1 /* $NetBSD: uipc_socket.c,v 1.149 2007/12/05 17:19:59 pooka Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1988, 1990, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.149 2007/12/05 17:19:59 pooka Exp $"); 72 73 #include "opt_sock_counters.h" 74 #include "opt_sosend_loan.h" 75 #include "opt_mbuftrace.h" 76 #include "opt_somaxkva.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/file.h> 82 #include <sys/filedesc.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/domain.h> 86 #include <sys/kernel.h> 87 #include <sys/protosw.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/signalvar.h> 91 #include <sys/resourcevar.h> 92 #include <sys/pool.h> 93 #include <sys/event.h> 94 #include <sys/poll.h> 95 #include <sys/kauth.h> 96 #include <sys/mutex.h> 97 #include <sys/condvar.h> 98 99 #include <uvm/uvm.h> 100 101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL, 102 IPL_SOFTNET); 103 104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 105 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 106 107 extern const struct fileops socketops; 108 109 extern int somaxconn; /* patchable (XXX sysctl) */ 110 int somaxconn = SOMAXCONN; 111 112 #ifdef SOSEND_COUNTERS 113 #include <sys/device.h> 114 115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "loan big"); 117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "copy big"); 119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 120 NULL, "sosend", "copy small"); 121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 122 NULL, "sosend", "kva limit"); 123 124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 125 126 EVCNT_ATTACH_STATIC(sosend_loan_big); 127 EVCNT_ATTACH_STATIC(sosend_copy_big); 128 EVCNT_ATTACH_STATIC(sosend_copy_small); 129 EVCNT_ATTACH_STATIC(sosend_kvalimit); 130 #else 131 132 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 133 134 #endif /* SOSEND_COUNTERS */ 135 136 static struct callback_entry sokva_reclaimerentry; 137 138 #ifdef SOSEND_NO_LOAN 139 int sock_loan_thresh = -1; 140 #else 141 int sock_loan_thresh = 4096; 142 #endif 143 144 static kmutex_t so_pendfree_lock; 145 static struct mbuf *so_pendfree; 146 147 #ifndef SOMAXKVA 148 #define SOMAXKVA (16 * 1024 * 1024) 149 #endif 150 int somaxkva = SOMAXKVA; 151 static int socurkva; 152 static kcondvar_t socurkva_cv; 153 154 #define SOCK_LOAN_CHUNK 65536 155 156 static size_t sodopendfree(void); 157 static size_t sodopendfreel(void); 158 159 static vsize_t 160 sokvareserve(struct socket *so, vsize_t len) 161 { 162 int error; 163 164 mutex_enter(&so_pendfree_lock); 165 while (socurkva + len > somaxkva) { 166 size_t freed; 167 168 /* 169 * try to do pendfree. 170 */ 171 172 freed = sodopendfreel(); 173 174 /* 175 * if some kva was freed, try again. 176 */ 177 178 if (freed) 179 continue; 180 181 SOSEND_COUNTER_INCR(&sosend_kvalimit); 182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 183 if (error) { 184 len = 0; 185 break; 186 } 187 } 188 socurkva += len; 189 mutex_exit(&so_pendfree_lock); 190 return len; 191 } 192 193 static void 194 sokvaunreserve(vsize_t len) 195 { 196 197 mutex_enter(&so_pendfree_lock); 198 socurkva -= len; 199 cv_broadcast(&socurkva_cv); 200 mutex_exit(&so_pendfree_lock); 201 } 202 203 /* 204 * sokvaalloc: allocate kva for loan. 205 */ 206 207 vaddr_t 208 sokvaalloc(vsize_t len, struct socket *so) 209 { 210 vaddr_t lva; 211 212 /* 213 * reserve kva. 214 */ 215 216 if (sokvareserve(so, len) == 0) 217 return 0; 218 219 /* 220 * allocate kva. 221 */ 222 223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 224 if (lva == 0) { 225 sokvaunreserve(len); 226 return (0); 227 } 228 229 return lva; 230 } 231 232 /* 233 * sokvafree: free kva for loan. 234 */ 235 236 void 237 sokvafree(vaddr_t sva, vsize_t len) 238 { 239 240 /* 241 * free kva. 242 */ 243 244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 245 246 /* 247 * unreserve kva. 248 */ 249 250 sokvaunreserve(len); 251 } 252 253 static void 254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 255 { 256 vaddr_t va, sva, eva; 257 vsize_t len; 258 paddr_t pa; 259 int i, npgs; 260 261 eva = round_page((vaddr_t) buf + size); 262 sva = trunc_page((vaddr_t) buf); 263 len = eva - sva; 264 npgs = len >> PAGE_SHIFT; 265 266 if (__predict_false(pgs == NULL)) { 267 pgs = alloca(npgs * sizeof(*pgs)); 268 269 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) { 270 if (pmap_extract(pmap_kernel(), va, &pa) == false) 271 panic("sodoloanfree: va 0x%lx not mapped", va); 272 pgs[i] = PHYS_TO_VM_PAGE(pa); 273 } 274 } 275 276 pmap_kremove(sva, len); 277 pmap_update(pmap_kernel()); 278 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 279 sokvafree(sva, len); 280 } 281 282 static size_t 283 sodopendfree() 284 { 285 size_t rv; 286 287 mutex_enter(&so_pendfree_lock); 288 rv = sodopendfreel(); 289 mutex_exit(&so_pendfree_lock); 290 291 return rv; 292 } 293 294 /* 295 * sodopendfreel: free mbufs on "pendfree" list. 296 * unlock and relock so_pendfree_lock when freeing mbufs. 297 * 298 * => called with so_pendfree_lock held. 299 */ 300 301 static size_t 302 sodopendfreel() 303 { 304 struct mbuf *m, *next; 305 size_t rv = 0; 306 307 KASSERT(mutex_owned(&so_pendfree_lock)); 308 309 while (so_pendfree != NULL) { 310 m = so_pendfree; 311 so_pendfree = NULL; 312 mutex_exit(&so_pendfree_lock); 313 314 for (; m != NULL; m = next) { 315 next = m->m_next; 316 317 rv += m->m_ext.ext_size; 318 sodoloanfree((m->m_flags & M_EXT_PAGES) ? 319 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf, 320 m->m_ext.ext_size); 321 pool_cache_put(mb_cache, m); 322 } 323 324 mutex_enter(&so_pendfree_lock); 325 } 326 327 return (rv); 328 } 329 330 void 331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 332 { 333 334 if (m == NULL) { 335 336 /* 337 * called from MEXTREMOVE. 