xref: /netbsd-src/sys/kern/uipc_socket.c (revision 37b34d511dea595d3ba03a661cf3b775038ea5f8)
1 /*	$NetBSD: uipc_socket.c,v 1.71 2002/08/21 05:13:37 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the NetBSD
21  *	Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1982, 1986, 1988, 1990, 1993
41  *	The Regents of the University of California.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the University of
54  *	California, Berkeley and its contributors.
55  * 4. Neither the name of the University nor the names of its contributors
56  *    may be used to endorse or promote products derived from this software
57  *    without specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  *	@(#)uipc_socket.c	8.6 (Berkeley) 5/2/95
72  */
73 
74 #include <sys/cdefs.h>
75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.71 2002/08/21 05:13:37 thorpej Exp $");
76 
77 #include "opt_sock_counters.h"
78 #include "opt_sosend_loan.h"
79 
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/file.h>
84 #include <sys/malloc.h>
85 #include <sys/mbuf.h>
86 #include <sys/domain.h>
87 #include <sys/kernel.h>
88 #include <sys/protosw.h>
89 #include <sys/socket.h>
90 #include <sys/socketvar.h>
91 #include <sys/signalvar.h>
92 #include <sys/resourcevar.h>
93 #include <sys/pool.h>
94 
95 #include <uvm/uvm.h>
96 
97 struct pool	socket_pool;
98 
99 extern int	somaxconn;			/* patchable (XXX sysctl) */
100 int		somaxconn = SOMAXCONN;
101 
102 #ifdef SOSEND_COUNTERS
103 #include <sys/device.h>
104 
105 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
106     NULL, "sosend", "loan big");
107 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
108     NULL, "sosend", "copy big");
109 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
110     NULL, "sosend", "copy small");
111 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
112     NULL, "sosend", "kva limit");
113 
114 #define	SOSEND_COUNTER_INCR(ev)		(ev)->ev_count++
115 
116 #else
117 
118 #define	SOSEND_COUNTER_INCR(ev)		/* nothing */
119 
120 #endif /* SOSEND_COUNTERS */
121 
122 void
123 soinit(void)
124 {
125 
126 	pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0,
127 	    "sockpl", NULL);
128 
129 #ifdef SOSEND_COUNTERS
130 	evcnt_attach_static(&sosend_loan_big);
131 	evcnt_attach_static(&sosend_copy_big);
132 	evcnt_attach_static(&sosend_copy_small);
133 	evcnt_attach_static(&sosend_kvalimit);
134 #endif /* SOSEND_COUNTERS */
135 }
136 
137 #ifdef SOSEND_NO_LOAN
138 int use_sosend_loan = 0;
139 #else
140 int use_sosend_loan = 1;
141 #endif
142 
143 struct mbuf *so_pendfree;
144 
145 int somaxkva = 16 * 1024 * 1024;
146 int socurkva;
147 int sokvawaiters;
148 
149 #define	SOCK_LOAN_THRESH	4096
150 #define	SOCK_LOAN_CHUNK		65536
151 
152 static void
153 sodoloanfree(caddr_t buf, u_int size)
154 {
155 	struct vm_page **pgs;
156 	vaddr_t va, sva, eva;
157 	vsize_t len;
158 	paddr_t pa;
159 	int i, npgs;
160 
161 	eva = round_page((vaddr_t) buf + size);
162 	sva = trunc_page((vaddr_t) buf);
163 	len = eva - sva;
164 	npgs = len >> PAGE_SHIFT;
165 
166 	pgs = alloca(npgs * sizeof(*pgs));
167 
168 	for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) {
169 		if (pmap_extract(pmap_kernel(), va, &pa) == FALSE)
170 			panic("sodoloanfree: va 0x%lx not mapped", va);
171 		pgs[i] = PHYS_TO_VM_PAGE(pa);
172 	}
173 
174 	pmap_kremove(sva, len);
175 	pmap_update(pmap_kernel());
176 	uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE);
177 	uvm_km_free(kernel_map, sva, len);
178 	socurkva -= len;
179 	if (sokvawaiters)
180 		wakeup(&socurkva);
181 }
182 
183 static size_t
184 sodopendfree(struct socket *so)
185 {
186 	struct mbuf *m;
187 	size_t rv = 0;
188 	int s;
189 
190 	s = splvm();
191 
192 	for (;;) {
193 		m = so_pendfree;
194 		if (m == NULL)
195 			break;
196 		so_pendfree = m->m_next;
197 		splx(s);
198 
199 		rv += m->m_ext.ext_size;
200 		sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
201 		s = splvm();
202 		pool_cache_put(&mbpool_cache, m);
203 	}
204 
205 	for (;;) {
206 		m = so->so_pendfree;
207 		if (m == NULL)
208 			break;
209 		so->so_pendfree = m->m_next;
210 		splx(s);
211 
212 		rv += m->m_ext.ext_size;
213 		sodoloanfree(m->m_ext.ext_buf, m->m_ext.ext_size);
214 		s = splvm();
215 		pool_cache_put(&mbpool_cache, m);
216 	}
217 
218 	splx(s);
219 	return (rv);
220 }
221 
222 static void
223 soloanfree(struct mbuf *m, caddr_t buf, u_int size, void *arg)
224 {
225 	struct socket *so = arg;
226 	int s;
227 
228 	if (m == NULL) {
229 		sodoloanfree(buf, size);
230 		return;
231 	}
232 
233 	s = splvm();
234 	m->m_next = so->so_pendfree;
235 	so->so_pendfree = m;
236 	splx(s);
237 	if (sokvawaiters)
238 		wakeup(&socurkva);
239 }
240 
241 static long
242 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space)
