1 /* $NetBSD: uipc_socket.c,v 1.245 2015/05/09 15:22:47 rtr Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007, 2008, 2009 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc, and by Andrew Doran. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 2004 The FreeBSD Foundation 34 * Copyright (c) 2004 Robert Watson 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 63 */ 64 65 /* 66 * Socket operation routines. 67 * 68 * These routines are called by the routines in sys_socket.c or from a 69 * system process, and implement the semantics of socket operations by 70 * switching out to the protocol specific routines. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.245 2015/05/09 15:22:47 rtr Exp $"); 75 76 #include "opt_compat_netbsd.h" 77 #include "opt_sock_counters.h" 78 #include "opt_sosend_loan.h" 79 #include "opt_mbuftrace.h" 80 #include "opt_somaxkva.h" 81 #include "opt_multiprocessor.h" /* XXX */ 82 83 #include <sys/param.h> 84 #include <sys/systm.h> 85 #include <sys/proc.h> 86 #include <sys/file.h> 87 #include <sys/filedesc.h> 88 #include <sys/kmem.h> 89 #include <sys/mbuf.h> 90 #include <sys/domain.h> 91 #include <sys/kernel.h> 92 #include <sys/protosw.h> 93 #include <sys/socket.h> 94 #include <sys/socketvar.h> 95 #include <sys/signalvar.h> 96 #include <sys/resourcevar.h> 97 #include <sys/uidinfo.h> 98 #include <sys/event.h> 99 #include <sys/poll.h> 100 #include <sys/kauth.h> 101 #include <sys/mutex.h> 102 #include <sys/condvar.h> 103 #include <sys/kthread.h> 104 105 #ifdef COMPAT_50 106 #include <compat/sys/time.h> 107 #include <compat/sys/socket.h> 108 #endif 109 110 #include <uvm/uvm_extern.h> 111 #include <uvm/uvm_loan.h> 112 #include <uvm/uvm_page.h> 113 114 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 115 116 extern const struct fileops socketops; 117 118 extern int somaxconn; /* patchable (XXX sysctl) */ 119 int somaxconn = SOMAXCONN; 120 kmutex_t *softnet_lock; 121 122 #ifdef SOSEND_COUNTERS 123 #include <sys/device.h> 124 125 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 126 NULL, "sosend", "loan big"); 127 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 128 NULL, "sosend", "copy big"); 129 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 130 NULL, "sosend", "copy small"); 131 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 132 NULL, "sosend", "kva limit"); 133 134 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 135 136 EVCNT_ATTACH_STATIC(sosend_loan_big); 137 EVCNT_ATTACH_STATIC(sosend_copy_big); 138 EVCNT_ATTACH_STATIC(sosend_copy_small); 139 EVCNT_ATTACH_STATIC(sosend_kvalimit); 140 #else 141 142 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 143 144 #endif /* SOSEND_COUNTERS */ 145 146 #if defined(SOSEND_NO_LOAN) || defined(MULTIPROCESSOR) 147 int sock_loan_thresh = -1; 148 #else 149 int sock_loan_thresh = 4096; 150 #endif 151 152 static kmutex_t so_pendfree_lock; 153 static struct mbuf *so_pendfree = NULL; 154 155 #ifndef SOMAXKVA 156 #define SOMAXKVA (16 * 1024 * 1024) 157 #endif 158 int somaxkva = SOMAXKVA; 159 static int socurkva; 160 static kcondvar_t socurkva_cv; 161 162 static kauth_listener_t socket_listener; 163 164 #define SOCK_LOAN_CHUNK 65536 165 166 static void sopendfree_thread(void *); 167 static kcondvar_t pendfree_thread_cv; 168 static lwp_t *sopendfree_lwp; 169 170 static void sysctl_kern_socket_setup(void); 171 static struct sysctllog *socket_sysctllog; 172 173 static vsize_t 174 sokvareserve(struct socket *so, vsize_t len) 175 { 176 int error; 177 178 mutex_enter(&so_pendfree_lock); 179 while (socurkva + len > somaxkva) { 180 SOSEND_COUNTER_INCR(&sosend_kvalimit); 181 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 182 if (error) { 183 len = 0; 184 break; 185 } 186 } 187 socurkva += len; 188 mutex_exit(&so_pendfree_lock); 189 return len; 190 } 191 192 static void 193 sokvaunreserve(vsize_t len) 194 { 195 196 mutex_enter(&so_pendfree_lock); 197 socurkva -= len; 198 cv_broadcast(&socurkva_cv); 199 mutex_exit(&so_pendfree_lock); 200 } 201 202 /* 203 * sokvaalloc: allocate kva for loan. 204 */ 205 206 vaddr_t 207 sokvaalloc(vaddr_t sva, vsize_t len, struct socket *so) 208 { 209 vaddr_t lva; 210 211 /* 212 * reserve kva. 213 */ 214 215 if (sokvareserve(so, len) == 0) 216 return 0; 217 218 /* 219 * allocate kva. 220 */ 221 222 lva = uvm_km_alloc(kernel_map, len, atop(sva) & uvmexp.colormask, 223 UVM_KMF_COLORMATCH | UVM_KMF_VAONLY | UVM_KMF_WAITVA); 224 if (lva == 0) { 225 sokvaunreserve(len); 226 return (0); 227 } 228 229 return lva; 230 } 231 232 /* 233 * sokvafree: free kva for loan. 234 */ 235 236 void 237 sokvafree(vaddr_t sva, vsize_t len) 238 { 239 240 /* 241 * free kva. 242 */ 243 244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 245 246 /* 247 * unreserve kva. 248 */ 249 250 sokvaunreserve(len); 251 } 252 253 static void 254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 255 { 256 vaddr_t sva, eva; 257 vsize_t len; 258 int npgs; 259 260 KASSERT(pgs != NULL); 261 262 eva = round_page((vaddr_t) buf + size); 263 sva = trunc_page((vaddr_t) buf); 264 len = eva - sva; 265 npgs = len >> PAGE_SHIFT; 266 267 pmap_kremove(sva, len); 268 pmap_update(pmap_kernel()); 269 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 270 sokvafree(sva, len); 271 } 272 273 /* 274 * sopendfree_thread: free mbufs on "pendfree" list. 275 * unlock and relock so_pendfree_lock when freeing mbufs. 276 */ 277 278 static void 279 sopendfree_thread(void *v) 280 { 281 struct mbuf *m, *next; 282 size_t rv; 283 284 mutex_enter(&so_pendfree_lock); 285 286 for (;;) { 287 rv = 0; 288 while (so_pendfree != NULL) { 289 m = so_pendfree; 290 so_pendfree = NULL; 291 mutex_exit(&so_pendfree_lock); 292 293 for (; m != NULL; m = next) { 294 next = m->m_next; 295 KASSERT((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0); 296 KASSERT(m->m_ext.ext_refcnt == 0); 297 298 rv += m->m_ext.ext_size; 299 sodoloanfree(m->m_ext.ext_pgs, m->m_ext.ext_buf, 300 m->m_ext.ext_size); 301 pool_cache_put(mb_cache, m); 302 } 303 304 mutex_enter(&so_pendfree_lock); 305 } 306 if (rv) 307 cv_broadcast(&socurkva_cv); 308 cv_wait(&pendfree_thread_cv, &so_pendfree_lock); 309 } 310 panic("sopendfree_thread"); 311 /* NOTREACHED */ 312 } 313 314 void 315 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 316 { 317 318 KASSERT(m != NULL); 319 320 /* 321 * postpone freeing mbuf. 322 * 323 * we can't do it in interrupt context 324 * because we need to put kva back to kernel_map. 325 */ 326 327 mutex_enter(&so_pendfree_lock); 328 m->m_next = so_pendfree; 329 so_pendfree = m; 330 cv_signal(&pendfree_thread_cv); 331 mutex_exit(&so_pendfree_lock); 332 } 333 334 static long 335 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 336 { 337 struct iovec *iov = uio->uio_iov; 338 vaddr_t sva, eva; 339 vsize_t len; 340 vaddr_t lva; 341 int npgs, error; 342 vaddr_t va; 343 int i; 344 345 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 346 return (0); 347 348 if (iov->iov_len < (size_t) space) 349 space = iov->iov_len; 350 if (space > SOCK_LOAN_CHUNK) 351 space = SOCK_LOAN_CHUNK; 352 353 eva = round_page((vaddr_t) iov->iov_base + space); 354 sva = trunc_page((vaddr_t) iov->iov_base); 355 len = eva - sva; 356 npgs = len >> PAGE_SHIFT; 357 358 KASSERT(npgs <= M_EXT_MAXPAGES); 359 360 lva = sokvaalloc(sva, len, so); 361 if (lva == 0) 362 return 0; 363 364 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 365 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 366 if (error) { 367 sokvafree(lva, len); 368 return (0); 369 } 370 371 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 372 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 373 VM_PROT_READ, 0); 374 pmap_update(pmap_kernel()); 