1 /* $NetBSD: uipc_socket.c,v 1.215 2013/04/08 21:12:33 skrll Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.215 2013/04/08 21:12:33 skrll Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 #include <sys/kthread.h> 96 97 #ifdef COMPAT_50 98 #include <compat/sys/time.h> 99 #include <compat/sys/socket.h> 100 #endif 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_loan.h> 104 #include <uvm/uvm_page.h> 105 106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 107 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 108 109 extern const struct fileops socketops; 110 111 extern int somaxconn; /* patchable (XXX sysctl) */ 112 int somaxconn = SOMAXCONN; 113 kmutex_t *softnet_lock; 114 115 #ifdef SOSEND_COUNTERS 116 #include <sys/device.h> 117 118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 119 NULL, "sosend", "loan big"); 120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 121 NULL, "sosend", "copy big"); 122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 123 NULL, "sosend", "copy small"); 124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 125 NULL, "sosend", "kva limit"); 126 127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 128 129 EVCNT_ATTACH_STATIC(sosend_loan_big); 130 EVCNT_ATTACH_STATIC(sosend_copy_big); 131 EVCNT_ATTACH_STATIC(sosend_copy_small); 132 EVCNT_ATTACH_STATIC(sosend_kvalimit); 133 #else 134 135 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 136 137 #endif /* SOSEND_COUNTERS */ 138 139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 140 int sock_loan_thresh = -1; 141 #else 142 int sock_loan_thresh = 4096; 143 #endif 144 145 static kmutex_t so_pendfree_lock; 146 static struct mbuf *so_pendfree = NULL; 147 148 #ifndef SOMAXKVA 149 #define SOMAXKVA (16 * 1024 * 1024) 150 #endif 151 int somaxkva = SOMAXKVA; 152 static int socurkva; 153 static kcondvar_t socurkva_cv; 154 155 static kauth_listener_t socket_listener; 156 157 #define SOCK_LOAN_CHUNK 65536 158 159 static void sopendfree_thread(void *); 160 static kcondvar_t pendfree_thread_cv; 161 static lwp_t *sopendfree_lwp; 162 163 static void sysctl_kern_socket_setup(void); 164 static struct sysctllog *socket_sysctllog; 165 166 static vsize_t 167 sokvareserve(struct socket *so, vsize_t len) 168 { 169 int error; 170 171 mutex_enter(&so_pendfree_lock); 172 while (socurkva + len > somaxkva) { 173 SOSEND_COUNTER_INCR(&sosend_kvalimit); 174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 175 if (error) { 176 len = 0; 177 break; 178 } 179 } 180 socurkva += len; 181 mutex_exit(&so_pendfree_lock); 182 return len; 183 } 184 185 static void 186 sokvaunreserve(vsize_t len) 187 { 188 189 mutex_enter(&so_pendfree_lock); 190 socurkva -= len; 191 cv_broadcast(&socurkva_cv); 192 mutex_exit(&so_pendfree_lock); 193 } 194 195 /* 196 * sokvaalloc: allocate kva for loan. 197 */ 198 199 vaddr_t 200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 201 { 202 vaddr_t lva; 203 204 /* 205 * reserve kva. 206 */ 207 208 if (sokvareserve(so, len) == 0) 209 return 0; 210 211 /* 212 * allocate kva. 213 */ 214 215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 217 if (lva == 0) { 218 sokvaunreserve(len); 219 return (0); 220 } 221 222 return lva; 223 } 224 225 /* 226 * sokvafree: free kva for loan. 227 */ 228 229 void 230 sokvafree(vaddr_t sva, vsize_t len) 231 { 232 233 /* 234 * free kva. 235 */ 236 237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 238 239 /* 240 * unreserve kva. 241 */ 242 243 sokvaunreserve(len); 244 } 245 246 static void 247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 248 { 249 vaddr_t sva, eva; 250 vsize_t len; 251 int npgs; 252 253 KASSERT(pgs != NULL); 254 255 eva = round_page((vaddr_t) buf + size); 256 sva = trunc_page((vaddr_t) buf); 257 len = eva - sva; 258 npgs = len >> PAGE_SHIFT; 259 260 pmap_kremove(sva, len); 261 pmap_update(pmap_kernel()); 262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 263 sokvafree(sva, len); 264 } 265 266 /* 267 * sopendfree_thread: free mbufs on "pendfree" list. 268 * unlock and relock so_pendfree_lock when freeing mbufs. 269 */ 270 271 static void 272 sopendfree_thread(void *v) 273 { 274 struct mbuf *m, *next; 275 size_t rv; 276 277 mutex_enter(&so_pendfree_lock); 278 279 for (;;) { 280 rv = 0; 281 while (so_pendfree != NULL) { 282 m = so_pendfree; 283 so_pendfree = NULL; 284 mutex_exit(&so_pendfree_lock); 285 286 for (; m != NULL; m = next) { 287 next = m->m_next; 288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 289 KASSERT(m->m_ext.ext_refcnt == 0); 290 291 rv += m->m_ext.ext_size; 292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 293 m->m_ext.ext_size); 294 pool_cache_put(mb_cache, m); 295 } 296 297 mutex_enter(&so_pendfree_lock); 298 } 299 if (rv) 300 cv_broadcast(&socurkva_cv); 301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 302 } 303 panic("sopendfree_thread"); 304 /* NOTREACHED */ 305 } 306 307 void 308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 309 { 310 311 KASSERT(m != NULL); 312 313 /* 314 * postpone freeing mbuf. 315 * 316 * we can't do it in interrupt context 317 * because we need to put kva back to kernel_map. 318 */ 319 320 mutex_enter(&so_pendfree_lock); 321 m->m_next = so_pendfree; 322 so_pendfree = m; 323 cv_signal(&pendfree_thread_cv); 324 mutex_exit(&so_pendfree_lock); 325 } 326 327 static long 328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 329 { 330 struct iovec *iov = uio->uio_iov; 331 vaddr_t sva, eva; 332 vsize_t len; 333 vaddr_t lva; 334 int npgs, error; 335 vaddr_t va; 336 int i; 337 338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 339 return (0); 340 341 if (iov->iov_len < (size_t) space) 342 space = iov->iov_len; 343 if (space > SOCK_LOAN_CHUNK) 344 space = SOCK_LOAN_CHUNK; 345 346 eva = round_page((vaddr_t) iov->iov_base + space); 347 sva = trunc_page((vaddr_t) iov->iov_base); 348 len = eva - sva; 349 npgs = len >> PAGE_SHIFT; 350 351 KASSERT(npgs <= M_EXT_MAXPAGES); 352 353 lva = sokvaalloc(sva, len, so); 354 if (lva == 0) 355 return 0; 356 357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 359 if (error) { 360 sokvafree(lva, len); 361 return (0); 362 } 363 364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 366 VM_PROT_READ, 0); 367 pmap_update(pmap_kernel()); 368 369 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 370 371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 373 374 uio->uio_resid -= space; 375 /* uio_offset not updated, not set/used for write(2) */ 376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 377 uio->uio_iov->iov_len -= space; 378 if (uio->uio_iov->iov_len == 0) { 379 uio->uio_iov++; 380 uio->uio_iovcnt--; 381 } 382 383 return (space); 384 } 385 386 struct mbuf * 387 getsombuf(struct socket *so, int type) 388 { 389 struct mbuf *m; 390 391 m = m_get(M_WAIT, type); 392 MCLAIM(m, so->so_mowner); 393 return m; 394 } 395 396 static int 397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 398 void *arg0, void *arg1, void *arg2, void *arg3) 399 { 400 int result; 401 enum kauth_network_req req; 402 403 result = KAUTH_RESULT_DEFER; 404 req = (enum kauth_network_req)arg0; 405 406 if ((action != KAUTH_NETWORK_SOCKET) && 407 (action != KAUTH_NETWORK_BIND)) 408 return result; 409 410 switch (req) { 411 case KAUTH_REQ_NETWORK_BIND_PORT: 412 result = KAUTH_RESULT_ALLOW; 413 break; 414 415 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 416 /* Normal users can only drop their own connections. */ 417 struct socket *so = (struct socket *)arg1; 418 419 