1 /* $NetBSD: uipc_socket.c,v 1.217 2013/08/29 17:49:21 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 #include <sys/cdefs.h> 66 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.217 2013/08/29 17:49:21 rmind Exp $"); 67 68 #include "opt_compat_netbsd.h" 69 #include "opt_sock_counters.h" 70 #include "opt_sosend_loan.h" 71 #include "opt_mbuftrace.h" 72 #include "opt_somaxkva.h" 73 #include "opt_multiprocessor.h" /* XXX */ 74 75 #include <sys/param.h> 76 #include <sys/systm.h> 77 #include <sys/proc.h> 78 #include <sys/file.h> 79 #include <sys/filedesc.h> 80 #include <sys/kmem.h> 81 #include <sys/mbuf.h> 82 #include <sys/domain.h> 83 #include <sys/kernel.h> 84 #include <sys/protosw.h> 85 #include <sys/socket.h> 86 #include <sys/socketvar.h> 87 #include <sys/signalvar.h> 88 #include <sys/resourcevar.h> 89 #include <sys/uidinfo.h> 90 #include <sys/event.h> 91 #include <sys/poll.h> 92 #include <sys/kauth.h> 93 #include <sys/mutex.h> 94 #include <sys/condvar.h> 95 #include <sys/kthread.h> 96 97 #ifdef COMPAT_50 98 #include <compat/sys/time.h> 99 #include <compat/sys/socket.h> 100 #endif 101 102 #include <uvm/uvm_extern.h> 103 #include <uvm/uvm_loan.h> 104 #include <uvm/uvm_page.h> 105 106 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 107 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 108 109 extern const struct fileops socketops; 110 111 extern int somaxconn; /* patchable (XXX sysctl) */ 112 int somaxconn = SOMAXCONN; 113 kmutex_t *softnet_lock; 114 115 #ifdef SOSEND_COUNTERS 116 #include <sys/device.h> 117 118 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 119 NULL, "sosend", "loan big"); 120 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 121 NULL, "sosend", "copy big"); 122 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 123 NULL, "sosend", "copy small"); 124 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 125 NULL, "sosend", "kva limit"); 126 127 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 128 129 EVCNT_ATTACH_STATIC(sosend_loan_big); 130 EVCNT_ATTACH_STATIC(sosend_copy_big); 131 EVCNT_ATTACH_STATIC(sosend_copy_small); 132 EVCNT_ATTACH_STATIC(sosend_kvalimit); 133 #else 134 135 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 136 137 #endif /* SOSEND_COUNTERS */ 138 139 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 140 int sock_loan_thresh = -1; 141 #else 142 int sock_loan_thresh = 4096; 143 #endif 144 145 static kmutex_t so_pendfree_lock; 146 static struct mbuf *so_pendfree = NULL; 147 148 #ifndef SOMAXKVA 149 #define SOMAXKVA (16 * 1024 * 1024) 150 #endif 151 int somaxkva = SOMAXKVA; 152 static int socurkva; 153 static kcondvar_t socurkva_cv; 154 155 static kauth_listener_t socket_listener; 156 157 #define SOCK_LOAN_CHUNK 65536 158 159 static void sopendfree_thread(void *); 160 static kcondvar_t pendfree_thread_cv; 161 static lwp_t *sopendfree_lwp; 162 163 static void sysctl_kern_socket_setup(void); 164 static struct sysctllog *socket_sysctllog; 165 166 static vsize_t 167 sokvareserve(struct socket *so, vsize_t len) 168 { 169 int error; 170 171 mutex_enter(&so_pendfree_lock); 172 while (socurkva + len > somaxkva) { 173 SOSEND_COUNTER_INCR(&sosend_kvalimit); 174 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 175 if (error) { 176 len = 0; 177 break; 178 } 179 } 180 socurkva += len; 181 mutex_exit(&so_pendfree_lock); 182 return len; 183 } 184 185 static void 186 sokvaunreserve(vsize_t len) 187 { 188 189 mutex_enter(&so_pendfree_lock); 190 socurkva -= len; 191 cv_broadcast(&socurkva_cv); 192 mutex_exit(&so_pendfree_lock); 193 } 194 195 /* 196 * sokvaalloc: allocate kva for loan. 197 */ 198 199 vaddr_t 200 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 201 { 202 vaddr_t lva; 203 204 /* 205 * reserve kva. 206 */ 207 208 if (sokvareserve(so, len) == 0) 209 return 0; 210 211 /* 212 * allocate kva. 213 */ 214 215 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 216 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 217 if (lva == 0) { 218 sokvaunreserve(len); 219 return (0); 220 } 221 222 return lva; 223 } 224 225 /* 226 * sokvafree: free kva for loan. 227 */ 228 229 void 230 sokvafree(vaddr_t sva, vsize_t len) 231 { 232 233 /* 234 * free kva. 235 */ 236 237 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 238 239 /* 240 * unreserve kva. 241 */ 242 243 sokvaunreserve(len); 244 } 245 246 static void 247 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 248 { 249 vaddr_t sva, eva; 250 vsize_t len; 251 int npgs; 252 253 KASSERT(pgs != NULL); 254 255 eva = round_page((vaddr_t) buf + size); 256 sva = trunc_page((vaddr_t) buf); 257 len = eva - sva; 258 npgs = len >> PAGE_SHIFT; 259 260 pmap_kremove(sva, len); 261 pmap_update(pmap_kernel()); 262 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 263 sokvafree(sva, len); 264 } 265 266 /* 267 * sopendfree_thread: free mbufs on "pendfree" list. 268 * unlock and relock so_pendfree_lock when freeing mbufs. 269 */ 270 271 static void 272 sopendfree_thread(void *v) 273 { 274 struct mbuf *m, *next; 275 size_t rv; 276 277 mutex_enter(&so_pendfree_lock); 278 279 for (;;) { 280 rv = 0; 281 while (so_pendfree != NULL) { 282 m = so_pendfree; 283 so_pendfree = NULL; 284 mutex_exit(&so_pendfree_lock); 285 286 for (; m != NULL; m = next) { 287 next = m->m_next; 288 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 289 KASSERT(m->m_ext.ext_refcnt == 0); 290 291 rv += m->m_ext.ext_size; 292 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 293 m->m_ext.ext_size); 294 pool_cache_put(mb_cache, m); 295 } 296 297 mutex_enter(&so_pendfree_lock); 298 } 299 if (rv) 300 cv_broadcast(&socurkva_cv); 301 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 302 } 303 panic("sopendfree_thread"); 304 /* NOTREACHED */ 305 } 306 307 void 308 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 309 { 310 311 KASSERT(m != NULL); 312 313 /* 314 * postpone freeing mbuf. 315 * 316 * we can't do it in interrupt context 317 * because we need to put kva back to kernel_map. 318 */ 319 320 mutex_enter(&so_pendfree_lock); 321 m->m_next = so_pendfree; 322 so_pendfree = m; 323 cv_signal(&pendfree_thread_cv); 324 mutex_exit(&so_pendfree_lock); 325 } 326 327 static long 328 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 329 { 330 struct iovec *iov = uio->uio_iov; 331 vaddr_t sva, eva; 332 vsize_t len; 333 vaddr_t lva; 334 int npgs, error; 335 vaddr_t va; 336 int i; 337 338 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 339 return (0); 340 341 if (iov->iov_len < (size_t) space) 342 space = iov->iov_len; 343 if (space > SOCK_LOAN_CHUNK) 344 space = SOCK_LOAN_CHUNK; 345 346 eva = round_page((vaddr_t) iov->iov_base + space); 347 sva = trunc_page((vaddr_t) iov->iov_base); 348 len = eva - sva; 349 npgs = len >> PAGE_SHIFT; 350 351 KASSERT(npgs <= M_EXT_MAXPAGES); 352 353 lva = sokvaalloc(sva, len, so); 354 if (lva == 0) 355 return 0; 356 357 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 358 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 359 if (error) { 360 sokvafree(lva, len); 361 return (0); 362 } 363 364 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 365 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 366 VM_PROT_READ, 0); 367 pmap_update(pmap_kernel()); 368 369 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 370 371 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 372 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 373 374 uio->uio_resid -= space; 375 /* uio_offset not updated, not set/used for write(2) */ 376 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 377 uio->uio_iov->iov_len -= space; 378 if (uio->uio_iov->iov_len == 