375 376 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 377 378 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 379 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 380 381 uio->uio_resid -= space; 382 /* uio_offset not updated, not set/used for write(2) */ 383 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 384 uio->uio_iov->iov_len -= space; 385 if (uio->uio_iov->iov_len == 0) { 386 uio->uio_iov++; 387 uio->uio_iovcnt--; 388 } 389 390 return (space); 391 } 392 393 struct mbuf * 394 getsombuf(struct socket *so, int type) 395 { 396 struct mbuf *m; 397 398 m = m_get(M_WAIT, type); 399 MCLAIM(m, so->so_mowner); 400 return m; 401 } 402 403 static int 404 socket_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie, 405 void *arg0, void *arg1, void *arg2, void *arg3) 406 { 407 int result; 408 enum kauth_network_req req; 409 410 result = KAUTH_RESULT_DEFER; 411 req = (enum kauth_network_req)arg0; 412 413 if ((action != KAUTH_NETWORK_SOCKET) && 414 (action != KAUTH_NETWORK_BIND)) 415 return result; 416 417 switch (req) { 418 case KAUTH_REQ_NETWORK_BIND_PORT: 419 result = KAUTH_RESULT_ALLOW; 420 break; 421 422 case KAUTH_REQ_NETWORK_SOCKET_DROP: { 423 /* Normal users can only drop their own connections. */ 424 struct socket *so = (struct socket *)arg1; 425 426 if (so->so_cred && proc_uidmatch(cred, so->so_cred) == 0) 427 result = KAUTH_RESULT_ALLOW; 428 429 break; 430 } 431 432 case KAUTH_REQ_NETWORK_SOCKET_OPEN: 433 /* We allow "raw" routing/bluetooth sockets to anyone. */ 434 if ((u_long)arg1 == PF_ROUTE || (u_long)arg1 == PF_OROUTE 435 || (u_long)arg1 == PF_BLUETOOTH) { 436 result = KAUTH_RESULT_ALLOW; 437 } else { 438 /* Privileged, let secmodel handle this. */ 439 if ((u_long)arg2 == SOCK_RAW) 440 break; 441 } 442 443 result = KAUTH_RESULT_ALLOW; 444 445 break; 446 447 case KAUTH_REQ_NETWORK_SOCKET_CANSEE: 448 result = KAUTH_RESULT_ALLOW; 449 450 break; 451 452 default: 453 break; 454 } 455 456 return result; 457 } 458 459 void 460 soinit(void) 461 { 462 463 sysctl_kern_socket_setup(); 464 465 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 466 softnet_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE); 467 cv_init(&socurkva_cv, "sokva"); 468 cv_init(&pendfree_thread_cv, "sopendfr"); 469 soinit2(); 470 471 /* Set the initial adjusted socket buffer size. */ 472 if (sb_max_set(sb_max)) 473 panic("bad initial sb_max value: %lu", sb_max); 474 475 socket_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK, 476 socket_listener_cb, NULL); 477 } 478 479 void 480 soinit1(void) 481 { 482 int error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, 483 sopendfree_thread, NULL, &sopendfree_lwp, "sopendfree"); 484 if (error) 485 panic("soinit1 %d", error); 486 } 487 488 /* 489 * socreate: create a new socket of the specified type and the protocol. 490 * 491 * => Caller may specify another socket for lock sharing (must not be held). 492 * => Returns the new socket without lock held. 493 */ 494 int 495 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l, 496 struct socket *lockso) 497 { 498 const struct protosw *prp; 499 struct socket *so; 500 uid_t uid; 501 int error; 502 kmutex_t *lock; 503 504 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 505 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 506 KAUTH_ARG(proto)); 507 if (error != 0) 508 return error; 509 510 if (proto) 511 prp = pffindproto(dom, proto, type); 512 else 513 prp = pffindtype(dom, type); 514 if (prp == NULL) { 515 /* no support for domain */ 516 if (pffinddomain(dom) == 0) 517 return EAFNOSUPPORT; 518 /* no support for socket type */ 519 if (proto == 0 && type != 0) 520 return EPROTOTYPE; 521 return EPROTONOSUPPORT; 522 } 523 if (prp->pr_usrreqs == NULL) 524 return EPROTONOSUPPORT; 525 if (prp->pr_type != type) 526 return EPROTOTYPE; 527 528 so = soget(true); 529 so->so_type = type; 530 so->so_proto = prp; 531 so->so_send = sosend; 532 so->so_receive = soreceive; 533 #ifdef MBUFTRACE 534 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 535 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 536 so->so_mowner = &prp->pr_domain->dom_mowner; 537 #endif 538 uid = kauth_cred_geteuid(l->l_cred); 539 so->so_uidinfo = uid_find(uid); 540 so->so_cpid = l->l_proc->p_pid; 541 542 /* 543 * Lock assigned and taken during PCB attach, unless we share 544 * the lock with another socket, e.g. socketpair(2) case. 545 */ 546 if (lockso) { 547 lock = lockso->so_lock; 548 so->so_lock = lock; 549 mutex_obj_hold(lock); 550 mutex_enter(lock); 551 } 552 553 /* Attach the PCB (returns with the socket lock held). */ 554 error = (*prp->pr_usrreqs->pr_attach)(so, proto); 555 KASSERT(solocked(so)); 556 557 if (error) { 558 KASSERT(so->so_pcb == NULL); 559 so->so_state |= SS_NOFDREF; 560 sofree(so); 561 return error; 562 } 563 so->so_cred = kauth_cred_dup(l->l_cred); 564 sounlock(so); 565 566 *aso = so; 567 return 0; 568 } 569 570 /* 571 * fsocreate: create a socket and a file descriptor associated with it. 572 * 573 * => On success, write file descriptor to fdout and return zero. 574 * => On failure, return non-zero; *fdout will be undefined. 575 */ 576 int 577 fsocreate(int domain, struct socket **sop, int type, int proto, int *fdout) 578 { 579 lwp_t *l = curlwp; 580 int error, fd, flags; 581 struct socket *so; 582 struct file *fp; 583 584 if ((error = fd_allocfile(&fp, &fd)) != 0) { 585 return error; 586 } 587 flags = type & SOCK_FLAGS_MASK; 588 fd_set_exclose(l, fd, (flags & SOCK_CLOEXEC) != 0); 589 fp->f_flag = FREAD|FWRITE|((flags & SOCK_NONBLOCK) ? FNONBLOCK : 0)| 590 ((flags & SOCK_NOSIGPIPE) ? FNOSIGPIPE : 0); 591 fp->f_type = DTYPE_SOCKET; 592 fp->f_ops = &socketops; 593 594 type &= ~SOCK_FLAGS_MASK; 595 error = socreate(domain, &so, type, proto, l, NULL); 596 if (error) { 597 fd_abort(curproc, fp, fd); 598 return error; 599 } 600 if (flags & SOCK_NONBLOCK) { 601 so->so_state |= SS_NBIO; 602 } 603 fp->f_socket = so; 604 fd_affix(curproc, fp, fd); 605 606 if (sop != NULL) { 607 *sop = so; 608 } 609 *fdout = fd; 610 return error; 611 } 612 613 int 614 sofamily(const struct socket *so) 615 { 616 const struct protosw *pr; 617 const struct domain *dom; 618 619 if ((pr = so->so_proto) == NULL) 620 return AF_UNSPEC; 621 if ((dom = pr->pr_domain) == NULL) 622 return AF_UNSPEC; 623 return dom->dom_family; 624 } 625 626 int 627 sobind(struct socket *so, struct sockaddr *nam, struct lwp *l) 628 { 629 int error; 630 631 solock(so); 632 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 633 sounlock(so); 634 return EAFNOSUPPORT; 635 } 636 error = (*so->so_proto->pr_usrreqs->pr_bind)(so, nam, l); 637 sounlock(so); 638 return error; 639 } 640 641 int 642 solisten(struct socket *so, int backlog, struct lwp *l) 643 { 644 int error; 645 646 solock(so); 647 if ((so->so_state & (SS_ISCONNECTED | SS_ISCONNECTING | 648 SS_ISDISCONNECTING)) != 0) { 649 sounlock(so); 650 return EINVAL; 651 } 652 error = (*so->so_proto->pr_usrreqs->pr_listen)(so, l); 653 if (error != 0) { 654 sounlock(so); 655 return error; 656 } 657 if (TAILQ_EMPTY(&so->so_q)) 658 so->so_options |= SO_ACCEPTCONN; 659 if (backlog < 0) 660 backlog = 0; 661 so->so_qlimit = min(backlog, somaxconn); 662 sounlock(so); 663 return 0; 664 } 665 666 void 667 sofree(struct socket *so) 668 { 669 u_int refs; 670 671 KASSERT(solocked(so)); 672 673 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) { 674 sounlock(so); 675 return; 676 } 677 if (so->so_head) { 678 /* 679 * We must not decommission a socket that's on the accept(2) 680 * queue. If we do, then accept(2) may hang after select(2) 681 * indicated that the listening socket was ready. 