338 */ 339 340 sodoloanfree(NULL, buf, size); 341 return; 342 } 343 344 /* 345 * postpone freeing mbuf. 346 * 347 * we can't do it in interrupt context 348 * because we need to put kva back to kernel_map. 349 */ 350 351 mutex_enter(&so_pendfree_lock); 352 m->m_next = so_pendfree; 353 so_pendfree = m; 354 cv_broadcast(&socurkva_cv); 355 mutex_exit(&so_pendfree_lock); 356 } 357 358 static long 359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 360 { 361 struct iovec *iov = uio->uio_iov; 362 vaddr_t sva, eva; 363 vsize_t len; 364 vaddr_t lva, va; 365 int npgs, i, error; 366 367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 368 return (0); 369 370 if (iov->iov_len < (size_t) space) 371 space = iov->iov_len; 372 if (space > SOCK_LOAN_CHUNK) 373 space = SOCK_LOAN_CHUNK; 374 375 eva = round_page((vaddr_t) iov->iov_base + space); 376 sva = trunc_page((vaddr_t) iov->iov_base); 377 len = eva - sva; 378 npgs = len >> PAGE_SHIFT; 379 380 /* XXX KDASSERT */ 381 KASSERT(npgs <= M_EXT_MAXPAGES); 382 383 lva = sokvaalloc(len, so); 384 if (lva == 0) 385 return 0; 386 387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 389 if (error) { 390 sokvafree(lva, len); 391 return (0); 392 } 393 394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 396 VM_PROT_READ); 397 pmap_update(pmap_kernel()); 398 399 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 400 401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 403 404 uio->uio_resid -= space; 405 /* uio_offset not updated, not set/used for write(2) */ 406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 407 uio->uio_iov->iov_len -= space; 408 if (uio->uio_iov->iov_len == 0) { 409 uio->uio_iov++; 410 uio->uio_iovcnt--; 411 } 412 413 return (space); 414 } 415 416 static int 417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 418 { 419 420 KASSERT(ce == &sokva_reclaimerentry); 421 KASSERT(obj == NULL); 422 423 sodopendfree(); 424 if (!vm_map_starved_p(kernel_map)) { 425 return CALLBACK_CHAIN_ABORT; 426 } 427 return CALLBACK_CHAIN_CONTINUE; 428 } 429 430 struct mbuf * 431 getsombuf(struct socket *so, int type) 432 { 433 struct mbuf *m; 434 435 m = m_get(M_WAIT, type); 436 MCLAIM(m, so->so_mowner); 437 return m; 438 } 439 440 struct mbuf * 441 m_intopt(struct socket *so, int val) 442 { 443 struct mbuf *m; 444 445 m = getsombuf(so, MT_SOOPTS); 446 m->m_len = sizeof(int); 447 *mtod(m, int *) = val; 448 return m; 449 } 450 451 void 452 soinit(void) 453 { 454 455 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 456 cv_init(&socurkva_cv, "sokva"); 457 458 /* Set the initial adjusted socket buffer size. */ 459 if (sb_max_set(sb_max)) 460 panic("bad initial sb_max value: %lu", sb_max); 461 462 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 463 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 464 } 465 466 /* 467 * Socket operation routines. 468 * These routines are called by the routines in 469 * sys_socket.c or from a system process, and 470 * implement the semantics of socket operations by 471 * switching out to the protocol specific routines. 472 */ 473 /*ARGSUSED*/ 474 int 475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l) 476 { 477 const struct protosw *prp; 478 struct socket *so; 479 uid_t uid; 480 int error, s; 481 482 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 483 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 484 KAUTH_ARG(proto)); 485 if (error != 0) 486 return error; 487 488 if (proto) 489 prp = pffindproto(dom, proto, type); 490 else 491 prp = pffindtype(dom, type); 492 if (prp == NULL) { 493 /* no support for domain */ 494 if (pffinddomain(dom) == 0) 495 return EAFNOSUPPORT; 496 /* no support for socket type */ 497 if (proto == 0 && type != 0) 498 return EPROTOTYPE; 499 return EPROTONOSUPPORT; 500 } 501 if (prp->pr_usrreq == NULL) 502 return EPROTONOSUPPORT; 503 if (prp->pr_type != type) 504 return EPROTOTYPE; 505 s = splsoftnet(); 506 so = pool_get(&socket_pool, PR_WAITOK); 507 memset(so, 0, sizeof(*so)); 508 TAILQ_INIT(&so->so_q0); 509 TAILQ_INIT(&so->so_q); 510 so->so_type = type; 511 so->so_proto = prp; 512 so->so_send = sosend; 513 so->so_receive = soreceive; 514 #ifdef MBUFTRACE 515 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 516 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 517 so->so_mowner = &prp->pr_domain->dom_mowner; 518 #endif 519 selinit(&so->so_rcv.sb_sel); 520 selinit(&so->so_snd.sb_sel); 521 uid = kauth_cred_geteuid(l->l_cred); 522 so->so_uidinfo = uid_find(uid); 523 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 524 (struct mbuf *)(long)proto, NULL, l); 525 if (error != 0) { 526 so->so_state |= SS_NOFDREF; 527 sofree(so); 528 splx(s); 529 return error; 530 } 531 splx(s); 532 *aso = so; 533 return 0; 534 } 535 536 /* On success, write file descriptor to fdout and return zero. On 537 * failure, return non-zero; *fdout will be undefined. 