0) { 379 uio->uio_iov++; 380 uio->uio_iovcnt--; 381 } 382 383 return (space); 384 } 385 386 struct mbuf * 387 getsombuf(struct socket *so, int type) 388 { 389 struct mbuf *m; 390 391 m = m_get(M_WAIT, type); 392 MCLAIM(m, so->so_mowner); 393 return m; 394 } 395 396 static int 397 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 398 void *arg0, void *arg1, void *arg2, void *arg3) 399 { 400 int result; 401 enum kauth_network_req req; 402 403 result = KAUTH_RESULT_DEFER; 404 req = (enum kauth_network_req)arg0; 405 406 if ((action != KAUTH_NETWORK_SOCKET) && 407 (action != KAUTH_NETWORK_BIND)) 408 return result; 409 410 switch (req) { 411 case KAUTH_REQ_NETWORK_BIND_PORT: 412 result = KAUTH_RESULT_ALLOW; 413 break; 414 415 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 416 /* Normal users can only drop their own connections. */ 417 struct socket *so = (struct socket *)arg1; 418 419 if (proc_uidmatch(cred, so->so_cred) == 0) 420 result = KAUTH_RESULT_ALLOW; 421 422 break; 423 } 424 425 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 426 /* We allow "raw" routing/bluetooth sockets to anyone. */ 427 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 428 || (u_long)arg1 == PF_BLUETOOTH) { 429 result = KAUTH_RESULT_ALLOW; 430 } else { 431 /* Privileged, let secmodel handle this. */ 432 if ((u_long)arg2 == SOCK_RAW) 433 break; 434 } 435 436 result = KAUTH_RESULT_ALLOW; 437 438 break; 439 440 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 441 result = KAUTH_RESULT_ALLOW; 442 443 break; 444 445 default: 446 break; 447 } 448 449 return result; 450 } 451 452 void 453 soinit(void) 454 { 455 456 sysctl_kern_socket_setup(); 457 458 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 459 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 460 cv_init(&socurkva_cv, "sokva"); 461 cv_init(&pendfree_thread_cv, "sopendfr"); 462 soinit2(); 463 464 /* Set the initial adjusted socket buffer size. */ 465 if (sb_max_set(sb_max)) 466 panic("bad initial sb_max value: %lu", sb_max); 467 468 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 469 socket_listener_cb, NULL); 470 } 471 472 void 473 soinit1(void) 474 { 475 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 476 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 477 if (error) 478 panic("soinit1 %d", error); 479 } 480 481 /* 482 * Socket operation routines. 483 * These routines are called by the routines in 484 * sys_socket.c or from a system process, and 485 * implement the semantics of socket operations by 486 * switching out to the protocol specific routines. 487 */ 488 /*ARGSUSED*/ 489 int 490 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 491 struct socket *lockso) 492 { 493 const struct protosw *prp; 494 struct socket *so; 495 uid_t uid; 496 int error; 497 kmutex_t *lock; 498 499 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 500 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 501 KAUTH_ARG(proto)); 502 if (error != 0) 503 return error; 504 505 if (proto) 506 prp = pffindproto(dom, proto, type); 507 else 508 prp = pffindtype(dom, type); 509 if (prp == NULL) { 510 /* no support for domain */ 511 if (pffinddomain(dom) == 0) 512 return EAFNOSUPPORT; 513 /* no support for socket type */ 514 if (proto == 0 && type != 0) 515 return EPROTOTYPE; 516 return EPROTONOSUPPORT; 517 } 518 if (prp->pr_usrreq == NULL) 519 return EPROTONOSUPPORT; 520 if (prp->pr_type != type) 521 return EPROTOTYPE; 522 523 so = soget(true); 524 so->so_type = type; 525 so->so_proto = prp; 526 so->so_send = sosend; 527 so->so_receive = soreceive; 528 #ifdef MBUFTRACE 529 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 530 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 531 so->so_mowner = &prp->pr_domain->dom_mowner; 532 #endif 533 uid = kauth_cred_geteuid(l->l_cred); 534 so->so_uidinfo = uid_find(uid); 535 so->so_cpid = l->l_proc->p_pid; 536 if (lockso != NULL) { 537 /* Caller wants us to share a lock. */ 538 lock = lockso->so_lock; 539 so->so_lock = lock; 540 mutex_obj_hold(lock); 541 /* XXX Why is this not solock, to match sounlock? */ 542 mutex_enter(lock); 543 } else { 544 /* Lock assigned and taken during PRU_ATTACH. */ 545 } 546 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 547 (struct mbuf *)(long)proto, NULL, l); 548 KASSERT(solocked(so)); 549 if (error != 0) { 550 so->so_state |= SS_NOFDREF; 551 sofree(so); 552 return error; 553 } 554 so->so_cred = kauth_cred_dup(l->l_cred); 555 sounlock(so); 556 *aso = so; 557 return 0; 558 } 559 560 /* On success, write file descriptor to fdout and return zero. On 561 * failure, return non-zero; *fdout will be undefined. 562 */ 563 int 564 fsocreate(int domain, struct socket **sop, int type, int protocol, 565 struct lwp *l, int *fdout) 566 { 567 struct socket *so; 568 struct file *fp; 569 int fd, error; 570 int flags = type & SOCK_FLAGS_MASK; 571 572 type &= ~SOCK_FLAGS_MASK; 573 if ((error = fd_allocfile(&fp, &fd)) != 0) 574 return error; 575 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 576 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 577 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 578 fp->f_type = DTYPE_SOCKET; 579 fp->f_ops = &socketops; 580 error = socreate(domain, &so, type, protocol, l, NULL); 581 if (error != 0) { 582 fd_abort(curproc, fp, fd); 583 } else { 584 if (sop != NULL) 585 *sop = so; 586 fp->f_data = so; 587 fd_affix(curproc, fp, fd); 588 *fdout = fd; 589 if (flags & SOCK_NONBLOCK) 590 so->so_state |= SS_NBIO; 591 } 592 return error; 593 } 594 595 int 596 sofamily(const struct socket *so) 597 { 598 const struct protosw *pr; 599 const struct domain *dom; 600 601 if ((pr = so->so_proto) == NULL) 602 return AF_UNSPEC; 603 if ((dom = pr->pr_domain) == NULL) 604 return AF_UNSPEC; 605 return dom->dom_family; 606 } 607 608 int 609 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 610 { 611 int error; 612 613 solock(so); 614 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 615 sounlock(so); 616 return error; 617 } 618 619 int 620 solisten(struct socket *so, int backlog, struct lwp *l) 621 { 622 int error; 623 624 solock(so); 625 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 626 SS_ISDISCONNECTING)) != 0) { 627 sounlock(so); 628 return (EINVAL); 629 } 630 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 631 NULL, NULL, l); 632 if (error != 0) { 633 sounlock(so); 634 return error; 635 } 636 if (TAILQ_EMPTY(&so->so_q)) 637 so->so_options |= SO_ACCEPTCONN; 638 if (backlog < 0) 639 backlog = 0; 640 so->so_qlimit = min(backlog, somaxconn); 641 sounlock(so); 642 return 0; 643 } 644 645 void 646 sofree(struct socket *so) 647 { 648 u_int refs; 649 650 KASSERT(solocked(so)); 651 652 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 653 sounlock(so); 654 return; 655 } 656 if (so->so_head) { 657 /* 658 * We must not decommission a socket that's on the accept(2) 659 * queue. If we do, then accept(2) may hang after select(2) 660 * indicated that the listening socket was ready. 661 */ 662 if (!soqremque(so, 0)) { 663 sounlock(so); 664 return; 665 } 666 } 667 if (so->so_rcv.sb_hiwat) 668 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 669 RLIM_INFINITY); 670 if (so->so_snd.sb_hiwat) 671 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 672 RLIM_INFINITY); 673 sbrelease(&so->so_snd, so); 674 KASSERT(!cv_has_waiters(&so->so_cv)); 675 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 676 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 677 sorflush(so); 678 refs = so->so_aborting; /* XXX */ 679 /* Remove acccept filter if one is present. */ 680 if (so->so_accf != NULL) 681 (void)accept_filt_clear(so); 682 sounlock(so); 683 if (refs == 0) /* XXX */ 684 soput(so); 685 } 686 687 /* 688 * Close a socket on last file table reference removal. 