1 /* $NetBSD: uipc_socket.c,v 1.84 2003/07/02 20:07:45 ragge Exp $ */ 2 3 /*- 4 * Copyright (c) 2002 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1988, 1990, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the University of 54 * California, Berkeley and its contributors. 55 * 4. Neither the name of the University nor the names of its contributors 56 * may be used to endorse or promote products derived from this software 57 * without specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 72 */ 73 74 #include <sys/cdefs.h> 75 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.84 2003/07/02 20:07:45 ragge Exp $"); 76 77 #include "opt_sock_counters.h" 78 #include "opt_sosend_loan.h" 79 #include "opt_mbuftrace.h" 80 #include "opt_somaxkva.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/proc.h> 85 #include <sys/file.h> 86 #include <sys/malloc.h> 87 #include <sys/mbuf.h> 88 #include <sys/domain.h> 89 #include <sys/kernel.h> 90 #include <sys/protosw.h> 91 #include <sys/socket.h> 92 #include <sys/socketvar.h> 93 #include <sys/signalvar.h> 94 #include <sys/resourcevar.h> 95 #include <sys/pool.h> 96 #include <sys/event.h> 97 98 #include <uvm/uvm.h> 99 100 struct pool socket_pool; 101 102 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 103 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 104 105 extern int somaxconn; /* patchable (XXX sysctl) */ 106 int somaxconn = SOMAXCONN; 107 108 #ifdef SOSEND_COUNTERS 109 #include <sys/device.h> 110 111 struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 112 NULL, "sosend", "loan big"); 113 struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 114 NULL, "sosend", "copy big"); 115 struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "copy small"); 117 struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "kva limit"); 119 120 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 121 122 #else 123 124 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 125 126 #endif /* SOSEND_COUNTERS */ 127 128 void 129 soinit(void) 130 { 131 132 pool_init(&socket_pool, sizeof(struct socket), 0, 0, 0, 133 "sockpl", NULL); 134 135 #ifdef SOSEND_COUNTERS 136 evcnt_attach_static(&sosend_loan_big); 137 evcnt_attach_static(&sosend_copy_big); 138 evcnt_attach_static(&sosend_copy_small); 139 evcnt_attach_static(&sosend_kvalimit); 140 #endif /* SOSEND_COUNTERS */ 141 } 142 143 #ifdef SOSEND_NO_LOAN 144 int use_sosend_loan = 0; 145 #else 146 int use_sosend_loan = 1; 147 #endif 148 149 struct mbuf *so_pendfree; 150 151 #ifndef SOMAXKVA 152 #define SOMAXKVA (16 * 1024 * 1024) 153 #endif 154 int somaxkva = SOMAXKVA; 155 int socurkva; 156 int sokvawaiters; 157 158 #define SOCK_LOAN_THRESH 4096 159 #define SOCK_LOAN_CHUNK 65536 160 161 static size_t sodopendfree(struct socket *); 162 163 vaddr_t 164 sokvaalloc(vsize_t len, struct socket *so) 165 { 166 vaddr_t lva; 167 int s; 168 169 while (socurkva + len > somaxkva) { 170 if (sodopendfree(so)) 171 continue; 172 SOSEND_COUNTER_INCR(&sosend_kvalimit); 173 s = splvm(); 174 sokvawaiters++; 175 (void) tsleep(&socurkva, PVM, "sokva", 0); 176 sokvawaiters--; 177 splx(s); 178 } 179 180 lva = uvm_km_valloc_wait(kernel_map, len); 181 if (lva == 0) 182 return (0); 183 socurkva += len; 184 185 return lva; 186 } 187 188 void 189 sokvafree(vaddr_t sva, vsize_t len) 190 { 191 192 uvm_km_free(kernel_map, sva, len); 193 socurkva -= len; 194 if (sokvawaiters) 195 wakeup(&socurkva); 196 } 197 198 static void 199 sodoloanfree(struct vm_page **pgs, caddr_t buf, size_t size) 200 { 201 vaddr_t va, sva, eva; 202 vsize_t len; 203 paddr_t pa; 204 int i, npgs; 205 206 eva = round_page((vaddr_t) buf + size); 207 sva = trunc_page((vaddr_t) buf); 208 len = eva - sva; 209 npgs = len >> PAGE_SHIFT; 210 211 if (__predict_false(pgs == NULL)) { 212 pgs = alloca(npgs * sizeof(*pgs)); 213 214 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) { 215 if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) 216 panic("sodoloanfree: va 0x%lx not mapped", va); 217 pgs[i] = PHYS_TO_VM_PAGE(pa); 218 } 219 } 220 221 pmap_kremove(sva, len); 222 pmap_update(pmap_kernel()); 223 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 224 sokvafree(sva, len); 225 } 226 227 static size_t 228 sodopendfree(struct socket *so) 229 { 230 struct mbuf *m; 231 size_t rv = 0; 232 int s; 233 234 s = splvm(); 235 236 for (;;) { 237 m = so_pendfree; 238 if (m == NULL) 239 break; 240 so_pendfree = m->m_next; 241 splx(s); 242 243 rv += m->m_ext.ext_size; 244 sodoloanfree((m->m_flags & M_EXT_PAGES) ? 