538 */ 539 int 540 fsocreate(int domain, struct socket **sop, int type, int protocol, 541 struct lwp *l, int *fdout) 542 { 543 struct filedesc *fdp; 544 struct socket *so; 545 struct file *fp; 546 int fd, error; 547 548 fdp = l->l_proc->p_fd; 549 /* falloc() will use the desciptor for us */ 550 if ((error = falloc(l, &fp, &fd)) != 0) 551 return (error); 552 fp->f_flag = FREAD|FWRITE; 553 fp->f_type = DTYPE_SOCKET; 554 fp->f_ops = &socketops; 555 error = socreate(domain, &so, type, protocol, l); 556 if (error != 0) { 557 FILE_UNUSE(fp, l); 558 fdremove(fdp, fd); 559 ffree(fp); 560 } else { 561 if (sop != NULL) 562 *sop = so; 563 fp->f_data = so; 564 FILE_SET_MATURE(fp); 565 FILE_UNUSE(fp, l); 566 *fdout = fd; 567 } 568 return error; 569 } 570 571 int 572 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 573 { 574 int s, error; 575 576 s = splsoftnet(); 577 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 578 splx(s); 579 return error; 580 } 581 582 int 583 solisten(struct socket *so, int backlog) 584 { 585 int s, error; 586 587 s = splsoftnet(); 588 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 589 NULL, NULL, NULL); 590 if (error != 0) { 591 splx(s); 592 return error; 593 } 594 if (TAILQ_EMPTY(&so->so_q)) 595 so->so_options |= SO_ACCEPTCONN; 596 if (backlog < 0) 597 backlog = 0; 598 so->so_qlimit = min(backlog, somaxconn); 599 splx(s); 600 return 0; 601 } 602 603 void 604 sofree(struct socket *so) 605 { 606 607 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 608 return; 609 if (so->so_head) { 610 /* 611 * We must not decommission a socket that's on the accept(2) 612 * queue. If we do, then accept(2) may hang after select(2) 613 * indicated that the listening socket was ready. 614 */ 615 if (!soqremque(so, 0)) 616 return; 617 } 618 if (so->so_rcv.sb_hiwat) 619 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 620 RLIM_INFINITY); 621 if (so->so_snd.sb_hiwat) 622 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 623 RLIM_INFINITY); 624 sbrelease(&so->so_snd, so); 625 sorflush(so); 626 seldestroy(&so->so_rcv.sb_sel); 627 seldestroy(&so->so_snd.sb_sel); 628 pool_put(&socket_pool, so); 629 } 630 631 /* 632 * Close a socket on last file table reference removal. 633 * Initiate disconnect if connected. 634 * Free socket when disconnect complete. 635 */ 636 int 637 soclose(struct socket *so) 638 { 639 struct socket *so2; 640 int s, error; 641 642 error = 0; 643 s = splsoftnet(); /* conservative */ 644 if (so->so_options & SO_ACCEPTCONN) { 645 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 646 (void) soqremque(so2, 0); 647 (void) soabort(so2); 648 } 649 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 650 (void) soqremque(so2, 1); 651 (void) soabort(so2); 652 } 653 } 654 if (so->so_pcb == 0) 655 goto discard; 656 if (so->so_state & SS_ISCONNECTED) { 657 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 658 error = sodisconnect(so); 659 if (error) 660 goto drop; 661 } 662 if (so->so_options & SO_LINGER) { 663 if ((so->so_state & SS_ISDISCONNECTING) && 664 (so->so_state & SS_NBIO)) 665 goto drop; 666 while (so->so_state & SS_ISCONNECTED) { 667 error = tsleep((void *)&so->so_timeo, 668 PSOCK | PCATCH, netcls, 669 so->so_linger * hz); 670 if (error) 671 break; 672 } 673 } 674 } 675 drop: 676 if (so->so_pcb) { 677 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 678 NULL, NULL, NULL, NULL); 679 if (error == 0) 680 error = error2; 681 } 682 discard: 683 if (so->so_state & SS_NOFDREF) 684 panic("soclose: NOFDREF"); 685 so->so_state |= SS_NOFDREF; 686 sofree(so); 687 splx(s); 688 return (error); 689 } 690 691 /* 692 * Must be called at splsoftnet... 693 */ 694 int 695 soabort(struct socket *so) 696 { 697 int error; 698 699 KASSERT(so->so_head == NULL); 700 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 701 NULL, NULL, NULL); 702 if (error) { 703 sofree(so); 704 } 705 return error; 706 } 707 708 int 709 soaccept(struct socket *so, struct mbuf *nam) 710 { 711 int s, error; 712 713 error = 0; 714 s = splsoftnet(); 715 if ((so->so_state & SS_NOFDREF) == 0) 716 panic("soaccept: !NOFDREF"); 717 so->so_state &= ~SS_NOFDREF; 718 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 719 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 720 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 721 NULL, nam, NULL, NULL); 722 else 723 error = ECONNABORTED; 724 725 splx(s); 726 return (error); 727 } 728 729 int 730 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 731 { 732 int s, error; 733 734 if (so->so_options & SO_ACCEPTCONN) 735 return (EOPNOTSUPP); 736 s = splsoftnet(); 737 /* 738 * If protocol is connection-based, can only connect once. 739 * Otherwise, if connected, try to disconnect first. 740 * This allows user to disconnect by connecting to, e.g., 741 * a null address. 742 */ 743 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 744 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 745 (error = sodisconnect(so)))) 746 error = EISCONN; 747 else 748 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 749 NULL, nam, NULL, l); 750 splx(s); 751 return (error); 752 } 753 754 int 755 soconnect2(struct socket *so1, struct socket *so2) 756 { 757 int s, error; 758 759 s = splsoftnet(); 760 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 761 NULL, (struct mbuf *)so2, NULL, NULL); 762 splx(s); 763 return (error); 764 } 765 766 int 767 sodisconnect(struct socket *so) 768 { 769 int s, error; 770 771 s = splsoftnet(); 772 if ((so->so_state & SS_ISCONNECTED) == 0) { 773 error = ENOTCONN; 774 goto bad; 775 } 776 if (so->so_state & SS_ISDISCONNECTING) { 777 error = EALREADY; 778 goto bad; 779 } 780 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 781 NULL, NULL, NULL, NULL); 782 bad: 783 splx(s); 784 sodopendfree(); 785 return (error); 786 } 787 788 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 789 /* 790 * Send on a socket. 791 * If send must go all at once and message is larger than 792 * send buffering, then hard error. 793 * Lock against other senders. 794 * If must go all at once and not enough room now, then 795 * inform user that this would block and do nothing. 796 * Otherwise, if nonblocking, send as much as possible. 797 * The data to be sent is described by "uio" if nonzero, 798 * otherwise by the mbuf chain "top" (which must be null 799 * if uio is not). Data provided in mbuf chain must be small 800 * enough to send all at once. 801 * 802 * Returns nonzero on error, timeout or signal; callers 803 * must check for short counts if EINTR/ERESTART are returned. 