689 * Initiate disconnect if connected. 690 * Free socket when disconnect complete. 691 */ 692 int 693 soclose(struct socket *so) 694 { 695 struct socket *so2; 696 int error; 697 int error2; 698 699 error = 0; 700 solock(so); 701 if (so->so_options & SO_ACCEPTCONN) { 702 for (;;) { 703 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 704 KASSERT(solocked2(so, so2)); 705 (void) soqremque(so2, 0); 706 /* soabort drops the lock. */ 707 (void) soabort(so2); 708 solock(so); 709 continue; 710 } 711 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 712 KASSERT(solocked2(so, so2)); 713 (void) soqremque(so2, 1); 714 /* soabort drops the lock. */ 715 (void) soabort(so2); 716 solock(so); 717 continue; 718 } 719 break; 720 } 721 } 722 if (so->so_pcb == 0) 723 goto discard; 724 if (so->so_state & SS_ISCONNECTED) { 725 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 726 error = sodisconnect(so); 727 if (error) 728 goto drop; 729 } 730 if (so->so_options & SO_LINGER) { 731 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 732 (SS_ISDISCONNECTING|SS_NBIO)) 733 goto drop; 734 while (so->so_state & SS_ISCONNECTED) { 735 error = sowait(so, true, so->so_linger * hz); 736 if (error) 737 break; 738 } 739 } 740 } 741 drop: 742 if (so->so_pcb) { 743 error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 744 NULL, NULL, NULL, NULL); 745 if (error == 0) 746 error = error2; 747 } 748 discard: 749 if (so->so_state & SS_NOFDREF) 750 panic("soclose: NOFDREF"); 751 kauth_cred_free(so->so_cred); 752 so->so_state |= SS_NOFDREF; 753 sofree(so); 754 return (error); 755 } 756 757 /* 758 * Must be called with the socket locked.. Will return with it unlocked. 759 */ 760 int 761 soabort(struct socket *so) 762 { 763 u_int refs; 764 int error; 765 766 KASSERT(solocked(so)); 767 KASSERT(so->so_head == NULL); 768 769 so->so_aborting++; /* XXX */ 770 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 771 NULL, NULL, NULL); 772 refs = --so->so_aborting; /* XXX */ 773 if (error || (refs == 0)) { 774 sofree(so); 775 } else { 776 sounlock(so); 777 } 778 return error; 779 } 780 781 int 782 soaccept(struct socket *so, struct mbuf *nam) 783 { 784 int error; 785 786 KASSERT(solocked(so)); 787 788 error = 0; 789 if ((so->so_state & SS_NOFDREF) == 0) 790 panic("soaccept: !NOFDREF"); 791 so->so_state &= ~SS_NOFDREF; 792 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 793 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 794 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 795 NULL, nam, NULL, NULL); 796 else 797 error = ECONNABORTED; 798 799 return (error); 800 } 801 802 int 803 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 804 { 805 int error; 806 807 KASSERT(solocked(so)); 808 809 if (so->so_options & SO_ACCEPTCONN) 810 return (EOPNOTSUPP); 811 /* 812 * If protocol is connection-based, can only connect once. 813 * Otherwise, if connected, try to disconnect first. 814 * This allows user to disconnect by connecting to, e.g., 815 * a null address. 816 */ 817 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 818 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 819 (error = sodisconnect(so)))) 820 error = EISCONN; 821 else 822 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 823 NULL, nam, NULL, l); 824 return (error); 825 } 826 827 int 828 soconnect2(struct socket *so1, struct socket *so2) 829 { 830 int error; 831 832 KASSERT(solocked2(so1, so2)); 833 834 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 835 NULL, (struct mbuf *)so2, NULL, NULL); 836 return (error); 837 } 838 839 int 840 sodisconnect(struct socket *so) 841 { 842 int error; 843 844 KASSERT(solocked(so)); 845 846 if ((so->so_state & SS_ISCONNECTED) == 0) { 847 error = ENOTCONN; 848 } else if (so->so_state & SS_ISDISCONNECTING) { 849 error = EALREADY; 850 } else { 851 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 852 NULL, NULL, NULL, NULL); 853 } 854 return (error); 855 } 856 857 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 858 /* 859 * Send on a socket. 860 * If send must go all at once and message is larger than 861 * send buffering, then hard error. 862 * Lock against other senders. 863 * If must go all at once and not enough room now, then 864 * inform user that this would block and do nothing. 865 * Otherwise, if nonblocking, send as much as possible. 866 * The data to be sent is described by "uio" if nonzero, 867 * otherwise by the mbuf chain "top" (which must be null 868 * if uio is not). Data provided in mbuf chain must be small 869 * enough to send all at once. 870 * 871 * Returns nonzero on error, timeout or signal; callers 872 * must check for short counts if EINTR/ERESTART are returned. 873 * Data and control buffers are freed on return. 874 */ 875 int 876 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 877 struct mbuf *control, int flags, struct lwp *l) 878 { 879 struct mbuf **mp, *m; 880 long space, len, resid, clen, mlen; 881 int error, s, dontroute, atomic; 882 short wakeup_state = 0; 883 884 clen = 0; 885 886 /* 887 * solock() provides atomicity of access. splsoftnet() prevents 888 * protocol processing soft interrupts from interrupting us and 889 * blocking (expensive). 890 */ 891 s = splsoftnet(); 892 solock(so); 893 atomic = sosendallatonce(so) || top; 894 if (uio) 895 resid = uio->uio_resid; 896 else 897 resid = top->m_pkthdr.len; 898 /* 899 * In theory resid should be unsigned. 900 * However, space must be signed, as it might be less than 0 901 * if we over-committed, and we must use a signed comparison 902 * of space and resid. On the other hand, a negative resid 903 * causes us to loop sending 0-length segments to the protocol. 904 */ 905 if (resid < 0) { 906 error = EINVAL; 907 goto out; 908 } 909 dontroute = 910 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 911 (so->so_proto->pr_flags & PR_ATOMIC); 912 l->l_ru.ru_msgsnd++; 913 if (control) 914 clen = control->m_len; 915 restart: 916 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 917 goto out; 918 do { 919 if (so->so_state & SS_CANTSENDMORE) { 920 error = EPIPE; 921 goto release; 922 } 923 if (so->so_error) { 924 error = so->so_error; 925 so->so_error = 0; 926 goto release; 927 } 928 if ((so->so_state & SS_ISCONNECTED) == 0) { 929 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 930 if (resid || clen == 0) { 931 error = ENOTCONN; 932 goto release; 933 } 934 } else if (addr == 0) { 935 error = EDESTADDRREQ; 936 goto release; 937 } 938 } 939 space = sbspace(&so->so_snd); 940 if (flags & MSG_OOB) 941 space += 1024; 942 if ((atomic && resid > so->so_snd.sb_hiwat) || 943 clen > so->so_snd.sb_hiwat) { 944 error = EMSGSIZE; 945 goto release; 946 } 947 if (space < resid + clen && 948 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 949 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 950 error = EWOULDBLOCK; 951 goto release; 952 } 953 sbunlock(&so->so_snd); 954 if (wakeup_state & SS_RESTARTSYS) { 955 error = ERESTART; 956 goto out; 957 } 958 error = sbwait(&so->so_snd); 959 if (error) 960 goto out; 961 wakeup_state = so->so_state; 962 goto restart; 963 } 964 wakeup_state = 0; 965 mp = ⊤ 966 space -= clen; 967 do { 968 if (uio == NULL) { 969 /* 970 * Data is prepackaged in "top". 