if (proc_uidmatch(cred, so->so_cred)) 420 result = KAUTH_RESULT_ALLOW; 421 422 break; 423 } 424 425 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 426 /* We allow "raw" routing/bluetooth sockets to anyone. */ 427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 428 || (u_long)arg1 == PF_BLUETOOTH) { 429 result = KAUTH_RESULT_ALLOW; 430 } else { 431 /* Privileged, let secmodel handle this. */ 432 if ((u_long)arg2 == SOCK_RAW) 433 break; 434 } 435 436 result = KAUTH_RESULT_ALLOW; 437 438 break; 439 440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 441 result = KAUTH_RESULT_ALLOW; 442 443 break; 444 445 default: 446 break; 447 } 448 449 return result; 450 } 451 452 void 453 soinit(void) 454 { 455 456 sysctl_kern_socket_setup(); 457 458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 460 cv_init(&socurkva_cv, "sokva"); 461 cv_init(&pendfree_thread_cv, "sopendfr"); 462 soinit2(); 463 464 /* Set the initial adjusted socket buffer size. */ 465 if (sb_max_set(sb_max)) 466 panic("bad initial sb_max value: %lu", sb_max); 467 468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 469 socket_listener_cb, NULL); 470 } 471 472 void 473 soinit1(void) 474 { 475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 477 if (error) 478 panic("soinit1 %d", error); 479 } 480 481 /* 482 * Socket operation routines. 483 * These routines are called by the routines in 484 * sys_socket.c or from a system process, and 485 * implement the semantics of socket operations by 486 * switching out to the protocol specific routines. 487 */ 488 /*ARGSUSED*/ 489 int 490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 491 struct socket *lockso) 492 { 493 const struct protosw *prp; 494 struct socket *so; 495 uid_t uid; 496 int error; 497 kmutex_t *lock; 498 499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 501 KAUTH_ARG(proto)); 502 if (error != 0) 503 return error; 504 505 if (proto) 506 prp = pffindproto(dom, proto, type); 507 else 508 prp = pffindtype(dom, type); 509 if (prp == NULL) { 510 /* no support for domain */ 511 if (pffinddomain(dom) == 0) 512 return EAFNOSUPPORT; 513 /* no support for socket type */ 514 if (proto == 0 && type != 0) 515 return EPROTOTYPE; 516 return EPROTONOSUPPORT; 517 } 518 if (prp->pr_usrreq == NULL) 519 return EPROTONOSUPPORT; 520 if (prp->pr_type != type) 521 return EPROTOTYPE; 522 523 so = soget(true); 524 so->so_type = type; 525 so->so_proto = prp; 526 so->so_send = sosend; 527 so->so_receive = soreceive; 528 #ifdef MBUFTRACE 529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 531 so->so_mowner = &prp->pr_domain->dom_mowner; 532 #endif 533 uid = kauth_cred_geteuid(l->l_cred); 534 so->so_uidinfo = uid_find(uid); 535 so->so_cpid = l->l_proc->p_pid; 536 if (lockso != NULL) { 537 /* Caller wants us to share a lock. */ 538 lock = lockso->so_lock; 539 so->so_lock = lock; 540 mutex_obj_hold(lock); 541 /* XXX Why is this not solock, to match sounlock? */ 542 mutex_enter(lock); 543 } else { 544 /* Lock assigned and taken during PRU_ATTACH. */ 545 } 546 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 547 (struct mbuf *)(long)proto, NULL, l); 548 KASSERT(solocked(so)); 549 if (error != 0) { 550 so->so_state |= SS_NOFDREF; 551 sofree(so); 552 return error; 553 } 554 so->so_cred = kauth_cred_dup(l->l_cred); 555 sounlock(so); 556 *aso = so; 557 return 0; 558 } 559 560 /* On success, write file descriptor to fdout and return zero. On 561 * failure, return non-zero; *fdout will be undefined. 562 */ 563 int 564 fsocreate(int domain, struct socket **sop, int type, int protocol, 565 struct lwp *l, int *fdout) 566 { 567 struct socket *so; 568 struct file *fp; 569 int fd, error; 570 int flags = type & SOCK_FLAGS_MASK; 571 572 type &= ~SOCK_FLAGS_MASK; 573 if ((error = fd_allocfile(&fp, &fd)) != 0) 574 return error; 575 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 576 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 577 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 578 fp->f_type = DTYPE_SOCKET; 579 fp->f_ops = &socketops; 580 error = socreate(domain, &so, type, protocol, l, NULL); 581 if (error != 0) { 582 fd_abort(curproc, fp, fd); 583 } else { 584 if (sop != NULL) 585 *sop = so; 586 fp->f_data = so; 587 fd_affix(curproc, fp, fd); 588 *fdout = fd; 589 if (flags & SOCK_NONBLOCK) 590 so->so_state |= SS_NBIO; 591 } 592 return error; 593 } 594 595 int 596 sofamily(const struct socket *so) 597 { 598 const struct protosw *pr; 599 const struct domain *dom; 600 601 if ((pr = so->so_proto) == NULL) 602 return AF_UNSPEC; 603 if ((dom = pr->pr_domain) == NULL) 604 return AF_UNSPEC; 605 return dom->dom_family; 606 } 607 608 int 609 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 610 { 611 int error; 612 613 solock(so); 614 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 615 sounlock(so); 616 return error; 617 } 618 619 int 620 solisten(struct socket *so, int backlog, struct lwp *l) 621 { 622 int error; 623 624 solock(so); 625 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 626 SS_ISDISCONNECTING)) != 0) { 627 sounlock(so); 628 return (EINVAL); 629 } 630 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 631 NULL, NULL, l); 632 if (error != 0) { 633 sounlock(so); 634 return error; 635 } 636 if (TAILQ_EMPTY(&so->so_q)) 637 so->so_options |= SO_ACCEPTCONN; 638 if (backlog < 0) 639 backlog = 0; 640 so->so_qlimit = min(backlog, somaxconn); 641 sounlock(so); 642 return 0; 643 } 644 645 void 646 sofree(struct socket *so) 647 { 648 u_int refs; 649 650 KASSERT(solocked(so)); 651 652 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 653 sounlock(so); 654 return; 655 } 656 if (so->so_head) { 657 /* 658 * We must not decommission a socket that's on the accept(2) 659 * queue. If we do, then accept(2) may hang after select(2) 660 * indicated that the listening socket was ready. 661 */ 662 if (!soqremque(so, 0)) { 663 sounlock(so); 664 return; 665 } 666 } 667 if (so->so_rcv.sb_hiwat) 668 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 669 RLIM_INFINITY); 670 if (so->so_snd.sb_hiwat) 671 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 672 RLIM_INFINITY); 673 sbrelease(&so->so_snd, so); 674 KASSERT(!cv_has_waiters(&so->so_cv)); 675 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 676 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 677 sorflush(so); 678 refs = so->so_aborting; /* XXX */ 679 /* Remove acccept filter if one is present. */ 680 if (so->so_accf != NULL) 681 (void)accept_filt_clear(so); 682 sounlock(so); 683 if (refs == 0) /* XXX */ 684 soput(so); 685 } 686 687 /* 688 * Close a socket on last file table reference removal. 689 * Initiate disconnect if connected. 690 * Free socket when disconnect complete. 