682 */ 683 if (!soqremque(so, 0)) { 684 sounlock(so); 685 return; 686 } 687 } 688 if (so->so_rcv.sb_hiwat) 689 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 690 RLIM_INFINITY); 691 if (so->so_snd.sb_hiwat) 692 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 693 RLIM_INFINITY); 694 sbrelease(&so->so_snd, so); 695 KASSERT(!cv_has_waiters(&so->so_cv)); 696 KASSERT(!cv_has_waiters(&so->so_rcv.sb_cv)); 697 KASSERT(!cv_has_waiters(&so->so_snd.sb_cv)); 698 sorflush(so); 699 refs = so->so_aborting; /* XXX */ 700 /* Remove acccept filter if one is present. */ 701 if (so->so_accf != NULL) 702 (void)accept_filt_clear(so); 703 sounlock(so); 704 if (refs == 0) /* XXX */ 705 soput(so); 706 } 707 708 /* 709 * soclose: close a socket on last file table reference removal. 710 * Initiate disconnect if connected. Free socket when disconnect complete. 711 */ 712 int 713 soclose(struct socket *so) 714 { 715 struct socket *so2; 716 int error = 0; 717 718 solock(so); 719 if (so->so_options & SO_ACCEPTCONN) { 720 for (;;) { 721 if ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 722 KASSERT(solocked2(so, so2)); 723 (void) soqremque(so2, 0); 724 /* soabort drops the lock. */ 725 (void) soabort(so2); 726 solock(so); 727 continue; 728 } 729 if ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 730 KASSERT(solocked2(so, so2)); 731 (void) soqremque(so2, 1); 732 /* soabort drops the lock. */ 733 (void) soabort(so2); 734 solock(so); 735 continue; 736 } 737 break; 738 } 739 } 740 if (so->so_pcb == NULL) 741 goto discard; 742 if (so->so_state & SS_ISCONNECTED) { 743 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 744 error = sodisconnect(so); 745 if (error) 746 goto drop; 747 } 748 if (so->so_options & SO_LINGER) { 749 if ((so->so_state & (SS_ISDISCONNECTING|SS_NBIO)) == 750 (SS_ISDISCONNECTING|SS_NBIO)) 751 goto drop; 752 while (so->so_state & SS_ISCONNECTED) { 753 error = sowait(so, true, so->so_linger * hz); 754 if (error) 755 break; 756 } 757 } 758 } 759 drop: 760 if (so->so_pcb) { 761 KASSERT(solocked(so)); 762 (*so->so_proto->pr_usrreqs->pr_detach)(so); 763 } 764 discard: 765 KASSERT((so->so_state & SS_NOFDREF) == 0); 766 kauth_cred_free(so->so_cred); 767 so->so_state |= SS_NOFDREF; 768 sofree(so); 769 return error; 770 } 771 772 /* 773 * Must be called with the socket locked.. Will return with it unlocked. 774 */ 775 int 776 soabort(struct socket *so) 777 { 778 u_int refs; 779 int error; 780 781 KASSERT(solocked(so)); 782 KASSERT(so->so_head == NULL); 783 784 so->so_aborting++; /* XXX */ 785 error = (*so->so_proto->pr_usrreqs->pr_abort)(so); 786 refs = --so->so_aborting; /* XXX */ 787 if (error || (refs == 0)) { 788 sofree(so); 789 } else { 790 sounlock(so); 791 } 792 return error; 793 } 794 795 int 796 soaccept(struct socket *so, struct sockaddr *nam) 797 { 798 int error; 799 800 KASSERT(solocked(so)); 801 KASSERT((so->so_state & SS_NOFDREF) != 0); 802 803 so->so_state &= ~SS_NOFDREF; 804 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 805 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 806 error = (*so->so_proto->pr_usrreqs->pr_accept)(so, nam); 807 else 808 error = ECONNABORTED; 809 810 return error; 811 } 812 813 int 814 soconnect(struct socket *so, struct sockaddr *nam, struct lwp *l) 815 { 816 int error; 817 818 KASSERT(solocked(so)); 819 820 if (so->so_options & SO_ACCEPTCONN) 821 return EOPNOTSUPP; 822 /* 823 * If protocol is connection-based, can only connect once. 824 * Otherwise, if connected, try to disconnect first. 825 * This allows user to disconnect by connecting to, e.g., 826 * a null address. 827 */ 828 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 829 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 830 (error = sodisconnect(so)))) { 831 error = EISCONN; 832 } else { 833 if (nam->sa_family != so->so_proto->pr_domain->dom_family) { 834 return EAFNOSUPPORT; 835 } 836 error = (*so->so_proto->pr_usrreqs->pr_connect)(so, nam, l); 837 } 838 839 return error; 840 } 841 842 int 843 soconnect2(struct socket *so1, struct socket *so2) 844 { 845 KASSERT(solocked2(so1, so2)); 846 847 return (*so1->so_proto->pr_usrreqs->pr_connect2)(so1, so2); 848 } 849 850 int 851 sodisconnect(struct socket *so) 852 { 853 int error; 854 855 KASSERT(solocked(so)); 856 857 if ((so->so_state & SS_ISCONNECTED) == 0) { 858 error = ENOTCONN; 859 } else if (so->so_state & SS_ISDISCONNECTING) { 860 error = EALREADY; 861 } else { 862 error = (*so->so_proto->pr_usrreqs->pr_disconnect)(so); 863 } 864 return (error); 865 } 866 867 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 868 /* 869 * Send on a socket. 870 * If send must go all at once and message is larger than 871 * send buffering, then hard error. 872 * Lock against other senders. 873 * If must go all at once and not enough room now, then 874 * inform user that this would block and do nothing. 875 * Otherwise, if nonblocking, send as much as possible. 876 * The data to be sent is described by "uio" if nonzero, 877 * otherwise by the mbuf chain "top" (which must be null 878 * if uio is not). Data provided in mbuf chain must be small 879 * enough to send all at once. 880 * 881 * Returns nonzero on error, timeout or signal; callers 882 * must check for short counts if EINTR/ERESTART are returned. 883 * Data and control buffers are freed on return. 884 */ 885 int 886 sosend(struct socket *so, struct sockaddr *addr, struct uio *uio, 887 struct mbuf *top, struct mbuf *control, int flags, struct lwp *l) 888 { 889 struct mbuf **mp, *m; 890 long space, len, resid, clen, mlen; 891 int error, s, dontroute, atomic; 892 short wakeup_state = 0; 893 894 clen = 0; 895 896 /* 897 * solock() provides atomicity of access. splsoftnet() prevents 898 * protocol processing soft interrupts from interrupting us and 899 * blocking (expensive). 900 */ 901 s = splsoftnet(); 902 solock(so); 903 atomic = sosendallatonce(so) || top; 904 if (uio) 905 resid = uio->uio_resid; 906 else 907 resid = top->m_pkthdr.len; 908 /* 909 * In theory resid should be unsigned. 910 * However, space must be signed, as it might be less than 0 911 * if we over-committed, and we must use a signed comparison 912 * of space and resid. On the other hand, a negative resid 913 * causes us to loop sending 0-length segments to the protocol. 914 */ 915 if (resid < 0) { 916 error = EINVAL; 917 goto out; 918 } 919 dontroute = 920 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 921 (so->so_proto->pr_flags & PR_ATOMIC); 922 l->l_ru.ru_msgsnd++; 923 if (control) 924 clen = control->m_len; 925 restart: 926 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 927 goto out; 928 do { 929 if (so->so_state & SS_CANTSENDMORE) { 930 error = EPIPE; 931 goto release; 932 } 933 if (so->so_error) { 934 error = so->so_error; 935 so->so_error = 0; 936 goto release; 937 } 938 if ((so->so_state & SS_ISCONNECTED) == 0) { 939 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 940 if (resid || clen == 0) { 941 error = ENOTCONN; 942 goto release; 943 } 944 } else if (addr == NULL) { 945 error = EDESTADDRREQ; 946 goto release; 947 } 948 } 949 space = sbspace(&so->so_snd); 950 if (flags & MSG_OOB) 951 space += 1024; 952 if ((atomic && resid > so->so_snd.sb_hiwat) || 953 clen > so->so_snd.sb_hiwat) { 954 error = EMSGSIZE; 955 goto release; 956 } 957 if (space < resid + clen && 958 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 959 if ((so->so_state & SS_NBIO) || (flags & MSG_NBIO)) { 960 error = EWOULDBLOCK; 961 goto release; 962 } 963 sbunlock(&so->so_snd); 964 if (wakeup_state & SS_RESTARTSYS) { 965 error = ERESTART; 966 goto out; 967 } 968 error = sbwait(&so->so_snd); 969 if (error) 970 goto out; 971 wakeup_state = so->so_state; 972 goto restart; 973 } 974 wakeup_state = 0; 975 mp = ⊤ 976 space -= clen; 977 do { 978 if (uio == NULL) { 979 /* 980 * Data is prepackaged in "top". 