971 */ 972 resid = 0; 973 if (flags & MSG_EOR) 974 top->m_flags |= M_EOR; 975 } else do { 976 sounlock(so); 977 splx(s); 978 if (top == NULL) { 979 m = m_gethdr(M_WAIT, MT_DATA); 980 mlen = MHLEN; 981 m->m_pkthdr.len = 0; 982 m->m_pkthdr.rcvif = NULL; 983 } else { 984 m = m_get(M_WAIT, MT_DATA); 985 mlen = MLEN; 986 } 987 MCLAIM(m, so->so_snd.sb_mowner); 988 if (sock_loan_thresh >= 0 && 989 uio->uio_iov->iov_len >= sock_loan_thresh && 990 space >= sock_loan_thresh && 991 (len = sosend_loan(so, uio, m, 992 space)) != 0) { 993 SOSEND_COUNTER_INCR(&sosend_loan_big); 994 space -= len; 995 goto have_data; 996 } 997 if (resid >= MINCLSIZE && space >= MCLBYTES) { 998 SOSEND_COUNTER_INCR(&sosend_copy_big); 999 m_clget(m, M_DONTWAIT); 1000 if ((m->m_flags & M_EXT) == 0) 1001 goto nopages; 1002 mlen = MCLBYTES; 1003 if (atomic && top == 0) { 1004 len = lmin(MCLBYTES - max_hdr, 1005 resid); 1006 m->m_data += max_hdr; 1007 } else 1008 len = lmin(MCLBYTES, resid); 1009 space -= len; 1010 } else { 1011 nopages: 1012 SOSEND_COUNTER_INCR(&sosend_copy_small); 1013 len = lmin(lmin(mlen, resid), space); 1014 space -= len; 1015 /* 1016 * For datagram protocols, leave room 1017 * for protocol headers in first mbuf. 1018 */ 1019 if (atomic && top == 0 && len < mlen) 1020 MH_ALIGN(m, len); 1021 } 1022 error = uiomove(mtod(m, void *), (int)len, uio); 1023 have_data: 1024 resid = uio->uio_resid; 1025 m->m_len = len; 1026 *mp = m; 1027 top->m_pkthdr.len += len; 1028 s = splsoftnet(); 1029 solock(so); 1030 if (error != 0) 1031 goto release; 1032 mp = &m->m_next; 1033 if (resid <= 0) { 1034 if (flags & MSG_EOR) 1035 top->m_flags |= M_EOR; 1036 break; 1037 } 1038 } while (space > 0 && atomic); 1039 1040 if (so->so_state & SS_CANTSENDMORE) { 1041 error = EPIPE; 1042 goto release; 1043 } 1044 if (dontroute) 1045 so->so_options |= SO_DONTROUTE; 1046 if (resid > 0) 1047 so->so_state |= SS_MORETOCOME; 1048 error = (*so->so_proto->pr_usrreq)(so, 1049 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 1050 top, addr, control, curlwp); 1051 if (dontroute) 1052 so->so_options &= ~SO_DONTROUTE; 1053 if (resid > 0) 1054 so->so_state &= ~SS_MORETOCOME; 1055 clen = 0; 1056 control = NULL; 1057 top = NULL; 1058 mp = ⊤ 1059 if (error != 0) 1060 goto release; 1061 } while (resid && space > 0); 1062 } while (resid); 1063 1064 release: 1065 sbunlock(&so->so_snd); 1066 out: 1067 sounlock(so); 1068 splx(s); 1069 if (top) 1070 m_freem(top); 1071 if (control) 1072 m_freem(control); 1073 return (error); 1074 } 1075 1076 /* 1077 * Following replacement or removal of the first mbuf on the first 1078 * mbuf chain of a socket buffer, push necessary state changes back 1079 * into the socket buffer so that other consumers see the values 1080 * consistently. 'nextrecord' is the callers locally stored value of 1081 * the original value of sb->sb_mb->m_nextpkt which must be restored 1082 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1083 */ 1084 static void 1085 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1086 { 1087 1088 KASSERT(solocked(sb->sb_so)); 1089 1090 /* 1091 * First, update for the new value of nextrecord. If necessary, 1092 * make it the first record. 1093 */ 1094 if (sb->sb_mb != NULL) 1095 sb->sb_mb->m_nextpkt = nextrecord; 1096 else 1097 sb->sb_mb = nextrecord; 1098 1099 /* 1100 * Now update any dependent socket buffer fields to reflect 1101 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1102 * the addition of a second clause that takes care of the 1103 * case where sb_mb has been updated, but remains the last 1104 * record. 1105 */ 1106 if (sb->sb_mb == NULL) { 1107 sb->sb_mbtail = NULL; 1108 sb->sb_lastrecord = NULL; 1109 } else if (sb->sb_mb->m_nextpkt == NULL) 1110 sb->sb_lastrecord = sb->sb_mb; 1111 } 1112 1113 /* 1114 * Implement receive operations on a socket. 1115 * We depend on the way that records are added to the sockbuf 1116 * by sbappend*. In particular, each record (mbufs linked through m_next) 1117 * must begin with an address if the protocol so specifies, 1118 * followed by an optional mbuf or mbufs containing ancillary data, 1119 * and then zero or more mbufs of data. 1120 * In order to avoid blocking network interrupts for the entire time here, 1121 * we splx() while doing the actual copy to user space. 1122 * Although the sockbuf is locked, new data may still be appended, 1123 * and thus we must maintain consistency of the sockbuf during that time. 1124 * 1125 * The caller may receive the data as a single mbuf chain by supplying 1126 * an mbuf **mp0 for use in returning the chain. The uio is then used 1127 * only for the count in uio_resid. 1128 */ 1129 int 1130 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1131 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1132 { 1133 struct lwp *l = curlwp; 1134 struct mbuf *m, **mp, *mt; 1135 size_t len, offset, moff, orig_resid; 1136 int atomic, flags, error, s, type; 1137 const struct protosw *pr; 1138 struct mbuf *nextrecord; 1139 int mbuf_removed = 0; 1140 const struct domain *dom; 1141 short wakeup_state = 0; 1142 1143 pr = so->so_proto; 1144 atomic = pr->pr_flags & PR_ATOMIC; 1145 dom = pr->pr_domain; 1146 mp = mp0; 1147 type = 0; 1148 orig_resid = uio->uio_resid; 1149 1150 if (paddr != NULL) 1151 *paddr = NULL; 1152 if (controlp != NULL) 1153 *controlp = NULL; 1154 if (flagsp != NULL) 1155 flags = *flagsp &~ MSG_EOR; 1156 else 1157 flags = 0; 1158 1159 if (flags & MSG_OOB) { 1160 m = m_get(M_WAIT, MT_DATA); 1161 solock(so); 1162 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1163 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1164 sounlock(so); 1165 if (error) 1166 goto bad; 1167 do { 1168 error = uiomove(mtod(m, void *), 1169 MIN(uio->uio_resid, m->m_len), uio); 1170 m = m_free(m); 1171 } while (uio->uio_resid > 0 && error == 0 && m); 1172 bad: 1173 if (m != NULL) 1174 m_freem(m); 1175 return error; 1176 } 1177 if (mp != NULL) 1178 *mp = NULL; 1179 1180 /* 1181 * solock() provides atomicity of access. splsoftnet() prevents 1182 * protocol processing soft interrupts from interrupting us and 1183 * blocking (expensive). 1184 */ 1185 s = splsoftnet(); 1186 solock(so); 1187 restart: 1188 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1189 sounlock(so); 1190 splx(s); 1191 return error; 1192 } 1193 1194 m = so->so_rcv.sb_mb; 1195 /* 1196 * If we have less data than requested, block awaiting more 1197 * (subject to any timeout) if: 1198 * 1. the current count is less than the low water mark, 1199 * 2. MSG_WAITALL is set, and it is possible to do the entire 1200 * receive operation at once if we block (resid <= hiwat), or 1201 * 3. MSG_DONTWAIT is not set. 1202 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1203 * we have to do the receive in sections, and thus risk returning 1204 * a short count if a timeout or signal occurs after we start. 1205 */ 1206 if (m == NULL || 1207 ((flags & MSG_DONTWAIT) == 0 && 1208 so->so_rcv.sb_cc < uio->uio_resid && 1209 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1210 ((flags & MSG_WAITALL) && 1211 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1212 m->m_nextpkt == NULL && !atomic)) { 1213 #ifdef DIAGNOSTIC 1214 if (m == NULL && so->so_rcv.sb_cc) 1215 panic("receive 1"); 1216 #endif 1217 if (so->so_error) { 1218 if (m != NULL) 1219 goto dontblock; 1220 error = so->so_error; 1221 if ((flags & MSG_PEEK) == 0) 1222 so->so_error = 0; 1223 goto release; 1224 } 1225 if (so->so_state & SS_CANTRCVMORE) { 1226 if (m != NULL) 1227 goto dontblock; 1228 else 1229 goto release; 1230 } 1231 for (; m != NULL; m = m->m_next) 1232 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1233 m = so->so_rcv.sb_mb; 1234 goto dontblock; 1235 } 1236 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1237 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1238 error = ENOTCONN; 1239 goto release; 1240 } 1241 if (uio->uio_resid == 0) 1242 goto release; 1243 if ((so->so_state & SS_NBIO) || 1244 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1245 error = EWOULDBLOCK; 1246 goto release; 1247 } 1248 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1249 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1250 sbunlock(&so->so_rcv); 1251 if (wakeup_state & SS_RESTARTSYS) 1252 error = ERESTART; 1253 else 1254 error = sbwait(&so->so_rcv); 1255 if (error != 0) { 1256 sounlock(so); 1257 splx(s); 1258 return error; 1259 } 1260 wakeup_state = so->so_state; 1261 goto restart; 1262 } 1263 dontblock: 1264 /* 1265 * On entry here, m points to the first record of the socket buffer. 