691 */ 692 int 693 soclose(struct socket *so) 694 { 695 struct socket *so2; 696 int error; 697 int error2; 698 699 error = 0; 700 solock(so); 701 if (so->so_options & SO_ACCEPTCONN) { 702 for (;;) { 703 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 704 KASSERT(solocked2(so, so2)); 705 (void) soqremque(so2, 0); 706 /* soabort drops the lock. */ 707 (void) soabort(so2); 708 solock(so); 709 continue; 710 } 711 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 712 KASSERT(solocked2(so, so2)); 713 (void) soqremque(so2, 1); 714 /* soabort drops the lock. */ 715 (void) soabort(so2); 716 solock(so); 717 continue; 718 } 719 break; 720 } 721 } 722 if (so->so_pcb == 0) 723 goto discard; 724 if (so->so_state & SS_ISCONNECTED) { 725 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 726 error = sodisconnect(so); 727 if (error) 728 goto drop; 729 } 730 if (so->so_options & SO_LINGER) { 731 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 732 (SS_ISDISCONNECTING|SS_NBIO)) 733 goto drop; 734 while (so->so_state & SS_ISCONNECTED) { 735 error = sowait(so, true, so->so_linger * hz); 736 if (error) 737 break; 738 } 739 } 740 } 741 drop: 742 if (so->so_pcb) { 743 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 744 NULL, NULL, NULL, NULL); 745 if (error == 0) 746 error = error2; 747 } 748 discard: 749 if (so->so_state & SS_NOFDREF) 750 panic("soclose: NOFDREF"); 751 kauth_cred_free(so->so_cred); 752 so->so_state |= SS_NOFDREF; 753 sofree(so); 754 return (error); 755 } 756 757 /* 758 * Must be called with the socket locked.. Will return with it unlocked. 759 */ 760 int 761 soabort(struct socket *so) 762 { 763 u_int refs; 764 int error; 765 766 KASSERT(solocked(so)); 767 KASSERT(so->so_head == NULL); 768 769 so->so_aborting++; /* XXX */ 770 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 771 NULL, NULL, NULL); 772 refs = --so->so_aborting; /* XXX */ 773 if (error || (refs == 0)) { 774 sofree(so); 775 } else { 776 sounlock(so); 777 } 778 return error; 779 } 780 781 int 782 soaccept(struct socket *so, struct mbuf *nam) 783 { 784 int error; 785 786 KASSERT(solocked(so)); 787 788 error = 0; 789 if ((so->so_state & SS_NOFDREF) == 0) 790 panic("soaccept: !NOFDREF"); 791 so->so_state &= ~SS_NOFDREF; 792 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 793 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 794 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 795 NULL, nam, NULL, NULL); 796 else 797 error = ECONNABORTED; 798 799 return (error); 800 } 801 802 int 803 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 804 { 805 int error; 806 807 KASSERT(solocked(so)); 808 809 if (so->so_options & SO_ACCEPTCONN) 810 return (EOPNOTSUPP); 811 /* 812 * If protocol is connection-based, can only connect once. 813 * Otherwise, if connected, try to disconnect first. 814 * This allows user to disconnect by connecting to, e.g., 815 * a null address. 816 */ 817 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 818 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 819 (error = sodisconnect(so)))) 820 error = EISCONN; 821 else 822 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 823 NULL, nam, NULL, l); 824 return (error); 825 } 826 827 int 828 soconnect2(struct socket *so1, struct socket *so2) 829 { 830 int error; 831 832 KASSERT(solocked2(so1, so2)); 833 834 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 835 NULL, (struct mbuf *)so2, NULL, NULL); 836 return (error); 837 } 838 839 int 840 sodisconnect(struct socket *so) 841 { 842 int error; 843 844 KASSERT(solocked(so)); 845 846 if ((so->so_state & SS_ISCONNECTED) == 0) { 847 error = ENOTCONN; 848 } else if (so->so_state & SS_ISDISCONNECTING) { 849 error = EALREADY; 850 } else { 851 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 852 NULL, NULL, NULL, NULL); 853 } 854 return (error); 855 } 856 857 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 858 /* 859 * Send on a socket. 860 * If send must go all at once and message is larger than 861 * send buffering, then hard error. 862 * Lock against other senders. 863 * If must go all at once and not enough room now, then 864 * inform user that this would block and do nothing. 865 * Otherwise, if nonblocking, send as much as possible. 866 * The data to be sent is described by "uio" if nonzero, 867 * otherwise by the mbuf chain "top" (which must be null 868 * if uio is not). Data provided in mbuf chain must be small 869 * enough to send all at once. 870 * 871 * Returns nonzero on error, timeout or signal; callers 872 * must check for short counts if EINTR/ERESTART are returned. 873 * Data and control buffers are freed on return. 874 */ 875 int 876 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 877 struct mbuf *control, int flags, struct lwp *l) 878 { 879 struct mbuf **mp, *m; 880 long space, len, resid, clen, mlen; 881 int error, s, dontroute, atomic; 882 short wakeup_state = 0; 883 884 clen = 0; 885 886 /* 887 * solock() provides atomicity of access. splsoftnet() prevents 888 * protocol processing soft interrupts from interrupting us and 889 * blocking (expensive). 890 */ 891 s = splsoftnet(); 892 solock(so); 893 atomic = sosendallatonce(so) || top; 894 if (uio) 895 resid = uio->uio_resid; 896 else 897 resid = top->m_pkthdr.len; 898 /* 899 * In theory resid should be unsigned. 900 * However, space must be signed, as it might be less than 0 901 * if we over-committed, and we must use a signed comparison 902 * of space and resid. On the other hand, a negative resid 903 * causes us to loop sending 0-length segments to the protocol. 904 */ 905 if (resid < 0) { 906 error = EINVAL; 907 goto out; 908 } 909 dontroute = 910 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 911 (so->so_proto->pr_flags & PR_ATOMIC); 912 l->l_ru.ru_msgsnd++; 913 if (control) 914 clen = control->m_len; 915 restart: 916 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 917 goto out; 918 do { 919 if (so->so_state & SS_CANTSENDMORE) { 920 error = EPIPE; 921 goto release; 922 } 923 if (so->so_error) { 924 error = so->so_error; 925 so->so_error = 0; 926 goto release; 927 } 928 if ((so->so_state & SS_ISCONNECTED) == 0) { 929 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 930 if ((so->so_state & SS_ISCONFIRMING) == 0 && 931 !(resid == 0 && clen != 0)) { 932 error = ENOTCONN; 933 goto release; 934 } 935 } else if (addr == 0) { 936 error = EDESTADDRREQ; 937 goto release; 938 } 939 } 940 space = sbspace(&so->so_snd); 941 if (flags & MSG_OOB) 942 space += 1024; 943 if ((atomic && resid > so->so_snd.sb_hiwat) || 944 clen > so->so_snd.sb_hiwat) { 945 error = EMSGSIZE; 946 goto release; 947 } 948 if (space < resid + clen && 949 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 950 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 951 error = EWOULDBLOCK; 952 goto release; 953 } 954 sbunlock(&so->so_snd); 955 if (wakeup_state & SS_RESTARTSYS) { 956 error = ERESTART; 957 goto out; 958 } 959 error = sbwait(&so->so_snd); 960 if (error) 961 goto out; 962 wakeup_state = so->so_state; 963 goto restart; 964 } 965 wakeup_state = 0; 966 mp = ⊤ 967 space -= clen; 968 do { 969 if (uio == NULL) { 970 /* 971 * Data is prepackaged in "top". 