981 */ 982 resid = 0; 983 if (flags & MSG_EOR) 984 top->m_flags |= M_EOR; 985 } else do { 986 sounlock(so); 987 splx(s); 988 if (top == NULL) { 989 m = m_gethdr(M_WAIT, MT_DATA); 990 mlen = MHLEN; 991 m->m_pkthdr.len = 0; 992 m->m_pkthdr.rcvif = NULL; 993 } else { 994 m = m_get(M_WAIT, MT_DATA); 995 mlen = MLEN; 996 } 997 MCLAIM(m, so->so_snd.sb_mowner); 998 if (sock_loan_thresh >= 0 && 999 uio->uio_iov->iov_len >= sock_loan_thresh && 1000 space >= sock_loan_thresh && 1001 (len = sosend_loan(so, uio, m, 1002 space)) != 0) { 1003 SOSEND_COUNTER_INCR(&sosend_loan_big); 1004 space -= len; 1005 goto have_data; 1006 } 1007 if (resid >= MINCLSIZE && space >= MCLBYTES) { 1008 SOSEND_COUNTER_INCR(&sosend_copy_big); 1009 m_clget(m, M_DONTWAIT); 1010 if ((m->m_flags & M_EXT) == 0) 1011 goto nopages; 1012 mlen = MCLBYTES; 1013 if (atomic && top == 0) { 1014 len = lmin(MCLBYTES - max_hdr, 1015 resid); 1016 m->m_data += max_hdr; 1017 } else 1018 len = lmin(MCLBYTES, resid); 1019 space -= len; 1020 } else { 1021 nopages: 1022 SOSEND_COUNTER_INCR(&sosend_copy_small); 1023 len = lmin(lmin(mlen, resid), space); 1024 space -= len; 1025 /* 1026 * For datagram protocols, leave room 1027 * for protocol headers in first mbuf. 1028 */ 1029 if (atomic && top == 0 && len < mlen) 1030 MH_ALIGN(m, len); 1031 } 1032 error = uiomove(mtod(m, void *), (int)len, uio); 1033 have_data: 1034 resid = uio->uio_resid; 1035 m->m_len = len; 1036 *mp = m; 1037 top->m_pkthdr.len += len; 1038 s = splsoftnet(); 1039 solock(so); 1040 if (error != 0) 1041 goto release; 1042 mp = &m->m_next; 1043 if (resid <= 0) { 1044 if (flags & MSG_EOR) 1045 top->m_flags |= M_EOR; 1046 break; 1047 } 1048 } while (space > 0 && atomic); 1049 1050 if (so->so_state & SS_CANTSENDMORE) { 1051 error = EPIPE; 1052 goto release; 1053 } 1054 if (dontroute) 1055 so->so_options |= SO_DONTROUTE; 1056 if (resid > 0) 1057 so->so_state |= SS_MORETOCOME; 1058 if (flags & MSG_OOB) { 1059 error = (*so->so_proto->pr_usrreqs->pr_sendoob)(so, 1060 top, control); 1061 } else { 1062 error = (*so->so_proto->pr_usrreqs->pr_send)(so, 1063 top, addr, control, l); 1064 } 1065 if (dontroute) 1066 so->so_options &= ~SO_DONTROUTE; 1067 if (resid > 0) 1068 so->so_state &= ~SS_MORETOCOME; 1069 clen = 0; 1070 control = NULL; 1071 top = NULL; 1072 mp = ⊤ 1073 if (error != 0) 1074 goto release; 1075 } while (resid && space > 0); 1076 } while (resid); 1077 1078 release: 1079 sbunlock(&so->so_snd); 1080 out: 1081 sounlock(so); 1082 splx(s); 1083 if (top) 1084 m_freem(top); 1085 if (control) 1086 m_freem(control); 1087 return (error); 1088 } 1089 1090 /* 1091 * Following replacement or removal of the first mbuf on the first 1092 * mbuf chain of a socket buffer, push necessary state changes back 1093 * into the socket buffer so that other consumers see the values 1094 * consistently. 'nextrecord' is the callers locally stored value of 1095 * the original value of sb->sb_mb->m_nextpkt which must be restored 1096 * when the lead mbuf changes. NOTE: 'nextrecord' may be NULL. 1097 */ 1098 static void 1099 sbsync(struct sockbuf *sb, struct mbuf *nextrecord) 1100 { 1101 1102 KASSERT(solocked(sb->sb_so)); 1103 1104 /* 1105 * First, update for the new value of nextrecord. If necessary, 1106 * make it the first record. 1107 */ 1108 if (sb->sb_mb != NULL) 1109 sb->sb_mb->m_nextpkt = nextrecord; 1110 else 1111 sb->sb_mb = nextrecord; 1112 1113 /* 1114 * Now update any dependent socket buffer fields to reflect 1115 * the new state. This is an inline of SB_EMPTY_FIXUP, with 1116 * the addition of a second clause that takes care of the 1117 * case where sb_mb has been updated, but remains the last 1118 * record. 1119 */ 1120 if (sb->sb_mb == NULL) { 1121 sb->sb_mbtail = NULL; 1122 sb->sb_lastrecord = NULL; 1123 } else if (sb->sb_mb->m_nextpkt == NULL) 1124 sb->sb_lastrecord = sb->sb_mb; 1125 } 1126 1127 /* 1128 * Implement receive operations on a socket. 1129 * We depend on the way that records are added to the sockbuf 1130 * by sbappend*. In particular, each record (mbufs linked through m_next) 1131 * must begin with an address if the protocol so specifies, 1132 * followed by an optional mbuf or mbufs containing ancillary data, 1133 * and then zero or more mbufs of data. 1134 * In order to avoid blocking network interrupts for the entire time here, 1135 * we splx() while doing the actual copy to user space. 1136 * Although the sockbuf is locked, new data may still be appended, 1137 * and thus we must maintain consistency of the sockbuf during that time. 1138 * 1139 * The caller may receive the data as a single mbuf chain by supplying 1140 * an mbuf **mp0 for use in returning the chain. The uio is then used 1141 * only for the count in uio_resid. 1142 */ 1143 int 1144 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1145 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1146 { 1147 struct lwp *l = curlwp; 1148 struct mbuf *m, **mp, *mt; 1149 size_t len, offset, moff, orig_resid; 1150 int atomic, flags, error, s, type; 1151 const struct protosw *pr; 1152 struct mbuf *nextrecord; 1153 int mbuf_removed = 0; 1154 const struct domain *dom; 1155 short wakeup_state = 0; 1156 1157 pr = so->so_proto; 1158 atomic = pr->pr_flags & PR_ATOMIC; 1159 dom = pr->pr_domain; 1160 mp = mp0; 1161 type = 0; 1162 orig_resid = uio->uio_resid; 1163 1164 if (paddr != NULL) 1165 *paddr = NULL; 1166 if (controlp != NULL) 1167 *controlp = NULL; 1168 if (flagsp != NULL) 1169 flags = *flagsp &~ MSG_EOR; 1170 else 1171 flags = 0; 1172 1173 if (flags & MSG_OOB) { 1174 m = m_get(M_WAIT, MT_DATA); 1175 solock(so); 1176 error = (*pr->pr_usrreqs->pr_recvoob)(so, m, flags & MSG_PEEK); 1177 sounlock(so); 1178 if (error) 1179 goto bad; 1180 do { 1181 error = uiomove(mtod(m, void *), 1182 MIN(uio->uio_resid, m->m_len), uio); 1183 m = m_free(m); 1184 } while (uio->uio_resid > 0 && error == 0 && m); 1185 bad: 1186 if (m != NULL) 1187 m_freem(m); 1188 return error; 1189 } 1190 if (mp != NULL) 1191 *mp = NULL; 1192 1193 /* 1194 * solock() provides atomicity of access. splsoftnet() prevents 1195 * protocol processing soft interrupts from interrupting us and 1196 * blocking (expensive). 1197 */ 1198 s = splsoftnet(); 1199 solock(so); 1200 restart: 1201 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) { 1202 sounlock(so); 1203 splx(s); 1204 return error; 1205 } 1206 1207 m = so->so_rcv.sb_mb; 1208 /* 1209 * If we have less data than requested, block awaiting more 1210 * (subject to any timeout) if: 1211 * 1. the current count is less than the low water mark, 1212 * 2. MSG_WAITALL is set, and it is possible to do the entire 1213 * receive operation at once if we block (resid <= hiwat), or 1214 * 3. MSG_DONTWAIT is not set. 1215 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1216 * we have to do the receive in sections, and thus risk returning 1217 * a short count if a timeout or signal occurs after we start. 