1266 * From this point onward, we maintain 'nextrecord' as a cache of the 1267 * pointer to the next record in the socket buffer. We must keep the 1268 * various socket buffer pointers and local stack versions of the 1269 * pointers in sync, pushing out modifications before dropping the 1270 * socket lock, and re-reading them when picking it up. 1271 * 1272 * Otherwise, we will race with the network stack appending new data 1273 * or records onto the socket buffer by using inconsistent/stale 1274 * versions of the field, possibly resulting in socket buffer 1275 * corruption. 1276 * 1277 * By holding the high-level sblock(), we prevent simultaneous 1278 * readers from pulling off the front of the socket buffer. 1279 */ 1280 if (l != NULL) 1281 l->l_ru.ru_msgrcv++; 1282 KASSERT(m == so->so_rcv.sb_mb); 1283 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1284 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1285 nextrecord = m->m_nextpkt; 1286 if (pr->pr_flags & PR_ADDR) { 1287 #ifdef DIAGNOSTIC 1288 if (m->m_type != MT_SONAME) 1289 panic("receive 1a"); 1290 #endif 1291 orig_resid = 0; 1292 if (flags & MSG_PEEK) { 1293 if (paddr) 1294 *paddr = m_copy(m, 0, m->m_len); 1295 m = m->m_next; 1296 } else { 1297 sbfree(&so->so_rcv, m); 1298 mbuf_removed = 1; 1299 if (paddr != NULL) { 1300 *paddr = m; 1301 so->so_rcv.sb_mb = m->m_next; 1302 m->m_next = NULL; 1303 m = so->so_rcv.sb_mb; 1304 } else { 1305 MFREE(m, so->so_rcv.sb_mb); 1306 m = so->so_rcv.sb_mb; 1307 } 1308 sbsync(&so->so_rcv, nextrecord); 1309 } 1310 } 1311 1312 /* 1313 * Process one or more MT_CONTROL mbufs present before any data mbufs 1314 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1315 * just copy the data; if !MSG_PEEK, we call into the protocol to 1316 * perform externalization (or freeing if controlp == NULL). 1317 */ 1318 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1319 struct mbuf *cm = NULL, *cmn; 1320 struct mbuf **cme = &cm; 1321 1322 do { 1323 if (flags & MSG_PEEK) { 1324 if (controlp != NULL) { 1325 *controlp = m_copy(m, 0, m->m_len); 1326 controlp = &(*controlp)->m_next; 1327 } 1328 m = m->m_next; 1329 } else { 1330 sbfree(&so->so_rcv, m); 1331 so->so_rcv.sb_mb = m->m_next; 1332 m->m_next = NULL; 1333 *cme = m; 1334 cme = &(*cme)->m_next; 1335 m = so->so_rcv.sb_mb; 1336 } 1337 } while (m != NULL && m->m_type == MT_CONTROL); 1338 if ((flags & MSG_PEEK) == 0) 1339 sbsync(&so->so_rcv, nextrecord); 1340 for (; cm != NULL; cm = cmn) { 1341 cmn = cm->m_next; 1342 cm->m_next = NULL; 1343 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1344 if (controlp != NULL) { 1345 if (dom->dom_externalize != NULL && 1346 type == SCM_RIGHTS) { 1347 sounlock(so); 1348 splx(s); 1349 error = (*dom->dom_externalize)(cm, l, 1350 (flags & MSG_CMSG_CLOEXEC) ? 1351 O_CLOEXEC : 0); 1352 s = splsoftnet(); 1353 solock(so); 1354 } 1355 *controlp = cm; 1356 while (*controlp != NULL) 1357 controlp = &(*controlp)->m_next; 1358 } else { 1359 /* 1360 * Dispose of any SCM_RIGHTS message that went 1361 * through the read path rather than recv. 1362 */ 1363 if (dom->dom_dispose != NULL && 1364 type == SCM_RIGHTS) { 1365 sounlock(so); 1366 (*dom->dom_dispose)(cm); 1367 solock(so); 1368 } 1369 m_freem(cm); 1370 } 1371 } 1372 if (m != NULL) 1373 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1374 else 1375 nextrecord = so->so_rcv.sb_mb; 1376 orig_resid = 0; 1377 } 1378 1379 /* If m is non-NULL, we have some data to read. */ 1380 if (__predict_true(m != NULL)) { 1381 type = m->m_type; 1382 if (type == MT_OOBDATA) 1383 flags |= MSG_OOB; 1384 } 1385 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1386 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1387 1388 moff = 0; 1389 offset = 0; 1390 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1391 if (m->m_type == MT_OOBDATA) { 1392 if (type != MT_OOBDATA) 1393 break; 1394 } else if (type == MT_OOBDATA) 1395 break; 1396 #ifdef DIAGNOSTIC 1397 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1398 panic("receive 3"); 1399 #endif 1400 so->so_state &= ~SS_RCVATMARK; 1401 wakeup_state = 0; 1402 len = uio->uio_resid; 1403 if (so->so_oobmark && len > so->so_oobmark - offset) 1404 len = so->so_oobmark - offset; 1405 if (len > m->m_len - moff) 1406 len = m->m_len - moff; 1407 /* 1408 * If mp is set, just pass back the mbufs. 1409 * Otherwise copy them out via the uio, then free. 1410 * Sockbuf must be consistent here (points to current mbuf, 1411 * it points to next record) when we drop priority; 1412 * we must note any additions to the sockbuf when we 1413 * block interrupts again. 1414 */ 1415 if (mp == NULL) { 1416 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1417 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1418 sounlock(so); 1419 splx(s); 1420 error = uiomove(mtod(m, char *) + moff, len, uio); 1421 s = splsoftnet(); 1422 solock(so); 1423 if (error != 0) { 1424 /* 1425 * If any part of the record has been removed 1426 * (such as the MT_SONAME mbuf, which will 1427 * happen when PR_ADDR, and thus also 1428 * PR_ATOMIC, is set), then drop the entire 1429 * record to maintain the atomicity of the 1430 * receive operation. 1431 * 1432 * This avoids a later panic("receive 1a") 1433 * when compiled with DIAGNOSTIC. 1434 */ 1435 if (m && mbuf_removed && atomic) 1436 (void) sbdroprecord(&so->so_rcv); 1437 1438 goto release; 1439 } 1440 } else 1441 uio->uio_resid -= len; 1442 if (len == m->m_len - moff) { 1443 if (m->m_flags & M_EOR) 1444 flags |= MSG_EOR; 1445 if (flags & MSG_PEEK) { 1446 m = m->m_next; 1447 moff = 0; 1448 } else { 1449 nextrecord = m->m_nextpkt; 1450 sbfree(&so->so_rcv, m); 1451 if (mp) { 1452 *mp = m; 1453 mp = &m->m_next; 1454 so->so_rcv.sb_mb = m = m->m_next; 1455 *mp = NULL; 1456 } else { 1457 MFREE(m, so->so_rcv.sb_mb); 1458 m = so->so_rcv.sb_mb; 1459 } 1460 /* 1461 * If m != NULL, we also know that 1462 * so->so_rcv.sb_mb != NULL. 1463 */ 1464 KASSERT(so->so_rcv.sb_mb == m); 1465 if (m) { 1466 m->m_nextpkt = nextrecord; 1467 if (nextrecord == NULL) 1468 so->so_rcv.sb_lastrecord = m; 1469 } else { 1470 so->so_rcv.sb_mb = nextrecord; 1471 SB_EMPTY_FIXUP(&so->so_rcv); 1472 } 1473 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1474 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1475 } 1476 } else if (flags & MSG_PEEK) 1477 moff += len; 1478 else { 1479 if (mp != NULL) { 1480 mt = m_copym(m, 0, len, M_NOWAIT); 1481 if (__predict_false(mt == NULL)) { 1482 sounlock(so); 1483 mt = m_copym(m, 0, len, M_WAIT); 1484 solock(so); 1485 } 1486 *mp = mt; 1487 } 1488 m->m_data += len; 1489 m->m_len -= len; 1490 so->so_rcv.sb_cc -= len; 1491 } 1492 if (so->so_oobmark) { 1493 if ((flags & MSG_PEEK) == 0) { 1494 so->so_oobmark -= len; 1495 if (so->so_oobmark == 0) { 1496 so->so_state |= SS_RCVATMARK; 1497 break; 1498 } 1499 } else { 1500 offset += len; 1501 if (offset == so->so_oobmark) 1502 break; 1503 } 1504 } 1505 if (flags & MSG_EOR) 1506 break; 1507 /* 1508 * If the MSG_WAITALL flag is set (for non-atomic socket), 1509 * we must not quit until "uio->uio_resid == 0" or an error 1510 * termination. If a signal/timeout occurs, return 1511 * with a short count but without error. 