972 */ 973 resid = 0; 974 if (flags & MSG_EOR) 975 top->m_flags |= M_EOR; 976 } else do { 977 sounlock(so); 978 splx(s); 979 if (top == NULL) { 980 m = m_gethdr(M_WAIT, MT_DATA); 981 mlen = MHLEN; 982 m->m_pkthdr.len = 0; 983 m->m_pkthdr.rcvif = NULL; 984 } else { 985 m = m_get(M_WAIT, MT_DATA); 986 mlen = MLEN; 987 } 988 MCLAIM(m, so->so_snd.sb_mowner); 989 if (sock_loan_thresh >= 0 && 990 uio->uio_iov->iov_len >= sock_loan_thresh && 991 space >= sock_loan_thresh && 992 (len = sosend_loan(so, uio, m, 993 space)) != 0) { 994 SOSEND_COUNTER_INCR(&sosend_loan_big); 995 space -= len; 996 goto have_data; 997 } 998 if (resid >= MINCLSIZE && space >= MCLBYTES) { 999 SOSEND_COUNTER_INCR(&sosend_copy_big); 1000 m_clget(m, M_DONTWAIT); 1001 if ((m->m_flags & M_EXT) == 0) 1002 goto nopages; 1003 mlen = MCLBYTES; 1004 if (atomic && top == 0) { 1005 len = lmin(MCLBYTES - max_hdr, 1006 resid); 1007 m->m_data += max_hdr; 1008 } else 1009 len = lmin(MCLBYTES, resid); 1010 space -= len; 1011 } else { 1012 nopages: 1013 SOSEND_COUNTER_INCR(&sosend_copy_small); 1014 len = lmin(lmin(mlen, resid), space); 1015 space -= len; 1016 /* 1017 * For datagram protocols, leave room 1018 * for protocol headers in first mbuf. 1019 */ 1020 if (atomic && top == 0 && len < mlen) 1021 MH_ALIGN(m, len); 1022 } 1023 error = uiomove(mtod(m, void *), (int)len, uio); 1024 have_data: 1025 resid = uio->uio_resid; 1026 m->m_len = len; 1027 *mp = m; 1028 top->m_pkthdr.len += len; 1029 s = splsoftnet(); 1030 solock(so); 1031 if (error != 0) 1032 goto release; 1033 mp = &m->m_next; 1034 if (resid <= 0) { 1035 if (flags & MSG_EOR) 1036 top->m_flags |= M_EOR; 1037 break; 1038 } 1039 } while (space > 0 && atomic); 1040 1041 if (so->so_state & SS_CANTSENDMORE) { 1042 error = EPIPE; 1043 goto release; 1044 } 1045 if (dontroute) 1046 so->so_options |= SO_DONTROUTE; 1047 if (resid > 0) 1048 so->so_state |= SS_MORETOCOME; 1049 error = (*so->so_proto->pr_usrreq)(so, 1050 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1051 top, addr, control, curlwp); 1052 if (dontroute) 1053 so->so_options &= ~SO_DONTROUTE; 1054 if (resid > 0) 1055 so->so_state &= ~SS_MORETOCOME; 1056 clen = 0; 1057 control = NULL; 1058 top = NULL; 1059 mp = ⊤ 1060 if (error != 0) 1061 goto release; 1062 } while (resid && space > 0); 1063 } while (resid); 1064 1065 release: 1066 sbunlock(&so->so_snd); 1067 out: 1068 sounlock(so); 1069 splx(s); 1070 if (top) 1071 m_freem(top); 1072 if (control) 1073 m_freem(control); 1074 return (error); 1075 } 1076 1077 /* 1078 * Following replacement or removal of the first mbuf on the first 1079 * mbuf chain of a socket buffer, push necessary state changes back 1080 * into the socket buffer so that other consumers see the values 1081 * consistently. 'nextrecord' is the callers locally stored value of 1082 * the original value of sb->sb_mb->m_nextpkt which must be restored 1083 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1084 */ 1085 static void 1086 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1087 { 1088 1089 KASSERT(solocked(sb->sb_so)); 1090 1091 /* 1092 * First, update for the new value of nextrecord. If necessary, 1093 * make it the first record. 1094 */ 1095 if (sb->sb_mb != NULL) 1096 sb->sb_mb->m_nextpkt = nextrecord; 1097 else 1098 sb->sb_mb = nextrecord; 1099 1100 /* 1101 * Now update any dependent socket buffer fields to reflect 1102 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1103 * the addition of a second clause that takes care of the 1104 * case where sb_mb has been updated, but remains the last 1105 * record. 1106 */ 1107 if (sb->sb_mb == NULL) { 1108 sb->sb_mbtail = NULL; 1109 sb->sb_lastrecord = NULL; 1110 } else if (sb->sb_mb->m_nextpkt == NULL) 1111 sb->sb_lastrecord = sb->sb_mb; 1112 } 1113 1114 /* 1115 * Implement receive operations on a socket. 1116 * We depend on the way that records are added to the sockbuf 1117 * by sbappend*. In particular, each record (mbufs linked through m_next) 1118 * must begin with an address if the protocol so specifies, 1119 * followed by an optional mbuf or mbufs containing ancillary data, 1120 * and then zero or more mbufs of data. 1121 * In order to avoid blocking network interrupts for the entire time here, 1122 * we splx() while doing the actual copy to user space. 1123 * Although the sockbuf is locked, new data may still be appended, 1124 * and thus we must maintain consistency of the sockbuf during that time. 1125 * 1126 * The caller may receive the data as a single mbuf chain by supplying 1127 * an mbuf **mp0 for use in returning the chain. The uio is then used 1128 * only for the count in uio_resid. 1129 */ 1130 int 1131 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1132 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1133 { 1134 struct lwp *l = curlwp; 1135 struct mbuf *m, **mp, *mt; 1136 size_t len, offset, moff, orig_resid; 1137 int atomic, flags, error, s, type; 1138 const struct protosw *pr; 1139 struct mbuf *nextrecord; 1140 int mbuf_removed = 0; 1141 const struct domain *dom; 1142 short wakeup_state = 0; 1143 1144 pr = so->so_proto; 1145 atomic = pr->pr_flags & PR_ATOMIC; 1146 dom = pr->pr_domain; 1147 mp = mp0; 1148 type = 0; 1149 orig_resid = uio->uio_resid; 1150 1151 if (paddr != NULL) 1152 *paddr = NULL; 1153 if (controlp != NULL) 1154 *controlp = NULL; 1155 if (flagsp != NULL) 1156 flags = *flagsp &~ MSG_EOR; 1157 else 1158 flags = 0; 1159 1160 if (flags & MSG_OOB) { 1161 m = m_get(M_WAIT, MT_DATA); 1162 solock(so); 1163 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1164 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1165 sounlock(so); 1166 if (error) 1167 goto bad; 1168 do { 1169 error = uiomove(mtod(m, void *), 1170 MIN(uio->uio_resid, m->m_len), uio); 1171 m = m_free(m); 1172 } while (uio->uio_resid > 0 && error == 0 && m); 1173 bad: 1174 if (m != NULL) 1175 m_freem(m); 1176 return error; 1177 } 1178 if (mp != NULL) 1179 *mp = NULL; 1180 1181 /* 1182 * solock() provides atomicity of access. splsoftnet() prevents 1183 * protocol processing soft interrupts from interrupting us and 1184 * blocking (expensive). 1185 */ 1186 s = splsoftnet(); 1187 solock(so); 1188 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1189 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1190 1191 restart: 1192 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1193 sounlock(so); 1194 splx(s); 1195 return error; 1196 } 1197 1198 m = so->so_rcv.sb_mb; 1199 /* 1200 * If we have less data than requested, block awaiting more 1201 * (subject to any timeout) if: 1202 * 1. the current count is less than the low water mark, 1203 * 2. MSG_WAITALL is set, and it is possible to do the entire 1204 * receive operation at once if we block (resid <= hiwat), or 1205 * 3. MSG_DONTWAIT is not set. 1206 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1207 * we have to do the receive in sections, and thus risk returning 1208 * a short count if a timeout or signal occurs after we start. 1209 */ 1210 if (m == NULL || 1211 ((flags & MSG_DONTWAIT) == 0 && 1212 so->so_rcv.sb_cc < uio->uio_resid && 1213 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1214 ((flags & MSG_WAITALL) && 1215 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1216 m->m_nextpkt == NULL && !atomic)) { 1217 #ifdef DIAGNOSTIC 1218 if (m == NULL && so->so_rcv.sb_cc) 1219 panic("receive 1"); 1220 #endif 1221 if (so->so_error) { 1222 if (m != NULL) 1223 goto dontblock; 1224 error = so->so_error; 1225 if ((flags & MSG_PEEK) == 0) 1226 so->so_error = 0; 1227 goto release; 1228 } 1229 if (so->so_state & SS_CANTRCVMORE) { 1230 if (m != NULL) 1231 goto dontblock; 1232 else 1233 goto release; 1234 } 1235 for (; m != NULL; m = m->m_next) 1236 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1237 m = so->so_rcv.sb_mb; 1238 goto dontblock; 1239 } 1240 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1241 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1242 error = ENOTCONN; 1243 goto release; 1244 } 1245 if (uio->uio_resid == 0) 1246 goto release; 1247 if ((so->so_state & SS_NBIO) || 1248 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1249 error = EWOULDBLOCK; 1250 goto release; 1251 } 1252 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1253 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1254 sbunlock(&so->so_rcv); 1255 if (wakeup_state & SS_RESTARTSYS) 1256 error = ERESTART; 1257 else 1258 error = sbwait(&so->so_rcv); 1259 if (error != 0) { 1260 sounlock(so); 1261 splx(s); 1262 return error; 1263 } 1264 wakeup_state = so->so_state; 1265 goto restart; 1266 } 1267 dontblock: 1268 /* 1269 * On entry here, m points to the first record of the socket buffer. 