243 {
244 	struct iovec *iov = uio->uio_iov;
245 	vaddr_t sva, eva;
246 	vsize_t len;
247 	struct vm_page **pgs;
248 	vaddr_t lva, va;
249 	int npgs, s, i, error;
250 
251 	if (uio->uio_segflg != UIO_USERSPACE)
252 		return (0);
253 
254 	if (iov->iov_len < (size_t) space)
255 		space = iov->iov_len;
256 	if (space > SOCK_LOAN_CHUNK)
257 		space = SOCK_LOAN_CHUNK;
258 
259 	eva = round_page((vaddr_t) iov->iov_base + space);
260 	sva = trunc_page((vaddr_t) iov->iov_base);
261 	len = eva - sva;
262 	npgs = len >> PAGE_SHIFT;
263 
264 	while (socurkva + len > somaxkva) {
265 		if (sodopendfree(so))
266 			continue;
267 		SOSEND_COUNTER_INCR(&sosend_kvalimit);
268 		s = splvm();
269 		sokvawaiters++;
270 		(void) tsleep(&socurkva, PVM, "sokva", 0);
271 		sokvawaiters--;
272 		splx(s);
273 	}
274 
275 	lva = uvm_km_valloc_wait(kernel_map, len);
276 	if (lva == 0)
277 		return (0);
278 	socurkva += len;
279 
280 	pgs = alloca(npgs * sizeof(*pgs));
281 
282 	error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len,
283 	    pgs, UVM_LOAN_TOPAGE);
284 	if (error) {
285 		uvm_km_free(kernel_map, lva, len);
286 		socurkva -= len;
287 		return (0);
288 	}
289 
290 	for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE)
291 		pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pgs[i]), VM_PROT_READ);
292 	pmap_update(pmap_kernel());
293 
294 	lva += (vaddr_t) iov->iov_base & PAGE_MASK;
295 
296 	MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so);
297 
298 	uio->uio_resid -= space;
299 	/* uio_offset not updated, not set/used for write(2) */
300 	uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space;
301 	uio->uio_iov->iov_len -= space;
302 	if (uio->uio_iov->iov_len == 0) {
303 		uio->uio_iov++;
304 		uio->uio_iovcnt--;
305 	}
306 
307 	return (space);
308 }
309 
310 /*
311  * Socket operation routines.
312  * These routines are called by the routines in
313  * sys_socket.c or from a system process, and
314  * implement the semantics of socket operations by
315  * switching out to the protocol specific routines.
316  */
317 /*ARGSUSED*/
318 int
319 socreate(int dom, struct socket **aso, int type, int proto)
320 {
321 	struct proc	*p;
322 	struct protosw	*prp;
323 	struct socket	*so;
324 	int		error, s;
325 
326 	p = curproc;		/* XXX */
327 	if (proto)
328 		prp = pffindproto(dom, proto, type);
329 	else
330 		prp = pffindtype(dom, type);
331 	if (prp == 0 || prp->pr_usrreq == 0)
332 		return (EPROTONOSUPPORT);
333 	if (prp->pr_type != type)
334 		return (EPROTOTYPE);
335 	s = splsoftnet();
336 	so = pool_get(&socket_pool, PR_WAITOK);
337 	memset((caddr_t)so, 0, sizeof(*so));
338 	TAILQ_INIT(&so->so_q0);
339 	TAILQ_INIT(&so->so_q);
340 	so->so_type = type;
341 	so->so_proto = prp;
342 	so->so_send = sosend;
343 	so->so_receive = soreceive;
344 	if (p != 0)
345 		so->so_uid = p->p_ucred->cr_uid;
346 	error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0,
347 	    (struct mbuf *)(long)proto, (struct mbuf *)0, p);
348 	if (error) {
349 		so->so_state |= SS_NOFDREF;
350 		sofree(so);
351 		splx(s);
352 		return (error);
353 	}
354 	splx(s);
355 	*aso = so;
356 	return (0);
357 }
358 
359 int
360 sobind(struct socket *so, struct mbuf *nam, struct proc *p)
361 {
362 	int	s, error;
363 
364 	s = splsoftnet();
365 	error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0,
366 	    nam, (struct mbuf *)0, p);
367 	splx(s);
368 	return (error);
369 }
370 
371 int
372 solisten(struct socket *so, int backlog)
373 {
374 	int	s, error;
375 
376 	s = splsoftnet();
377 	error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0,
378 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
379 	if (error) {
380 		splx(s);
381 		return (error);
382 	}
383 	if (TAILQ_EMPTY(&so->so_q))
384 		so->so_options |= SO_ACCEPTCONN;
385 	if (backlog < 0)
386 		backlog = 0;
387 	so->so_qlimit = min(backlog, somaxconn);
388 	splx(s);
389 	return (0);
390 }
391 
392 void
393 sofree(struct socket *so)
394 {
395 	struct mbuf *m;
396 
397 	if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0)
398 		return;
399 	if (so->so_head) {
400 		/*
401 		 * We must not decommission a socket that's on the accept(2)
402 		 * queue.  If we do, then accept(2) may hang after select(2)
403 		 * indicated that the listening socket was ready.
404 		 */
405 		if (!soqremque(so, 0))
406 			return;
407 	}
408 	sbrelease(&so->so_snd);
409 	sorflush(so);
410 	while ((m = so->so_pendfree) != NULL) {
411 		so->so_pendfree = m->m_next;
412 		m->m_next = so_pendfree;
413 		so_pendfree = m;
414 	}
415 	pool_put(&socket_pool, so);
416 }
417 
418 /*
419  * Close a socket on last file table reference removal.
420  * Initiate disconnect if connected.
421  * Free socket when disconnect complete.