1512 * Keep sockbuf locked against other readers. 1513 */ 1514 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1515 !sosendallatonce(so) && !nextrecord) { 1516 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1517 break; 1518 /* 1519 * If we are peeking and the socket receive buffer is 1520 * full, stop since we can't get more data to peek at. 1521 */ 1522 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1523 break; 1524 /* 1525 * If we've drained the socket buffer, tell the 1526 * protocol in case it needs to do something to 1527 * get it filled again. 1528 */ 1529 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1530 (*pr->pr_usrreq)(so, PRU_RCVD, 1531 NULL, (struct mbuf *)(long)flags, NULL, l); 1532 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1533 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1534 if (wakeup_state & SS_RESTARTSYS) 1535 error = ERESTART; 1536 else 1537 error = sbwait(&so->so_rcv); 1538 if (error != 0) { 1539 sbunlock(&so->so_rcv); 1540 sounlock(so); 1541 splx(s); 1542 return 0; 1543 } 1544 if ((m = so->so_rcv.sb_mb) != NULL) 1545 nextrecord = m->m_nextpkt; 1546 wakeup_state = so->so_state; 1547 } 1548 } 1549 1550 if (m && atomic) { 1551 flags |= MSG_TRUNC; 1552 if ((flags & MSG_PEEK) == 0) 1553 (void) sbdroprecord(&so->so_rcv); 1554 } 1555 if ((flags & MSG_PEEK) == 0) { 1556 if (m == NULL) { 1557 /* 1558 * First part is an inline SB_EMPTY_FIXUP(). Second 1559 * part makes sure sb_lastrecord is up-to-date if 1560 * there is still data in the socket buffer. 1561 */ 1562 so->so_rcv.sb_mb = nextrecord; 1563 if (so->so_rcv.sb_mb == NULL) { 1564 so->so_rcv.sb_mbtail = NULL; 1565 so->so_rcv.sb_lastrecord = NULL; 1566 } else if (nextrecord->m_nextpkt == NULL) 1567 so->so_rcv.sb_lastrecord = nextrecord; 1568 } 1569 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1570 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1571 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1572 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1573 (struct mbuf *)(long)flags, NULL, l); 1574 } 1575 if (orig_resid == uio->uio_resid && orig_resid && 1576 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1577 sbunlock(&so->so_rcv); 1578 goto restart; 1579 } 1580 1581 if (flagsp != NULL) 1582 *flagsp |= flags; 1583 release: 1584 sbunlock(&so->so_rcv); 1585 sounlock(so); 1586 splx(s); 1587 return error; 1588 } 1589 1590 int 1591 soshutdown(struct socket *so, int how) 1592 { 1593 const struct protosw *pr; 1594 int error; 1595 1596 KASSERT(solocked(so)); 1597 1598 pr = so->so_proto; 1599 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1600 return (EINVAL); 1601 1602 if (how == SHUT_RD || how == SHUT_RDWR) { 1603 sorflush(so); 1604 error = 0; 1605 } 1606 if (how == SHUT_WR || how == SHUT_RDWR) 1607 error = (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1608 NULL, NULL, NULL); 1609 1610 return error; 1611 } 1612 1613 void 1614 sorestart(struct socket *so) 1615 { 1616 /* 1617 * An application has called close() on an fd on which another 1618 * of its threads has called a socket system call. 1619 * Mark this and wake everyone up, and code that would block again 1620 * instead returns ERESTART. 1621 * On system call re-entry the fd is validated and EBADF returned. 1622 * Any other fd will block again on the 2nd syscall. 1623 */ 1624 solock(so); 1625 so->so_state |= SS_RESTARTSYS; 1626 cv_broadcast(&so->so_cv); 1627 cv_broadcast(&so->so_snd.sb_cv); 1628 cv_broadcast(&so->so_rcv.sb_cv); 1629 sounlock(so); 1630 } 1631 1632 void 1633 sorflush(struct socket *so) 1634 { 1635 struct sockbuf *sb, asb; 1636 const struct protosw *pr; 1637 1638 KASSERT(solocked(so)); 1639 1640 sb = &so->so_rcv; 1641 pr = so->so_proto; 1642 socantrcvmore(so); 1643 sb->sb_flags |= SB_NOINTR; 1644 (void )sblock(sb, M_WAITOK); 1645 sbunlock(sb); 1646 asb = *sb; 1647 /* 1648 * Clear most of the sockbuf structure, but leave some of the 1649 * fields valid. 1650 */ 1651 memset(&sb->sb_startzero, 0, 1652 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1653 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1654 sounlock(so); 1655 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1656 solock(so); 1657 } 1658 sbrelease(&asb, so); 1659 } 1660 1661 /* 1662 * internal set SOL_SOCKET options 1663 */ 1664 static int 1665 sosetopt1(struct socket *so, const struct sockopt *sopt) 1666 { 1667 int error = EINVAL, optval, opt; 1668 struct linger l; 1669 struct timeval tv; 1670 1671 switch ((opt = sopt->sopt_name)) { 1672 1673 case SO_ACCEPTFILTER: 1674 error = accept_filt_setopt(so, sopt); 1675 KASSERT(solocked(so)); 1676 break; 1677 1678 case SO_LINGER: 1679 error = sockopt_get(sopt, &l, sizeof(l)); 1680 solock(so); 1681 if (error) 1682 break; 1683 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1684 l.l_linger > (INT_MAX / hz)) { 1685 error = EDOM; 1686 break; 1687 } 1688 so->so_linger = l.l_linger; 1689 if (l.l_onoff) 1690 so->so_options |= SO_LINGER; 1691 else 1692 so->so_options &= ~SO_LINGER; 1693 break; 1694 1695 case SO_DEBUG: 1696 case SO_KEEPALIVE: 1697 case SO_DONTROUTE: 1698 case SO_USELOOPBACK: 1699 case SO_BROADCAST: 1700 case SO_REUSEADDR: 1701 case SO_REUSEPORT: 1702 case SO_OOBINLINE: 1703 case SO_TIMESTAMP: 1704 case SO_NOSIGPIPE: 1705 #ifdef SO_OTIMESTAMP 1706 case SO_OTIMESTAMP: 1707 #endif 1708 error = sockopt_getint(sopt, &optval); 1709 solock(so); 1710 if (error) 1711 break; 1712 if (optval) 1713 so->so_options |= opt; 1714 else 1715 so->so_options &= ~opt; 1716 break; 1717 1718 case SO_SNDBUF: 1719 case SO_RCVBUF: 1720 case SO_SNDLOWAT: 1721 case SO_RCVLOWAT: 1722 error = sockopt_getint(sopt, &optval); 1723 solock(so); 1724 if (error) 1725 break; 1726 1727 /* 1728 * Values < 1 make no sense for any of these 1729 * options, so disallow them. 1730 */ 1731 if (optval < 1) { 1732 error = EINVAL; 1733 break; 1734 } 1735 1736 switch (opt) { 1737 case SO_SNDBUF: 1738 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1739 error = ENOBUFS; 1740 break; 1741 } 1742 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1743 break; 1744 1745 case SO_RCVBUF: 1746 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1747 error = ENOBUFS; 1748 break; 1749 } 1750 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1751 break; 1752 1753 /* 1754 * Make sure the low-water is never greater than 1755 * the high-water. 