804 * Data and control buffers are freed on return. 805 */ 806 int 807 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 808 struct mbuf *control, int flags, struct lwp *l) 809 { 810 struct mbuf **mp, *m; 811 struct proc *p; 812 long space, len, resid, clen, mlen; 813 int error, s, dontroute, atomic; 814 815 p = l->l_proc; 816 sodopendfree(); 817 818 clen = 0; 819 atomic = sosendallatonce(so) || top; 820 if (uio) 821 resid = uio->uio_resid; 822 else 823 resid = top->m_pkthdr.len; 824 /* 825 * In theory resid should be unsigned. 826 * However, space must be signed, as it might be less than 0 827 * if we over-committed, and we must use a signed comparison 828 * of space and resid. On the other hand, a negative resid 829 * causes us to loop sending 0-length segments to the protocol. 830 */ 831 if (resid < 0) { 832 error = EINVAL; 833 goto out; 834 } 835 dontroute = 836 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 837 (so->so_proto->pr_flags & PR_ATOMIC); 838 if (p) 839 p->p_stats->p_ru.ru_msgsnd++; 840 if (control) 841 clen = control->m_len; 842 #define snderr(errno) { error = errno; splx(s); goto release; } 843 844 restart: 845 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 846 goto out; 847 do { 848 s = splsoftnet(); 849 if (so->so_state & SS_CANTSENDMORE) 850 snderr(EPIPE); 851 if (so->so_error) { 852 error = so->so_error; 853 so->so_error = 0; 854 splx(s); 855 goto release; 856 } 857 if ((so->so_state & SS_ISCONNECTED) == 0) { 858 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 859 if ((so->so_state & SS_ISCONFIRMING) == 0 && 860 !(resid == 0 && clen != 0)) 861 snderr(ENOTCONN); 862 } else if (addr == 0) 863 snderr(EDESTADDRREQ); 864 } 865 space = sbspace(&so->so_snd); 866 if (flags & MSG_OOB) 867 space += 1024; 868 if ((atomic && resid > so->so_snd.sb_hiwat) || 869 clen > so->so_snd.sb_hiwat) 870 snderr(EMSGSIZE); 871 if (space < resid + clen && 872 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 873 if (so->so_state & SS_NBIO) 874 snderr(EWOULDBLOCK); 875 sbunlock(&so->so_snd); 876 error = sbwait(&so->so_snd); 877 splx(s); 878 if (error) 879 goto out; 880 goto restart; 881 } 882 splx(s); 883 mp = ⊤ 884 space -= clen; 885 do { 886 if (uio == NULL) { 887 /* 888 * Data is prepackaged in "top". 889 */ 890 resid = 0; 891 if (flags & MSG_EOR) 892 top->m_flags |= M_EOR; 893 } else do { 894 if (top == NULL) { 895 m = m_gethdr(M_WAIT, MT_DATA); 896 mlen = MHLEN; 897 m->m_pkthdr.len = 0; 898 m->m_pkthdr.rcvif = NULL; 899 } else { 900 m = m_get(M_WAIT, MT_DATA); 901 mlen = MLEN; 902 } 903 MCLAIM(m, so->so_snd.sb_mowner); 904 if (sock_loan_thresh >= 0 && 905 uio->uio_iov->iov_len >= sock_loan_thresh && 906 space >= sock_loan_thresh && 907 (len = sosend_loan(so, uio, m, 908 space)) != 0) { 909 SOSEND_COUNTER_INCR(&sosend_loan_big); 910 space -= len; 911 goto have_data; 912 } 913 if (resid >= MINCLSIZE && space >= MCLBYTES) { 914 SOSEND_COUNTER_INCR(&sosend_copy_big); 915 m_clget(m, M_WAIT); 916 if ((m->m_flags & M_EXT) == 0) 917 goto nopages; 918 mlen = MCLBYTES; 919 if (atomic && top == 0) { 920 len = lmin(MCLBYTES - max_hdr, 921 resid); 922 m->m_data += max_hdr; 923 } else 924 len = lmin(MCLBYTES, resid); 925 space -= len; 926 } else { 927 nopages: 928 SOSEND_COUNTER_INCR(&sosend_copy_small); 929 len = lmin(lmin(mlen, resid), space); 930 space -= len; 931 /* 932 * For datagram protocols, leave room 933 * for protocol headers in first mbuf. 934 */ 935 if (atomic && top == 0 && len < mlen) 936 MH_ALIGN(m, len); 937 } 938 error = uiomove(mtod(m, void *), (int)len, uio); 939 have_data: 940 resid = uio->uio_resid; 941 m->m_len = len; 942 *mp = m; 943 top->m_pkthdr.len += len; 944 if (error != 0) 945 goto release; 946 mp = &m->m_next; 947 if (resid <= 0) { 948 if (flags & MSG_EOR) 949 top->m_flags |= M_EOR; 950 break; 951 } 952 } while (space > 0 && atomic); 953 954 s = splsoftnet(); 955 956 if (so->so_state & SS_CANTSENDMORE) 957 snderr(EPIPE); 958 959 if (dontroute) 960 so->so_options |= SO_DONTROUTE; 961 if (resid > 0) 962 so->so_state |= SS_MORETOCOME; 963 error = (*so->so_proto->pr_usrreq)(so, 964 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 965 top, addr, control, curlwp); /* XXX */ 966 if (dontroute) 967 so->so_options &= ~SO_DONTROUTE; 968 if (resid > 0) 969 so->so_state &= ~SS_MORETOCOME; 970 splx(s); 971 972 clen = 0; 973 control = NULL; 974 top = NULL; 975 mp = ⊤ 976 if (error != 0) 977 goto release; 978 } while (resid && space > 0); 979 } while (resid); 980 981 release: 982 sbunlock(&so->so_snd); 983 out: 984 if (top) 985 m_freem(top); 986 if (control) 987 m_freem(control); 988 return (error); 989 } 990 991 /* 992 * Implement receive operations on a socket. 993 * We depend on the way that records are added to the sockbuf 994 * by sbappend*. In particular, each record (mbufs linked through m_next) 995 * must begin with an address if the protocol so specifies, 996 * followed by an optional mbuf or mbufs containing ancillary data, 997 * and then zero or more mbufs of data. 998 * In order to avoid blocking network interrupts for the entire time here, 999 * we splx() while doing the actual copy to user space. 1000 * Although the sockbuf is locked, new data may still be appended, 1001 * and thus we must maintain consistency of the sockbuf during that time. 1002 * 1003 * The caller may receive the data as a single mbuf chain by supplying 1004 * an mbuf **mp0 for use in returning the chain. The uio is then used 1005 * only for the count in uio_resid. 