1270 * From this point onward, we maintain 'nextrecord' as a cache of the 1271 * pointer to the next record in the socket buffer. We must keep the 1272 * various socket buffer pointers and local stack versions of the 1273 * pointers in sync, pushing out modifications before dropping the 1274 * socket lock, and re-reading them when picking it up. 1275 * 1276 * Otherwise, we will race with the network stack appending new data 1277 * or records onto the socket buffer by using inconsistent/stale 1278 * versions of the field, possibly resulting in socket buffer 1279 * corruption. 1280 * 1281 * By holding the high-level sblock(), we prevent simultaneous 1282 * readers from pulling off the front of the socket buffer. 1283 */ 1284 if (l != NULL) 1285 l->l_ru.ru_msgrcv++; 1286 KASSERT(m == so->so_rcv.sb_mb); 1287 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1288 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1289 nextrecord = m->m_nextpkt; 1290 if (pr->pr_flags & PR_ADDR) { 1291 #ifdef DIAGNOSTIC 1292 if (m->m_type != MT_SONAME) 1293 panic("receive 1a"); 1294 #endif 1295 orig_resid = 0; 1296 if (flags & MSG_PEEK) { 1297 if (paddr) 1298 *paddr = m_copy(m, 0, m->m_len); 1299 m = m->m_next; 1300 } else { 1301 sbfree(&so->so_rcv, m); 1302 mbuf_removed = 1; 1303 if (paddr != NULL) { 1304 *paddr = m; 1305 so->so_rcv.sb_mb = m->m_next; 1306 m->m_next = NULL; 1307 m = so->so_rcv.sb_mb; 1308 } else { 1309 MFREE(m, so->so_rcv.sb_mb); 1310 m = so->so_rcv.sb_mb; 1311 } 1312 sbsync(&so->so_rcv, nextrecord); 1313 } 1314 } 1315 1316 /* 1317 * Process one or more MT_CONTROL mbufs present before any data mbufs 1318 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1319 * just copy the data; if !MSG_PEEK, we call into the protocol to 1320 * perform externalization (or freeing if controlp == NULL). 1321 */ 1322 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1323 struct mbuf *cm = NULL, *cmn; 1324 struct mbuf **cme = &cm; 1325 1326 do { 1327 if (flags & MSG_PEEK) { 1328 if (controlp != NULL) { 1329 *controlp = m_copy(m, 0, m->m_len); 1330 controlp = &(*controlp)->m_next; 1331 } 1332 m = m->m_next; 1333 } else { 1334 sbfree(&so->so_rcv, m); 1335 so->so_rcv.sb_mb = m->m_next; 1336 m->m_next = NULL; 1337 *cme = m; 1338 cme = &(*cme)->m_next; 1339 m = so->so_rcv.sb_mb; 1340 } 1341 } while (m != NULL && m->m_type == MT_CONTROL); 1342 if ((flags & MSG_PEEK) == 0) 1343 sbsync(&so->so_rcv, nextrecord); 1344 for (; cm != NULL; cm = cmn) { 1345 cmn = cm->m_next; 1346 cm->m_next = NULL; 1347 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1348 if (controlp != NULL) { 1349 if (dom->dom_externalize != NULL && 1350 type == SCM_RIGHTS) { 1351 sounlock(so); 1352 splx(s); 1353 error = (*dom->dom_externalize)(cm, l, 1354 (flags & MSG_CMSG_CLOEXEC) ? 1355 O_CLOEXEC : 0); 1356 s = splsoftnet(); 1357 solock(so); 1358 } 1359 *controlp = cm; 1360 while (*controlp != NULL) 1361 controlp = &(*controlp)->m_next; 1362 } else { 1363 /* 1364 * Dispose of any SCM_RIGHTS message that went 1365 * through the read path rather than recv. 1366 */ 1367 if (dom->dom_dispose != NULL && 1368 type == SCM_RIGHTS) { 1369 sounlock(so); 1370 (*dom->dom_dispose)(cm); 1371 solock(so); 1372 } 1373 m_freem(cm); 1374 } 1375 } 1376 if (m != NULL) 1377 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1378 else 1379 nextrecord = so->so_rcv.sb_mb; 1380 orig_resid = 0; 1381 } 1382 1383 /* If m is non-NULL, we have some data to read. */ 1384 if (__predict_true(m != NULL)) { 1385 type = m->m_type; 1386 if (type == MT_OOBDATA) 1387 flags |= MSG_OOB; 1388 } 1389 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1390 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1391 1392 moff = 0; 1393 offset = 0; 1394 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1395 if (m->m_type == MT_OOBDATA) { 1396 if (type != MT_OOBDATA) 1397 break; 1398 } else if (type == MT_OOBDATA) 1399 break; 1400 #ifdef DIAGNOSTIC 1401 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1402 panic("receive 3"); 1403 #endif 1404 so->so_state &= ~SS_RCVATMARK; 1405 wakeup_state = 0; 1406 len = uio->uio_resid; 1407 if (so->so_oobmark && len > so->so_oobmark - offset) 1408 len = so->so_oobmark - offset; 1409 if (len > m->m_len - moff) 1410 len = m->m_len - moff; 1411 /* 1412 * If mp is set, just pass back the mbufs. 1413 * Otherwise copy them out via the uio, then free. 1414 * Sockbuf must be consistent here (points to current mbuf, 1415 * it points to next record) when we drop priority; 1416 * we must note any additions to the sockbuf when we 1417 * block interrupts again. 1418 */ 1419 if (mp == NULL) { 1420 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1421 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1422 sounlock(so); 1423 splx(s); 1424 error = uiomove(mtod(m, char *) + moff, len, uio); 1425 s = splsoftnet(); 1426 solock(so); 1427 if (error != 0) { 1428 /* 1429 * If any part of the record has been removed 1430 * (such as the MT_SONAME mbuf, which will 1431 * happen when PR_ADDR, and thus also 1432 * PR_ATOMIC, is set), then drop the entire 1433 * record to maintain the atomicity of the 1434 * receive operation. 1435 * 1436 * This avoids a later panic("receive 1a") 1437 * when compiled with DIAGNOSTIC. 1438 */ 1439 if (m && mbuf_removed && atomic) 1440 (void) sbdroprecord(&so->so_rcv); 1441 1442 goto release; 1443 } 1444 } else 1445 uio->uio_resid -= len; 1446 if (len == m->m_len - moff) { 1447 if (m->m_flags & M_EOR) 1448 flags |= MSG_EOR; 1449 if (flags & MSG_PEEK) { 1450 m = m->m_next; 1451 moff = 0; 1452 } else { 1453 nextrecord = m->m_nextpkt; 1454 sbfree(&so->so_rcv, m); 1455 if (mp) { 1456 *mp = m; 1457 mp = &m->m_next; 1458 so->so_rcv.sb_mb = m = m->m_next; 1459 *mp = NULL; 1460 } else { 1461 MFREE(m, so->so_rcv.sb_mb); 1462 m = so->so_rcv.sb_mb; 1463 } 1464 /* 1465 * If m != NULL, we also know that 1466 * so->so_rcv.sb_mb != NULL. 1467 */ 1468 KASSERT(so->so_rcv.sb_mb == m); 1469 if (m) { 1470 m->m_nextpkt = nextrecord; 1471 if (nextrecord == NULL) 1472 so->so_rcv.sb_lastrecord = m; 1473 } else { 1474 so->so_rcv.sb_mb = nextrecord; 1475 SB_EMPTY_FIXUP(&so->so_rcv); 1476 } 1477 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1478 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1479 } 1480 } else if (flags & MSG_PEEK) 1481 moff += len; 1482 else { 1483 if (mp != NULL) { 1484 mt = m_copym(m, 0, len, M_NOWAIT); 1485 if (__predict_false(mt == NULL)) { 1486 sounlock(so); 1487 mt = m_copym(m, 0, len, M_WAIT); 1488 solock(so); 1489 } 1490 *mp = mt; 1491 } 1492 m->m_data += len; 1493 m->m_len -= len; 1494 so->so_rcv.sb_cc -= len; 1495 } 1496 if (so->so_oobmark) { 1497 if ((flags & MSG_PEEK) == 0) { 1498 so->so_oobmark -= len; 1499 if (so->so_oobmark == 0) { 1500 so->so_state |= SS_RCVATMARK; 1501 break; 1502 } 1503 } else { 1504 offset += len; 1505 if (offset == so->so_oobmark) 1506 break; 1507 } 1508 } 1509 if (flags & MSG_EOR) 1510 break; 1511 /* 1512 * If the MSG_WAITALL flag is set (for non-atomic socket), 1513 * we must not quit until "uio->uio_resid == 0" or an error 1514 * termination. If a signal/timeout occurs, return 1515 * with a short count but without error. 1516 * Keep sockbuf locked against other readers. 