1756 */ 1757 case SO_SNDLOWAT: 1758 if (optval > so->so_snd.sb_hiwat) 1759 optval = so->so_snd.sb_hiwat; 1760 1761 so->so_snd.sb_lowat = optval; 1762 break; 1763 1764 case SO_RCVLOWAT: 1765 if (optval > so->so_rcv.sb_hiwat) 1766 optval = so->so_rcv.sb_hiwat; 1767 1768 so->so_rcv.sb_lowat = optval; 1769 break; 1770 } 1771 break; 1772 1773 #ifdef COMPAT_50 1774 case SO_OSNDTIMEO: 1775 case SO_ORCVTIMEO: { 1776 struct timeval50 otv; 1777 error = sockopt_get(sopt, &otv, sizeof(otv)); 1778 if (error) { 1779 solock(so); 1780 break; 1781 } 1782 timeval50_to_timeval(&otv, &tv); 1783 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1784 error = 0; 1785 /*FALLTHROUGH*/ 1786 } 1787 #endif /* COMPAT_50 */ 1788 1789 case SO_SNDTIMEO: 1790 case SO_RCVTIMEO: 1791 if (error) 1792 error = sockopt_get(sopt, &tv, sizeof(tv)); 1793 solock(so); 1794 if (error) 1795 break; 1796 1797 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1798 error = EDOM; 1799 break; 1800 } 1801 1802 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1803 if (optval == 0 && tv.tv_usec != 0) 1804 optval = 1; 1805 1806 switch (opt) { 1807 case SO_SNDTIMEO: 1808 so->so_snd.sb_timeo = optval; 1809 break; 1810 case SO_RCVTIMEO: 1811 so->so_rcv.sb_timeo = optval; 1812 break; 1813 } 1814 break; 1815 1816 default: 1817 solock(so); 1818 error = ENOPROTOOPT; 1819 break; 1820 } 1821 KASSERT(solocked(so)); 1822 return error; 1823 } 1824 1825 int 1826 sosetopt(struct socket *so, struct sockopt *sopt) 1827 { 1828 int error, prerr; 1829 1830 if (sopt->sopt_level == SOL_SOCKET) { 1831 error = sosetopt1(so, sopt); 1832 KASSERT(solocked(so)); 1833 } else { 1834 error = ENOPROTOOPT; 1835 solock(so); 1836 } 1837 1838 if ((error == 0 || error == ENOPROTOOPT) && 1839 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1840 /* give the protocol stack a shot */ 1841 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1842 if (prerr == 0) 1843 error = 0; 1844 else if (prerr != ENOPROTOOPT) 1845 error = prerr; 1846 } 1847 sounlock(so); 1848 return error; 1849 } 1850 1851 /* 1852 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1853 */ 1854 int 1855 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1856 const void *val, size_t valsize) 1857 { 1858 struct sockopt sopt; 1859 int error; 1860 1861 KASSERT(valsize == 0 || val != NULL); 1862 1863 sockopt_init(&sopt, level, name, valsize); 1864 sockopt_set(&sopt, val, valsize); 1865 1866 error = sosetopt(so, &sopt); 1867 1868 sockopt_destroy(&sopt); 1869 1870 return error; 1871 } 1872 1873 /* 1874 * internal get SOL_SOCKET options 1875 */ 1876 static int 1877 sogetopt1(struct socket *so, struct sockopt *sopt) 1878 { 1879 int error, optval, opt; 1880 struct linger l; 1881 struct timeval tv; 1882 1883 switch ((opt = sopt->sopt_name)) { 1884 1885 case SO_ACCEPTFILTER: 1886 error = accept_filt_getopt(so, sopt); 1887 break; 1888 1889 case SO_LINGER: 1890 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1891 l.l_linger = so->so_linger; 1892 1893 error = sockopt_set(sopt, &l, sizeof(l)); 1894 break; 1895 1896 case SO_USELOOPBACK: 1897 case SO_DONTROUTE: 1898 case SO_DEBUG: 1899 case SO_KEEPALIVE: 1900 case SO_REUSEADDR: 1901 case SO_REUSEPORT: 1902 case SO_BROADCAST: 1903 case SO_OOBINLINE: 1904 case SO_TIMESTAMP: 1905 case SO_NOSIGPIPE: 1906 #ifdef SO_OTIMESTAMP 1907 case SO_OTIMESTAMP: 1908 #endif 1909 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1910 break; 1911 1912 case SO_TYPE: 1913 error = sockopt_setint(sopt, so->so_type); 1914 break; 1915 1916 case SO_ERROR: 1917 error = sockopt_setint(sopt, so->so_error); 1918 so->so_error = 0; 1919 break; 1920 1921 case SO_SNDBUF: 1922 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1923 break; 1924 1925 case SO_RCVBUF: 1926 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1927 break; 1928 1929 case SO_SNDLOWAT: 1930 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1931 break; 1932 1933 case SO_RCVLOWAT: 1934 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1935 break; 1936 1937 #ifdef COMPAT_50 1938 case SO_OSNDTIMEO: 1939 case SO_ORCVTIMEO: { 1940 struct timeval50 otv; 1941 1942 optval = (opt == SO_OSNDTIMEO ? 1943 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1944 1945 otv.tv_sec = optval / hz; 1946 otv.tv_usec = (optval % hz) * tick; 1947 1948 error = sockopt_set(sopt, &otv, sizeof(otv)); 1949 break; 1950 } 1951 #endif /* COMPAT_50 */ 1952 1953 case SO_SNDTIMEO: 1954 case SO_RCVTIMEO: 1955 optval = (opt == SO_SNDTIMEO ? 1956 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1957 1958 tv.tv_sec = optval / hz; 1959 tv.tv_usec = (optval % hz) * tick; 1960 1961 error = sockopt_set(sopt, &tv, sizeof(tv)); 1962 break; 1963 1964 case SO_OVERFLOWED: 1965 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1966 break; 1967 1968 default: 1969 error = ENOPROTOOPT; 1970 break; 1971 } 1972 1973 return (error); 1974 } 1975 1976 int 1977 sogetopt(struct socket *so, struct sockopt *sopt) 1978 { 1979 int error; 1980 1981 solock(so); 1982 if (sopt->sopt_level != SOL_SOCKET) { 1983 if (so->so_proto && so->so_proto->pr_ctloutput) { 1984 error = ((*so->so_proto->pr_ctloutput) 1985 (PRCO_GETOPT, so, sopt)); 1986 } else 1987 error = (ENOPROTOOPT); 1988 } else { 1989 error = sogetopt1(so, sopt); 1990 } 1991 sounlock(so); 1992 return (error); 1993 } 1994 1995 /* 1996 * alloc sockopt data buffer buffer 1997 * - will be released at destroy 1998 */ 1999 static int 2000 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2001 { 2002 2003 KASSERT(sopt->sopt_size == 0); 2004 2005 if (len > sizeof(sopt->sopt_buf)) { 2006 sopt->sopt_data = kmem_zalloc(len, kmflag); 2007 if (sopt->sopt_data == NULL) 2008 return ENOMEM; 2009 } else 2010 sopt->sopt_data = sopt->sopt_buf; 2011 2012 sopt->sopt_size = len; 2013 return 0; 2014 } 2015 2016 /* 2017 * initialise sockopt storage 2018 * - MAY sleep during allocation 2019 */ 2020 void 2021 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2022 { 2023 2024 memset(sopt, 0, sizeof(*sopt)); 2025 2026 sopt->sopt_level = level; 2027 sopt->sopt_name = name; 2028 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2029 } 2030 2031 /* 2032 * destroy sockopt storage 2033 * - will release any held memory references 2034 */ 2035 void 2036 sockopt_destroy(struct sockopt *sopt) 2037 { 2038 2039 if (sopt->sopt_data != sopt->sopt_buf) 2040 kmem_free(sopt->sopt_data, sopt->sopt_size); 2041 2042 memset(sopt, 0, sizeof(*sopt)); 2043 } 2044 2045 /* 2046 * set sockopt value 2047 * - value is copied into sockopt 2048 * - memory is allocated when necessary, will not sleep 2049 */ 2050 int 2051 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2052 { 2053 int error; 2054 2055 if (sopt->sopt_size == 0) { 2056 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2057 if (error) 2058 return error; 2059 } 2060 2061 KASSERT(sopt->sopt_size == len); 2062 memcpy(sopt->sopt_data, buf, len); 2063 return 0; 2064 } 2065 2066 /* 2067 * common case of set sockopt integer value 2068 */ 2069 int 2070 sockopt_setint(struct sockopt *sopt, int val) 2071 { 2072 2073 return sockopt_set(sopt, &val, sizeof(int)); 2074 } 2075 2076 /* 2077 * get sockopt value 2078 * - correct size must be given 2079 */ 2080 int 2081 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2082 { 2083 2084 if (sopt->sopt_size != len) 2085 return EINVAL; 2086 2087 memcpy(buf, sopt->sopt_data, len); 2088 return 0; 2089 } 2090 2091 /* 2092 * common case of get sockopt integer value 2093 */ 2094 int 2095 sockopt_getint(const struct sockopt *sopt, int *valp) 2096 { 2097 2098 return sockopt_get(sopt, valp, sizeof(int)); 2099 } 2100 2101 /* 2102 * set sockopt value from mbuf 2103 * - ONLY for legacy code 2104 * - mbuf is released by sockopt 2105 * - will not sleep 2106 */ 2107 int 2108 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2109 { 2110 size_t len; 2111 int error; 2112 2113 len = m_length(m); 2114 2115 if (sopt->sopt_size == 0) { 2116 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2117 if (error) 2118 return error; 2119 } 2120 2121 KASSERT(sopt->sopt_size == len); 2122 m_copydata(m, 0, len, sopt->sopt_data); 2123 m_freem(m); 2124 2125 return 0; 2126 } 2127 2128 /* 2129 * get sockopt value into mbuf 2130 * - ONLY for legacy code 2131 * - mbuf to be released by the caller 2132 * - will not sleep 2133 */ 2134 struct mbuf * 2135 sockopt_getmbuf(const struct sockopt *sopt) 2136 { 2137 struct mbuf *m; 2138 2139 if (sopt->sopt_size > MCLBYTES) 2140 return NULL; 2141 2142 m = m_get(M_DONTWAIT, MT_SOOPTS); 2143 if (m == NULL) 2144 return NULL; 2145 2146 if (sopt->sopt_size > MLEN) { 2147 MCLGET(m, M_DONTWAIT); 2148 if ((m->m_flags & M_EXT) == 0) { 2149 m_free(m); 2150 return NULL; 2151 } 2152 } 2153 2154 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2155 m->m_len = sopt->sopt_size; 