1006 */ 1007 int 1008 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1009 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1010 { 1011 struct lwp *l = curlwp; 1012 struct mbuf *m, **mp; 1013 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1014 const struct protosw *pr; 1015 struct mbuf *nextrecord; 1016 int mbuf_removed = 0; 1017 const struct domain *dom; 1018 1019 pr = so->so_proto; 1020 atomic = pr->pr_flags & PR_ATOMIC; 1021 dom = pr->pr_domain; 1022 mp = mp0; 1023 type = 0; 1024 orig_resid = uio->uio_resid; 1025 1026 if (paddr != NULL) 1027 *paddr = NULL; 1028 if (controlp != NULL) 1029 *controlp = NULL; 1030 if (flagsp != NULL) 1031 flags = *flagsp &~ MSG_EOR; 1032 else 1033 flags = 0; 1034 1035 if ((flags & MSG_DONTWAIT) == 0) 1036 sodopendfree(); 1037 1038 if (flags & MSG_OOB) { 1039 m = m_get(M_WAIT, MT_DATA); 1040 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1041 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1042 if (error) 1043 goto bad; 1044 do { 1045 error = uiomove(mtod(m, void *), 1046 (int) min(uio->uio_resid, m->m_len), uio); 1047 m = m_free(m); 1048 } while (uio->uio_resid > 0 && error == 0 && m); 1049 bad: 1050 if (m != NULL) 1051 m_freem(m); 1052 return error; 1053 } 1054 if (mp != NULL) 1055 *mp = NULL; 1056 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1057 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1058 1059 restart: 1060 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 1061 return error; 1062 s = splsoftnet(); 1063 1064 m = so->so_rcv.sb_mb; 1065 /* 1066 * If we have less data than requested, block awaiting more 1067 * (subject to any timeout) if: 1068 * 1. the current count is less than the low water mark, 1069 * 2. MSG_WAITALL is set, and it is possible to do the entire 1070 * receive operation at once if we block (resid <= hiwat), or 1071 * 3. MSG_DONTWAIT is not set. 1072 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1073 * we have to do the receive in sections, and thus risk returning 1074 * a short count if a timeout or signal occurs after we start. 1075 */ 1076 if (m == NULL || 1077 ((flags & MSG_DONTWAIT) == 0 && 1078 so->so_rcv.sb_cc < uio->uio_resid && 1079 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1080 ((flags & MSG_WAITALL) && 1081 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1082 m->m_nextpkt == NULL && !atomic)) { 1083 #ifdef DIAGNOSTIC 1084 if (m == NULL && so->so_rcv.sb_cc) 1085 panic("receive 1"); 1086 #endif 1087 if (so->so_error) { 1088 if (m != NULL) 1089 goto dontblock; 1090 error = so->so_error; 1091 if ((flags & MSG_PEEK) == 0) 1092 so->so_error = 0; 1093 goto release; 1094 } 1095 if (so->so_state & SS_CANTRCVMORE) { 1096 if (m != NULL) 1097 goto dontblock; 1098 else 1099 goto release; 1100 } 1101 for (; m != NULL; m = m->m_next) 1102 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1103 m = so->so_rcv.sb_mb; 1104 goto dontblock; 1105 } 1106 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1107 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1108 error = ENOTCONN; 1109 goto release; 1110 } 1111 if (uio->uio_resid == 0) 1112 goto release; 1113 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 1114 error = EWOULDBLOCK; 1115 goto release; 1116 } 1117 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1118 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1119 sbunlock(&so->so_rcv); 1120 error = sbwait(&so->so_rcv); 1121 splx(s); 1122 if (error != 0) 1123 return error; 1124 goto restart; 1125 } 1126 dontblock: 1127 /* 1128 * On entry here, m points to the first record of the socket buffer. 1129 * While we process the initial mbufs containing address and control 1130 * info, we save a copy of m->m_nextpkt into nextrecord. 1131 */ 1132 if (l != NULL) 1133 l->l_proc->p_stats->p_ru.ru_msgrcv++; 1134 KASSERT(m == so->so_rcv.sb_mb); 1135 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1136 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1137 nextrecord = m->m_nextpkt; 1138 if (pr->pr_flags & PR_ADDR) { 1139 #ifdef DIAGNOSTIC 1140 if (m->m_type != MT_SONAME) 1141 panic("receive 1a"); 1142 #endif 1143 orig_resid = 0; 1144 if (flags & MSG_PEEK) { 1145 if (paddr) 1146 *paddr = m_copy(m, 0, m->m_len); 1147 m = m->m_next; 1148 } else { 1149 sbfree(&so->so_rcv, m); 1150 mbuf_removed = 1; 1151 if (paddr != NULL) { 1152 *paddr = m; 1153 so->so_rcv.sb_mb = m->m_next; 1154 m->m_next = NULL; 1155 m = so->so_rcv.sb_mb; 1156 } else { 1157 MFREE(m, so->so_rcv.sb_mb); 1158 m = so->so_rcv.sb_mb; 1159 } 1160 } 1161 } 1162 while (m != NULL && m->m_type == MT_CONTROL && error == 0) { 1163 if (flags & MSG_PEEK) { 1164 if (controlp != NULL) 1165 *controlp = m_copy(m, 0, m->m_len); 1166 m = m->m_next; 1167 } else { 1168 sbfree(&so->so_rcv, m); 1169 mbuf_removed = 1; 1170 if (controlp != NULL) { 1171 if (dom->dom_externalize && l && 1172 mtod(m, struct cmsghdr *)->cmsg_type == 1173 SCM_RIGHTS) 1174 error = (*dom->dom_externalize)(m, l); 1175 *controlp = m; 1176 so->so_rcv.sb_mb = m->m_next; 1177 m->m_next = NULL; 1178 m = so->so_rcv.sb_mb; 1179 } else { 1180 /* 1181 * Dispose of any SCM_RIGHTS message that went 1182 * through the read path rather than recv. 1183 */ 1184 if (dom->dom_dispose && 1185 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 1186 (*dom->dom_dispose)(m); 1187 MFREE(m, so->so_rcv.sb_mb); 1188 m = so->so_rcv.sb_mb; 1189 } 1190 } 1191 if (controlp != NULL) { 1192 orig_resid = 0; 1193 controlp = &(*controlp)->m_next; 1194 } 1195 } 1196 1197 /* 1198 * If m is non-NULL, we have some data to read. From now on, 1199 * make sure to keep sb_lastrecord consistent when working on 1200 * the last packet on the chain (nextrecord == NULL) and we 1201 * change m->m_nextpkt. 1202 */ 1203 if (m != NULL) { 1204 if ((flags & MSG_PEEK) == 0) { 1205 m->m_nextpkt = nextrecord; 1206 /* 1207 * If nextrecord == NULL (this is a single chain), 1208 * then sb_lastrecord may not be valid here if m 1209 * was changed earlier. 