1517 */ 1518 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1519 !sosendallatonce(so) && !nextrecord) { 1520 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1521 break; 1522 /* 1523 * If we are peeking and the socket receive buffer is 1524 * full, stop since we can't get more data to peek at. 1525 */ 1526 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1527 break; 1528 /* 1529 * If we've drained the socket buffer, tell the 1530 * protocol in case it needs to do something to 1531 * get it filled again. 1532 */ 1533 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1534 (*pr->pr_usrreq)(so, PRU_RCVD, 1535 NULL, (struct mbuf *)(long)flags, NULL, l); 1536 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1537 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1538 if (wakeup_state & SS_RESTARTSYS) 1539 error = ERESTART; 1540 else 1541 error = sbwait(&so->so_rcv); 1542 if (error != 0) { 1543 sbunlock(&so->so_rcv); 1544 sounlock(so); 1545 splx(s); 1546 return 0; 1547 } 1548 if ((m = so->so_rcv.sb_mb) != NULL) 1549 nextrecord = m->m_nextpkt; 1550 wakeup_state = so->so_state; 1551 } 1552 } 1553 1554 if (m && atomic) { 1555 flags |= MSG_TRUNC; 1556 if ((flags & MSG_PEEK) == 0) 1557 (void) sbdroprecord(&so->so_rcv); 1558 } 1559 if ((flags & MSG_PEEK) == 0) { 1560 if (m == NULL) { 1561 /* 1562 * First part is an inline SB_EMPTY_FIXUP(). Second 1563 * part makes sure sb_lastrecord is up-to-date if 1564 * there is still data in the socket buffer. 1565 */ 1566 so->so_rcv.sb_mb = nextrecord; 1567 if (so->so_rcv.sb_mb == NULL) { 1568 so->so_rcv.sb_mbtail = NULL; 1569 so->so_rcv.sb_lastrecord = NULL; 1570 } else if (nextrecord->m_nextpkt == NULL) 1571 so->so_rcv.sb_lastrecord = nextrecord; 1572 } 1573 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1574 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1575 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1576 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1577 (struct mbuf *)(long)flags, NULL, l); 1578 } 1579 if (orig_resid == uio->uio_resid && orig_resid && 1580 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1581 sbunlock(&so->so_rcv); 1582 goto restart; 1583 } 1584 1585 if (flagsp != NULL) 1586 *flagsp |= flags; 1587 release: 1588 sbunlock(&so->so_rcv); 1589 sounlock(so); 1590 splx(s); 1591 return error; 1592 } 1593 1594 int 1595 soshutdown(struct socket *so, int how) 1596 { 1597 const struct protosw *pr; 1598 int error; 1599 1600 KASSERT(solocked(so)); 1601 1602 pr = so->so_proto; 1603 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1604 return (EINVAL); 1605 1606 if (how == SHUT_RD || how == SHUT_RDWR) { 1607 sorflush(so); 1608 error = 0; 1609 } 1610 if (how == SHUT_WR || how == SHUT_RDWR) 1611 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1612 NULL, NULL, NULL); 1613 1614 return error; 1615 } 1616 1617 void 1618 sorestart(struct socket *so) 1619 { 1620 /* 1621 * An application has called close() on an fd on which another 1622 * of its threads has called a socket system call. 1623 * Mark this and wake everyone up, and code that would block again 1624 * instead returns ERESTART. 1625 * On system call re-entry the fd is validated and EBADF returned. 1626 * Any other fd will block again on the 2nd syscall. 1627 */ 1628 solock(so); 1629 so->so_state |= SS_RESTARTSYS; 1630 cv_broadcast(&so->so_cv); 1631 cv_broadcast(&so->so_snd.sb_cv); 1632 cv_broadcast(&so->so_rcv.sb_cv); 1633 sounlock(so); 1634 } 1635 1636 void 1637 sorflush(struct socket *so) 1638 { 1639 struct sockbuf *sb, asb; 1640 const struct protosw *pr; 1641 1642 KASSERT(solocked(so)); 1643 1644 sb = &so->so_rcv; 1645 pr = so->so_proto; 1646 socantrcvmore(so); 1647 sb->sb_flags |= SB_NOINTR; 1648 (void )sblock(sb, M_WAITOK); 1649 sbunlock(sb); 1650 asb = *sb; 1651 /* 1652 * Clear most of the sockbuf structure, but leave some of the 1653 * fields valid. 1654 */ 1655 memset(&sb->sb_startzero, 0, 1656 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1657 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1658 sounlock(so); 1659 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1660 solock(so); 1661 } 1662 sbrelease(&asb, so); 1663 } 1664 1665 /* 1666 * internal set SOL_SOCKET options 1667 */ 1668 static int 1669 sosetopt1(struct socket *so, const struct sockopt *sopt) 1670 { 1671 int error = EINVAL, optval, opt; 1672 struct linger l; 1673 struct timeval tv; 1674 1675 switch ((opt = sopt->sopt_name)) { 1676 1677 case SO_ACCEPTFILTER: 1678 error = accept_filt_setopt(so, sopt); 1679 KASSERT(solocked(so)); 1680 break; 1681 1682 case SO_LINGER: 1683 error = sockopt_get(sopt, &l, sizeof(l)); 1684 solock(so); 1685 if (error) 1686 break; 1687 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1688 l.l_linger > (INT_MAX / hz)) { 1689 error = EDOM; 1690 break; 1691 } 1692 so->so_linger = l.l_linger; 1693 if (l.l_onoff) 1694 so->so_options |= SO_LINGER; 1695 else 1696 so->so_options &= ~SO_LINGER; 1697 break; 1698 1699 case SO_DEBUG: 1700 case SO_KEEPALIVE: 1701 case SO_DONTROUTE: 1702 case SO_USELOOPBACK: 1703 case SO_BROADCAST: 1704 case SO_REUSEADDR: 1705 case SO_REUSEPORT: 1706 case SO_OOBINLINE: 1707 case SO_TIMESTAMP: 1708 case SO_NOSIGPIPE: 1709 #ifdef SO_OTIMESTAMP 1710 case SO_OTIMESTAMP: 1711 #endif 1712 error = sockopt_getint(sopt, &optval); 1713 solock(so); 1714 if (error) 1715 break; 1716 if (optval) 1717 so->so_options |= opt; 1718 else 1719 so->so_options &= ~opt; 1720 break; 1721 1722 case SO_SNDBUF: 1723 case SO_RCVBUF: 1724 case SO_SNDLOWAT: 1725 case SO_RCVLOWAT: 1726 error = sockopt_getint(sopt, &optval); 1727 solock(so); 1728 if (error) 1729 break; 1730 1731 /* 1732 * Values < 1 make no sense for any of these 1733 * options, so disallow them. 1734 */ 1735 if (optval < 1) { 1736 error = EINVAL; 1737 break; 1738 } 1739 1740 switch (opt) { 1741 case SO_SNDBUF: 1742 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1743 error = ENOBUFS; 1744 break; 1745 } 1746 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1747 break; 1748 1749 case SO_RCVBUF: 1750 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1751 error = ENOBUFS; 1752 break; 1753 } 1754 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1755 break; 1756 1757 /* 1758 * Make sure the low-water is never greater than 1759 * the high-water. 1760 */ 1761 case SO_SNDLOWAT: 1762 if (optval > so->so_snd.sb_hiwat) 1763 optval = so->so_snd.sb_hiwat; 1764 1765 so->so_snd.sb_lowat = optval; 1766 break; 1767 1768 case SO_RCVLOWAT: 1769 if (optval > so->so_rcv.sb_hiwat) 1770 optval = so->so_rcv.sb_hiwat; 1771 1772 so->so_rcv.sb_lowat = optval; 1773 break; 1774 } 1775 break; 1776 1777 #ifdef COMPAT_50 1778 case SO_OSNDTIMEO: 1779 case SO_ORCVTIMEO: { 1780 struct timeval50 otv; 1781 error = sockopt_get(sopt, &otv, sizeof(otv)); 1782 if (error) { 1783 solock(so); 1784 break; 1785 } 1786 timeval50_to_timeval(&otv, &tv); 1787 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1788 error = 0; 1789 /*FALLTHROUGH*/ 1790 } 1791 #endif /* COMPAT_50 */ 1792 1793 case SO_SNDTIMEO: 1794 case SO_RCVTIMEO: 1795 if (error) 1796 error = sockopt_get(sopt, &tv, sizeof(tv)); 1797 solock(so); 1798 if (error) 1799 break; 1800 1801 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1802 error = EDOM; 1803 break; 1804 } 1805 1806 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1807 if (optval == 0 && tv.tv_usec != 0) 1808 optval = 1; 1809 1810 switch (opt) { 1811 case SO_SNDTIMEO: 1812 so->so_snd.sb_timeo = optval; 1813 break; 1814 case SO_RCVTIMEO: 1815 so->so_rcv.sb_timeo = optval; 1816 break; 1817 } 1818 break; 1819 1820 default: 1821 solock(so); 1822 error = ENOPROTOOPT; 1823 break; 1824 } 1825 KASSERT(solocked(so)); 1826 return error; 1827 } 1828 1829 int 1830 