_SOCKET) && 417 (action != KAUTH_NETWORK_BIND)) 418 return result; 419 420 switch (req) { 421 case KAUTH_REQ_NETWORK_BIND_PORT: 422 result = KAUTH_RESULT_ALLOW; 423 break; 424 425 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 426 /* Normal users can only drop their own connections. */ 427 struct socket *so = (struct socket *)arg1; 428 429 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 430 result = KAUTH_RESULT_ALLOW; 431 432 break; 433 } 434 435 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 436 /* We allow "raw" routing/bluetooth sockets to anyone. */ 437 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 438 || (u_long)arg1 == PF_BLUETOOTH) { 439 result = KAUTH_RESULT_ALLOW; 440 } else { 441 /* Privileged, let secmodel handle this. */ 442 if ((u_long)arg2 == SOCK_RAW) 443 break; 444 } 445 446 result = KAUTH_RESULT_ALLOW; 447 448 break; 449 450 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 451 result = KAUTH_RESULT_ALLOW; 452 453 break; 454 455 default: 456 break; 457 } 458 459 return result; 460 } 461 462 void 463 soinit(void) 464 { 465 466 sysctl_kern_socket_setup(); 467 468 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 469 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 470 cv_init(&socurkva_cv, "sokva"); 471 cv_init(&pendfree_thread_cv, "sopendfr"); 472 soinit2(); 473 474 /* Set the initial adjusted socket buffer size. */ 475 if (sb_max_set(sb_max)) 476 panic("bad initial sb_max value: %lu", sb_max); 477 478 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 479 socket_listener_cb, NULL); 480 } 481 482 void 483 soinit1(void) 484 { 485 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 486 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 487 if (error) 488 panic("soinit1 %d", error); 489 } 490 491 /* 492 * socreate: create a new socket of the specified type and the protocol. 493 * 494 * => Caller may specify another socket for lock sharing (must not be held). 495 * => Returns the new socket without lock held. 496 */ 497 int 498 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 499 struct socket *lockso) 500 { 501 const struct protosw *prp; 502 struct socket *so; 503 uid_t uid; 504 int error; 505 kmutex_t *lock; 506 507 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 508 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 509 KAUTH_ARG(proto)); 510 if (error != 0) 511 return error; 512 513 if (proto) 514 prp = pffindproto(dom, proto, type); 515 else 516 prp = pffindtype(dom, type); 517 if (prp == NULL) { 518 /* no support for domain */ 519 if (pffinddomain(dom) == 0) 520 return EAFNOSUPPORT; 521 /* no support for socket type */ 522 if (proto == 0 && type != 0) 523 return EPROTOTYPE; 524 return EPROTONOSUPPORT; 525 } 526 if (prp->pr_usrreqs == NULL) 527 return EPROTONOSUPPORT; 528 if (prp->pr_type != type) 529 return EPROTOTYPE; 530 531 so = soget(true); 532 so->so_type = type; 533 so->so_proto = prp; 534 so->so_send = sosend; 535 so->so_receive = soreceive; 536 #ifdef MBUFTRACE 537 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 538 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 539 so->so_mowner = &prp->pr_domain->dom_mowner; 540 #endif 541 uid = kauth_cred_geteuid(l->l_cred); 542 so->so_uidinfo = uid_find(uid); 543 so->so_cpid = l->l_proc->p_pid; 544 545 /* 546 * Lock assigned and taken during PCB attach, unless we share 547 * the lock with another socket, e.g. socketpair(2) case. 548 */ 549 if (lockso) { 550 lock = lockso->so_lock; 551 so->so_lock = lock; 552 mutex_obj_hold(lock); 553 mutex_enter(lock); 554 } 555 556 /* Attach the PCB (returns with the socket lock held). */ 557 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 558 KASSERT(solocked(so)); 559 560 if (error) { 561 KASSERT(so->so_pcb == NULL); 562 so->so_state |= SS_NOFDREF; 563 sofree(so); 564 return error; 565 } 566 so->so_cred = kauth_cred_dup(l->l_cred); 567 sounlock(so); 568 569 *aso = so; 570 return 0; 571 } 572 573 /* 574 * fsocreate: create a socket and a file descriptor associated with it. 575 * 576 * => On success, write file descriptor to fdout and return zero. 577 * => On failure, return non-zero; *fdout will be undefined. 578 */ 579 int 580 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 581 { 582 lwp_t *l = curlwp; 583 int error, fd, flags; 584 struct socket *so; 585 struct file *fp; 586 587 if ((error = fd_allocfile(&fp, &fd)) != 0) { 588 return error; 589 } 590 flags = type & SOCK_FLAGS_MASK; 591 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 592 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 593 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 594 fp->f_type = DTYPE_SOCKET; 595 fp->f_ops = &socketops; 596 597 type &= ~SOCK_FLAGS_MASK; 598 error = socreate(domain, &so, type, proto, l, NULL); 599 if (error) { 600 fd_abort(curproc, fp, fd); 601 return error; 602 } 603 if (flags & SOCK_NONBLOCK) { 604 so->so_state |= SS_NBIO; 605 } 606 fp->f_socket = so; 607 fd_affix(curproc, fp, fd); 608 609 if (sop != NULL) { 610 *sop = so; 611 } 612 *fdout = fd; 613 return error; 614 } 615 616 int 617 sofamily(const struct socket *so) 618 { 619 const struct protosw *pr; 620 const struct domain *dom; 621 622 if ((pr = so->so_proto) == NULL) 623 return AF_UNSPEC; 624 if ((dom = pr->pr_domain) == NULL) 625 return AF_UNSPEC; 626 return dom->dom_family; 627 } 628 629 int 630 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 631 { 632 int error; 633 634 solock(so); 635 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 636 sounlock(so); 637 return EAFNOSUPPORT; 638 } 639 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 640 sounlock(so); 641 return error; 642 } 643 644 int 645 solisten(struct socket *so, int backlog, struct lwp *l) 646 { 647 int error; 648 short oldopt, oldqlimit; 649 650 solock(so); 651 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 652 SS_ISDISCONNECTING)) != 0) { 653 sounlock(so); 654 return EINVAL; 655 } 656 oldopt = so->so_options; 657 oldqlimit = so->so_qlimit; 658 if (TAILQ_EMPTY(&so->so_q)) 659 so->so_options |= SO_ACCEPTCONN; 660 if (backlog < 0) 661 backlog = 0; 662 so->so_qlimit = min(backlog, somaxconn); 663 664 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 665 if (error != 0) { 666 so->so_options = oldopt; 667 so->so_qlimit = oldqlimit; 668 sounlock(so); 669 return error; 670 } 671 sounlock(so); 672 return 0; 673 } 674 675 void 676 sofree(struct socket *so) 677 { 678 u_int refs; 679 680 KASSERT(solocked(so)); 681 682 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 683 sounlock(so); 684 return; 685 } 686 if (so->so_head) { 687 /* 688 * We must not decommission a socket that's on the accept(2) 689 * queue. If we do, then accept(2) may hang after select(2) 690 * indicated that the listening socket was ready. 