1218 */ 1219 if (m == NULL || 1220 ((flags & MSG_DONTWAIT) == 0 && 1221 so->so_rcv.sb_cc < uio->uio_resid && 1222 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1223 ((flags & MSG_WAITALL) && 1224 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1225 m->m_nextpkt == NULL && !atomic)) { 1226 #ifdef DIAGNOSTIC 1227 if (m == NULL && so->so_rcv.sb_cc) 1228 panic("receive 1"); 1229 #endif 1230 if (so->so_error) { 1231 if (m != NULL) 1232 goto dontblock; 1233 error = so->so_error; 1234 if ((flags & MSG_PEEK) == 0) 1235 so->so_error = 0; 1236 goto release; 1237 } 1238 if (so->so_state & SS_CANTRCVMORE) { 1239 if (m != NULL) 1240 goto dontblock; 1241 else 1242 goto release; 1243 } 1244 for (; m != NULL; m = m->m_next) 1245 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1246 m = so->so_rcv.sb_mb; 1247 goto dontblock; 1248 } 1249 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1250 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1251 error = ENOTCONN; 1252 goto release; 1253 } 1254 if (uio->uio_resid == 0) 1255 goto release; 1256 if ((so->so_state & SS_NBIO) || 1257 (flags & (MSG_DONTWAIT|MSG_NBIO))) { 1258 error = EWOULDBLOCK; 1259 goto release; 1260 } 1261 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1262 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1263 sbunlock(&so->so_rcv); 1264 if (wakeup_state & SS_RESTARTSYS) 1265 error = ERESTART; 1266 else 1267 error = sbwait(&so->so_rcv); 1268 if (error != 0) { 1269 sounlock(so); 1270 splx(s); 1271 return error; 1272 } 1273 wakeup_state = so->so_state; 1274 goto restart; 1275 } 1276 dontblock: 1277 /* 1278 * On entry here, m points to the first record of the socket buffer. 1279 * From this point onward, we maintain 'nextrecord' as a cache of the 1280 * pointer to the next record in the socket buffer. We must keep the 1281 * various socket buffer pointers and local stack versions of the 1282 * pointers in sync, pushing out modifications before dropping the 1283 * socket lock, and re-reading them when picking it up. 1284 * 1285 * Otherwise, we will race with the network stack appending new data 1286 * or records onto the socket buffer by using inconsistent/stale 1287 * versions of the field, possibly resulting in socket buffer 1288 * corruption. 1289 * 1290 * By holding the high-level sblock(), we prevent simultaneous 1291 * readers from pulling off the front of the socket buffer. 1292 */ 1293 if (l != NULL) 1294 l->l_ru.ru_msgrcv++; 1295 KASSERT(m == so->so_rcv.sb_mb); 1296 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1297 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1298 nextrecord = m->m_nextpkt; 1299 if (pr->pr_flags & PR_ADDR) { 1300 #ifdef DIAGNOSTIC 1301 if (m->m_type != MT_SONAME) 1302 panic("receive 1a"); 1303 #endif 1304 orig_resid = 0; 1305 if (flags & MSG_PEEK) { 1306 if (paddr) 1307 *paddr = m_copy(m, 0, m->m_len); 1308 m = m->m_next; 1309 } else { 1310 sbfree(&so->so_rcv, m); 1311 mbuf_removed = 1; 1312 if (paddr != NULL) { 1313 *paddr = m; 1314 so->so_rcv.sb_mb = m->m_next; 1315 m->m_next = NULL; 1316 m = so->so_rcv.sb_mb; 1317 } else { 1318 MFREE(m, so->so_rcv.sb_mb); 1319 m = so->so_rcv.sb_mb; 1320 } 1321 sbsync(&so->so_rcv, nextrecord); 1322 } 1323 } 1324 1325 /* 1326 * Process one or more MT_CONTROL mbufs present before any data mbufs 1327 * in the first mbuf chain on the socket buffer. If MSG_PEEK, we 1328 * just copy the data; if !MSG_PEEK, we call into the protocol to 1329 * perform externalization (or freeing if controlp == NULL). 1330 */ 1331 if (__predict_false(m != NULL && m->m_type == MT_CONTROL)) { 1332 struct mbuf *cm = NULL, *cmn; 1333 struct mbuf **cme = &cm; 1334 1335 do { 1336 if (flags & MSG_PEEK) { 1337 if (controlp != NULL) { 1338 *controlp = m_copy(m, 0, m->m_len); 1339 controlp = &(*controlp)->m_next; 1340 } 1341 m = m->m_next; 1342 } else { 1343 sbfree(&so->so_rcv, m); 1344 so->so_rcv.sb_mb = m->m_next; 1345 m->m_next = NULL; 1346 *cme = m; 1347 cme = &(*cme)->m_next; 1348 m = so->so_rcv.sb_mb; 1349 } 1350 } while (m != NULL && m->m_type == MT_CONTROL); 1351 if ((flags & MSG_PEEK) == 0) 1352 sbsync(&so->so_rcv, nextrecord); 1353 for (; cm != NULL; cm = cmn) { 1354 cmn = cm->m_next; 1355 cm->m_next = NULL; 1356 type = mtod(cm, struct cmsghdr *)->cmsg_type; 1357 if (controlp != NULL) { 1358 if (dom->dom_externalize != NULL && 1359 type == SCM_RIGHTS) { 1360 sounlock(so); 1361 splx(s); 1362 error = (*dom->dom_externalize)(cm, l, 1363 (flags & MSG_CMSG_CLOEXEC) ? 1364 O_CLOEXEC : 0); 1365 s = splsoftnet(); 1366 solock(so); 1367 } 1368 *controlp = cm; 1369 while (*controlp != NULL) 1370 controlp = &(*controlp)->m_next; 1371 } else { 1372 /* 1373 * Dispose of any SCM_RIGHTS message that went 1374 * through the read path rather than recv. 1375 */ 1376 if (dom->dom_dispose != NULL && 1377 type == SCM_RIGHTS) { 1378 sounlock(so); 1379 (*dom->dom_dispose)(cm); 1380 solock(so); 1381 } 1382 m_freem(cm); 1383 } 1384 } 1385 if (m != NULL) 1386 nextrecord = so->so_rcv.sb_mb->m_nextpkt; 1387 else 1388 nextrecord = so->so_rcv.sb_mb; 1389 orig_resid = 0; 1390 } 1391 1392 /* If m is non-NULL, we have some data to read. */ 1393 if (__predict_true(m != NULL)) { 1394 type = m->m_type; 1395 if (type == MT_OOBDATA) 1396 flags |= MSG_OOB; 1397 } 1398 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1399 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1400 1401 moff = 0; 1402 offset = 0; 1403 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1404 if (m->m_type == MT_OOBDATA) { 1405 if (type != MT_OOBDATA) 1406 break; 1407 } else if (type == MT_OOBDATA) 1408 break; 1409 #ifdef DIAGNOSTIC 1410 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1411 panic("receive 3"); 1412 #endif 1413 so->so_state &= ~SS_RCVATMARK; 1414 wakeup_state = 0; 1415 len = uio->uio_resid; 1416 if (so->so_oobmark && len > so->so_oobmark - offset) 1417 len = so->so_oobmark - offset; 1418 if (len > m->m_len - moff) 1419 len = m->m_len - moff; 1420 /* 1421 * If mp is set, just pass back the mbufs. 1422 * Otherwise copy them out via the uio, then free. 1423 * Sockbuf must be consistent here (points to current mbuf, 1424 * it points to next record) when we drop priority; 1425 * we must note any additions to the sockbuf when we 1426 * block interrupts again. 1427 */ 1428 if (mp == NULL) { 1429 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1430 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1431 sounlock(so); 1432 splx(s); 1433 error = uiomove(mtod(m, char *) + moff, len, uio); 1434 s = splsoftnet(); 1435 solock(so); 1436 if (error != 0) { 1437 /* 1438 * If any part of the record has been removed 1439 * (such as the MT_SONAME mbuf, which will 1440 * happen when PR_ADDR, and thus also 1441 * PR_ATOMIC, is set), then drop the entire 1442 * record to maintain the atomicity of the 1443 * receive operation. 1444 * 1445 * This avoids a later panic("receive 1a") 1446 * when compiled with DIAGNOSTIC. 1447 */ 1448 if (m && mbuf_removed && atomic) 1449 (void) sbdroprecord(&so->so_rcv); 1450 1451 goto release; 1452 } 1453 } else 1454 uio->uio_resid -= len; 1455 if (len == m->m_len - moff) { 1456 if (m->m_flags & M_EOR) 1457 flags |= MSG_EOR; 1458 if (flags & MSG_PEEK) { 1459 m = m->m_next; 1460 moff = 0; 1461 } else { 1462 nextrecord = m->m_nextpkt; 1463 sbfree(&so->so_rcv, m); 1464 if (mp) { 1465 *mp = m; 1466 mp = &m->m_next; 1467 so->so_rcv.sb_mb = m = m->m_next; 1468 *mp = NULL; 1469 } else { 1470 MFREE(m, so->so_rcv.sb_mb); 1471 m = so->so_rcv.sb_mb; 1472 } 1473 /* 1474 * If m != NULL, we also know that 1475 * so->so_rcv.sb_mb != NULL. 1476 */ 1477 KASSERT(so->so_rcv.sb_mb == m); 1478 if (m) { 1479 m->m_nextpkt = nextrecord; 1480 if (nextrecord == NULL) 1481 so->so_rcv.sb_lastrecord = m; 1482 } else { 1483 so->so_rcv.sb_mb = nextrecord; 1484 SB_EMPTY_FIXUP(&so->so_rcv); 1485 } 1486 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1487 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1488 } 1489 } else if (flags & MSG_PEEK) 1490 moff += len; 1491 else { 1492 if (mp != NULL) { 1493 mt = m_copym(m, 0, len, M_NOWAIT); 1494 if (__predict_false(mt == NULL)) { 1495 sounlock(so); 1496 mt = m_copym(m, 0, len, M_WAIT); 1497 solock(so); 1498 } 1499 *mp = mt; 1500 } 1501 m->m_data += len; 1502 m->m_len -= len; 1503 so->so_rcv.sb_cc -= len; 1504 } 1505 if (so->so_oobmark) { 1506 if ((flags & MSG_PEEK) == 0) { 1507 so->so_oobmark -= len; 1508 if (so->so_oobmark == 0) { 1509 so->so_state |= SS_RCVATMARK; 1510 break; 1511 } 1512 } else { 1513 offset += len; 1514 if (offset == so->so_oobmark) 1515 break; 1516 } 1517 } 1518 if (flags & MSG_EOR) 1519 break; 1520 /* 1521 * If the MSG_WAITALL flag is set (for non-atomic socket), 1522 * we must not quit until "uio->uio_resid == 0" or an error 1523 * termination. If a signal/timeout occurs, return 1524 * with a short count but without error. 