245 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf, 246 m->m_ext.ext_size); 247 s = splvm(); 248 pool_cache_put(&mbpool_cache, m); 249 } 250 251 for (;;) { 252 m = so->so_pendfree; 253 if (m == NULL) 254 break; 255 so->so_pendfree = m->m_next; 256 splx(s); 257 258 rv += m->m_ext.ext_size; 259 sodoloanfree((m->m_flags & M_EXT_PAGES) ? 260 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf, 261 m->m_ext.ext_size); 262 s = splvm(); 263 pool_cache_put(&mbpool_cache, m); 264 } 265 266 splx(s); 267 return (rv); 268 } 269 270 void 271 soloanfree(struct mbuf *m, caddr_t buf, size_t size, void *arg) 272 { 273 struct socket *so = arg; 274 int s; 275 276 if (m == NULL) { 277 sodoloanfree(NULL, buf, size); 278 return; 279 } 280 281 s = splvm(); 282 m->m_next = so->so_pendfree; 283 so->so_pendfree = m; 284 splx(s); 285 if (sokvawaiters) 286 wakeup(&socurkva); 287 } 288 289 static long 290 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 291 { 292 struct iovec *iov = uio->uio_iov; 293 vaddr_t sva, eva; 294 vsize_t len; 295 vaddr_t lva, va; 296 int npgs, i, error; 297 298 if (uio->uio_segflg != UIO_USERSPACE) 299 return (0); 300 301 if (iov->iov_len < (size_t) space) 302 space = iov->iov_len; 303 if (space > SOCK_LOAN_CHUNK) 304 space = SOCK_LOAN_CHUNK; 305 306 eva = round_page((vaddr_t) iov->iov_base + space); 307 sva = trunc_page((vaddr_t) iov->iov_base); 308 len = eva - sva; 309 npgs = len >> PAGE_SHIFT; 310 311 /* XXX KDASSERT */ 312 KASSERT(npgs <= M_EXT_MAXPAGES); 313 314 lva = sokvaalloc(len, so); 315 if (lva == 0) 316 return 0; 317 318 error = uvm_loan(&uio->uio_procp->p_vmspace->vm_map, sva, len, 319 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 320 if (error) { 321 sokvafree(lva, len); 322 return (0); 323 } 324 325 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 326 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 327 VM_PROT_READ); 328 pmap_update(pmap_kernel()); 329 330 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 331 332 MEXTADD(m, (caddr_t) lva, space, M_MBUF, soloanfree, so); 333 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 334 335 uio->uio_resid -= space; 336 /* uio_offset not updated, not set/used for write(2) */ 337 uio->uio_iov->iov_base = (caddr_t) uio->uio_iov->iov_base + space; 338 uio->uio_iov->iov_len -= space; 339 if (uio->uio_iov->iov_len == 0) { 340 uio->uio_iov++; 341 uio->uio_iovcnt--; 342 } 343 344 return (space); 345 } 346 347 /* 348 * Socket operation routines. 349 * These routines are called by the routines in 350 * sys_socket.c or from a system process, and 351 * implement the semantics of socket operations by 352 * switching out to the protocol specific routines. 353 */ 354 /*ARGSUSED*/ 355 int 356 socreate(int dom, struct socket **aso, int type, int proto) 357 { 358 struct proc *p; 359 struct protosw *prp; 360 struct socket *so; 361 int error, s; 362 363 p = curproc; /* XXX */ 364 if (proto) 365 prp = pffindproto(dom, proto, type); 366 else 367 prp = pffindtype(dom, type); 368 if (prp == 0 || prp->pr_usrreq == 0) 369 return (EPROTONOSUPPORT); 370 if (prp->pr_type != type) 371 return (EPROTOTYPE); 372 s = splsoftnet(); 373 so = pool_get(&socket_pool, PR_WAITOK); 374 memset((caddr_t)so, 0, sizeof(*so)); 375 TAILQ_INIT(&so->so_q0); 376 TAILQ_INIT(&so->so_q); 377 so->so_type = type; 378 so->so_proto = prp; 379 so->so_send = sosend; 380 