691 */ 692 if (!soqremque(so, 0)) { 693 sounlock(so); 694 return; 695 } 696 } 697 if (so->so_rcv.sb_hiwat) 698 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 699 RLIM_INFINITY); 700 if (so->so_snd.sb_hiwat) 701 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 702 RLIM_INFINITY); 703 sbrelease(&so->so_snd, so); 704 KASSERT(!cv_has_waiters(&so->so_cv)); 705 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 706 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 707 sorflush(so); 708 refs = so->so_aborting; /* XXX */ 709 /* Remove acccept filter if one is present. */ 710 if (so->so_accf != NULL) 711 (void)accept_filt_clear(so); 712 sounlock(so); 713 if (refs == 0) /* XXX */ 714 soput(so); 715 } 716 717 /* 718 * soclose: close a socket on last file table reference removal. 719 * Initiate disconnect if connected. Free socket when disconnect complete. 720 */ 721 int 722 soclose(struct socket *so) 723 { 724 struct socket *so2; 725 int error = 0; 726 727 solock(so); 728 if (so->so_options & SO_ACCEPTCONN) { 729 for (;;) { 730 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 731 KASSERT(solocked2(so, so2)); 732 (void) soqremque(so2, 0); 733 /* soabort drops the lock. */ 734 (void) soabort(so2); 735 solock(so); 736 continue; 737 } 738 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 739 KASSERT(solocked2(so, so2)); 740 (void) soqremque(so2, 1); 741 /* soabort drops the lock. */ 742 (void) soabort(so2); 743 solock(so); 744 continue; 745 } 746 break; 747 } 748 } 749 if (so->so_pcb == NULL) 750 goto discard; 751 if (so->so_state & SS_ISCONNECTED) { 752 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 753 error = sodisconnect(so); 754 if (error) 755 goto drop; 756 } 757 if (so->so_options & SO_LINGER) { 758 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 759 (SS_ISDISCONNECTING|SS_NBIO)) 760 goto drop; 761 while (so->so_state & SS_ISCONNECTED) { 762 error = sowait(so, true, so->so_linger * hz); 763 if (error) 764 break; 765 } 766 } 767 } 768 drop: 769 if (so->so_pcb) { 770 KASSERT(solocked(so)); 771 (*so->so_proto->pr_usrreqs->pr_detach)(so); 772 } 773 discard: 774 KASSERT((so->so_state & SS_NOFDREF) == 0); 775 kauth_cred_free(so->so_cred); 776 so->so_state |= SS_NOFDREF; 777 sofree(so); 778 return error; 779 } 780 781 /* 782 * Must be called with the socket locked.. Will return with it unlocked. 783 */ 784 int 785 soabort(struct socket *so) 786 { 787 u_int refs; 788 int error; 789 790 KASSERT(solocked(so)); 791 KASSERT(so->so_head == NULL); 792 793 so->so_aborting++; /* XXX */ 794 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 795 refs = --so->so_aborting; /* XXX */ 796 if (error || (refs == 0)) { 797 sofree(so); 798 } else { 799 sounlock(so); 800 } 801 return error; 802 } 803 804 int 805 soaccept(struct socket *so, struct sockaddr *nam) 806 { 807 int error; 808 809 KASSERT(solocked(so)); 810 KASSERT((so->so_state & SS_NOFDREF) != 0); 811 812 so->so_state &= ~SS_NOFDREF; 813 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 814 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 815 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 816 else 817 error = ECONNABORTED; 818 819 return error; 820 } 821 822 int 823 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 824 { 825 int error; 826 827 KASSERT(solocked(so)); 828 829 if (so->so_options & SO_ACCEPTCONN) 830 return EOPNOTSUPP; 831 /* 832 * If protocol is connection-based, can only connect once. 833 * Otherwise, if connected, try to disconnect first. 834 * This allows user to disconnect by connecting to, e.g., 835 * a null address. 836 */ 837 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 838 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 839 (error = sodisconnect(so)))) { 840 error = EISCONN; 841 } else { 842 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 843 return EAFNOSUPPORT; 844 } 845 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 846 } 847 848 return error; 849 } 850 851 int 852 soconnect2(struct socket *so1, struct socket *so2) 853 { 854 KASSERT(solocked2(so1, so2)); 855 856 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 857 } 858 859 int 860 sodisconnect(struct socket *so) 861 { 862 int error; 863 864 KASSERT(solocked(so)); 865 866 if ((so->so_state & SS_ISCONNECTED) == 0) { 867 error = ENOTCONN; 868 } else if (so->so_state & SS_ISDISCONNECTING) { 869 error = EALREADY; 870 } else { 871 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 872 } 873 return (error); 874 } 875 876 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 877 /* 878 * Send on a socket. 879 * If send must go all at once and message is larger than 880 * send buffering, then hard error. 881 * Lock against other senders. 882 * If must go all at once and not enough room now, then 883 * inform user that this would block and do nothing. 884 * Otherwise, if nonblocking, send as much as possible. 885 * The data to be sent is described by "uio" if nonzero, 886 * otherwise by the mbuf chain "top" (which must be null 887 * if uio is not). Data provided in mbuf chain must be small 888 * enough to send all at once. 889 * 890 * Returns nonzero on error, timeout or signal; callers 891 * must check for short counts if EINTR/ERESTART are returned. 892 * Data and control buffers are freed on return. 893 */ 894 int 895 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 896 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 897 { 898 struct mbuf **mp, *m; 899 long space, len, resid, clen, mlen; 900 int error, s, dontroute, atomic; 901 short wakeup_state = 0; 902 903 clen = 0; 904 905 /* 906 * solock() provides atomicity of access. splsoftnet() prevents 907 * protocol processing soft interrupts from interrupting us and 908 * blocking (expensive). 909 */ 910 s = splsoftnet(); 911 solock(so); 912 atomic = sosendallatonce(so) || top; 913 if (uio) 914 resid = uio->uio_resid; 915 else 916 resid = top->m_pkthdr.len; 917 /* 918 * In theory resid should be unsigned. 919 * However, space must be signed, as it might be less than 0 920 * if we over-committed, and we must use a signed comparison 921 * of space and resid. On the other hand, a negative resid 922 * causes us to loop sending 0-length segments to the protocol. 