1525 * Keep sockbuf locked against other readers. 1526 */ 1527 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1528 !sosendallatonce(so) && !nextrecord) { 1529 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1530 break; 1531 /* 1532 * If we are peeking and the socket receive buffer is 1533 * full, stop since we can't get more data to peek at. 1534 */ 1535 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1536 break; 1537 /* 1538 * If we've drained the socket buffer, tell the 1539 * protocol in case it needs to do something to 1540 * get it filled again. 1541 */ 1542 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1543 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1544 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1545 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1546 if (wakeup_state & SS_RESTARTSYS) 1547 error = ERESTART; 1548 else 1549 error = sbwait(&so->so_rcv); 1550 if (error != 0) { 1551 sbunlock(&so->so_rcv); 1552 sounlock(so); 1553 splx(s); 1554 return 0; 1555 } 1556 if ((m = so->so_rcv.sb_mb) != NULL) 1557 nextrecord = m->m_nextpkt; 1558 wakeup_state = so->so_state; 1559 } 1560 } 1561 1562 if (m && atomic) { 1563 flags |= MSG_TRUNC; 1564 if ((flags & MSG_PEEK) == 0) 1565 (void) sbdroprecord(&so->so_rcv); 1566 } 1567 if ((flags & MSG_PEEK) == 0) { 1568 if (m == NULL) { 1569 /* 1570 * First part is an inline SB_EMPTY_FIXUP(). Second 1571 * part makes sure sb_lastrecord is up-to-date if 1572 * there is still data in the socket buffer. 1573 */ 1574 so->so_rcv.sb_mb = nextrecord; 1575 if (so->so_rcv.sb_mb == NULL) { 1576 so->so_rcv.sb_mbtail = NULL; 1577 so->so_rcv.sb_lastrecord = NULL; 1578 } else if (nextrecord->m_nextpkt == NULL) 1579 so->so_rcv.sb_lastrecord = nextrecord; 1580 } 1581 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1582 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1583 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1584 (*pr->pr_usrreqs->pr_rcvd)(so, flags, l); 1585 } 1586 if (orig_resid == uio->uio_resid && orig_resid && 1587 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1588 sbunlock(&so->so_rcv); 1589 goto restart; 1590 } 1591 1592 if (flagsp != NULL) 1593 *flagsp |= flags; 1594 release: 1595 sbunlock(&so->so_rcv); 1596 sounlock(so); 1597 splx(s); 1598 return error; 1599 } 1600 1601 int 1602 soshutdown(struct socket *so, int how) 1603 { 1604 const struct protosw *pr; 1605 int error; 1606 1607 KASSERT(solocked(so)); 1608 1609 pr = so->so_proto; 1610 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1611 return (EINVAL); 1612 1613 if (how == SHUT_RD || how == SHUT_RDWR) { 1614 sorflush(so); 1615 error = 0; 1616 } 1617 if (how == SHUT_WR || how == SHUT_RDWR) 1618 error = (*pr->pr_usrreqs->pr_shutdown)(so); 1619 1620 return error; 1621 } 1622 1623 void 1624 sorestart(struct socket *so) 1625 { 1626 /* 1627 * An application has called close() on an fd on which another 1628 * of its threads has called a socket system call. 1629 * Mark this and wake everyone up, and code that would block again 1630 * instead returns ERESTART. 1631 * On system call re-entry the fd is validated and EBADF returned. 1632 * Any other fd will block again on the 2nd syscall. 1633 */ 1634 solock(so); 1635 so->so_state |= SS_RESTARTSYS; 1636 cv_broadcast(&so->so_cv); 1637 cv_broadcast(&so->so_snd.sb_cv); 1638 cv_broadcast(&so->so_rcv.sb_cv); 1639 sounlock(so); 1640 } 1641 1642 void 1643 sorflush(struct socket *so) 1644 { 1645 struct sockbuf *sb, asb; 1646 const struct protosw *pr; 1647 1648 KASSERT(solocked(so)); 1649 1650 sb = &so->so_rcv; 1651 pr = so->so_proto; 1652 socantrcvmore(so); 1653 sb->sb_flags |= SB_NOINTR; 1654 (void )sblock(sb, M_WAITOK); 1655 sbunlock(sb); 1656 asb = *sb; 1657 /* 1658 * Clear most of the sockbuf structure, but leave some of the 1659 * fields valid. 1660 */ 1661 memset(&sb->sb_startzero, 0, 1662 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1663 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) { 1664 sounlock(so); 1665 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1666 solock(so); 1667 } 1668 sbrelease(&asb, so); 1669 } 1670 1671 /* 1672 * internal set SOL_SOCKET options 1673 */ 1674 static int 1675 sosetopt1(struct socket *so, const struct sockopt *sopt) 1676 { 1677 int error = EINVAL, opt; 1678 int optval = 0; /* XXX: gcc */ 1679 struct linger l; 1680 struct timeval tv; 1681 1682 switch ((opt = sopt->sopt_name)) { 1683 1684 case SO_ACCEPTFILTER: 1685 error = accept_filt_setopt(so, sopt); 1686 KASSERT(solocked(so)); 1687 break; 1688 1689 case SO_LINGER: 1690 error = sockopt_get(sopt, &l, sizeof(l)); 1691 solock(so); 1692 if (error) 1693 break; 1694 if (l.l_linger < 0 || l.l_linger > USHRT_MAX || 1695 l.l_linger > (INT_MAX / hz)) { 1696 error = EDOM; 1697 break; 1698 } 1699 so->so_linger = l.l_linger; 1700 if (l.l_onoff) 1701 so->so_options |= SO_LINGER; 1702 else 1703 so->so_options &= ~SO_LINGER; 1704 break; 1705 1706 case SO_DEBUG: 1707 case SO_KEEPALIVE: 1708 case SO_DONTROUTE: 1709 case SO_USELOOPBACK: 1710 case SO_BROADCAST: 1711 case SO_REUSEADDR: 1712 case SO_REUSEPORT: 1713 case SO_OOBINLINE: 1714 case SO_TIMESTAMP: 1715 case SO_NOSIGPIPE: 1716 #ifdef SO_OTIMESTAMP 1717 case SO_OTIMESTAMP: 1718 #endif 1719 error = sockopt_getint(sopt, &optval); 1720 solock(so); 1721 if (error) 1722 break; 1723 if (optval) 1724 so->so_options |= opt; 1725 else 1726 so->so_options &= ~opt; 1727 break; 1728 1729 case SO_SNDBUF: 1730 case SO_RCVBUF: 1731 case SO_SNDLOWAT: 1732 case SO_RCVLOWAT: 1733 error = sockopt_getint(sopt, &optval); 1734 solock(so); 1735 if (error) 1736 break; 1737 1738 /* 1739 * Values < 1 make no sense for any of these 1740 * options, so disallow them. 1741 */ 1742 if (optval < 1) { 1743 error = EINVAL; 1744 break; 1745 } 1746 1747 switch (opt) { 1748 case SO_SNDBUF: 1749 if (sbreserve(&so->so_snd, (u_long)optval, so) == 0) { 1750 error = ENOBUFS; 1751 break; 1752 } 1753 so->so_snd.sb_flags &= ~SB_AUTOSIZE; 1754 break; 1755 1756 case SO_RCVBUF: 1757 if (sbreserve(&so->so_rcv, (u_long)optval, so) == 0) { 1758 error = ENOBUFS; 1759 break; 1760 } 1761 so->so_rcv.sb_flags &= ~SB_AUTOSIZE; 1762 break; 1763 1764 /* 1765 * Make sure the low-water is never greater than 1766 * the high-water. 