so->so_receive = soreceive; 381 #ifdef MBUFTRACE 382 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 383 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 384 so->so_mowner = &prp->pr_domain->dom_mowner; 385 #endif 386 if (p != 0) 387 so->so_uid = p->p_ucred->cr_uid; 388 error = (*prp->pr_usrreq)(so, PRU_ATTACH, (struct mbuf *)0, 389 (struct mbuf *)(long)proto, (struct mbuf *)0, p); 390 if (error) { 391 so->so_state |= SS_NOFDREF; 392 sofree(so); 393 splx(s); 394 return (error); 395 } 396 splx(s); 397 *aso = so; 398 return (0); 399 } 400 401 int 402 sobind(struct socket *so, struct mbuf *nam, struct proc *p) 403 { 404 int s, error; 405 406 s = splsoftnet(); 407 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, (struct mbuf *)0, 408 nam, (struct mbuf *)0, p); 409 splx(s); 410 return (error); 411 } 412 413 int 414 solisten(struct socket *so, int backlog) 415 { 416 int s, error; 417 418 s = splsoftnet(); 419 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, (struct mbuf *)0, 420 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 421 if (error) { 422 splx(s); 423 return (error); 424 } 425 if (TAILQ_EMPTY(&so->so_q)) 426 so->so_options |= SO_ACCEPTCONN; 427 if (backlog < 0) 428 backlog = 0; 429 so->so_qlimit = min(backlog, somaxconn); 430 splx(s); 431 return (0); 432 } 433 434 void 435 sofree(struct socket *so) 436 { 437 struct mbuf *m; 438 439 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 440 return; 441 if (so->so_head) { 442 /* 443 * We must not decommission a socket that's on the accept(2) 444 * queue. If we do, then accept(2) may hang after select(2) 445 * indicated that the listening socket was ready. 446 */ 447 if (!soqremque(so, 0)) 448 return; 449 } 450 sbrelease(&so->so_snd); 451 sorflush(so); 452 while ((m = so->so_pendfree) != NULL) { 453 so->so_pendfree = m->m_next; 454 m->m_next = so_pendfree; 455 so_pendfree = m; 456 } 457 pool_put(&socket_pool, so); 458 } 459 460 /* 461 * Close a socket on last file table reference removal. 462 * Initiate disconnect if connected. 463 * Free socket when disconnect complete. 464 */ 465 int 466 soclose(struct socket *so) 467 { 468 struct socket *so2; 469 int s, error; 470 471 error = 0; 472 s = splsoftnet(); /* conservative */ 473 if (so->so_options & SO_ACCEPTCONN) { 474 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 475 (void) soqremque(so2, 0); 476 (void) soabort(so2); 477 } 478 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 479 (void) soqremque(so2, 1); 480 (void) soabort(so2); 481 } 482 } 483 if (so->so_pcb == 0) 484 goto discard; 485 if (so->so_state & SS_ISCONNECTED) { 486 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 487 error = sodisconnect(so); 488 if (error) 489 goto drop; 490 } 491 if (so->so_options & SO_LINGER) { 492 if ((so->so_state & SS_ISDISCONNECTING) && 493 (so->so_state & SS_NBIO)) 494 goto drop; 495 while (so->so_state & SS_ISCONNECTED) { 496 error = tsleep((caddr_t)&so->so_timeo, 497 PSOCK | PCATCH, netcls, 498 so->so_linger * hz); 499 if (error) 500 break; 501 } 502 } 503 } 504 drop: 505 if (so->so_pcb) { 506 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 507 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0, 508 (struct proc *)0); 509 if (error == 0) 510 error = error2; 511 } 512 discard: 513 if (so->so_state & SS_NOFDREF) 514 panic("soclose: NOFDREF"); 515 so->so_state |= SS_NOFDREF; 516 sofree(so); 517 splx(s); 518 return (error); 519 } 520 521 /* 522 * Must be called at splsoftnet... 