923 */ 924 if (resid < 0) { 925 error = EINVAL; 926 goto out; 927 } 928 dontroute = 929 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 930 (so->so_proto->pr_flags & PR_ATOMIC); 931 l->l_ru.ru_msgsnd++; 932 if (control) 933 clen = control->m_len; 934 restart: 935 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 936 goto out; 937 do { 938 if (so->so_state & SS_CANTSENDMORE) { 939 error = EPIPE; 940 goto release; 941 } 942 if (so->so_error) { 943 error = so->so_error; 944 so->so_error = 0; 945 goto release; 946 } 947 if ((so->so_state & SS_ISCONNECTED) == 0) { 948 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 949 if (resid || clen == 0) { 950 error = ENOTCONN; 951 goto release; 952 } 953 } else if (addr == NULL) { 954 error = EDESTADDRREQ; 955 goto release; 956 } 957 } 958 space = sbspace(&so->so_snd); 959 if (flags & MSG_OOB) 960 space += 1024; 961 if ((atomic && resid > so->so_snd.sb_hiwat) || 962 clen > so->so_snd.sb_hiwat) { 963 error = EMSGSIZE; 964 goto release; 965 } 966 if (space < resid + clen && 967 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 968 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 969 error = EWOULDBLOCK; 970 goto release; 971 } 972 sbunlock(&so->so_snd); 973 if (wakeup_state & SS_RESTARTSYS) { 974 error = ERESTART; 975 goto out; 976 } 977 error = sbwait(&so->so_snd); 978 if (error) 979 goto out; 980 wakeup_state = so->so_state; 981 goto restart; 982 } 983 wakeup_state = 0; 984 mp = ⊤ 985 space -= clen; 986 do { 987 if (uio == NULL) { 988 /* 989 * Data is prepackaged in "top". 990 */ 991 resid = 0; 992 if (flags & MSG_EOR) 993 top->m_flags |= M_EOR; 994 } else do { 995 sounlock(so); 996 splx(s); 997 if (top == NULL) { 998 m = m_gethdr(M_WAIT, MT_DATA); 999 mlen = MHLEN; 1000 m->m_pkthdr.len = 0; 1001 m->m_pkthdr.rcvif = NULL; 1002 } else { 1003 m = m_get(M_WAIT, MT_DATA); 1004 mlen = MLEN; 1005 } 1006 MCLAIM(m, so->so_snd.sb_mowner); 1007 if (sock_loan_thresh >= 0 && 1008 uio->uio_iov->iov_len >= sock_loan_thresh && 1009 space >= sock_loan_thresh && 1010 (len = sosend_loan(so, uio, m, 1011 space)) != 0) { 1012 SOSEND_COUNTER_INCR(&sosend_loan_big); 1013 space -= len; 1014 goto have_data; 1015 } 1016 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1017 SOSEND_COUNTER_INCR(&sosend_copy_big); 1018 m_clget(m, M_DONTWAIT); 1019 if ((m->m_flags & M_EXT) == 0) 1020 goto nopages; 1021 mlen = MCLBYTES; 1022 if (atomic && top == 0) { 1023 len = lmin(MCLBYTES - max_hdr, 1024 resid); 1025 m->m_data += max_hdr; 1026 } else 1027 len = lmin(MCLBYTES, resid); 1028 space -= len; 1029 } else { 1030 nopages: 1031 SOSEND_COUNTER_INCR(&sosend_copy_small); 1032 len = lmin(lmin(mlen, resid), space); 1033 space -= len; 1034 /* 1035 * For datagram protocols, leave room 1036 * for protocol headers in first mbuf. 1037 */ 1038 if (atomic && top == 0 && len < mlen) 1039 MH_ALIGN(m, len); 1040 } 1041 error = uiomove(mtod(m, void *), (int)len, uio); 1042 have_data: 1043 resid = uio->uio_resid; 1044 m->m_len = len; 1045 *mp = m; 1046 top->m_pkthdr.len += len; 1047 s = splsoftnet(); 1048 solock(so); 1049 if (error != 0) 1050 goto release; 1051 mp = &m->m_next; 1052 if (resid <= 0) { 1053 if (flags & MSG_EOR) 1054 top->m_flags |= M_EOR; 1055 break; 1056 } 1057 } while (space > 0 && atomic); 1058 1059 if (so->so_state & SS_CANTSENDMORE) { 1060 error = EPIPE; 1061 goto release; 1062 } 1063 if (dontroute) 1064 so->so_options |= SO_DONTROUTE; 1065 if (resid > 0) 1066 so->so_state |= SS_MORETOCOME; 1067 if (flags & MSG_OOB) { 1068 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so, 1069 top, control); 1070 } else { 1071 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1072 top, addr, control, l); 1073 } 1074 if (dontroute) 1075 so->so_options &= ~SO_DONTROUTE; 1076 if (resid > 0) 1077 so->so_state &= ~SS_MORETOCOME; 1078 clen = 0; 1079 control = NULL; 1080 top = NULL; 1081 mp = ⊤ 1082 if (error != 0) 1083 goto release; 1084 } while (resid && space > 0); 1085 } while (resid); 1086 1087 release: 1088 sbunlock(&so->so_snd); 1089 out: 1090 sounlock(so); 1091 splx(s); 1092 if (top) 1093 m_freem(top); 1094 if (control) 1095 m_freem(control); 1096 return (error); 1097 } 1098 1099 /* 1100 * Following replacement or removal of the first mbuf on the first 1101 * mbuf chain of a socket buffer, push necessary state changes back 1102 * into the socket buffer so that other consumers see the values 1103 * consistently. 'nextrecord' is the callers locally stored value of 1104 * the original value of sb->sb_mb->m_nextpkt which must be restored 1105 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1106 */ 1107 static void 1108 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1109 { 1110 1111 KASSERT(solocked(sb->sb_so)); 1112 1113 /* 1114 * First, update for the new value of nextrecord. If necessary, 1115 * make it the first record. 1116 */ 1117 if (sb->sb_mb != NULL) 1118 sb->sb_mb->m_nextpkt = nextrecord; 1119 else 1120 sb->sb_mb = nextrecord; 1121 1122 /* 1123 * Now update any dependent socket buffer fields to reflect 1124 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1125 * the addition of a second clause that takes care of the 1126 * case where sb_mb has been updated, but remains the last 1127 * record. 1128 */ 1129 if (sb->sb_mb == NULL) { 1130 sb->sb_mbtail = NULL; 1131 sb->sb_lastrecord = NULL; 1132 } else if (sb->sb_mb->m_nextpkt == NULL) 1133 sb->sb_lastrecord = sb->sb_mb; 1134 } 1135 1136 /* 1137 * Implement receive operations on a socket. 1138 * We depend on the way that records are added to the sockbuf 1139 * by sbappend*. In particular, each record (mbufs linked through m_next) 1140 * must begin with an address if the protocol so specifies, 1141 * followed by an optional mbuf or mbufs containing ancillary data, 1142 * and then zero or more mbufs of data. 1143 * In order to avoid blocking network interrupts for the entire time here, 1144 * we splx() while doing the actual copy to user space. 1145 * Although the sockbuf is locked, new data may still be appended, 1146 * and thus we must maintain consistency of the sockbuf during that time. 1147 * 1148 * The caller may receive the data as a single mbuf chain by supplying 1149 * an mbuf **mp0 for use in returning the chain. The uio is then used 1150 * only for the count in uio_resid. 1151 */ 1152 int 1153 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1154 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1155 { 1156 struct lwp *l = curlwp; 1157 struct mbuf *m, **mp, *mt; 1158 size_t len, offset, moff, orig_resid; 1159 int atomic, flags, error, s, type; 1160 const struct protosw *pr; 1161 struct mbuf *nextrecord; 1162 int mbuf_removed = 0; 1163 const struct domain *dom; 1164 short wakeup_state = 0; 1165 1166 pr = so->so_proto; 1167 atomic = pr->pr_flags & PR_ATOMIC; 1168 dom = pr->pr_domain; 1169 mp = mp0; 1170 type = 0; 1171 orig_resid = uio->uio_resid; 1172 1173 if (paddr != NULL) 1174 *paddr = NULL; 1175 if (controlp != NULL) 1176 *controlp = NULL; 1177 if (flagsp != NULL) 1178 flags = *flagsp &~ MSG_EOR; 1179 else 1180 flags = 0; 1181 1182 if (flags & MSG_OOB) { 1183 m = m_get(M_WAIT, MT_DATA); 1184 solock(so); 1185 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1186 sounlock(so); 1187 if (error) 1188 goto bad; 1189 do { 1190 error = uiomove(mtod(m, void *), 1191 MIN(uio->uio_resid, m->m_len), uio); 1192 m = m_free(m); 1193 } while (uio->uio_resid > 0 && error == 0 && m); 1194 bad: 1195 if (m != NULL) 1196 m_freem(m); 1197 return error; 1198 } 1199 if (mp != NULL) 1200 *mp = NULL; 1201 1202 /* 1203 * solock() provides atomicity of access. splsoftnet() prevents 1204 * protocol processing soft interrupts from interrupting us and 1205 * blocking (expensive). 