422  */
423 int
424 soclose(struct socket *so)
425 {
426 	struct socket	*so2;
427 	int		s, error;
428 
429 	error = 0;
430 	s = splsoftnet();		/* conservative */
431 	if (so->so_options & SO_ACCEPTCONN) {
432 		while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) {
433 			(void) soqremque(so2, 0);
434 			(void) soabort(so2);
435 		}
436 		while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) {
437 			(void) soqremque(so2, 1);
438 			(void) soabort(so2);
439 		}
440 	}
441 	if (so->so_pcb == 0)
442 		goto discard;
443 	if (so->so_state & SS_ISCONNECTED) {
444 		if ((so->so_state & SS_ISDISCONNECTING) == 0) {
445 			error = sodisconnect(so);
446 			if (error)
447 				goto drop;
448 		}
449 		if (so->so_options & SO_LINGER) {
450 			if ((so->so_state & SS_ISDISCONNECTING) &&
451 			    (so->so_state & SS_NBIO))
452 				goto drop;
453 			while (so->so_state & SS_ISCONNECTED) {
454 				error = tsleep((caddr_t)&so->so_timeo,
455 					       PSOCK | PCATCH, netcls,
456 					       so->so_linger * hz);
457 				if (error)
458 					break;
459 			}
460 		}
461 	}
462  drop:
463 	if (so->so_pcb) {
464 		int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH,
465 		    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
466 		    (struct proc *)0);
467 		if (error == 0)
468 			error = error2;
469 	}
470  discard:
471 	if (so->so_state & SS_NOFDREF)
472 		panic("soclose: NOFDREF");
473 	so->so_state |= SS_NOFDREF;
474 	sofree(so);
475 	splx(s);
476 	return (error);
477 }
478 
479 /*
480  * Must be called at splsoftnet...
481  */
482 int
483 soabort(struct socket *so)
484 {
485 
486 	return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0,
487 	    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
488 }
489 
490 int
491 soaccept(struct socket *so, struct mbuf *nam)
492 {
493 	int	s, error;
494 
495 	error = 0;
496 	s = splsoftnet();
497 	if ((so->so_state & SS_NOFDREF) == 0)
498 		panic("soaccept: !NOFDREF");
499 	so->so_state &= ~SS_NOFDREF;
500 	if ((so->so_state & SS_ISDISCONNECTED) == 0 ||
501 	    (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0)
502 		error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT,
503 		    (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0);
504 	else
505 		error = ECONNABORTED;
506 
507 	splx(s);
508 	return (error);
509 }
510 
511 int
512 soconnect(struct socket *so, struct mbuf *nam)
513 {
514 	struct proc	*p;
515 	int		s, error;
516 
517 	p = curproc;		/* XXX */
518 	if (so->so_options & SO_ACCEPTCONN)
519 		return (EOPNOTSUPP);
520 	s = splsoftnet();
521 	/*
522 	 * If protocol is connection-based, can only connect once.
523 	 * Otherwise, if connected, try to disconnect first.
524 	 * This allows user to disconnect by connecting to, e.g.,
525 	 * a null address.
526 	 */
527 	if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) &&
528 	    ((so->so_proto->pr_flags & PR_CONNREQUIRED) ||
529 	    (error = sodisconnect(so))))
530 		error = EISCONN;
531 	else
532 		error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT,
533 		    (struct mbuf *)0, nam, (struct mbuf *)0, p);
534 	splx(s);
535 	return (error);
536 }
537 
538 int
539 soconnect2(struct socket *so1, struct socket *so2)
540 {
541 	int	s, error;
542 
543 	s = splsoftnet();
544 	error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2,
545 	    (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0,
546 	    (struct proc *)0);
547 	splx(s);
548 	return (error);
549 }
550 
551 int
552 sodisconnect(struct socket *so)
553 {
554 	int	s, error;
555 
556 	s = splsoftnet();
557 	if ((so->so_state & SS_ISCONNECTED) == 0) {
558 		error = ENOTCONN;
559 		goto bad;
560 	}
561 	if (so->so_state & SS_ISDISCONNECTING) {
562 		error = EALREADY;
563 		goto bad;
564 	}
565 	error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT,
566 	    (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0,
567 	    (struct proc *)0);
568  bad:
569 	splx(s);
570 	sodopendfree(so);
571 	return (error);
572 }
573 
574 #define	SBLOCKWAIT(f)	(((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
575 /*
576  * Send on a socket.
577  * If send must go all at once and message is larger than
578  * send buffering, then hard error.
579  * Lock against other senders.
580  * If must go all at once and not enough room now, then
581  * inform user that this would block and do nothing.
582  * Otherwise, if nonblocking, send as much as possible.
583  * The data to be sent is described by "uio" if nonzero,
584  * otherwise by the mbuf chain "top" (which must be null
585  * if uio is not).  Data provided in mbuf chain must be small
586  * enough to send all at once.
587  *
588  * Returns nonzero on error, timeout or signal; callers
589  * must check for short counts if EINTR/ERESTART are returned.
590  * Data and control buffers are freed on return.
591  */
592 int
593 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top,
594 	struct mbuf *control, int flags)
595 {
596 	struct proc	*p;
597 	struct mbuf	**mp, *m;
598 	long		space, len, resid, clen, mlen;
599 	int		error, s, dontroute, atomic;
600 
601 	sodopendfree(so);
602 
603 	p = curproc;		/* XXX */
604 	clen = 0;
605 	atomic = sosendallatonce(so) || top;
606 	if (uio)
607 		resid = uio->uio_resid;
608 	else
609 		resid = top->m_pkthdr.len;
610 	/*
611 	 * In theory resid should be unsigned.
612 	 * However, space must be signed, as it might be less than 0
613 	 * if we over-committed, and we must use a signed comparison
614 	 * of space and resid.  On the other hand, a negative resid
615 	 * causes us to loop sending 0-length segments to the protocol.