1210 */ 1211 if (nextrecord == NULL) { 1212 KASSERT(so->so_rcv.sb_mb == m); 1213 so->so_rcv.sb_lastrecord = m; 1214 } 1215 } 1216 type = m->m_type; 1217 if (type == MT_OOBDATA) 1218 flags |= MSG_OOB; 1219 } else { 1220 if ((flags & MSG_PEEK) == 0) { 1221 KASSERT(so->so_rcv.sb_mb == m); 1222 so->so_rcv.sb_mb = nextrecord; 1223 SB_EMPTY_FIXUP(&so->so_rcv); 1224 } 1225 } 1226 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1227 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1228 1229 moff = 0; 1230 offset = 0; 1231 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1232 if (m->m_type == MT_OOBDATA) { 1233 if (type != MT_OOBDATA) 1234 break; 1235 } else if (type == MT_OOBDATA) 1236 break; 1237 #ifdef DIAGNOSTIC 1238 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1239 panic("receive 3"); 1240 #endif 1241 so->so_state &= ~SS_RCVATMARK; 1242 len = uio->uio_resid; 1243 if (so->so_oobmark && len > so->so_oobmark - offset) 1244 len = so->so_oobmark - offset; 1245 if (len > m->m_len - moff) 1246 len = m->m_len - moff; 1247 /* 1248 * If mp is set, just pass back the mbufs. 1249 * Otherwise copy them out via the uio, then free. 1250 * Sockbuf must be consistent here (points to current mbuf, 1251 * it points to next record) when we drop priority; 1252 * we must note any additions to the sockbuf when we 1253 * block interrupts again. 1254 */ 1255 if (mp == NULL) { 1256 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1257 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1258 splx(s); 1259 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1260 s = splsoftnet(); 1261 if (error != 0) { 1262 /* 1263 * If any part of the record has been removed 1264 * (such as the MT_SONAME mbuf, which will 1265 * happen when PR_ADDR, and thus also 1266 * PR_ATOMIC, is set), then drop the entire 1267 * record to maintain the atomicity of the 1268 * receive operation. 1269 * 1270 * This avoids a later panic("receive 1a") 1271 * when compiled with DIAGNOSTIC. 1272 */ 1273 if (m && mbuf_removed && atomic) 1274 (void) sbdroprecord(&so->so_rcv); 1275 1276 goto release; 1277 } 1278 } else 1279 uio->uio_resid -= len; 1280 if (len == m->m_len - moff) { 1281 if (m->m_flags & M_EOR) 1282 flags |= MSG_EOR; 1283 if (flags & MSG_PEEK) { 1284 m = m->m_next; 1285 moff = 0; 1286 } else { 1287 nextrecord = m->m_nextpkt; 1288 sbfree(&so->so_rcv, m); 1289 if (mp) { 1290 *mp = m; 1291 mp = &m->m_next; 1292 so->so_rcv.sb_mb = m = m->m_next; 1293 *mp = NULL; 1294 } else { 1295 MFREE(m, so->so_rcv.sb_mb); 1296 m = so->so_rcv.sb_mb; 1297 } 1298 /* 1299 * If m != NULL, we also know that 1300 * so->so_rcv.sb_mb != NULL. 1301 */ 1302 KASSERT(so->so_rcv.sb_mb == m); 1303 if (m) { 1304 m->m_nextpkt = nextrecord; 1305 if (nextrecord == NULL) 1306 so->so_rcv.sb_lastrecord = m; 1307 } else { 1308 so->so_rcv.sb_mb = nextrecord; 1309 SB_EMPTY_FIXUP(&so->so_rcv); 1310 } 1311 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1312 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1313 } 1314 } else if (flags & MSG_PEEK) 1315 moff += len; 1316 else { 1317 if (mp != NULL) 1318 *mp = m_copym(m, 0, len, M_WAIT); 1319 m->m_data += len; 1320 m->m_len -= len; 1321 so->so_rcv.sb_cc -= len; 1322 } 1323 if (so->so_oobmark) { 1324 if ((flags & MSG_PEEK) == 0) { 1325 so->so_oobmark -= len; 1326 if (so->so_oobmark == 0) { 1327 so->so_state |= SS_RCVATMARK; 1328 break; 1329 } 1330 } else { 1331 offset += len; 1332 if (offset == so->so_oobmark) 1333 break; 1334 } 1335 } 1336 if (flags & MSG_EOR) 1337 break; 1338 /* 1339 * If the MSG_WAITALL flag is set (for non-atomic socket), 1340 * we must not quit until "uio->uio_resid == 0" or an error 1341 * termination. If a signal/timeout occurs, return 1342 * with a short count but without error. 1343 * Keep sockbuf locked against other readers. 1344 */ 1345 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1346 !sosendallatonce(so) && !nextrecord) { 1347 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1348 break; 1349 /* 1350 * If we are peeking and the socket receive buffer is 1351 * full, stop since we can't get more data to peek at. 1352 */ 1353 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1354 break; 1355 /* 1356 * If we've drained the socket buffer, tell the 1357 * protocol in case it needs to do something to 1358 * get it filled again. 1359 */ 1360 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1361 (*pr->pr_usrreq)(so, PRU_RCVD, 1362 NULL, (struct mbuf *)(long)flags, NULL, l); 1363 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1364 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1365 error = sbwait(&so->so_rcv); 1366 if (error != 0) { 1367 sbunlock(&so->so_rcv); 1368 splx(s); 1369 return 0; 1370 } 1371 if ((m = so->so_rcv.sb_mb) != NULL) 1372 nextrecord = m->m_nextpkt; 1373 } 1374 } 1375 1376 if (m && atomic) { 1377 flags |= MSG_TRUNC; 1378 if ((flags & MSG_PEEK) == 0) 1379 (void) sbdroprecord(&so->so_rcv); 1380 } 1381 if ((flags & MSG_PEEK) == 0) { 1382 if (m == NULL) { 1383 /* 1384 * First part is an inline SB_EMPTY_FIXUP(). Second 1385 * part makes sure sb_lastrecord is up-to-date if 1386 * there is still data in the socket buffer. 