1206 */ 1207 s = splsoftnet(); 1208 solock(so); 1209 restart: 1210 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1211 sounlock(so); 1212 splx(s); 1213 return error; 1214 } 1215 1216 m = so->so_rcv.sb_mb; 1217 /* 1218 * If we have less data than requested, block awaiting more 1219 * (subject to any timeout) if: 1220 * 1. the current count is less than the low water mark, 1221 * 2. MSG_WAITALL is set, and it is possible to do the entire 1222 * receive operation at once if we block (resid <= hiwat), or 1223 * 3. MSG_DONTWAIT is not set. 1224 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1225 * we have to do the receive in sections, and thus risk returning 1226 * a short count if a timeout or signal occurs after we start. 1227 */ 1228 if (m == NULL || 1229 ((flags & MSG_DONTWAIT) == 0 && 1230 so->so_rcv.sb_cc < uio->uio_resid && 1231 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1232 ((flags & MSG_WAITALL) && 1233 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1234 m->m_nextpkt == NULL && !atomic)) { 1235 #ifdef DIAGNOSTIC 1236 if (m == NULL && so->so_rcv.sb_cc) 1237 panic("receive 1"); 1238 #endif 1239 if (so->so_error) { 1240 if (m != NULL) 1241 goto dontblock; 1242 error = so->so_error; 1243 if ((flags & MSG_PEEK) == 0) 1244 so->so_error = 0; 1245 goto release; 1246 } 1247 if (so->so_state & SS_CANTRCVMORE) { 1248 if (m != NULL) 1249 goto dontblock; 1250 else 1251 goto release; 1252 } 1253 for (; m != NULL; m = m->m_next) 1254 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1255 m = so->so_rcv.sb_mb; 1256 goto dontblock; 1257 } 1258 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1259 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1260 error = ENOTCONN; 1261 goto release; 1262 } 1263 if (uio->uio_resid == 0) 1264 goto release; 1265 if ((so->so_state & SS_NBIO) || 1266 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1267 error = EWOULDBLOCK; 1268 goto release; 1269 } 1270 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1271 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1272 sbunlock(&so->so_rcv); 1273 if (wakeup_state & SS_RESTARTSYS) 1274 error = ERESTART; 1275 else 1276 error = sbwait(&so->so_rcv); 1277 if (error != 0) { 1278 sounlock(so); 1279 splx(s); 1280 return error; 1281 } 1282 wakeup_state = so->so_state; 1283 goto restart; 1284 } 1285 dontblock: 1286 /* 1287 * On entry here, m points to the first record of the socket buffer. 1288 * From this point onward, we maintain 'nextrecord' as a cache of the 1289 * pointer to the next record in the socket buffer. We must keep the 1290 * various socket buffer pointers and local stack versions of the 1291 * pointers in sync, pushing out modifications before dropping the 1292 * socket lock, and re-reading them when picking it up. 1293 * 1294 * Otherwise, we will race with the network stack appending new data 1295 * or records onto the socket buffer by using inconsistent/stale 1296 * versions of the field, possibly resulting in socket buffer 1297 * corruption. 1298 * 1299 * By holding the high-level sblock(), we prevent simultaneous 1300 * readers from pulling off the front of the socket buffer. 1301 */ 1302 if (l != NULL) 1303 l->l_ru.ru_msgrcv++; 1304 KASSERT(m == so->so_rcv.sb_mb); 1305 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1306 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1307 nextrecord = m->m_nextpkt; 1308 if (pr->pr_flags & PR_ADDR) { 1309 #ifdef DIAGNOSTIC 1310 if (m->m_type != MT_SONAME) 1311 panic("receive 1a"); 1312 #endif 1313 orig_resid = 0; 1314 if (flags & MSG_PEEK) { 1315 if (paddr) 1316 *paddr = m_copy(m, 0, m->m_len); 1317 m = m->m_next; 1318 } else { 1319 sbfree(&so->so_rcv, m); 1320 mbuf_removed = 1; 1321 if (paddr != NULL) { 1322 *paddr = m; 1323 so->so_rcv.sb_mb = m->m_next; 1324 m->m_next = NULL; 1325 m = so->so_rcv.sb_mb; 1326 } else { 1327 MFREE(m, so->so_rcv.sb_mb); 1328 m = so->so_rcv.sb_mb; 1329 } 1330 sbsync(&so->so_rcv, nextrecord); 1331 } 1332 } 1333 if (pr->pr_flags & PR_ADDR_OPT) { 1334 /* 1335 * For SCTP we may be getting a 1336 * whole message OR a partial delivery. 1337 */ 1338 if (m->m_type == MT_SONAME) { 1339 orig_resid = 0; 1340 if (flags & MSG_PEEK) { 1341 if (paddr) 1342 *paddr = m_copy(m, 0, m->m_len); 1343 m = m->m_next; 1344 } else { 1345 sbfree(&so->so_rcv, m); 1346 if (paddr) { 1347 *paddr = m; 1348 so->so_rcv.sb_mb = m->m_next; 1349 m->m_next = 0; 1350 m = so->so_rcv.sb_mb; 1351 } else { 1352 MFREE(m, so->so_rcv.sb_mb); 1353 m = so->so_rcv.sb_mb; 1354 } 1355 } 1356 } 1357 } 1358 1359 /* 1360 * Process one or more MT_CONTROL mbufs present before any data mbufs 1361 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1362 * just copy the data; if !MSG_PEEK, we call into the protocol to 1363 * perform externalization (or freeing if controlp == NULL). 1364 */ 1365 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1366 struct mbuf *cm = NULL, *cmn; 1367 struct mbuf **cme = &cm; 1368 1369 do { 1370 if (flags & MSG_PEEK) { 1371 if (controlp != NULL) { 1372 *controlp = m_copy(m, 0, m->m_len); 1373 controlp = &(*controlp)->m_next; 1374 } 1375 m = m->m_next; 1376 } else { 1377 sbfree(&so->so_rcv, m); 1378 so->so_rcv.sb_mb = m->m_next; 1379 m->m_next = NULL; 1380 *cme = m; 1381 cme = &(*cme)->m_next; 1382 m = so->so_rcv.sb_mb; 1383 } 1384 } while (m != NULL && m->m_type == MT_CONTROL); 1385 if ((flags & MSG_PEEK) == 0) 1386 sbsync(&so->so_rcv, nextrecord); 1387 for (; cm != NULL; cm = cmn) { 1388 cmn = cm->m_next; 1389 cm->m_next = NULL; 1390 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1391 if (controlp != NULL) { 1392 if (dom->dom_externalize != NULL && 1393 type == SCM_RIGHTS) { 1394 sounlock(so); 1395 splx(s); 1396 error = (*dom->dom_externalize)(cm, l, 1397 (flags & MSG_CMSG_CLOEXEC) ? 