616 	 */
617 	if (resid < 0) {
618 		error = EINVAL;
619 		goto out;
620 	}
621 	dontroute =
622 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
623 	    (so->so_proto->pr_flags & PR_ATOMIC);
624 	p->p_stats->p_ru.ru_msgsnd++;
625 	if (control)
626 		clen = control->m_len;
627 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
628 
629  restart:
630 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
631 		goto out;
632 	do {
633 		s = splsoftnet();
634 		if (so->so_state & SS_CANTSENDMORE)
635 			snderr(EPIPE);
636 		if (so->so_error) {
637 			error = so->so_error;
638 			so->so_error = 0;
639 			splx(s);
640 			goto release;
641 		}
642 		if ((so->so_state & SS_ISCONNECTED) == 0) {
643 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
644 				if ((so->so_state & SS_ISCONFIRMING) == 0 &&
645 				    !(resid == 0 && clen != 0))
646 					snderr(ENOTCONN);
647 			} else if (addr == 0)
648 				snderr(EDESTADDRREQ);
649 		}
650 		space = sbspace(&so->so_snd);
651 		if (flags & MSG_OOB)
652 			space += 1024;
653 		if ((atomic && resid > so->so_snd.sb_hiwat) ||
654 		    clen > so->so_snd.sb_hiwat)
655 			snderr(EMSGSIZE);
656 		if (space < resid + clen && uio &&
657 		    (atomic || space < so->so_snd.sb_lowat || space < clen)) {
658 			if (so->so_state & SS_NBIO)
659 				snderr(EWOULDBLOCK);
660 			sbunlock(&so->so_snd);
661 			error = sbwait(&so->so_snd);
662 			splx(s);
663 			if (error)
664 				goto out;
665 			goto restart;
666 		}
667 		splx(s);
668 		mp = &top;
669 		space -= clen;
670 		do {
671 			if (uio == NULL) {
672 				/*
673 				 * Data is prepackaged in "top".
674 				 */
675 				resid = 0;
676 				if (flags & MSG_EOR)
677 					top->m_flags |= M_EOR;
678 			} else do {
679 				if (top == 0) {
680 					MGETHDR(m, M_WAIT, MT_DATA);
681 					mlen = MHLEN;
682 					m->m_pkthdr.len = 0;
683 					m->m_pkthdr.rcvif = (struct ifnet *)0;
684 				} else {
685 					MGET(m, M_WAIT, MT_DATA);
686 					mlen = MLEN;
687 				}
688 				if (use_sosend_loan &&
689 				    uio->uio_iov->iov_len >= SOCK_LOAN_THRESH &&
690 				    space >= SOCK_LOAN_THRESH &&
691 				    (len = sosend_loan(so, uio, m,
692 						       space)) != 0) {
693 					SOSEND_COUNTER_INCR(&sosend_loan_big);
694 					space -= len;
695 					goto have_data;
696 				}
697 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
698 					SOSEND_COUNTER_INCR(&sosend_copy_big);
699 					MCLGET(m, M_WAIT);
700 					if ((m->m_flags & M_EXT) == 0)
701 						goto nopages;
702 					mlen = MCLBYTES;
703 					if (atomic && top == 0) {
704 						len = lmin(MCLBYTES - max_hdr,
705 						    resid);
706 						m->m_data += max_hdr;
707 					} else
708 						len = lmin(MCLBYTES, resid);
709 					space -= len;
710 				} else {
711  nopages:
712 					SOSEND_COUNTER_INCR(&sosend_copy_small);
713 					len = lmin(lmin(mlen, resid), space);
714 					space -= len;
715 					/*
716 					 * For datagram protocols, leave room
717 					 * for protocol headers in first mbuf.
718 					 */
719 					if (atomic && top == 0 && len < mlen)
720 						MH_ALIGN(m, len);
721 				}
722 				error = uiomove(mtod(m, caddr_t), (int)len,
723 				    uio);
724  have_data:
725 				resid = uio->uio_resid;
726 				m->m_len = len;
727 				*mp = m;
728 				top->m_pkthdr.len += len;
729 				if (error)
730 					goto release;
731 				mp = &m->m_next;
732 				if (resid <= 0) {
733 					if (flags & MSG_EOR)
734 						top->m_flags |= M_EOR;
735 					break;
736 				}
737 			} while (space > 0 && atomic);
738 
739 			s = splsoftnet();
740 
741 			if (so->so_state & SS_CANTSENDMORE)
742 				snderr(EPIPE);
743 
744 			if (dontroute)
745 				so->so_options |= SO_DONTROUTE;
746 			if (resid > 0)
747 				so->so_state |= SS_MORETOCOME;
748 			error = (*so->so_proto->pr_usrreq)(so,
749 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
750 			    top, addr, control, p);
751 			if (dontroute)
752 				so->so_options &= ~SO_DONTROUTE;
753 			if (resid > 0)
754 				so->so_state &= ~SS_MORETOCOME;
755 			splx(s);
756 
757 			clen = 0;
758 			control = 0;
759 			top = 0;
760 			mp = &top;
761 			if (error)
762 				goto release;
763 		} while (resid && space > 0);
764 	} while (resid);
765 
766  release:
767 	sbunlock(&so->so_snd);
768  out:
769 	if (top)
770 		m_freem(top);
771 	if (control)
772 		m_freem(control);
773 	return (error);
774 }
775 
776 /*
777  * Implement receive operations on a socket.
778  * We depend on the way that records are added to the sockbuf
779  * by sbappend*.  In particular, each record (mbufs linked through m_next)
780  * must begin with an address if the protocol so specifies,
781  * followed by an optional mbuf or mbufs containing ancillary data,
782  * and then zero or more mbufs of data.
783  * In order to avoid blocking network interrupts for the entire time here,
784  * we splx() while doing the actual copy to user space.
785  * Although the sockbuf is locked, new data may still be appended,
786  * and thus we must maintain consistency of the sockbuf during that time.
787  *
788  * The caller may receive the data as a single mbuf chain by supplying
789  * an mbuf **mp0 for use in returning the chain.  The uio is then used
790  * only for the count in uio_resid.