1387 */ 1388 so->so_rcv.sb_mb = nextrecord; 1389 if (so->so_rcv.sb_mb == NULL) { 1390 so->so_rcv.sb_mbtail = NULL; 1391 so->so_rcv.sb_lastrecord = NULL; 1392 } else if (nextrecord->m_nextpkt == NULL) 1393 so->so_rcv.sb_lastrecord = nextrecord; 1394 } 1395 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1396 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1397 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1398 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1399 (struct mbuf *)(long)flags, NULL, l); 1400 } 1401 if (orig_resid == uio->uio_resid && orig_resid && 1402 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1403 sbunlock(&so->so_rcv); 1404 splx(s); 1405 goto restart; 1406 } 1407 1408 if (flagsp != NULL) 1409 *flagsp |= flags; 1410 release: 1411 sbunlock(&so->so_rcv); 1412 splx(s); 1413 return error; 1414 } 1415 1416 int 1417 soshutdown(struct socket *so, int how) 1418 { 1419 const struct protosw *pr; 1420 1421 pr = so->so_proto; 1422 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1423 return (EINVAL); 1424 1425 if (how == SHUT_RD || how == SHUT_RDWR) 1426 sorflush(so); 1427 if (how == SHUT_WR || how == SHUT_RDWR) 1428 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1429 NULL, NULL, NULL); 1430 return 0; 1431 } 1432 1433 void 1434 sorflush(struct socket *so) 1435 { 1436 struct sockbuf *sb, asb; 1437 const struct protosw *pr; 1438 int s; 1439 1440 sb = &so->so_rcv; 1441 pr = so->so_proto; 1442 sb->sb_flags |= SB_NOINTR; 1443 (void) sblock(sb, M_WAITOK); 1444 s = splnet(); 1445 socantrcvmore(so); 1446 sbunlock(sb); 1447 asb = *sb; 1448 /* 1449 * Clear most of the sockbuf structure, but leave some of the 1450 * fields valid. 1451 */ 1452 memset(&sb->sb_startzero, 0, 1453 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1454 splx(s); 1455 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1456 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1457 sbrelease(&asb, so); 1458 } 1459 1460 static int 1461 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m) 1462 { 1463 int optval, val; 1464 struct linger *l; 1465 struct sockbuf *sb; 1466 struct timeval *tv; 1467 1468 switch (optname) { 1469 1470 case SO_LINGER: 1471 if (m == NULL || m->m_len != sizeof(struct linger)) 1472 return EINVAL; 1473 l = mtod(m, struct linger *); 1474 if (l->l_linger < 0 || l->l_linger > USHRT_MAX || 1475 l->l_linger > (INT_MAX / hz)) 1476 return EDOM; 1477 so->so_linger = l->l_linger; 1478 if (l->l_onoff) 1479 so->so_options |= SO_LINGER; 1480 else 1481 so->so_options &= ~SO_LINGER; 1482 break; 1483 1484 case SO_DEBUG: 1485 case SO_KEEPALIVE: 1486 case SO_DONTROUTE: 1487 case SO_USELOOPBACK: 1488 case SO_BROADCAST: 1489 case SO_REUSEADDR: 1490 case SO_REUSEPORT: 1491 case SO_OOBINLINE: 1492 case SO_TIMESTAMP: 1493 if (m == NULL || m->m_len < sizeof(int)) 1494 return EINVAL; 1495 if (*mtod(m, int *)) 1496 so->so_options |= optname; 1497 else 1498 so->so_options &= ~optname; 1499 break; 1500 1501 case SO_SNDBUF: 1502 case SO_RCVBUF: 1503 case SO_SNDLOWAT: 1504 case SO_RCVLOWAT: 1505 if (m == NULL || m->m_len < sizeof(int)) 1506 return EINVAL; 1507 1508 /* 1509 * Values < 1 make no sense for any of these 1510 * options, so disallow them. 1511 */ 1512 optval = *mtod(m, int *); 1513 if (optval < 1) 1514 return EINVAL; 1515 1516 switch (optname) { 1517 1518 case SO_SNDBUF: 1519 case SO_RCVBUF: 1520 sb = (optname == SO_SNDBUF) ? 1521 &so->so_snd : &so->so_rcv; 1522 if (sbreserve(sb, (u_long)optval, so) == 0) 1523 return ENOBUFS; 1524 sb->sb_flags &= ~SB_AUTOSIZE; 1525 break; 1526 1527 /* 1528 * Make sure the low-water is never greater than 1529 * the high-water. 1530 */ 1531 case SO_SNDLOWAT: 1532 so->so_snd.sb_lowat = 1533 (optval > so->so_snd.sb_hiwat) ? 1534 so->so_snd.sb_hiwat : optval; 1535 break; 1536 case SO_RCVLOWAT: 1537 so->so_rcv.sb_lowat = 1538 (optval > so->so_rcv.sb_hiwat) ? 1539 so->so_rcv.sb_hiwat : optval; 1540 break; 1541 } 1542 break; 1543 1544 case SO_SNDTIMEO: 1545 case SO_RCVTIMEO: 1546 if (m == NULL || m->m_len < sizeof(*tv)) 1547 return EINVAL; 1548 tv = mtod(m, struct timeval *); 1549 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) 1550 return EDOM; 1551 val = tv->tv_sec * hz + tv->tv_usec / tick; 1552 if (val == 0 && tv->tv_usec != 0) 1553 val = 1; 1554 1555 switch (optname) { 1556 1557 case SO_SNDTIMEO: 1558 so->so_snd.sb_timeo = val; 1559 break; 1560 case SO_RCVTIMEO: 1561 so->so_rcv.sb_timeo = val; 1562 break; 1563 } 1564 break; 1565 1566 default: 1567 return ENOPROTOOPT; 1568 } 1569 return 0; 1570 } 1571 1572 int 1573 sosetopt(struct socket *so, int level, int optname, struct mbuf *m) 1574 { 1575 int error, prerr; 1576 1577 if (level == SOL_SOCKET) 1578 error = sosetopt1(so, level, optname, m); 1579 else 1580 error = ENOPROTOOPT; 1581 1582 if ((error == 0 || error == ENOPROTOOPT) && 1583 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1584 /* give the protocol stack a shot */ 1585 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level, 1586 optname, &m); 1587 if (prerr == 0) 1588 error = 0; 1589 else if (prerr != ENOPROTOOPT) 1590 error = prerr; 1591 } else if (m != NULL) 1592 (void)m_free(m); 1593 return error; 1594 } 1595 1596 int 1597 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1598 { 1599 struct mbuf *m; 1600 1601 if (level != SOL_SOCKET) { 1602 if (so->so_proto && so->so_proto->pr_ctloutput) { 1603 return ((*so->so_proto->pr_ctloutput) 1604 (PRCO_GETOPT, so, level, optname, mp)); 1605 } else 1606 return (ENOPROTOOPT); 1607 } else { 1608 m = m_get(M_WAIT, MT_SOOPTS); 1609 m->m_len = sizeof(int); 1610 1611 switch (optname) { 1612 1613 case SO_LINGER: 1614 m->m_len = sizeof(struct linger); 1615 mtod(m, struct linger *)->l_onoff = 1616 (so->so_options & SO_LINGER) ? 