1398 O_CLOEXEC : 0); 1399 s = splsoftnet(); 1400 solock(so); 1401 } 1402 *controlp = cm; 1403 while (*controlp != NULL) 1404 controlp = &(*controlp)->m_next; 1405 } else { 1406 /* 1407 * Dispose of any SCM_RIGHTS message that went 1408 * through the read path rather than recv. 1409 */ 1410 if (dom->dom_dispose != NULL && 1411 type == SCM_RIGHTS) { 1412 sounlock(so); 1413 (*dom->dom_dispose)(cm); 1414 solock(so); 1415 } 1416 m_freem(cm); 1417 } 1418 } 1419 if (m != NULL) 1420 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1421 else 1422 nextrecord = so->so_rcv.sb_mb; 1423 orig_resid = 0; 1424 } 1425 1426 /* If m is non-NULL, we have some data to read. */ 1427 if (__predict_true(m != NULL)) { 1428 type = m->m_type; 1429 if (type == MT_OOBDATA) 1430 flags |= MSG_OOB; 1431 } 1432 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1433 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1434 1435 moff = 0; 1436 offset = 0; 1437 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1438 if (m->m_type == MT_OOBDATA) { 1439 if (type != MT_OOBDATA) 1440 break; 1441 } else if (type == MT_OOBDATA) 1442 break; 1443 #ifdef DIAGNOSTIC 1444 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1445 panic("receive 3"); 1446 #endif 1447 so->so_state &= ~SS_RCVATMARK; 1448 wakeup_state = 0; 1449 len = uio->uio_resid; 1450 if (so->so_oobmark && len > so->so_oobmark - offset) 1451 len = so->so_oobmark - offset; 1452 if (len > m->m_len - moff) 1453 len = m->m_len - moff; 1454 /* 1455 * If mp is set, just pass back the mbufs. 1456 * Otherwise copy them out via the uio, then free. 1457 * Sockbuf must be consistent here (points to current mbuf, 1458 * it points to next record) when we drop priority; 1459 * we must note any additions to the sockbuf when we 1460 * block interrupts again. 1461 */ 1462 if (mp == NULL) { 1463 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1464 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1465 sounlock(so); 1466 splx(s); 1467 error = uiomove(mtod(m, char *) + moff, len, uio); 1468 s = splsoftnet(); 1469 solock(so); 1470 if (error != 0) { 1471 /* 1472 * If any part of the record has been removed 1473 * (such as the MT_SONAME mbuf, which will 1474 * happen when PR_ADDR, and thus also 1475 * PR_ATOMIC, is set), then drop the entire 1476 * record to maintain the atomicity of the 1477 * receive operation. 1478 * 1479 * This avoids a later panic("receive 1a") 1480 * when compiled with DIAGNOSTIC. 1481 */ 1482 if (m && mbuf_removed && atomic) 1483 (void) sbdroprecord(&so->so_rcv); 1484 1485 goto release; 1486 } 1487 } else 1488 uio->uio_resid -= len; 1489 if (len == m->m_len - moff) { 1490 if (m->m_flags & M_EOR) 1491 flags |= MSG_EOR; 1492 #ifdef SCTP 1493 if (m->m_flags & M_NOTIFICATION) 1494 flags |= MSG_NOTIFICATION; 1495 #endif /* SCTP */ 1496 if (flags & MSG_PEEK) { 1497 m = m->m_next; 1498 moff = 0; 1499 } else { 1500 nextrecord = m->m_nextpkt; 1501 sbfree(&so->so_rcv, m); 1502 if (mp) { 1503 *mp = m; 1504 mp = &m->m_next; 1505 so->so_rcv.sb_mb = m = m->m_next; 1506 *mp = NULL; 1507 } else { 1508 MFREE(m, so->so_rcv.sb_mb); 1509 m = so->so_rcv.sb_mb; 1510 } 1511 /* 1512 * If m != NULL, we also know that 1513 * so->so_rcv.sb_mb != NULL. 1514 */ 1515 KASSERT(so->so_rcv.sb_mb == m); 1516 if (m) { 1517 m->m_nextpkt = nextrecord; 1518 if (nextrecord == NULL) 1519 so->so_rcv.sb_lastrecord = m; 1520 } else { 1521 so->so_rcv.sb_mb = nextrecord; 1522 SB_EMPTY_FIXUP(&so->so_rcv); 1523 } 1524 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1525 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1526 } 1527 } else if (flags & MSG_PEEK) 1528 moff += len; 1529 else { 1530 if (mp != NULL) { 1531 mt = m_copym(m, 0, len, M_NOWAIT); 1532 if (__predict_false(mt == NULL)) { 1533 sounlock(so); 1534 mt = m_copym(m, 0, len, M_WAIT); 1535 solock(so); 1536 } 1537 *mp = mt; 1538 } 1539 m->m_data += len; 1540 m->m_len -= len; 1541 so->so_rcv.sb_cc -= len; 1542 } 1543 if (so->so_oobmark) { 1544 if ((flags & MSG_PEEK) == 0) { 1545 so->so_oobmark -= len; 1546 if (so->so_oobmark == 0) { 1547 so->so_state |= SS_RCVATMARK; 1548 break; 1549 } 1550 } else { 1551 offset += len; 1552 if (offset == so->so_oobmark) 1553 break; 1554 } 1555 } 1556 if (flags & MSG_EOR) 1557 break; 1558 /* 1559 * If the MSG_WAITALL flag is set (for non-atomic socket), 1560 * we must not quit until "uio->uio_resid == 0" or an error 1561 * termination. If a signal/timeout occurs, return 1562 * with a short count but without error. 1563 * Keep sockbuf locked against other readers. 1564 */ 1565 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1566 !sosendallatonce(so) && !nextrecord) { 1567 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1568 break; 1569 /* 1570 * If we are peeking and the socket receive buffer is 1571 * full, stop since we can't get more data to peek at. 1572 */ 1573 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1574 break; 1575 /* 1576 * If we've drained the socket buffer, tell the 1577 * protocol in case it needs to do something to 1578 * get it filled again. 1579 */ 1580 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1581 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1582 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1583 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1584 if (wakeup_state & SS_RESTARTSYS) 1585 error = ERESTART; 1586 else 1587 error = sbwait(&so->so_rcv); 1588 if (error != 0) { 1589 sbunlock(&so->so_rcv); 1590 sounlock(so); 1591 splx(s); 1592 return 0; 1593 } 1594 if ((m = so->so_rcv.sb_mb) != NULL) 1595 nextrecord = m->m_nextpkt; 1596 wakeup_state = so->so_state; 1597 } 1598 } 1599 1600 if (m && atomic) { 1601 flags |= MSG_TRUNC; 1602 if ((flags & MSG_PEEK) == 0) 1603 (void) sbdroprecord(&so->so_rcv); 1604 } 1605 if ((flags & MSG_PEEK) == 0) { 1606 if (m == NULL) { 1607 /* 1608 * First part is an inline SB_EMPTY_FIXUP(). Second 1609 * part makes sure sb_lastrecord is up-to-date if 1610 * there is still data in the socket buffer. 1611 */ 1612 so->so_rcv.sb_mb = nextrecord; 1613 if (so->so_rcv.sb_mb == NULL) { 1614 so->so_rcv.sb_mbtail = NULL; 1615 so->so_rcv.sb_lastrecord = NULL; 1616 } else if (nextrecord->m_nextpkt == NULL) 1617 so->so_rcv.sb_lastrecord = nextrecord; 1618 } 1619 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1620 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1621 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1622 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1623 } 1624 if (orig_resid == uio->uio_resid && orig_resid && 1625 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1626 sbunlock(&so->so_rcv); 1627 goto restart; 1628 } 1629 1630 if (flagsp != NULL) 1631 *flagsp |= flags; 1632 release: 1633 sbunlock(&so->so_rcv); 1634 sounlock(so); 1635 splx(s); 1636 return error; 1637 } 1638 1639 int 1640 soshutdown(struct socket *so, int how) 1641 { 1642 const struct protosw *pr; 1643 int error; 1644 1645 KASSERT(solocked(so)); 1646 1647 pr = so->so_proto; 1648 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1649 return (EINVAL); 1650 1651 if (how == SHUT_RD || how == SHUT_RDWR) { 1652 sorflush(so); 1653 error = 0; 1654 } 1655 if (how == SHUT_WR || how == SHUT_RDWR) 1656 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1657 1658 return error; 1659 } 1660 1661 void 1662 sorestart(struct socket *so) 1663 { 1664 /* 1665 * An application has called close() on an fd on which another 1666 * of its threads has called a socket system call. 1667 * Mark this and wake everyone up, and code that would block again 1668 * instead returns ERESTART. 