sosetopt(struct socket *so, struct sockopt *sopt) 1831 { 1832 int error, prerr; 1833 1834 if (sopt->sopt_level == SOL_SOCKET) { 1835 error = sosetopt1(so, sopt); 1836 KASSERT(solocked(so)); 1837 } else { 1838 error = ENOPROTOOPT; 1839 solock(so); 1840 } 1841 1842 if ((error == 0 || error == ENOPROTOOPT) && 1843 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1844 /* give the protocol stack a shot */ 1845 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1846 if (prerr == 0) 1847 error = 0; 1848 else if (prerr != ENOPROTOOPT) 1849 error = prerr; 1850 } 1851 sounlock(so); 1852 return error; 1853 } 1854 1855 /* 1856 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1857 */ 1858 int 1859 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1860 const void *val, size_t valsize) 1861 { 1862 struct sockopt sopt; 1863 int error; 1864 1865 KASSERT(valsize == 0 || val != NULL); 1866 1867 sockopt_init(&sopt, level, name, valsize); 1868 sockopt_set(&sopt, val, valsize); 1869 1870 error = sosetopt(so, &sopt); 1871 1872 sockopt_destroy(&sopt); 1873 1874 return error; 1875 } 1876 1877 /* 1878 * internal get SOL_SOCKET options 1879 */ 1880 static int 1881 sogetopt1(struct socket *so, struct sockopt *sopt) 1882 { 1883 int error, optval, opt; 1884 struct linger l; 1885 struct timeval tv; 1886 1887 switch ((opt = sopt->sopt_name)) { 1888 1889 case SO_ACCEPTFILTER: 1890 error = accept_filt_getopt(so, sopt); 1891 break; 1892 1893 case SO_LINGER: 1894 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1895 l.l_linger = so->so_linger; 1896 1897 error = sockopt_set(sopt, &l, sizeof(l)); 1898 break; 1899 1900 case SO_USELOOPBACK: 1901 case SO_DONTROUTE: 1902 case SO_DEBUG: 1903 case SO_KEEPALIVE: 1904 case SO_REUSEADDR: 1905 case SO_REUSEPORT: 1906 case SO_BROADCAST: 1907 case SO_OOBINLINE: 1908 case SO_TIMESTAMP: 1909 case SO_NOSIGPIPE: 1910 #ifdef SO_OTIMESTAMP 1911 case SO_OTIMESTAMP: 1912 #endif 1913 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1914 break; 1915 1916 case SO_TYPE: 1917 error = sockopt_setint(sopt, so->so_type); 1918 break; 1919 1920 case SO_ERROR: 1921 error = sockopt_setint(sopt, so->so_error); 1922 so->so_error = 0; 1923 break; 1924 1925 case SO_SNDBUF: 1926 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1927 break; 1928 1929 case SO_RCVBUF: 1930 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1931 break; 1932 1933 case SO_SNDLOWAT: 1934 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1935 break; 1936 1937 case SO_RCVLOWAT: 1938 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1939 break; 1940 1941 #ifdef COMPAT_50 1942 case SO_OSNDTIMEO: 1943 case SO_ORCVTIMEO: { 1944 struct timeval50 otv; 1945 1946 optval = (opt == SO_OSNDTIMEO ? 1947 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1948 1949 otv.tv_sec = optval / hz; 1950 otv.tv_usec = (optval % hz) * tick; 1951 1952 error = sockopt_set(sopt, &otv, sizeof(otv)); 1953 break; 1954 } 1955 #endif /* COMPAT_50 */ 1956 1957 case SO_SNDTIMEO: 1958 case SO_RCVTIMEO: 1959 optval = (opt == SO_SNDTIMEO ? 1960 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1961 1962 tv.tv_sec = optval / hz; 1963 tv.tv_usec = (optval % hz) * tick; 1964 1965 error = sockopt_set(sopt, &tv, sizeof(tv)); 1966 break; 1967 1968 case SO_OVERFLOWED: 1969 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1970 break; 1971 1972 default: 1973 error = ENOPROTOOPT; 1974 break; 1975 } 1976 1977 return (error); 1978 } 1979 1980 int 1981 sogetopt(struct socket *so, struct sockopt *sopt) 1982 { 1983 int error; 1984 1985 solock(so); 1986 if (sopt->sopt_level != SOL_SOCKET) { 1987 if (so->so_proto && so->so_proto->pr_ctloutput) { 1988 error = ((*so->so_proto->pr_ctloutput) 1989 (PRCO_GETOPT, so, sopt)); 1990 } else 1991 error = (ENOPROTOOPT); 1992 } else { 1993 error = sogetopt1(so, sopt); 1994 } 1995 sounlock(so); 1996 return (error); 1997 } 1998 1999 /* 2000 * alloc sockopt data buffer buffer 2001 * - will be released at destroy 2002 */ 2003 static int 2004 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2005 { 2006 2007 KASSERT(sopt->sopt_size == 0); 2008 2009 if (len > sizeof(sopt->sopt_buf)) { 2010 sopt->sopt_data = kmem_zalloc(len, kmflag); 2011 if (sopt->sopt_data == NULL) 2012 return ENOMEM; 2013 } else 2014 sopt->sopt_data = sopt->sopt_buf; 2015 2016 sopt->sopt_size = len; 2017 return 0; 2018 } 2019 2020 /* 2021 * initialise sockopt storage 2022 * - MAY sleep during allocation 2023 */ 2024 void 2025 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2026 { 2027 2028 memset(sopt, 0, sizeof(*sopt)); 2029 2030 sopt->sopt_level = level; 2031 sopt->sopt_name = name; 2032 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2033 } 2034 2035 /* 2036 * destroy sockopt storage 2037 * - will release any held memory references 2038 */ 2039 void 2040 sockopt_destroy(struct sockopt *sopt) 2041 { 2042 2043 if (sopt->sopt_data != sopt->sopt_buf) 2044 kmem_free(sopt->sopt_data, sopt->sopt_size); 2045 2046 memset(sopt, 0, sizeof(*sopt)); 2047 } 2048 2049 /* 2050 * set sockopt value 2051 * - value is copied into sockopt 2052 * - memory is allocated when necessary, will not sleep 2053 */ 2054 int 2055 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2056 { 2057 int error; 2058 2059 if (sopt->sopt_size == 0) { 2060 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2061 if (error) 2062 return error; 2063 } 2064 2065 KASSERT(sopt->sopt_size == len); 2066 memcpy(sopt->sopt_data, buf, len); 2067 return 0; 2068 } 2069 2070 /* 2071 * common case of set sockopt integer value 2072 */ 2073 int 2074 sockopt_setint(struct sockopt *sopt, int val) 2075 { 2076 2077 return sockopt_set(sopt, &val, sizeof(int)); 2078 } 2079 2080 /* 2081 * get sockopt value 2082 * - correct size must be given 2083 */ 2084 int 2085 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2086 { 2087 2088 if (sopt->sopt_size != len) 2089 return EINVAL; 2090 2091 memcpy(buf, sopt->sopt_data, len); 2092 return 0; 2093 } 2094 2095 /* 2096 * common case of get sockopt integer value 2097 */ 2098 int 2099 sockopt_getint(const struct sockopt *sopt, int *valp) 2100 { 2101 2102 return sockopt_get(sopt, valp, sizeof(int)); 2103 } 2104 2105 /* 2106 * set sockopt value from mbuf 2107 * - ONLY for legacy code 2108 * - mbuf is released by sockopt 2109 * - will not sleep 2110 */ 2111 int 2112 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2113 { 2114 size_t len; 2115 int error; 2116 2117 len = m_length(m); 2118 2119 if (sopt->sopt_size == 0) { 2120 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2121 if (error) 2122 return error; 2123 } 2124 2125 KASSERT(sopt->sopt_size == len); 2126 m_copydata(m, 0, len, sopt->sopt_data); 2127 m_freem(m); 2128 2129 return 0; 2130 } 2131 2132 /* 2133 * get sockopt value into mbuf 2134 * - ONLY for legacy code 2135 * - mbuf to be released by the caller 2136 * - will not sleep 2137 */ 2138 struct mbuf * 2139 sockopt_getmbuf(const struct sockopt *sopt) 2140 { 2141 struct mbuf *m; 2142 2143 if (sopt->sopt_size > MCLBYTES) 2144 return NULL; 2145 2146 m = m_get(M_DONTWAIT, MT_SOOPTS); 2147 if (m == NULL) 2148 return NULL; 2149 2150 if (sopt->sopt_size > MLEN) { 2151 MCLGET(m, M_DONTWAIT); 2152 if ((m->m_flags & M_EXT) == 0) { 2153 m_free(m); 2154 return NULL; 2155 } 2156 } 2157 2158 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2159 m->m_len = sopt->sopt_size; 2160 2161 return m; 2162 } 2163 2164 void 2165 sohasoutofband(struct socket *so) 2166 { 2167 2168 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2169 