523 */ 524 int 525 soabort(struct socket *so) 526 { 527 528 return (*so->so_proto->pr_usrreq)(so, PRU_ABORT, (struct mbuf *)0, 529 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 530 } 531 532 int 533 soaccept(struct socket *so, struct mbuf *nam) 534 { 535 int s, error; 536 537 error = 0; 538 s = splsoftnet(); 539 if ((so->so_state & SS_NOFDREF) == 0) 540 panic("soaccept: !NOFDREF"); 541 so->so_state &= ~SS_NOFDREF; 542 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 543 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 544 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 545 (struct mbuf *)0, nam, (struct mbuf *)0, (struct proc *)0); 546 else 547 error = ECONNABORTED; 548 549 splx(s); 550 return (error); 551 } 552 553 int 554 soconnect(struct socket *so, struct mbuf *nam) 555 { 556 struct proc *p; 557 int s, error; 558 559 p = curproc; /* XXX */ 560 if (so->so_options & SO_ACCEPTCONN) 561 return (EOPNOTSUPP); 562 s = splsoftnet(); 563 /* 564 * If protocol is connection-based, can only connect once. 565 * Otherwise, if connected, try to disconnect first. 566 * This allows user to disconnect by connecting to, e.g., 567 * a null address. 568 */ 569 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 570 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 571 (error = sodisconnect(so)))) 572 error = EISCONN; 573 else 574 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 575 (struct mbuf *)0, nam, (struct mbuf *)0, p); 576 splx(s); 577 return (error); 578 } 579 580 int 581 soconnect2(struct socket *so1, struct socket *so2) 582 { 583 int s, error; 584 585 s = splsoftnet(); 586 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 587 (struct mbuf *)0, (struct mbuf *)so2, (struct mbuf *)0, 588 (struct proc *)0); 589 splx(s); 590 return (error); 591 } 592 593 int 594 sodisconnect(struct socket *so) 595 { 596 int s, error; 597 598 s = splsoftnet(); 599 if ((so->so_state & SS_ISCONNECTED) == 0) { 600 error = ENOTCONN; 601 goto bad; 602 } 603 if (so->so_state & SS_ISDISCONNECTING) { 604 error = EALREADY; 605 goto bad; 606 } 607 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 608 (struct mbuf *)0, (struct mbuf *)0, (struct mbuf *)0, 609 (struct proc *)0); 610 bad: 611 splx(s); 612 sodopendfree(so); 613 return (error); 614 } 615 616 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 617 /* 618 * Send on a socket. 619 * If send must go all at once and message is larger than 620 * send buffering, then hard error. 621 * Lock against other senders. 622 * If must go all at once and not enough room now, then 623 * inform user that this would block and do nothing. 624 * Otherwise, if nonblocking, send as much as possible. 625 * The data to be sent is described by "uio" if nonzero, 626 * otherwise by the mbuf chain "top" (which must be null 627 * if uio is not). Data provided in mbuf chain must be small 628 * enough to send all at once. 629 * 630 * Returns nonzero on error, timeout or signal; callers 631 * must check for short counts if EINTR/ERESTART are returned. 632 * Data and control buffers are freed on return. 633 */ 634 int 635 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 636 struct mbuf *control, int flags) 637 { 638 struct proc *p; 639 struct mbuf **mp, *m; 640 long space, len, resid, clen, mlen; 641 int error, s, dontroute, atomic; 642 643 sodopendfree(so); 644 645 p = curproc; /* XXX */ 646 clen = 0; 647 atomic = sosendallatonce(so) || top; 648 if (uio) 649 resid = uio->uio_resid; 650 else 651 resid = top->m_pkthdr.len; 652 /* 653 * In theory resid should be unsigned. 654 * However, space must be signed, as it might be less than 0 655 * if we over-committed, and we must use a signed comparison 656 * of space and resid. On the other hand, a negative resid 657 * causes us to loop sending 0-length segments to the protocol. 658 */ 659 if (resid < 0) { 660 error = EINVAL; 661 goto out; 662 } 663 dontroute = 664 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 665 (so->so_proto->pr_flags & PR_ATOMIC); 666 p->p_stats->p_ru.ru_msgsnd++; 667 if (control) 668 clen = control->m_len; 669 #define snderr(errno) { error = errno; splx(s); goto release; } 670 671 restart: 672 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 673 goto out; 674 do { 675 s = splsoftnet(); 676 if (so->so_state & SS_CANTSENDMORE) 677 snderr(EPIPE); 678 if (so->so_error) { 679 error = so->so_error; 680 so->so_error = 0; 681 splx(s); 682 goto release; 683 } 684 if ((so->so_state & SS_ISCONNECTED) == 0) { 685 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 686 if ((so->so_state & SS_ISCONFIRMING) == 0 && 687 !