1669 * On system call re-entry the fd is validated and EBADF returned. 1670 * Any other fd will block again on the 2nd syscall. 1671 */ 1672 solock(so); 1673 so->so_state |= SS_RESTARTSYS; 1674 cv_broadcast(&so->so_cv); 1675 cv_broadcast(&so->so_snd.sb_cv); 1676 cv_broadcast(&so->so_rcv.sb_cv); 1677 sounlock(so); 1678 } 1679 1680 void 1681 sorflush(struct socket *so) 1682 { 1683 struct sockbuf *sb, asb; 1684 const struct protosw *pr; 1685 1686 KASSERT(solocked(so)); 1687 1688 sb = &so->so_rcv; 1689 pr = so->so_proto; 1690 socantrcvmore(so); 1691 sb->sb_flags |= SB_NOINTR; 1692 (void )sblock(sb, M_WAITOK); 1693 sbunlock(sb); 1694 asb = *sb; 1695 /* 1696 * Clear most of the sockbuf structure, but leave some of the 1697 * fields valid. 1698 */ 1699 memset(&sb->sb_startzero, 0, 1700 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1701 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1702 sounlock(so); 1703 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1704 solock(so); 1705 } 1706 sbrelease(&asb, so); 1707 } 1708 1709 /* 1710 * internal set SOL_SOCKET options 1711 */ 1712 static int 1713 sosetopt1(struct socket *so, const struct sockopt *sopt) 1714 { 1715 int error = EINVAL, opt; 1716 int optval = 0; /* XXX: gcc */ 1717 struct linger l; 1718 struct timeval tv; 1719 1720 switch ((opt = sopt->sopt_name)) { 1721 1722 case SO_ACCEPTFILTER: 1723 error = accept_filt_setopt(so, sopt); 1724 KASSERT(solocked(so)); 1725 break; 1726 1727 case SO_LINGER: 1728 error = sockopt_get(sopt, &l, sizeof(l)); 1729 solock(so); 1730 if (error) 1731 break; 1732 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1733 l.l_linger > (INT_MAX / hz)) { 1734 error = EDOM; 1735 break; 1736 } 1737 so->so_linger = l.l_linger; 1738 if (l.l_onoff) 1739 so->so_options |= SO_LINGER; 1740 else 1741 so->so_options &= ~SO_LINGER; 1742 break; 1743 1744 case SO_DEBUG: 1745 case SO_KEEPALIVE: 1746 case SO_DONTROUTE: 1747 case SO_USELOOPBACK: 1748 case SO_BROADCAST: 1749 case SO_REUSEADDR: 1750 case SO_REUSEPORT: 1751 case SO_OOBINLINE: 1752 case SO_TIMESTAMP: 1753 case SO_NOSIGPIPE: 1754 #ifdef SO_OTIMESTAMP 1755 case SO_OTIMESTAMP: 1756 #endif 1757 error = sockopt_getint(sopt, &optval); 1758 solock(so); 1759 if (error) 1760 break; 1761 if (optval) 1762 so->so_options |= opt; 1763 else 1764 so->so_options &= ~opt; 1765 break; 1766 1767 case SO_SNDBUF: 1768 case SO_RCVBUF: 1769 case SO_SNDLOWAT: 1770 case SO_RCVLOWAT: 1771 error = sockopt_getint(sopt, &optval); 1772 solock(so); 1773 if (error) 1774 break; 1775 1776 /* 1777 * Values < 1 make no sense for any of these 1778 * options, so disallow them. 1779 */ 1780 if (optval < 1) { 1781 error = EINVAL; 1782 break; 1783 } 1784 1785 switch (opt) { 1786 case SO_SNDBUF: 1787 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1788 error = ENOBUFS; 1789 break; 1790 } 1791 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1792 break; 1793 1794 case SO_RCVBUF: 1795 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1796 error = ENOBUFS; 1797 break; 1798 } 1799 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1800 break; 1801 1802 /* 1803 * Make sure the low-water is never greater than 1804 * the high-water. 1805 */ 1806 case SO_SNDLOWAT: 1807 if (optval > so->so_snd.sb_hiwat) 1808 optval = so->so_snd.sb_hiwat; 1809 1810 so->so_snd.sb_lowat = optval; 1811 break; 1812 1813 case SO_RCVLOWAT: 1814 if (optval > so->so_rcv.sb_hiwat) 1815 optval = so->so_rcv.sb_hiwat; 1816 1817 so->so_rcv.sb_lowat = optval; 1818 break; 1819 } 1820 break; 1821 1822 #ifdef COMPAT_50 1823 case SO_OSNDTIMEO: 1824 case SO_ORCVTIMEO: { 1825 struct timeval50 otv; 1826 error = sockopt_get(sopt, &otv, sizeof(otv)); 1827 if (error) { 1828 solock(so); 1829 break; 1830 } 1831 timeval50_to_timeval(&otv, &tv); 1832 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1833 error = 0; 1834 /*FALLTHROUGH*/ 1835 } 1836 #endif /* COMPAT_50 */ 1837 1838 case SO_SNDTIMEO: 1839 case SO_RCVTIMEO: 1840 if (error) 1841 error = sockopt_get(sopt, &tv, sizeof(tv)); 1842 solock(so); 1843 if (error) 1844 break; 1845 1846 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1847 error = EDOM; 1848 break; 1849 } 1850 1851 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1852 if (optval == 0 && tv.tv_usec != 0) 1853 optval = 1; 1854 1855 switch (opt) { 1856 case SO_SNDTIMEO: 1857 so->so_snd.sb_timeo = optval; 1858 break; 1859 case SO_RCVTIMEO: 1860 so->so_rcv.sb_timeo = optval; 1861 break; 1862 } 1863 break; 1864 1865 default: 1866 solock(so); 1867 error = ENOPROTOOPT; 1868 break; 1869 } 1870 KASSERT(solocked(so)); 1871 return error; 1872 } 1873 1874 int 1875 sosetopt(struct socket *so, struct sockopt *sopt) 1876 { 1877 int error, prerr; 1878 1879 if (sopt->sopt_level == SOL_SOCKET) { 1880 error = sosetopt1(so, sopt); 1881 KASSERT(solocked(so)); 1882 } else { 1883 error = ENOPROTOOPT; 1884 solock(so); 1885 } 1886 1887 if ((error == 0 || error == ENOPROTOOPT) && 1888 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1889 /* give the protocol stack a shot */ 1890 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1891 if (prerr == 0) 1892 error = 0; 1893 else if (prerr != ENOPROTOOPT) 1894 error = prerr; 1895 } 1896 sounlock(so); 1897 return error; 1898 } 1899 1900 /* 1901 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1902 */ 1903 int 1904 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1905 const void *val, size_t valsize) 1906 { 1907 struct sockopt sopt; 1908 int error; 1909 1910 KASSERT(valsize == 0 || val != NULL); 1911 1912 sockopt_init(&sopt, level, name, valsize); 1913 sockopt_set(&sopt, val, valsize); 1914 1915 error = sosetopt(so, &sopt); 1916 1917 sockopt_destroy(&sopt); 1918 1919 return error; 1920 } 1921 1922 /* 1923 * internal get SOL_SOCKET options 1924 */ 1925 static int 1926 sogetopt1(struct socket *so, struct sockopt *sopt) 1927 { 1928 int error, optval, opt; 1929 struct linger l; 1930 struct timeval tv; 1931 1932 switch ((opt = sopt->sopt_name)) { 1933 1934 case SO_ACCEPTFILTER: 1935 error = accept_filt_getopt(so, sopt); 1936 break; 1937 1938 case SO_LINGER: 1939 