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2170 } 2171 2172 static void 2173 filt_sordetach(struct knote *kn) 2174 { 2175 struct socket *so; 2176 2177 so = ((file_t *)kn->kn_obj)->f_data; 2178 solock(so); 2179 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2180 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2181 so->so_rcv.sb_flags &= ~SB_KNOTE; 2182 sounlock(so); 2183 } 2184 2185 /*ARGSUSED*/ 2186 static int 2187 filt_soread(struct knote *kn, long hint) 2188 { 2189 struct socket *so; 2190 int rv; 2191 2192 so = ((file_t *)kn->kn_obj)->f_data; 2193 if (hint != NOTE_SUBMIT) 2194 solock(so); 2195 kn->kn_data = so->so_rcv.sb_cc; 2196 if (so->so_state & SS_CANTRCVMORE) { 2197 kn->kn_flags |= EV_EOF; 2198 kn->kn_fflags = so->so_error; 2199 rv = 1; 2200 } else if (so->so_error) /* temporary udp error */ 2201 rv = 1; 2202 else if (kn->kn_sfflags & NOTE_LOWAT) 2203 rv = (kn->kn_data >= kn->kn_sdata); 2204 else 2205 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2206 if (hint != NOTE_SUBMIT) 2207 sounlock(so); 2208 return rv; 2209 } 2210 2211 static void 2212 filt_sowdetach(struct knote *kn) 2213 { 2214 struct socket *so; 2215 2216 so = ((file_t *)kn->kn_obj)->f_data; 2217 solock(so); 2218 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2219 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2220 so->so_snd.sb_flags &= ~SB_KNOTE; 2221 sounlock(so); 2222 } 2223 2224 /*ARGSUSED*/ 2225 static int 2226 filt_sowrite(struct knote *kn, long hint) 2227 { 2228 struct socket *so; 2229 int rv; 2230 2231 so = ((file_t *)kn->kn_obj)->f_data; 2232 if (hint != NOTE_SUBMIT) 2233 solock(so); 2234 kn->kn_data = sbspace(&so->so_snd); 2235 if (so->so_state & SS_CANTSENDMORE) { 2236 kn->kn_flags |= EV_EOF; 2237 kn->kn_fflags = so->so_error; 2238 rv = 1; 2239 } else if (so->so_error) /* temporary udp error */ 2240 rv = 1; 2241 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2242 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2243 rv = 0; 2244 else if (kn->kn_sfflags & NOTE_LOWAT) 2245 rv = (kn->kn_data >= kn->kn_sdata); 2246 else 2247 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2248 if (hint != NOTE_SUBMIT) 2249 sounlock(so); 2250 return rv; 2251 } 2252 2253 /*ARGSUSED*/ 2254 static int 2255 filt_solisten(struct knote *kn, long hint) 2256 { 2257 struct socket *so; 2258 int rv; 2259 2260 so = ((file_t *)kn->kn_obj)->f_data; 2261 2262 /* 2263 * Set kn_data to number of incoming connections, not 2264 * counting partial (incomplete) connections. 2265 */ 2266 if (hint != NOTE_SUBMIT) 2267 solock(so); 2268 kn->kn_data = so->so_qlen; 2269 rv = (kn->kn_data > 0); 2270 if (hint != NOTE_SUBMIT) 2271 sounlock(so); 2272 return rv; 2273 } 2274 2275 static const struct filterops solisten_filtops = 2276 { 1, NULL, filt_sordetach, filt_solisten }; 2277 static const struct filterops soread_filtops = 2278 { 1, NULL, filt_sordetach, filt_soread }; 2279 static const struct filterops sowrite_filtops = 2280 { 1, NULL, filt_sowdetach, filt_sowrite }; 2281 2282 int 2283 soo_kqfilter(struct file *fp, struct knote *kn) 2284 { 2285 struct socket *so; 2286 struct sockbuf *sb; 2287 2288 so = ((file_t *)kn->kn_obj)->f_data; 2289 solock(so); 2290 switch (kn->kn_filter) { 2291 case EVFILT_READ: 2292 if (so->so_options & SO_ACCEPTCONN) 2293 kn->kn_fop = &solisten_filtops; 2294 else 2295 kn->kn_fop = &soread_filtops; 2296 sb = &so->so_rcv; 2297 break; 2298 case EVFILT_WRITE: 2299 kn->kn_fop = &sowrite_filtops; 2300 sb = &so->so_snd; 2301 break; 2302 default: 2303 sounlock(so); 2304 return (EINVAL); 2305 } 2306 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2307 sb->sb_flags |= SB_KNOTE; 2308 sounlock(so); 2309 return (0); 2310 } 2311 2312 static int 2313 sodopoll(struct socket *so, int events) 2314 { 2315 int revents; 2316 2317 revents = 0; 2318 2319 if (events & (POLLIN | POLLRDNORM)) 2320 if (soreadable(so)) 2321 revents |= events & (POLLIN | POLLRDNORM); 2322 2323 if (events & (POLLOUT | POLLWRNORM)) 2324 if (sowritable(so)) 2325 revents |= events & (POLLOUT | POLLWRNORM); 2326 2327 if (events & (POLLPRI | POLLRDBAND)) 2328 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2329 revents |= events & (POLLPRI | POLLRDBAND); 2330 2331 return revents; 2332 } 2333 2334 int 2335 sopoll(struct socket *so, int events) 2336 { 2337 int revents = 0; 2338 2339 #ifndef DIAGNOSTIC 2340 /* 2341 * Do a quick, unlocked check in expectation that the socket 2342 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2343 * as the solocked() assertions will fail. 2344 */ 2345 if ((revents = sodopoll(so, events)) != 0) 2346 return revents; 2347 #endif 2348 2349 solock(so); 2350 if ((revents = sodopoll(so, events)) == 0) { 2351 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2352 selrecord(curlwp, &so->so_rcv.sb_sel); 2353 so->so_rcv.sb_flags |= SB_NOTIFY; 2354 } 2355 2356 if (events & (POLLOUT | POLLWRNORM)) { 2357 selrecord(curlwp, &so->so_snd.sb_sel); 2358 so->so_snd.sb_flags |= SB_NOTIFY; 2359 } 2360 } 2361 sounlock(so); 2362 2363 return revents; 2364 } 2365 2366 2367 #include <sys/sysctl.h> 2368 2369 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2370 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2371 2372 /* 2373 * sysctl helper routine for kern.somaxkva. ensures that the given 2374 * value is not too small. 2375 * (XXX should we maybe make sure it's not too large as well?) 2376 */ 2377 static int 2378 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2379 { 2380 int error, new_somaxkva; 2381 struct sysctlnode node; 2382 2383 new_somaxkva = somaxkva; 2384 node = *rnode; 2385 node.sysctl_data = &new_somaxkva; 2386 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2387 if (error || newp == NULL) 2388 return (error); 2389 2390 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2391 return (EINVAL); 2392 2393 mutex_enter(&so_pendfree_lock); 2394 somaxkva = new_somaxkva; 2395 cv_broadcast(&socurkva_cv); 2396 mutex_exit(&so_pendfree_lock); 2397 2398 return (error); 2399 } 2400 2401 /* 2402 * sysctl helper routine for kern.sbmax. Basically just ensures that 2403 * any new value is not too small. 2404 */ 2405 static int 2406 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2407 { 2408 int error, new_sbmax; 2409 struct sysctlnode node; 2410 2411 new_sbmax = sb_max; 2412 node = *rnode; 2413 node.sysctl_data = &new_sbmax; 2414 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2415 if (error || newp == NULL) 2416 return (error); 2417 2418 KERNEL_LOCK(1, NULL); 2419 error = sb_max_set(new_sbmax); 2420 KERNEL_UNLOCK_ONE(NULL); 2421 2422 return (error); 2423 } 2424 2425 static void 2426 sysctl_kern_socket_setup(void) 2427 { 2428 2429 KASSERT(socket_sysctllog == NULL); 2430 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2431 CTLFLAG_PERMANENT, 2432 CTLTYPE_NODE, "kern", NULL, 2433 NULL, 0, NULL, 0, 2434 CTL_KERN, CTL_EOL); 2435 2436 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2437 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2438 CTLTYPE_INT, "somaxkva", 2439 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2440 "used for socket buffers"), 2441 sysctl_kern_somaxkva, 0, NULL, 0, 2442 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2443 2444 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2445 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2446 CTLTYPE_INT, "sbmax", 2447 SYSCTL_DESCR("Maximum socket buffer size"), 2448 sysctl_kern_sbmax, 0, NULL, 0, 2449 CTL_KERN, KERN_SBMAX, CTL_EOL); 2450 } 2451