1 : 0; 1617 mtod(m, struct linger *)->l_linger = so->so_linger; 1618 break; 1619 1620 case SO_USELOOPBACK: 1621 case SO_DONTROUTE: 1622 case SO_DEBUG: 1623 case SO_KEEPALIVE: 1624 case SO_REUSEADDR: 1625 case SO_REUSEPORT: 1626 case SO_BROADCAST: 1627 case SO_OOBINLINE: 1628 case SO_TIMESTAMP: 1629 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0; 1630 break; 1631 1632 case SO_TYPE: 1633 *mtod(m, int *) = so->so_type; 1634 break; 1635 1636 case SO_ERROR: 1637 *mtod(m, int *) = so->so_error; 1638 so->so_error = 0; 1639 break; 1640 1641 case SO_SNDBUF: 1642 *mtod(m, int *) = so->so_snd.sb_hiwat; 1643 break; 1644 1645 case SO_RCVBUF: 1646 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1647 break; 1648 1649 case SO_SNDLOWAT: 1650 *mtod(m, int *) = so->so_snd.sb_lowat; 1651 break; 1652 1653 case SO_RCVLOWAT: 1654 *mtod(m, int *) = so->so_rcv.sb_lowat; 1655 break; 1656 1657 case SO_SNDTIMEO: 1658 case SO_RCVTIMEO: 1659 { 1660 int val = (optname == SO_SNDTIMEO ? 1661 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1662 1663 m->m_len = sizeof(struct timeval); 1664 mtod(m, struct timeval *)->tv_sec = val / hz; 1665 mtod(m, struct timeval *)->tv_usec = 1666 (val % hz) * tick; 1667 break; 1668 } 1669 1670 case SO_OVERFLOWED: 1671 *mtod(m, int *) = so->so_rcv.sb_overflowed; 1672 break; 1673 1674 default: 1675 (void)m_free(m); 1676 return (ENOPROTOOPT); 1677 } 1678 *mp = m; 1679 return (0); 1680 } 1681 } 1682 1683 void 1684 sohasoutofband(struct socket *so) 1685 { 1686 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 1687 selwakeup(&so->so_rcv.sb_sel); 1688 } 1689 1690 static void 1691 filt_sordetach(struct knote *kn) 1692 { 1693 struct socket *so; 1694 1695 so = (struct socket *)kn->kn_fp->f_data; 1696 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 1697 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 1698 so->so_rcv.sb_flags &= ~SB_KNOTE; 1699 } 1700 1701 /*ARGSUSED*/ 1702 static int 1703 filt_soread(struct knote *kn, long hint) 1704 { 1705 struct socket *so; 1706 1707 so = (struct socket *)kn->kn_fp->f_data; 1708 kn->kn_data = so->so_rcv.sb_cc; 1709 if (so->so_state & SS_CANTRCVMORE) { 1710 kn->kn_flags |= EV_EOF; 1711 kn->kn_fflags = so->so_error; 1712 return (1); 1713 } 1714 if (so->so_error) /* temporary udp error */ 1715 return (1); 1716 if (kn->kn_sfflags & NOTE_LOWAT) 1717 return (kn->kn_data >= kn->kn_sdata); 1718 return (kn->kn_data >= so->so_rcv.sb_lowat); 1719 } 1720 1721 static void 1722 filt_sowdetach(struct knote *kn) 1723 { 1724 struct socket *so; 1725 1726 so = (struct socket *)kn->kn_fp->f_data; 1727 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 1728 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 1729 so->so_snd.sb_flags &= ~SB_KNOTE; 1730 } 1731 1732 /*ARGSUSED*/ 1733 static int 1734 filt_sowrite(struct knote *kn, long hint) 1735 { 1736 struct socket *so; 1737 1738 so = (struct socket *)kn->kn_fp->f_data; 1739 kn->kn_data = sbspace(&so->so_snd); 1740 if (so->so_state & SS_CANTSENDMORE) { 1741 kn->kn_flags |= EV_EOF; 1742 kn->kn_fflags = so->so_error; 1743 return (1); 1744 } 1745 if (so->so_error) /* temporary udp error */ 1746 return (1); 1747 if (((so->so_state & SS_ISCONNECTED) == 0) && 1748 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1749 return (0); 1750 if (kn->kn_sfflags & NOTE_LOWAT) 1751 return (kn->kn_data >= kn->kn_sdata); 1752 return (kn->kn_data >= so->so_snd.sb_lowat); 1753 } 1754 1755 /*ARGSUSED*/ 1756 static int 1757 filt_solisten(struct knote *kn, long hint) 1758 { 1759 struct socket *so; 1760 1761 so = (struct socket *)kn->kn_fp->f_data; 1762 1763 /* 1764 * Set kn_data to number of incoming connections, not 1765 * counting partial (incomplete) connections. 1766 */ 1767 kn->kn_data = so->so_qlen; 1768 return (kn->kn_data > 0); 1769 } 1770 1771 static const struct filterops solisten_filtops = 1772 { 1, NULL, filt_sordetach, filt_solisten }; 1773 static const struct filterops soread_filtops = 1774 { 1, NULL, filt_sordetach, filt_soread }; 1775 static const struct filterops sowrite_filtops = 1776 { 1, NULL, filt_sowdetach, filt_sowrite }; 1777 1778 int 1779 soo_kqfilter(struct file *fp, struct knote *kn) 1780 { 1781 struct socket *so; 1782 struct sockbuf *sb; 1783 1784 so = (struct socket *)kn->kn_fp->f_data; 1785 switch (kn->kn_filter) { 1786 case EVFILT_READ: 1787 if (so->so_options & SO_ACCEPTCONN) 1788 kn->kn_fop = &solisten_filtops; 1789 else 1790 kn->kn_fop = &soread_filtops; 1791 sb = &so->so_rcv; 1792 break; 1793 case EVFILT_WRITE: 1794 kn->kn_fop = &sowrite_filtops; 1795 sb = &so->so_snd; 1796 break; 1797 default: 1798 return (EINVAL); 1799 } 1800 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 1801 sb->sb_flags |= SB_KNOTE; 1802 return (0); 1803 } 1804 1805 #include <sys/sysctl.h> 1806 1807 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 1808 1809 /* 1810 * sysctl helper routine for kern.somaxkva. ensures that the given 1811 * value is not too small. 1812 * (XXX should we maybe make sure it's not too large as well?) 1813 */ 1814 static int 1815 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 1816 { 1817 int error, new_somaxkva; 1818 struct sysctlnode node; 1819 1820 new_somaxkva = somaxkva; 1821 node = *rnode; 1822 node.sysctl_data = &new_somaxkva; 1823 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1824 if (error || newp == NULL) 1825 return (error); 1826 1827 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 1828 return (EINVAL); 1829 1830 mutex_enter(&so_pendfree_lock); 1831 somaxkva = new_somaxkva; 1832 cv_broadcast(&socurkva_cv); 1833 mutex_exit(&so_pendfree_lock); 1834 1835 return (error); 1836 } 1837 1838 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup") 1839 { 1840 1841 sysctl_createv(clog, 0, NULL, NULL, 1842 CTLFLAG_PERMANENT, 1843 CTLTYPE_NODE, "kern", NULL, 1844 NULL, 0, NULL, 0, 1845 CTL_KERN, CTL_EOL); 1846 1847 sysctl_createv(clog, 0, NULL, NULL, 1848 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1849 CTLTYPE_INT, "somaxkva", 1850 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1851 "used for socket buffers"), 1852 sysctl_kern_somaxkva, 0, NULL, 0, 1853 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 1854 } 1855