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1940 l.l_linger = so->so_linger; 1941 1942 error = sockopt_set(sopt, &l, sizeof(l)); 1943 break; 1944 1945 case SO_USELOOPBACK: 1946 case SO_DONTROUTE: 1947 case SO_DEBUG: 1948 case SO_KEEPALIVE: 1949 case SO_REUSEADDR: 1950 case SO_REUSEPORT: 1951 case SO_BROADCAST: 1952 case SO_OOBINLINE: 1953 case SO_TIMESTAMP: 1954 case SO_NOSIGPIPE: 1955 #ifdef SO_OTIMESTAMP 1956 case SO_OTIMESTAMP: 1957 #endif 1958 case SO_ACCEPTCONN: 1959 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1960 break; 1961 1962 case SO_TYPE: 1963 error = sockopt_setint(sopt, so->so_type); 1964 break; 1965 1966 case SO_ERROR: 1967 error = sockopt_setint(sopt, so->so_error); 1968 so->so_error = 0; 1969 break; 1970 1971 case SO_SNDBUF: 1972 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1973 break; 1974 1975 case SO_RCVBUF: 1976 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1977 break; 1978 1979 case SO_SNDLOWAT: 1980 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1981 break; 1982 1983 case SO_RCVLOWAT: 1984 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1985 break; 1986 1987 #ifdef COMPAT_50 1988 case SO_OSNDTIMEO: 1989 case SO_ORCVTIMEO: { 1990 struct timeval50 otv; 1991 1992 optval = (opt == SO_OSNDTIMEO ? 1993 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1994 1995 otv.tv_sec = optval / hz; 1996 otv.tv_usec = (optval % hz) * tick; 1997 1998 error = sockopt_set(sopt, &otv, sizeof(otv)); 1999 break; 2000 } 2001 #endif /* COMPAT_50 */ 2002 2003 case SO_SNDTIMEO: 2004 case SO_RCVTIMEO: 2005 optval = (opt == SO_SNDTIMEO ? 2006 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 2007 2008 tv.tv_sec = optval / hz; 2009 tv.tv_usec = (optval % hz) * tick; 2010 2011 error = sockopt_set(sopt, &tv, sizeof(tv)); 2012 break; 2013 2014 case SO_OVERFLOWED: 2015 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 2016 break; 2017 2018 default: 2019 error = ENOPROTOOPT; 2020 break; 2021 } 2022 2023 return (error); 2024 } 2025 2026 int 2027 sogetopt(struct socket *so, struct sockopt *sopt) 2028 { 2029 int error; 2030 2031 solock(so); 2032 if (sopt->sopt_level != SOL_SOCKET) { 2033 if (so->so_proto && so->so_proto->pr_ctloutput) { 2034 error = ((*so->so_proto->pr_ctloutput) 2035 (PRCO_GETOPT, so, sopt)); 2036 } else 2037 error = (ENOPROTOOPT); 2038 } else { 2039 error = sogetopt1(so, sopt); 2040 } 2041 sounlock(so); 2042 return (error); 2043 } 2044 2045 /* 2046 * alloc sockopt data buffer buffer 2047 * - will be released at destroy 2048 */ 2049 static int 2050 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2051 { 2052 2053 KASSERT(sopt->sopt_size == 0); 2054 2055 if (len > sizeof(sopt->sopt_buf)) { 2056 sopt->sopt_data = kmem_zalloc(len, kmflag); 2057 if (sopt->sopt_data == NULL) 2058 return ENOMEM; 2059 } else 2060 sopt->sopt_data = sopt->sopt_buf; 2061 2062 sopt->sopt_size = len; 2063 return 0; 2064 } 2065 2066 /* 2067 * initialise sockopt storage 2068 * - MAY sleep during allocation 2069 */ 2070 void 2071 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2072 { 2073 2074 memset(sopt, 0, sizeof(*sopt)); 2075 2076 sopt->sopt_level = level; 2077 sopt->sopt_name = name; 2078 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2079 } 2080 2081 /* 2082 * destroy sockopt storage 2083 * - will release any held memory references 2084 */ 2085 void 2086 sockopt_destroy(struct sockopt *sopt) 2087 { 2088 2089 if (sopt->sopt_data != sopt->sopt_buf) 2090 kmem_free(sopt->sopt_data, sopt->sopt_size); 2091 2092 memset(sopt, 0, sizeof(*sopt)); 2093 } 2094 2095 /* 2096 * set sockopt value 2097 * - value is copied into sockopt 2098 * - memory is allocated when necessary, will not sleep 2099 */ 2100 int 2101 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2102 { 2103 int error; 2104 2105 if (sopt->sopt_size == 0) { 2106 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2107 if (error) 2108 return error; 2109 } 2110 2111 KASSERT(sopt->sopt_size == len); 2112 memcpy(sopt->sopt_data, buf, len); 2113 return 0; 2114 } 2115 2116 /* 2117 * common case of set sockopt integer value 2118 */ 2119 int 2120 sockopt_setint(struct sockopt *sopt, int val) 2121 { 2122 2123 return sockopt_set(sopt, &val, sizeof(int)); 2124 } 2125 2126 /* 2127 * get sockopt value 2128 * - correct size must be given 2129 */ 2130 int 2131 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2132 { 2133 2134 if (sopt->sopt_size != len) 2135 return EINVAL; 2136 2137 memcpy(buf, sopt->sopt_data, len); 2138 return 0; 2139 } 2140 2141 /* 2142 * common case of get sockopt integer value 2143 */ 2144 int 2145 sockopt_getint(const struct sockopt *sopt, int *valp) 2146 { 2147 2148 return sockopt_get(sopt, valp, sizeof(int)); 2149 } 2150 2151 /* 2152 * set sockopt value from mbuf 2153 * - ONLY for legacy code 2154 * - mbuf is released by sockopt 2155 * - will not sleep 2156 */ 2157 int 2158 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2159 { 2160 size_t len; 2161 int error; 2162 2163 len = m_length(m); 2164 2165 if (sopt->sopt_size == 0) { 2166 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2167 if (error) 2168 return error; 2169 } 2170 2171 KASSERT(sopt->sopt_size == len); 2172 m_copydata(m, 0, len, sopt->sopt_data); 2173 m_freem(m); 2174 2175 return 0; 2176 } 2177 2178 /* 2179 * get sockopt value into mbuf 2180 * - ONLY for legacy code 2181 * - mbuf to be released by the caller 2182 * - will not sleep 2183 */ 2184 struct mbuf * 2185 sockopt_getmbuf(const struct sockopt *sopt) 2186 { 2187 struct mbuf *m; 2188 2189 if (sopt->sopt_size > MCLBYTES) 2190 return NULL; 2191 2192 m = m_get(M_DONTWAIT, MT_SOOPTS); 2193 if (m == NULL) 2194 return NULL; 2195 2196 if (sopt->sopt_size > MLEN) { 2197 MCLGET(m, M_DONTWAIT); 2198 if ((m->m_flags & M_EXT) == 0) { 2199 m_free(m); 2200 return NULL; 2201 } 2202 } 2203 2204 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2205 m->m_len = sopt->sopt_size; 2206 2207 return m; 2208 } 2209 2210 void 2211 sohasoutofband(struct socket *so) 2212 { 2213 2214 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2215 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2216 } 2217 2218 static void 2219 filt_sordetach(struct knote *kn) 2220 { 2221 struct socket *so; 2222 2223 so = ((file_t *)kn->kn_obj)->f_socket; 2224 solock(so); 2225 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2226 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2227 so->so_rcv.sb_flags &= ~SB_KNOTE; 2228 sounlock(so); 2229 } 2230 2231 /*ARGSUSED*/ 2232 static int 2233 filt_soread(struct knote *kn, long hint) 2234 { 2235 struct socket *so; 2236 int rv; 2237 2238 so = ((file_t *)kn->kn_obj)->f_socket; 2239 if (hint != NOTE_SUBMIT) 2240 solock(so); 2241 kn->kn_data = so->so_rcv.sb_cc; 2242 if (so->so_state & SS_CANTRCVMORE) { 2243 kn->kn_flags |= EV_EOF; 2244 kn->kn_fflags = so->so_error; 2245 rv = 1; 2246 } else if (so->so_error) /* temporary udp error */ 2247 rv = 1; 2248 else if (kn->kn_sfflags & NOTE_LOWAT) 2249 rv = (kn->kn_data >= kn->kn_sdata); 2250 else 2251 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2252 if (hint != NOTE_SUBMIT) 2253 sounlock(so); 2254 return rv; 2255 } 2256 2257 static void 2258 filt_sowdetach(struct knote *kn) 2259 { 2260 struct socket *so; 2261 2262 so = ((file_t *)kn->kn_obj)->f_socket; 2263 solock(so); 2264 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2265 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2266 so->so_snd.sb_flags &= ~SB_KNOTE; 2267 sounlock(so); 2268 } 2269 2270 /*ARGSUSED*/ 2271 static int 2272 filt_sowrite(struct knote *kn, long hint) 2273 { 2274 struct socket *so; 2275 int rv; 2276 2277 so = ((file_t *)kn->kn_obj)->f_socket; 2278 if (hint != NOTE_SUBMIT) 2279 solock(so); 2280 kn->kn_data = sbspace(&so->so_snd); 2281 if (so->so_state & SS_CANTSENDMORE) { 2282 kn->kn_flags |= EV_EOF; 2283 kn->kn_fflags = so->so_error; 2284 rv = 1; 2285 } else if (so->so_error) /* temporary udp error */ 2286 rv = 1; 2287 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2288 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2289 rv = 0; 2290 else if (kn->kn_sfflags & NOTE_LOWAT) 2291 rv = (kn->kn_data >= kn->kn_sdata); 2292 else 2293 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2294 if (hint != NOTE_SUBMIT) 2295 sounlock(so); 2296 return rv; 2297 } 2298 2299 /*ARGSUSED*/ 2300 static int 2301 filt_solisten(struct knote *kn, long hint) 2302 { 2303 struct socket *so; 2304 int rv; 2305 2306 so = ((file_t *)kn->kn_obj)->f_socket; 2307 2308 /* 2309 * Set kn_data to number of incoming connections, not 2310 * counting partial (incomplete) connections. 2311 */ 2312 if (hint != NOTE_SUBMIT) 2313 solock(so); 2314 kn->kn_data = so->so_qlen; 2315 rv = (kn->kn_data > 0); 2316 if (hint != NOTE_SUBMIT) 2317 sounlock(so); 2318 return rv; 2319 } 2320 2321 static const struct filterops solisten_filtops = 2322 { 1, NULL, filt_sordetach, filt_solisten }; 2323 static const struct filterops soread_filtops = 2324 { 1, NULL, filt_sordetach, filt_soread }; 2325 static const struct filterops sowrite_filtops = 2326 { 1, NULL, filt_sowdetach, filt_sowrite }; 2327 2328 int 2329 soo_kqfilter(struct file *fp, struct knote *kn) 2330 { 2331 struct socket *so; 2332 struct sockbuf *sb; 2333 2334 so = ((file_t *)kn->kn_obj)->f_socket; 2335 solock(so); 2336 switch (kn->kn_filter) { 2337 case EVFILT_READ: 2338 if (so->so_options & SO_ACCEPTCONN) 2339 kn->kn_fop = &solisten_filtops; 2340 else 2341 kn->kn_fop = &soread_filtops; 2342 sb = &so->so_rcv; 2343 break; 2344 case EVFILT_WRITE: 2345 kn->kn_fop = &sowrite_filtops; 2346 sb = &so->so_snd; 2347 break; 2348 default: 2349 sounlock(so); 2350 return (EINVAL); 2351 } 2352 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2353 sb->sb_flags |= SB_KNOTE; 2354 sounlock(so); 2355 return (0); 2356 } 2357 2358 static int 2359 sodopoll(struct socket *so, int events) 2360 { 2361 int revents; 2362 2363 revents = 0; 2364 2365 if (events & (POLLIN | POLLRDNORM)) 2366 if (soreadable(so)) 2367 revents |= events & (POLLIN | POLLRDNORM); 2368 2369 if (events & (POLLOUT | POLLWRNORM)) 2370 if (sowritable(so)) 2371 revents |= events & (POLLOUT | POLLWRNORM); 2372 2373 if (events & (POLLPRI | POLLRDBAND)) 2374 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2375 revents |= events & (POLLPRI | POLLRDBAND); 2376 2377 return revents; 2378 } 2379 2380 int 2381 sopoll(struct socket *so, int events) 2382 { 2383 int revents = 0; 2384 2385 #ifndef DIAGNOSTIC 2386 /* 2387 * Do a quick, unlocked check in expectation that the socket 2388 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2389 * as the solocked() assertions will fail. 2390 */ 2391 if ((revents = sodopoll(so, events)) != 0) 2392 return revents; 2393 #endif 2394 2395 solock(so); 2396 if ((revents = sodopoll(so, events)) == 0) { 2397 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2398 selrecord(curlwp, &so->so_rcv.sb_sel); 2399 so->so_rcv.sb_flags |= SB_NOTIFY; 2400 } 2401 2402 if (events & (POLLOUT | POLLWRNORM)) { 2403 selrecord(curlwp, &so->so_snd.sb_sel); 2404 so->so_snd.sb_flags |= SB_NOTIFY; 2405 } 2406 } 2407 sounlock(so); 2408 2409 return revents; 2410 } 2411 2412 2413 #include <sys/sysctl.h> 2414 2415 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2416 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2417 2418 /* 2419 * sysctl helper routine for kern.somaxkva. ensures that the given 2420 * value is not too small. 2421 * (XXX should we maybe make sure it's not too large as well?) 2422 */ 2423 static int 2424 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2425 { 2426 int error, new_somaxkva; 2427 struct sysctlnode node; 2428 2429 new_somaxkva = somaxkva; 2430 node = *rnode; 2431 node.sysctl_data = &new_somaxkva; 2432 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2433 if (error || newp == NULL) 2434 return (error); 2435 2436 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2437 return (EINVAL); 2438 2439 mutex_enter(&so_pendfree_lock); 2440 somaxkva = new_somaxkva; 2441 cv_broadcast(&socurkva_cv); 2442 mutex_exit(&so_pendfree_lock); 2443 2444 return (error); 2445 } 2446 2447 /* 2448 * sysctl helper routine for kern.sbmax. Basically just ensures that 2449 * any new value is not too small. 2450 */ 2451 static int 2452 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2453 { 2454 int error, new_sbmax; 2455 struct sysctlnode node; 2456 2457 new_sbmax = sb_max; 2458 node = *rnode; 2459 node.sysctl_data = &new_sbmax; 2460 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2461 if (error || newp == NULL) 2462 return (error); 2463 2464 KERNEL_LOCK(1, NULL); 2465 error = sb_max_set(new_sbmax); 2466 KERNEL_UNLOCK_ONE(NULL); 2467 2468 return (error); 2469 } 2470 2471 static void 2472 sysctl_kern_socket_setup(void) 2473 { 2474 2475 KASSERT(socket_sysctllog == NULL); 2476 2477 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2478 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2479 CTLTYPE_INT, "somaxkva", 2480 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2481 "used for socket buffers"), 2482 sysctl_kern_somaxkva, 0, NULL, 0, 2483 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2484 2485 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2486 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2487 CTLTYPE_INT, "sbmax", 2488 SYSCTL_DESCR("Maximum socket buffer size"), 2489 sysctl_kern_sbmax, 0, NULL, 0, 2490 CTL_KERN, KERN_SBMAX, CTL_EOL); 2491 } 2492