791  */
792 int
793 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio,
794 	struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
795 {
796 	struct mbuf	*m, **mp;
797 	int		flags, len, error, s, offset, moff, type, orig_resid;
798 	struct protosw	*pr;
799 	struct mbuf	*nextrecord;
800 	int		mbuf_removed = 0;
801 
802 	pr = so->so_proto;
803 	mp = mp0;
804 	type = 0;
805 	orig_resid = uio->uio_resid;
806 	if (paddr)
807 		*paddr = 0;
808 	if (controlp)
809 		*controlp = 0;
810 	if (flagsp)
811 		flags = *flagsp &~ MSG_EOR;
812 	else
813 		flags = 0;
814 
815 	if ((flags & MSG_DONTWAIT) == 0)
816 		sodopendfree(so);
817 
818 	if (flags & MSG_OOB) {
819 		m = m_get(M_WAIT, MT_DATA);
820 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
821 		    (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0,
822 		    (struct proc *)0);
823 		if (error)
824 			goto bad;
825 		do {
826 			error = uiomove(mtod(m, caddr_t),
827 			    (int) min(uio->uio_resid, m->m_len), uio);
828 			m = m_free(m);
829 		} while (uio->uio_resid && error == 0 && m);
830  bad:
831 		if (m)
832 			m_freem(m);
833 		return (error);
834 	}
835 	if (mp)
836 		*mp = (struct mbuf *)0;
837 	if (so->so_state & SS_ISCONFIRMING && uio->uio_resid)
838 		(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
839 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
840 
841  restart:
842 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
843 		return (error);
844 	s = splsoftnet();
845 
846 	m = so->so_rcv.sb_mb;
847 	/*
848 	 * If we have less data than requested, block awaiting more
849 	 * (subject to any timeout) if:
850 	 *   1. the current count is less than the low water mark,
851 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
852 	 *	receive operation at once if we block (resid <= hiwat), or
853 	 *   3. MSG_DONTWAIT is not set.
854 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
855 	 * we have to do the receive in sections, and thus risk returning
856 	 * a short count if a timeout or signal occurs after we start.
857 	 */
858 	if (m == 0 || (((flags & MSG_DONTWAIT) == 0 &&
859 	    so->so_rcv.sb_cc < uio->uio_resid) &&
860 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
861 	    ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) &&
862 	    m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) {
863 #ifdef DIAGNOSTIC
864 		if (m == 0 && so->so_rcv.sb_cc)
865 			panic("receive 1");
866 #endif
867 		if (so->so_error) {
868 			if (m)
869 				goto dontblock;
870 			error = so->so_error;
871 			if ((flags & MSG_PEEK) == 0)
872 				so->so_error = 0;
873 			goto release;
874 		}
875 		if (so->so_state & SS_CANTRCVMORE) {
876 			if (m)
877 				goto dontblock;
878 			else
879 				goto release;
880 		}
881 		for (; m; m = m->m_next)
882 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
883 				m = so->so_rcv.sb_mb;
884 				goto dontblock;
885 			}
886 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
887 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
888 			error = ENOTCONN;
889 			goto release;
890 		}
891 		if (uio->uio_resid == 0)
892 			goto release;
893 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
894 			error = EWOULDBLOCK;
895 			goto release;
896 		}
897 		SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1");
898 		SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1");
899 		sbunlock(&so->so_rcv);
900 		error = sbwait(&so->so_rcv);
901 		splx(s);
902 		if (error)
903 			return (error);
904 		goto restart;
905 	}
906  dontblock:
907 	/*
908 	 * On entry here, m points to the first record of the socket buffer.
909 	 * While we process the initial mbufs containing address and control
910 	 * info, we save a copy of m->m_nextpkt into nextrecord.
911 	 */
912 #ifdef notyet /* XXXX */
913 	if (uio->uio_procp)
914 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
915 #endif
916 	KASSERT(m == so->so_rcv.sb_mb);
917 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 1");
918 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 1");
919 	nextrecord = m->m_nextpkt;
920 	if (pr->pr_flags & PR_ADDR) {
921 #ifdef DIAGNOSTIC
922 		if (m->m_type != MT_SONAME)
923 			panic("receive 1a");
924 #endif
925 		orig_resid = 0;
926 		if (flags & MSG_PEEK) {
927 			if (paddr)
928 				*paddr = m_copy(m, 0, m->m_len);
929 			m = m->m_next;
930 		} else {
931 			sbfree(&so->so_rcv, m);
932 			mbuf_removed = 1;
933 			if (paddr) {
934 				*paddr = m;
935 				so->so_rcv.sb_mb = m->m_next;
936 				m->m_next = 0;
937 				m = so->so_rcv.sb_mb;
938 			} else {
939 				MFREE(m, so->so_rcv.sb_mb);
940 				m = so->so_rcv.sb_mb;
941 			}
942 		}
943 	}
944 	while (m && m->m_type == MT_CONTROL && error == 0) {
945 		if (flags & MSG_PEEK) {
946 			if (controlp)
947 				*controlp = m_copy(m, 0, m->m_len);
948 			m = m->m_next;
949 		} else {
950 			sbfree(&so->so_rcv, m);
951 			mbuf_removed = 1;
952 			if (controlp) {
953 				if (pr->pr_domain->dom_externalize &&
954 				    mtod(m, struct cmsghdr *)->cmsg_type ==
955 				    SCM_RIGHTS)
956 					error = (*pr->pr_domain->dom_externalize)(m);
957 				*controlp = m;
958 				so->so_rcv.sb_mb = m->m_next;
959 				m->m_next = 0;
960 				m = so->so_rcv.sb_mb;
961 			} else {
962 				MFREE(m, so->so_rcv.sb_mb);
963 				m = so->so_rcv.sb_mb;
964 			}
965 		}
966 		if (controlp) {
967 			orig_resid = 0;
968 			controlp = &(*controlp)->m_next;
969 		}
970 	}
971 
972 	/*
973 	 * If m is non-NULL, we have some data to read.  From now on,
974 	 * make sure to keep sb_lastrecord consistent when working on
975 	 * the last packet on the chain (nextrecord == NULL) and we
976 	 * change m->m_nextpkt.