1767 */ 1768 case SO_SNDLOWAT: 1769 if (optval > so->so_snd.sb_hiwat) 1770 optval = so->so_snd.sb_hiwat; 1771 1772 so->so_snd.sb_lowat = optval; 1773 break; 1774 1775 case SO_RCVLOWAT: 1776 if (optval > so->so_rcv.sb_hiwat) 1777 optval = so->so_rcv.sb_hiwat; 1778 1779 so->so_rcv.sb_lowat = optval; 1780 break; 1781 } 1782 break; 1783 1784 #ifdef COMPAT_50 1785 case SO_OSNDTIMEO: 1786 case SO_ORCVTIMEO: { 1787 struct timeval50 otv; 1788 error = sockopt_get(sopt, &otv, sizeof(otv)); 1789 if (error) { 1790 solock(so); 1791 break; 1792 } 1793 timeval50_to_timeval(&otv, &tv); 1794 opt = opt == SO_OSNDTIMEO ? SO_SNDTIMEO : SO_RCVTIMEO; 1795 error = 0; 1796 /*FALLTHROUGH*/ 1797 } 1798 #endif /* COMPAT_50 */ 1799 1800 case SO_SNDTIMEO: 1801 case SO_RCVTIMEO: 1802 if (error) 1803 error = sockopt_get(sopt, &tv, sizeof(tv)); 1804 solock(so); 1805 if (error) 1806 break; 1807 1808 if (tv.tv_sec > (INT_MAX - tv.tv_usec / tick) / hz) { 1809 error = EDOM; 1810 break; 1811 } 1812 1813 optval = tv.tv_sec * hz + tv.tv_usec / tick; 1814 if (optval == 0 && tv.tv_usec != 0) 1815 optval = 1; 1816 1817 switch (opt) { 1818 case SO_SNDTIMEO: 1819 so->so_snd.sb_timeo = optval; 1820 break; 1821 case SO_RCVTIMEO: 1822 so->so_rcv.sb_timeo = optval; 1823 break; 1824 } 1825 break; 1826 1827 default: 1828 solock(so); 1829 error = ENOPROTOOPT; 1830 break; 1831 } 1832 KASSERT(solocked(so)); 1833 return error; 1834 } 1835 1836 int 1837 sosetopt(struct socket *so, struct sockopt *sopt) 1838 { 1839 int error, prerr; 1840 1841 if (sopt->sopt_level == SOL_SOCKET) { 1842 error = sosetopt1(so, sopt); 1843 KASSERT(solocked(so)); 1844 } else { 1845 error = ENOPROTOOPT; 1846 solock(so); 1847 } 1848 1849 if ((error == 0 || error == ENOPROTOOPT) && 1850 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1851 /* give the protocol stack a shot */ 1852 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, sopt); 1853 if (prerr == 0) 1854 error = 0; 1855 else if (prerr != ENOPROTOOPT) 1856 error = prerr; 1857 } 1858 sounlock(so); 1859 return error; 1860 } 1861 1862 /* 1863 * so_setsockopt() is a wrapper providing a sockopt structure for sosetopt() 1864 */ 1865 int 1866 so_setsockopt(struct lwp *l, struct socket *so, int level, int name, 1867 const void *val, size_t valsize) 1868 { 1869 struct sockopt sopt; 1870 int error; 1871 1872 KASSERT(valsize == 0 || val != NULL); 1873 1874 sockopt_init(&sopt, level, name, valsize); 1875 sockopt_set(&sopt, val, valsize); 1876 1877 error = sosetopt(so, &sopt); 1878 1879 sockopt_destroy(&sopt); 1880 1881 return error; 1882 } 1883 1884 /* 1885 * internal get SOL_SOCKET options 1886 */ 1887 static int 1888 sogetopt1(struct socket *so, struct sockopt *sopt) 1889 { 1890 int error, optval, opt; 1891 struct linger l; 1892 struct timeval tv; 1893 1894 switch ((opt = sopt->sopt_name)) { 1895 1896 case SO_ACCEPTFILTER: 1897 error = accept_filt_getopt(so, sopt); 1898 break; 1899 1900 case SO_LINGER: 1901 l.l_onoff = (so->so_options & SO_LINGER) ? 1 : 0; 1902 l.l_linger = so->so_linger; 1903 1904 error = sockopt_set(sopt, &l, sizeof(l)); 1905 break; 1906 1907 case SO_USELOOPBACK: 1908 case SO_DONTROUTE: 1909 case SO_DEBUG: 1910 case SO_KEEPALIVE: 1911 case SO_REUSEADDR: 1912 case SO_REUSEPORT: 1913 case SO_BROADCAST: 1914 case SO_OOBINLINE: 1915 case SO_TIMESTAMP: 1916 case SO_NOSIGPIPE: 1917 #ifdef SO_OTIMESTAMP 1918 case SO_OTIMESTAMP: 1919 #endif 1920 case SO_ACCEPTCONN: 1921 error = sockopt_setint(sopt, (so->so_options & opt) ? 1 : 0); 1922 break; 1923 1924 case SO_TYPE: 1925 error = sockopt_setint(sopt, so->so_type); 1926 break; 1927 1928 case SO_ERROR: 1929 error = sockopt_setint(sopt, so->so_error); 1930 so->so_error = 0; 1931 break; 1932 1933 case SO_SNDBUF: 1934 error = sockopt_setint(sopt, so->so_snd.sb_hiwat); 1935 break; 1936 1937 case SO_RCVBUF: 1938 error = sockopt_setint(sopt, so->so_rcv.sb_hiwat); 1939 break; 1940 1941 case SO_SNDLOWAT: 1942 error = sockopt_setint(sopt, so->so_snd.sb_lowat); 1943 break; 1944 1945 case SO_RCVLOWAT: 1946 error = sockopt_setint(sopt, so->so_rcv.sb_lowat); 1947 break; 1948 1949 #ifdef COMPAT_50 1950 case SO_OSNDTIMEO: 1951 case SO_ORCVTIMEO: { 1952 struct timeval50 otv; 1953 1954 optval = (opt == SO_OSNDTIMEO ? 1955 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1956 1957 otv.tv_sec = optval / hz; 1958 otv.tv_usec = (optval % hz) * tick; 1959 1960 error = sockopt_set(sopt, &otv, sizeof(otv)); 1961 break; 1962 } 1963 #endif /* COMPAT_50 */ 1964 1965 case SO_SNDTIMEO: 1966 case SO_RCVTIMEO: 1967 optval = (opt == SO_SNDTIMEO ? 1968 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1969 1970 tv.tv_sec = optval / hz; 1971 tv.tv_usec = (optval % hz) * tick; 1972 1973 error = sockopt_set(sopt, &tv, sizeof(tv)); 1974 break; 1975 1976 case SO_OVERFLOWED: 1977 error = sockopt_setint(sopt, so->so_rcv.sb_overflowed); 1978 break; 1979 1980 default: 1981 error = ENOPROTOOPT; 1982 break; 1983 } 1984 1985 return (error); 1986 } 1987 1988 int 1989 sogetopt(struct socket *so, struct sockopt *sopt) 1990 { 1991 int error; 1992 1993 solock(so); 1994 if (sopt->sopt_level != SOL_SOCKET) { 1995 if (so->so_proto && so->so_proto->pr_ctloutput) { 1996 error = ((*so->so_proto->pr_ctloutput) 1997 (PRCO_GETOPT, so, sopt)); 1998 } else 1999 error = (ENOPROTOOPT); 2000 } else { 2001 error = sogetopt1(so, sopt); 2002 } 2003 sounlock(so); 2004 return (error); 2005 } 2006 2007 /* 2008 * alloc sockopt data buffer buffer 2009 * - will be released at destroy 2010 */ 2011 static int 2012 sockopt_alloc(struct sockopt *sopt, size_t len, km_flag_t kmflag) 2013 { 2014 2015 KASSERT(sopt->sopt_size == 0); 2016 2017 if (len > sizeof(sopt->sopt_buf)) { 2018 sopt->sopt_data = kmem_zalloc(len, kmflag); 2019 if (sopt->sopt_data == NULL) 2020 return ENOMEM; 2021 } else 2022 sopt->sopt_data = sopt->sopt_buf; 2023 2024 sopt->sopt_size = len; 2025 return 0; 2026 } 2027 2028 /* 2029 * initialise sockopt storage 2030 * - MAY sleep during allocation 2031 */ 2032 void 2033 sockopt_init(struct sockopt *sopt, int level, int name, size_t size) 2034 { 2035 2036 memset(sopt, 0, sizeof(*sopt)); 2037 2038 sopt->sopt_level = level; 2039 sopt->sopt_name = name; 2040 (void)sockopt_alloc(sopt, size, KM_SLEEP); 2041 } 2042 2043 /* 2044 * destroy sockopt storage 2045 * - will release any held memory references 2046 */ 2047 void 2048 sockopt_destroy(struct sockopt *sopt) 2049 { 2050 2051 if (sopt->sopt_data != sopt->sopt_buf) 2052 kmem_free(sopt->sopt_data, sopt->sopt_size); 2053 2054 memset(sopt, 0, sizeof(*sopt)); 2055 } 2056 2057 /* 2058 * set sockopt value 2059 * - value is copied into sockopt 2060 * - memory is allocated when necessary, will not sleep 2061 */ 2062 int 2063 sockopt_set(struct sockopt *sopt, const void *buf, size_t len) 2064 { 2065 int error; 2066 2067 if (sopt->sopt_size == 0) { 2068 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2069 if (error) 2070 return error; 2071 } 2072 2073 KASSERT(sopt->sopt_size == len); 2074 memcpy(sopt->sopt_data, buf, len); 2075 return 0; 2076 } 2077 2078 /* 2079 * common case of set sockopt integer value 2080 */ 2081 int 2082 sockopt_setint(struct sockopt *sopt, int val) 2083 { 2084 2085 return sockopt_set(sopt, &val, sizeof(int)); 2086 } 2087 2088 /* 2089 * get sockopt value 2090 * - correct size must be given 2091 */ 2092 int 2093 sockopt_get(const struct sockopt *sopt, void *buf, size_t len) 2094 { 2095 2096 if (sopt->sopt_size != len) 2097 return EINVAL; 2098 2099 memcpy(buf, sopt->sopt_data, len); 2100 return 0; 2101 } 2102 2103 /* 2104 * common case of get sockopt integer value 2105 */ 2106 int 2107 sockopt_getint(const struct sockopt *sopt, int *valp) 2108 { 2109 2110 return sockopt_get(sopt, valp, sizeof(int)); 2111 } 2112 2113 /* 2114 * set sockopt value from mbuf 2115 * - ONLY for legacy code 2116 * - mbuf is released by sockopt 2117 * - will not sleep 2118 */ 2119 int 2120 sockopt_setmbuf(struct sockopt *sopt, struct mbuf *m) 2121 { 2122 size_t len; 2123 int error; 2124 2125 len = m_length(m); 2126 2127 if (sopt->sopt_size == 0) { 2128 error = sockopt_alloc(sopt, len, KM_NOSLEEP); 2129 if (error) 2130 return error; 2131 } 2132 2133 KASSERT(sopt->sopt_size == len); 2134 m_copydata(m, 0, len, sopt->sopt_data); 2135 m_freem(m); 2136 2137 return 0; 2138 } 2139 2140 /* 2141 * get sockopt value into mbuf 2142 * - ONLY for legacy code 2143 * - mbuf to be released by the caller 2144 * - will not sleep 2145 */ 2146 struct mbuf * 2147 sockopt_getmbuf(const struct sockopt *sopt) 2148 { 2149 struct mbuf *m; 2150 2151 if (sopt->sopt_size > MCLBYTES) 2152 return NULL; 2153 2154 m = m_get(M_DONTWAIT, MT_SOOPTS); 2155 if (m == NULL) 2156 return NULL; 2157 2158 if (sopt->sopt_size > MLEN) { 2159 