2156 2157 return m; 2158 } 2159 2160 void 2161 sohasoutofband(struct socket *so) 2162 { 2163 2164 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2165 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2166 } 2167 2168 static void 2169 filt_sordetach(struct knote *kn) 2170 { 2171 struct socket *so; 2172 2173 so = ((file_t *)kn->kn_obj)->f_data; 2174 solock(so); 2175 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2176 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2177 so->so_rcv.sb_flags &= ~SB_KNOTE; 2178 sounlock(so); 2179 } 2180 2181 /*ARGSUSED*/ 2182 static int 2183 filt_soread(struct knote *kn, long hint) 2184 { 2185 struct socket *so; 2186 int rv; 2187 2188 so = ((file_t *)kn->kn_obj)->f_data; 2189 if (hint != NOTE_SUBMIT) 2190 solock(so); 2191 kn->kn_data = so->so_rcv.sb_cc; 2192 if (so->so_state & SS_CANTRCVMORE) { 2193 kn->kn_flags |= EV_EOF; 2194 kn->kn_fflags = so->so_error; 2195 rv = 1; 2196 } else if (so->so_error) /* temporary udp error */ 2197 rv = 1; 2198 else if (kn->kn_sfflags & NOTE_LOWAT) 2199 rv = (kn->kn_data >= kn->kn_sdata); 2200 else 2201 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2202 if (hint != NOTE_SUBMIT) 2203 sounlock(so); 2204 return rv; 2205 } 2206 2207 static void 2208 filt_sowdetach(struct knote *kn) 2209 { 2210 struct socket *so; 2211 2212 so = ((file_t *)kn->kn_obj)->f_data; 2213 solock(so); 2214 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2215 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2216 so->so_snd.sb_flags &= ~SB_KNOTE; 2217 sounlock(so); 2218 } 2219 2220 /*ARGSUSED*/ 2221 static int 2222 filt_sowrite(struct knote *kn, long hint) 2223 { 2224 struct socket *so; 2225 int rv; 2226 2227 so = ((file_t *)kn->kn_obj)->f_data; 2228 if (hint != NOTE_SUBMIT) 2229 solock(so); 2230 kn->kn_data = sbspace(&so->so_snd); 2231 if (so->so_state & SS_CANTSENDMORE) { 2232 kn->kn_flags |= EV_EOF; 2233 kn->kn_fflags = so->so_error; 2234 rv = 1; 2235 } else if (so->so_error) /* temporary udp error */ 2236 rv = 1; 2237 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2238 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2239 rv = 0; 2240 else if (kn->kn_sfflags & NOTE_LOWAT) 2241 rv = (kn->kn_data >= kn->kn_sdata); 2242 else 2243 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2244 if (hint != NOTE_SUBMIT) 2245 sounlock(so); 2246 return rv; 2247 } 2248 2249 /*ARGSUSED*/ 2250 static int 2251 filt_solisten(struct knote *kn, long hint) 2252 { 2253 struct socket *so; 2254 int rv; 2255 2256 so = ((file_t *)kn->kn_obj)->f_data; 2257 2258 /* 2259 * Set kn_data to number of incoming connections, not 2260 * counting partial (incomplete) connections. 2261 */ 2262 if (hint != NOTE_SUBMIT) 2263 solock(so); 2264 kn->kn_data = so->so_qlen; 2265 rv = (kn->kn_data > 0); 2266 if (hint != NOTE_SUBMIT) 2267 sounlock(so); 2268 return rv; 2269 } 2270 2271 static const struct filterops solisten_filtops = 2272 { 1, NULL, filt_sordetach, filt_solisten }; 2273 static const struct filterops soread_filtops = 2274 { 1, NULL, filt_sordetach, filt_soread }; 2275 static const struct filterops sowrite_filtops = 2276 { 1, NULL, filt_sowdetach, filt_sowrite }; 2277 2278 int 2279 soo_kqfilter(struct file *fp, struct knote *kn) 2280 { 2281 struct socket *so; 2282 struct sockbuf *sb; 2283 2284 so = ((file_t *)kn->kn_obj)->f_data; 2285 solock(so); 2286 switch (kn->kn_filter) { 2287 case EVFILT_READ: 2288 if (so->so_options & SO_ACCEPTCONN) 2289 kn->kn_fop = &solisten_filtops; 2290 else 2291 kn->kn_fop = &soread_filtops; 2292 sb = &so->so_rcv; 2293 break; 2294 case EVFILT_WRITE: 2295 kn->kn_fop = &sowrite_filtops; 2296 sb = &so->so_snd; 2297 break; 2298 default: 2299 sounlock(so); 2300 return (EINVAL); 2301 } 2302 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2303 sb->sb_flags |= SB_KNOTE; 2304 sounlock(so); 2305 return (0); 2306 } 2307 2308 static int 2309 sodopoll(struct socket *so, int events) 2310 { 2311 int revents; 2312 2313 revents = 0; 2314 2315 if (events & (POLLIN | POLLRDNORM)) 2316 if (soreadable(so)) 2317 revents |= events & (POLLIN | POLLRDNORM); 2318 2319 if (events & (POLLOUT | POLLWRNORM)) 2320 if (sowritable(so)) 2321 revents |= events & (POLLOUT | POLLWRNORM); 2322 2323 if (events & (POLLPRI | POLLRDBAND)) 2324 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2325 revents |= events & (POLLPRI | POLLRDBAND); 2326 2327 return revents; 2328 } 2329 2330 int 2331 sopoll(struct socket *so, int events) 2332 { 2333 int revents = 0; 2334 2335 #ifndef DIAGNOSTIC 2336 /* 2337 * Do a quick, unlocked check in expectation that the socket 2338 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2339 * as the solocked() assertions will fail. 2340 */ 2341 if ((revents = sodopoll(so, events)) != 0) 2342 return revents; 2343 #endif 2344 2345 solock(so); 2346 if ((revents = sodopoll(so, events)) == 0) { 2347 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2348 selrecord(curlwp, &so->so_rcv.sb_sel); 2349 so->so_rcv.sb_flags |= SB_NOTIFY; 2350 } 2351 2352 if (events & (POLLOUT | POLLWRNORM)) { 2353 selrecord(curlwp, &so->so_snd.sb_sel); 2354 so->so_snd.sb_flags |= SB_NOTIFY; 2355 } 2356 } 2357 sounlock(so); 2358 2359 return revents; 2360 } 2361 2362 2363 #include <sys/sysctl.h> 2364 2365 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2366 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2367 2368 /* 2369 * sysctl helper routine for kern.somaxkva. ensures that the given 2370 * value is not too small. 2371 * (XXX should we maybe make sure it's not too large as well?) 2372 */ 2373 static int 2374 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2375 { 2376 int error, new_somaxkva; 2377 struct sysctlnode node; 2378 2379 new_somaxkva = somaxkva; 2380 node = *rnode; 2381 node.sysctl_data = &new_somaxkva; 2382 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2383 if (error || newp == NULL) 2384 return (error); 2385 2386 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2387 return (EINVAL); 2388 2389 mutex_enter(&so_pendfree_lock); 2390 somaxkva = new_somaxkva; 2391 cv_broadcast(&socurkva_cv); 2392 mutex_exit(&so_pendfree_lock); 2393 2394 return (error); 2395 } 2396 2397 /* 2398 * sysctl helper routine for kern.sbmax. Basically just ensures that 2399 * any new value is not too small. 2400 */ 2401 static int 2402 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2403 { 2404 int error, new_sbmax; 2405 struct sysctlnode node; 2406 2407 new_sbmax = sb_max; 2408 node = *rnode; 2409 node.sysctl_data = &new_sbmax; 2410 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2411 if (error || newp == NULL) 2412 return (error); 2413 2414 KERNEL_LOCK(1, NULL); 2415 error = sb_max_set(new_sbmax); 2416 KERNEL_UNLOCK_ONE(NULL); 2417 2418 return (error); 2419 } 2420 2421 static void 2422 sysctl_kern_socket_setup(void) 2423 { 2424 2425 KASSERT(socket_sysctllog == NULL); 2426 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2427 CTLFLAG_PERMANENT, 2428 CTLTYPE_NODE, "kern", NULL, 2429 NULL, 0, NULL, 0, 2430 CTL_KERN, CTL_EOL); 2431 2432 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2433 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2434 CTLTYPE_INT, "somaxkva", 2435 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2436 "used for socket buffers"), 2437 sysctl_kern_somaxkva, 0, NULL, 0, 2438 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2439 2440 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2441 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2442 CTLTYPE_INT, "sbmax", 2443 SYSCTL_DESCR("Maximum socket buffer size"), 2444 sysctl_kern_sbmax, 0, NULL, 0, 2445 CTL_KERN, KERN_SBMAX, CTL_EOL); 2446 } 2447