977 	 */
978 	if (m) {
979 		if ((flags & MSG_PEEK) == 0) {
980 			m->m_nextpkt = nextrecord;
981 			/*
982 			 * If nextrecord == NULL (this is a single chain),
983 			 * then sb_lastrecord may not be valid here if m
984 			 * was changed earlier.
985 			 */
986 			if (nextrecord == NULL) {
987 				KASSERT(so->so_rcv.sb_mb == m);
988 				so->so_rcv.sb_lastrecord = m;
989 			}
990 		}
991 		type = m->m_type;
992 		if (type == MT_OOBDATA)
993 			flags |= MSG_OOB;
994 	} else {
995 		if ((flags & MSG_PEEK) == 0) {
996 			KASSERT(so->so_rcv.sb_mb == m);
997 			so->so_rcv.sb_mb = nextrecord;
998 			SB_EMPTY_FIXUP(&so->so_rcv);
999 		}
1000 	}
1001 	SBLASTRECORDCHK(&so->so_rcv, "soreceive 2");
1002 	SBLASTMBUFCHK(&so->so_rcv, "soreceive 2");
1003 
1004 	moff = 0;
1005 	offset = 0;
1006 	while (m && uio->uio_resid > 0 && error == 0) {
1007 		if (m->m_type == MT_OOBDATA) {
1008 			if (type != MT_OOBDATA)
1009 				break;
1010 		} else if (type == MT_OOBDATA)
1011 			break;
1012 #ifdef DIAGNOSTIC
1013 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
1014 			panic("receive 3");
1015 #endif
1016 		so->so_state &= ~SS_RCVATMARK;
1017 		len = uio->uio_resid;
1018 		if (so->so_oobmark && len > so->so_oobmark - offset)
1019 			len = so->so_oobmark - offset;
1020 		if (len > m->m_len - moff)
1021 			len = m->m_len - moff;
1022 		/*
1023 		 * If mp is set, just pass back the mbufs.
1024 		 * Otherwise copy them out via the uio, then free.
1025 		 * Sockbuf must be consistent here (points to current mbuf,
1026 		 * it points to next record) when we drop priority;
1027 		 * we must note any additions to the sockbuf when we
1028 		 * block interrupts again.
1029 		 */
1030 		if (mp == 0) {
1031 			SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove");
1032 			SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove");
1033 			splx(s);
1034 			error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio);
1035 			s = splsoftnet();
1036 			if (error) {
1037 				/*
1038 				 * If any part of the record has been removed
1039 				 * (such as the MT_SONAME mbuf, which will
1040 				 * happen when PR_ADDR, and thus also
1041 				 * PR_ATOMIC, is set), then drop the entire
1042 				 * record to maintain the atomicity of the
1043 				 * receive operation.
1044 				 *
1045 				 * This avoids a later panic("receive 1a")
1046 				 * when compiled with DIAGNOSTIC.
1047 				 */
1048 				if (m && mbuf_removed
1049 				    && (pr->pr_flags & PR_ATOMIC))
1050 					(void) sbdroprecord(&so->so_rcv);
1051 
1052 				goto release;
1053 			}
1054 		} else
1055 			uio->uio_resid -= len;
1056 		if (len == m->m_len - moff) {
1057 			if (m->m_flags & M_EOR)
1058 				flags |= MSG_EOR;
1059 			if (flags & MSG_PEEK) {
1060 				m = m->m_next;
1061 				moff = 0;
1062 			} else {
1063 				nextrecord = m->m_nextpkt;
1064 				sbfree(&so->so_rcv, m);
1065 				if (mp) {
1066 					*mp = m;
1067 					mp = &m->m_next;
1068 					so->so_rcv.sb_mb = m = m->m_next;
1069 					*mp = (struct mbuf *)0;
1070 				} else {
1071 					MFREE(m, so->so_rcv.sb_mb);
1072 					m = so->so_rcv.sb_mb;
1073 				}
1074 				/*
1075 				 * If m != NULL, we also know that
1076 				 * so->so_rcv.sb_mb != NULL.
1077 				 */
1078 				KASSERT(so->so_rcv.sb_mb == m);
1079 				if (m) {
1080 					m->m_nextpkt = nextrecord;
1081 					if (nextrecord == NULL)
1082 						so->so_rcv.sb_lastrecord = m;
1083 				} else {
1084 					so->so_rcv.sb_mb = nextrecord;
1085 					SB_EMPTY_FIXUP(&so->so_rcv);
1086 				}
1087 				SBLASTRECORDCHK(&so->so_rcv, "soreceive 3");
1088 				SBLASTMBUFCHK(&so->so_rcv, "soreceive 3");
1089 			}
1090 		} else {
1091 			if (flags & MSG_PEEK)
1092 				moff += len;
1093 			else {
1094 				if (mp)
1095 					*mp = m_copym(m, 0, len, M_WAIT);
1096 				m->m_data += len;
1097 				m->m_len -= len;
1098 				so->so_rcv.sb_cc -= len;
1099 			}
1100 		}
1101 		if (so->so_oobmark) {
1102 			if ((flags & MSG_PEEK) == 0) {
1103 				so->so_oobmark -= len;
1104 				if (so->so_oobmark == 0) {
1105 					so->so_state |= SS_RCVATMARK;
1106 					break;
1107 				}
1108 			} else {
1109 				offset += len;
1110 				if (offset == so->so_oobmark)
1111 					break;
1112 			}
1113 		}
1114 		if (flags & MSG_EOR)
1115 			break;
1116 		/*
1117 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
1118 		 * we must not quit until "uio->uio_resid == 0" or an error
1119 		 * termination.  If a signal/timeout occurs, return
1120 		 * with a short count but without error.
1121 		 * Keep sockbuf locked against other readers.
1122 		 */
1123 		while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 &&
1124 		    !sosendallatonce(so) && !nextrecord) {
1125 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
1126 				break;
1127 			/*
1128 			 * If we are peeking and the socket receive buffer is
1129 			 * full, stop since we can't get more data to peek at.