MCLGET(m, M_DONTWAIT); 2160 if ((m->m_flags & M_EXT) == 0) { 2161 m_free(m); 2162 return NULL; 2163 } 2164 } 2165 2166 memcpy(mtod(m, void *), sopt->sopt_data, sopt->sopt_size); 2167 m->m_len = sopt->sopt_size; 2168 2169 return m; 2170 } 2171 2172 void 2173 sohasoutofband(struct socket *so) 2174 { 2175 2176 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 2177 selnotify(&so->so_rcv.sb_sel, POLLPRI | POLLRDBAND, NOTE_SUBMIT); 2178 } 2179 2180 static void 2181 filt_sordetach(struct knote *kn) 2182 { 2183 struct socket *so; 2184 2185 so = ((file_t *)kn->kn_obj)->f_socket; 2186 solock(so); 2187 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 2188 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 2189 so->so_rcv.sb_flags &= ~SB_KNOTE; 2190 sounlock(so); 2191 } 2192 2193 /*ARGSUSED*/ 2194 static int 2195 filt_soread(struct knote *kn, long hint) 2196 { 2197 struct socket *so; 2198 int rv; 2199 2200 so = ((file_t *)kn->kn_obj)->f_socket; 2201 if (hint != NOTE_SUBMIT) 2202 solock(so); 2203 kn->kn_data = so->so_rcv.sb_cc; 2204 if (so->so_state & SS_CANTRCVMORE) { 2205 kn->kn_flags |= EV_EOF; 2206 kn->kn_fflags = so->so_error; 2207 rv = 1; 2208 } else if (so->so_error) /* temporary udp error */ 2209 rv = 1; 2210 else if (kn->kn_sfflags & NOTE_LOWAT) 2211 rv = (kn->kn_data >= kn->kn_sdata); 2212 else 2213 rv = (kn->kn_data >= so->so_rcv.sb_lowat); 2214 if (hint != NOTE_SUBMIT) 2215 sounlock(so); 2216 return rv; 2217 } 2218 2219 static void 2220 filt_sowdetach(struct knote *kn) 2221 { 2222 struct socket *so; 2223 2224 so = ((file_t *)kn->kn_obj)->f_socket; 2225 solock(so); 2226 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 2227 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 2228 so->so_snd.sb_flags &= ~SB_KNOTE; 2229 sounlock(so); 2230 } 2231 2232 /*ARGSUSED*/ 2233 static int 2234 filt_sowrite(struct knote *kn, long hint) 2235 { 2236 struct socket *so; 2237 int rv; 2238 2239 so = ((file_t *)kn->kn_obj)->f_socket; 2240 if (hint != NOTE_SUBMIT) 2241 solock(so); 2242 kn->kn_data = sbspace(&so->so_snd); 2243 if (so->so_state & SS_CANTSENDMORE) { 2244 kn->kn_flags |= EV_EOF; 2245 kn->kn_fflags = so->so_error; 2246 rv = 1; 2247 } else if (so->so_error) /* temporary udp error */ 2248 rv = 1; 2249 else if (((so->so_state & SS_ISCONNECTED) == 0) && 2250 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 2251 rv = 0; 2252 else if (kn->kn_sfflags & NOTE_LOWAT) 2253 rv = (kn->kn_data >= kn->kn_sdata); 2254 else 2255 rv = (kn->kn_data >= so->so_snd.sb_lowat); 2256 if (hint != NOTE_SUBMIT) 2257 sounlock(so); 2258 return rv; 2259 } 2260 2261 /*ARGSUSED*/ 2262 static int 2263 filt_solisten(struct knote *kn, long hint) 2264 { 2265 struct socket *so; 2266 int rv; 2267 2268 so = ((file_t *)kn->kn_obj)->f_socket; 2269 2270 /* 2271 * Set kn_data to number of incoming connections, not 2272 * counting partial (incomplete) connections. 2273 */ 2274 if (hint != NOTE_SUBMIT) 2275 solock(so); 2276 kn->kn_data = so->so_qlen; 2277 rv = (kn->kn_data > 0); 2278 if (hint != NOTE_SUBMIT) 2279 sounlock(so); 2280 return rv; 2281 } 2282 2283 static const struct filterops solisten_filtops = 2284 { 1, NULL, filt_sordetach, filt_solisten }; 2285 static const struct filterops soread_filtops = 2286 { 1, NULL, filt_sordetach, filt_soread }; 2287 static const struct filterops sowrite_filtops = 2288 { 1, NULL, filt_sowdetach, filt_sowrite }; 2289 2290 int 2291 soo_kqfilter(struct file *fp, struct knote *kn) 2292 { 2293 struct socket *so; 2294 struct sockbuf *sb; 2295 2296 so = ((file_t *)kn->kn_obj)->f_socket; 2297 solock(so); 2298 switch (kn->kn_filter) { 2299 case EVFILT_READ: 2300 if (so->so_options & SO_ACCEPTCONN) 2301 kn->kn_fop = &solisten_filtops; 2302 else 2303 kn->kn_fop = &soread_filtops; 2304 sb = &so->so_rcv; 2305 break; 2306 case EVFILT_WRITE: 2307 kn->kn_fop = &sowrite_filtops; 2308 sb = &so->so_snd; 2309 break; 2310 default: 2311 sounlock(so); 2312 return (EINVAL); 2313 } 2314 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 2315 sb->sb_flags |= SB_KNOTE; 2316 sounlock(so); 2317 return (0); 2318 } 2319 2320 static int 2321 sodopoll(struct socket *so, int events) 2322 { 2323 int revents; 2324 2325 revents = 0; 2326 2327 if (events & (POLLIN | POLLRDNORM)) 2328 if (soreadable(so)) 2329 revents |= events & (POLLIN | POLLRDNORM); 2330 2331 if (events & (POLLOUT | POLLWRNORM)) 2332 if (sowritable(so)) 2333 revents |= events & (POLLOUT | POLLWRNORM); 2334 2335 if (events & (POLLPRI | POLLRDBAND)) 2336 if (so->so_oobmark || (so->so_state & SS_RCVATMARK)) 2337 revents |= events & (POLLPRI | POLLRDBAND); 2338 2339 return revents; 2340 } 2341 2342 int 2343 sopoll(struct socket *so, int events) 2344 { 2345 int revents = 0; 2346 2347 #ifndef DIAGNOSTIC 2348 /* 2349 * Do a quick, unlocked check in expectation that the socket 2350 * will be ready for I/O. Don't do this check if DIAGNOSTIC, 2351 * as the solocked() assertions will fail. 2352 */ 2353 if ((revents = sodopoll(so, events)) != 0) 2354 return revents; 2355 #endif 2356 2357 solock(so); 2358 if ((revents = sodopoll(so, events)) == 0) { 2359 if (events & (POLLIN | POLLPRI | POLLRDNORM | POLLRDBAND)) { 2360 selrecord(curlwp, &so->so_rcv.sb_sel); 2361 so->so_rcv.sb_flags |= SB_NOTIFY; 2362 } 2363 2364 if (events & (POLLOUT | POLLWRNORM)) { 2365 selrecord(curlwp, &so->so_snd.sb_sel); 2366 so->so_snd.sb_flags |= SB_NOTIFY; 2367 } 2368 } 2369 sounlock(so); 2370 2371 return revents; 2372 } 2373 2374 2375 #include <sys/sysctl.h> 2376 2377 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 2378 static int sysctl_kern_sbmax(SYSCTLFN_PROTO); 2379 2380 /* 2381 * sysctl helper routine for kern.somaxkva. ensures that the given 2382 * value is not too small. 2383 * (XXX should we maybe make sure it's not too large as well?) 2384 */ 2385 static int 2386 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 2387 { 2388 int error, new_somaxkva; 2389 struct sysctlnode node; 2390 2391 new_somaxkva = somaxkva; 2392 node = *rnode; 2393 node.sysctl_data = &new_somaxkva; 2394 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2395 if (error || newp == NULL) 2396 return (error); 2397 2398 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 2399 return (EINVAL); 2400 2401 mutex_enter(&so_pendfree_lock); 2402 somaxkva = new_somaxkva; 2403 cv_broadcast(&socurkva_cv); 2404 mutex_exit(&so_pendfree_lock); 2405 2406 return (error); 2407 } 2408 2409 /* 2410 * sysctl helper routine for kern.sbmax. Basically just ensures that 2411 * any new value is not too small. 2412 */ 2413 static int 2414 sysctl_kern_sbmax(SYSCTLFN_ARGS) 2415 { 2416 int error, new_sbmax; 2417 struct sysctlnode node; 2418 2419 new_sbmax = sb_max; 2420 node = *rnode; 2421 node.sysctl_data = &new_sbmax; 2422 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 2423 if (error || newp == NULL) 2424 return (error); 2425 2426 KERNEL_LOCK(1, NULL); 2427 error = sb_max_set(new_sbmax); 2428 KERNEL_UNLOCK_ONE(NULL); 2429 2430 return (error); 2431 } 2432 2433 static void 2434 sysctl_kern_socket_setup(void) 2435 { 2436 2437 KASSERT(socket_sysctllog == NULL); 2438 2439 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2440 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2441 CTLTYPE_INT, "somaxkva", 2442 SYSCTL_DESCR("Maximum amount of kernel memory to be " 2443 "used for socket buffers"), 2444 sysctl_kern_somaxkva, 0, NULL, 0, 2445 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 2446 2447 sysctl_createv(&socket_sysctllog, 0, NULL, NULL, 2448 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 2449 CTLTYPE_INT, "sbmax", 2450 SYSCTL_DESCR("Maximum socket buffer size"), 2451 sysctl_kern_sbmax, 0, NULL, 0, 2452 CTL_KERN, KERN_SBMAX, CTL_EOL); 2453 } 2454