1130 			 */
1131 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
1132 				break;
1133 			/*
1134 			 * If we've drained the socket buffer, tell the
1135 			 * protocol in case it needs to do something to
1136 			 * get it filled again.
1137 			 */
1138 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
1139 				(*pr->pr_usrreq)(so, PRU_RCVD,
1140 				    (struct mbuf *)0,
1141 				    (struct mbuf *)(long)flags,
1142 				    (struct mbuf *)0,
1143 				    (struct proc *)0);
1144 			SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2");
1145 			SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2");
1146 			error = sbwait(&so->so_rcv);
1147 			if (error) {
1148 				sbunlock(&so->so_rcv);
1149 				splx(s);
1150 				return (0);
1151 			}
1152 			if ((m = so->so_rcv.sb_mb) != NULL)
1153 				nextrecord = m->m_nextpkt;
1154 		}
1155 	}
1156 
1157 	if (m && pr->pr_flags & PR_ATOMIC) {
1158 		flags |= MSG_TRUNC;
1159 		if ((flags & MSG_PEEK) == 0)
1160 			(void) sbdroprecord(&so->so_rcv);
1161 	}
1162 	if ((flags & MSG_PEEK) == 0) {
1163 		if (m == 0) {
1164 			/*
1165 			 * First part is an inline SB_EMPTY_FIXUP().  Second
1166 			 * part makes sure sb_lastrecord is up-to-date if
1167 			 * there is still data in the socket buffer.
1168 			 */
1169 			so->so_rcv.sb_mb = nextrecord;
1170 			if (so->so_rcv.sb_mb == NULL) {
1171 				so->so_rcv.sb_mbtail = NULL;
1172 				so->so_rcv.sb_lastrecord = NULL;
1173 			} else if (nextrecord->m_nextpkt == NULL)
1174 				so->so_rcv.sb_lastrecord = nextrecord;
1175 		}
1176 		SBLASTRECORDCHK(&so->so_rcv, "soreceive 4");
1177 		SBLASTMBUFCHK(&so->so_rcv, "soreceive 4");
1178 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
1179 			(*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0,
1180 			    (struct mbuf *)(long)flags, (struct mbuf *)0,
1181 			    (struct proc *)0);
1182 	}
1183 	if (orig_resid == uio->uio_resid && orig_resid &&
1184 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
1185 		sbunlock(&so->so_rcv);
1186 		splx(s);
1187 		goto restart;
1188 	}
1189 
1190 	if (flagsp)
1191 		*flagsp |= flags;
1192  release:
1193 	sbunlock(&so->so_rcv);
1194 	splx(s);
1195 	return (error);
1196 }
1197 
1198 int
1199 soshutdown(struct socket *so, int how)
1200 {
1201 	struct protosw	*pr;
1202 
1203 	pr = so->so_proto;
1204 	if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR))
1205 		return (EINVAL);
1206 
1207 	if (how == SHUT_RD || how == SHUT_RDWR)
1208 		sorflush(so);
1209 	if (how == SHUT_WR || how == SHUT_RDWR)
1210 		return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0,
1211 		    (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1212 	return (0);
1213 }
1214 
1215 void
1216 sorflush(struct socket *so)
1217 {
1218 	struct sockbuf	*sb, asb;
1219 	struct protosw	*pr;
1220 	int		s;
1221 
1222 	sb = &so->so_rcv;
1223 	pr = so->so_proto;
1224 	sb->sb_flags |= SB_NOINTR;
1225 	(void) sblock(sb, M_WAITOK);
1226 	s = splnet();
1227 	socantrcvmore(so);
1228 	sbunlock(sb);
1229 	asb = *sb;
1230 	memset((caddr_t)sb, 0, sizeof(*sb));
1231 	splx(s);
1232 	if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose)
1233 		(*pr->pr_domain->dom_dispose)(asb.sb_mb);
1234 	sbrelease(&asb);
1235 }
1236 
1237 int
1238 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0)
1239 {
1240 	int		error;
1241 	struct mbuf	*m;
1242 
1243 	error = 0;
1244 	m = m0;
1245 	if (level != SOL_SOCKET) {
1246 		if (so->so_proto && so->so_proto->pr_ctloutput)
1247 			return ((*so->so_proto->pr_ctloutput)
1248 				  (PRCO_SETOPT, so, level, optname, &m0));
1249 		error = ENOPROTOOPT;
1250 	} else {
1251 		switch (optname) {
1252 
1253 		case SO_LINGER:
1254 			if (m == NULL || m->m_len != sizeof(struct linger)) {
1255 				error = EINVAL;
1256 				goto bad;
1257 			}
1258 			so->so_linger = mtod(m, struct linger *)->l_linger;
1259 			/* fall thru... */
1260 
1261 		case SO_DEBUG:
1262 		case SO_KEEPALIVE:
1263 		case SO_DONTROUTE:
1264 		case SO_USELOOPBACK:
1265 		case SO_BROADCAST:
1266 		case SO_REUSEADDR:
1267 		case SO_REUSEPORT:
1268 		case SO_OOBINLINE:
1269 		case SO_TIMESTAMP:
1270 			if (m == NULL || m->m_len < sizeof(int)) {
1271 				error = EINVAL;
1272 				goto bad;
1273 			}
1274 			if (*mtod(m, int *))
1275 				so->so_options |= optname;
1276 			else
1277 				so->so_options &= ~optname;
1278 			break;
1279 
1280 		case SO_SNDBUF:
1281 		case SO_RCVBUF:
1282 		case SO_SNDLOWAT:
1283 		case SO_RCVLOWAT:
1284 		    {
1285 			int optval;
1286 
1287 			if (m == NULL || m->m_len < sizeof(int)) {
1288 				error = EINVAL;
1289 				goto bad;
1290 			}
1291 
1292 			/*
1293 			 * Values < 1 make no sense for any of these
1294 			 * options, so disallow them.
1295 			 */
1296 			optval = *mtod(m, int *);
1297 			if (optval < 1) {
1298 				error = EINVAL;
1299 				goto bad;
1300 			}
1301 
1302 			switch (optname) {
1303 
1304 			case SO_SNDBUF:
1305 			case SO_RCVBUF:
1306 				if (sbreserve(optname == SO_SNDBUF ?
1307 				    &so->so_snd : &so->so_rcv,
1308 				    (u_long) optval) == 0) {
1309 					error = ENOBUFS;
1310 					goto bad;
1311 				}
1312 				break;
1313 
1314 			/*
1315 			 * Make sure the low-water is never greater than
1316 			 * the high-water.
1317 			 */
1318 			case SO_SNDLOWAT:
1319 				so->so_snd.sb_lowat =
1320 				    (optval > so->so_snd.sb_hiwat) ?
1321 				    so->so_snd.sb_hiwat : optval;
1322 				break;
1323 			case SO_RCVLOWAT:
1324 				so->so_rcv.sb_lowat =
1325 				    (optval > so->so_rcv.sb_hiwat) ?
1326 				    so->so_rcv.sb_hiwat : optval;
1327 				break;
1328 			}
1329 			break;
1330 		    }
1331 
1332 		case SO_SNDTIMEO:
1333 		case SO_RCVTIMEO:
1334 		    {
1335 			struct timeval *tv;
1336 			short val;
1337 
1338 			if (m == NULL || m->m_len < sizeof(*tv)) {
1339 				error = EINVAL;
1340 				goto bad;
1341 			}
1342 			tv = mtod(m, struct timeval *);
1343 			if (tv->tv_sec * hz + tv->tv_usec / tick > SHRT_MAX) {
1344 				error = EDOM;
1345 				goto bad;
1346 			}
1347 			val = tv->tv_sec * hz + tv->tv_usec / tick;
1348 
1349 			switch (optname) {
1350 
1351 			case SO_SNDTIMEO:
1352 				so->so_snd.sb_timeo = val;
1353 				break;
1354 			case SO_RCVTIMEO:
1355 				so->so_rcv.sb_timeo = val;
1356 				break;
1357 			}
1358 			break;
1359 		    }
1360 
1361 		default:
1362 			error = ENOPROTOOPT;
1363 			break;
1364 		}
1365 		if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) {
1366 			(void) ((*so->so_proto->pr_ctloutput)
1367 				  (PRCO_SETOPT, so, level, optname, &m0));
1368 			m = NULL;	/* freed by protocol */
1369 		}
1370 	}
1371  bad:
1372 	if (m)
1373 		(void) m_free(m);
1374 	return (error);
1375 }
1376 
1377 int
1378 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp)
1379 {
1380 	struct mbuf	*m;
1381 
1382 	if (level != SOL_SOCKET) {
1383 		if (so->so_proto && so->so_proto->pr_ctloutput) {
1384 			return ((*so->so_proto->pr_ctloutput)
1385 				  (PRCO_GETOPT, so, level, optname, mp));
1386 		} else
1387 			return (ENOPROTOOPT);
1388 	} else {
1389 		m = m_get(M_WAIT, MT_SOOPTS);
1390 		m->m_len = sizeof(int);
1391 
1392 		switch (optname) {
1393 
1394 		case SO_LINGER:
1395 			m->m_len = sizeof(struct linger);
1396 			mtod(m, struct linger *)->l_onoff =
1397 				so->so_options & SO_LINGER;
1398 			mtod(m, struct linger *)->l_linger = so->so_linger;
1399 			break;
1400 
1401 		case SO_USELOOPBACK:
1402 		case SO_DONTROUTE:
1403 		case SO_DEBUG:
1404 		case SO_KEEPALIVE:
1405 		case SO_REUSEADDR:
1406 		case SO_REUSEPORT:
1407 		case SO_BROADCAST:
1408 		case SO_OOBINLINE:
1409 		case SO_TIMESTAMP:
1410 			*mtod(m, int *) = so->so_options & optname;
1411 			break;
1412 
1413 		case SO_TYPE:
1414 			*mtod(m, int *) = so->so_type;
1415 			break;
1416 
1417 		case SO_ERROR:
1418 			*mtod(m, int *) = so->so_error;
1419 			so->so_error = 0;
1420 			break;
1421 
1422 		case SO_SNDBUF:
1423 			*mtod(m, int *) = so->so_snd.sb_hiwat;
1424 			break;
1425 
1426 		case SO_RCVBUF:
1427 			*mtod(m, int *) = so->so_rcv.sb_hiwat;
1428 			break;
1429 
1430 		case SO_SNDLOWAT:
1431 			*mtod(m, int *) = so->so_snd.sb_lowat;
1432 			break;
1433 
1434 		case SO_RCVLOWAT:
1435 			*mtod(m, int *) = so->so_rcv.sb_lowat;
1436 			break;
1437 
1438 		case SO_SNDTIMEO:
1439 		case SO_RCVTIMEO:
1440 		    {
1441 			int val = (optname == SO_SNDTIMEO ?
1442 			     so->so_snd.sb_timeo : so->so_rcv.sb_timeo);
1443 
1444 			m->m_len = sizeof(struct timeval);
1445 			mtod(m, struct timeval *)->tv_sec = val / hz;
1446 			mtod(m, struct timeval *)->tv_usec =
1447 			    (val % hz) * tick;
1448 			break;
1449 		    }
1450 
1451 		default:
1452 			(void)m_free(m);
1453 			return (ENOPROTOOPT);
1454 		}
1455 		*mp = m;
1456 		return (0);
1457 	}
1458 }
1459 
1460 void
1461 sohasoutofband(struct socket *so)
1462 {
1463 	struct proc *p;
1464 
1465 	if (so->so_pgid < 0)
1466 		gsignal(-so->so_pgid, SIGURG);
1467 	else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0)
1468 		psignal(p, SIGURG);
1469 	selwakeup(&so->so_rcv.sb_sel);
1470 }
1471