(resid == 0 && clen != 0)) 688 snderr(ENOTCONN); 689 } else if (addr == 0) 690 snderr(EDESTADDRREQ); 691 } 692 space = sbspace(&so->so_snd); 693 if (flags & MSG_OOB) 694 space += 1024; 695 if ((atomic && resid > so->so_snd.sb_hiwat) || 696 clen > so->so_snd.sb_hiwat) 697 snderr(EMSGSIZE); 698 if (space < resid + clen && uio && 699 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 700 if (so->so_state & SS_NBIO) 701 snderr(EWOULDBLOCK); 702 sbunlock(&so->so_snd); 703 error = sbwait(&so->so_snd); 704 splx(s); 705 if (error) 706 goto out; 707 goto restart; 708 } 709 splx(s); 710 mp = ⊤ 711 space -= clen; 712 do { 713 if (uio == NULL) { 714 /* 715 * Data is prepackaged in "top". 716 */ 717 resid = 0; 718 if (flags & MSG_EOR) 719 top->m_flags |= M_EOR; 720 } else do { 721 if (top == 0) { 722 m = m_gethdr(M_WAIT, MT_DATA); 723 mlen = MHLEN; 724 m->m_pkthdr.len = 0; 725 m->m_pkthdr.rcvif = (struct ifnet *)0; 726 } else { 727 m = m_get(M_WAIT, MT_DATA); 728 mlen = MLEN; 729 } 730 MCLAIM(m, so->so_snd.sb_mowner); 731 if (use_sosend_loan && 732 uio->uio_iov->iov_len >= SOCK_LOAN_THRESH && 733 space >= SOCK_LOAN_THRESH && 734 (len = sosend_loan(so, uio, m, 735 space)) != 0) { 736 SOSEND_COUNTER_INCR(&sosend_loan_big); 737 space -= len; 738 goto have_data; 739 } 740 if (resid >= MINCLSIZE && space >= MCLBYTES) { 741 SOSEND_COUNTER_INCR(&sosend_copy_big); 742 m_clget(m, M_WAIT); 743 if ((m->m_flags & M_EXT) == 0) 744 goto nopages; 745 mlen = MCLBYTES; 746 if (atomic && top == 0) { 747 len = lmin(MCLBYTES - max_hdr, 748 resid); 749 m->m_data += max_hdr; 750 } else 751 len = lmin(MCLBYTES, resid); 752 space -= len; 753 } else { 754 nopages: 755 SOSEND_COUNTER_INCR(&sosend_copy_small); 756 len = lmin(lmin(mlen, resid), space); 757 space -= len; 758 /* 759 * For datagram protocols, leave room 760 * for protocol headers in first mbuf. 761 */ 762 if (atomic && top == 0 && len < mlen) 763 MH_ALIGN(m, len); 764 } 765 error = uiomove(mtod(m, caddr_t), (int)len, 766 uio); 767 have_data: 768 resid = uio->uio_resid; 769 m->m_len = len; 770 *mp = m; 771 top->m_pkthdr.len += len; 772 if (error) 773 goto release; 774 mp = &m->m_next; 775 if (resid <= 0) { 776 if (flags & MSG_EOR) 777 top->m_flags |= M_EOR; 778 break; 779 } 780 } while (space > 0 && atomic); 781 782 s = splsoftnet(); 783 784 if (so->so_state & SS_CANTSENDMORE) 785 snderr(EPIPE); 786 787 if (dontroute) 788 so->so_options |= SO_DONTROUTE; 789 if (resid > 0) 790 so->so_state |= SS_MORETOCOME; 791 error = (*so->so_proto->pr_usrreq)(so, 792 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 793 top, addr, control, p); 794 if (dontroute) 795 so->so_options &= ~SO_DONTROUTE; 796 if (resid > 0) 797 so->so_state &= ~SS_MORETOCOME; 798 splx(s); 799 800 clen = 0; 801 control = 0; 802 top = 0; 803 mp = ⊤ 804 if (error) 805 goto release; 806 } while (resid && space > 0); 807 } while (resid); 808 809 release: 810 sbunlock(&so->so_snd); 811 out: 812 if (top) 813 m_freem(top); 814 if (control) 815 m_freem(control); 816 return (error); 817 } 818 819 /* 820 * Implement receive operations on a socket. 821 * We depend on the way that records are added to the sockbuf 822 * by sbappend*. In particular, each record (mbufs linked through m_next) 823 * must begin with an address if the protocol so specifies, 824 * followed by an optional mbuf or mbufs containing ancillary data, 825 * and then zero or more mbufs of data. 826 * In order to avoid blocking network interrupts for the entire time here, 827 * we splx() while doing the actual copy to user space. 828 * Although the sockbuf is locked, new data may still be appended, 829 * and thus we must maintain consistency of the sockbuf during that time. 830 * 831 * The caller may receive the data as a single mbuf chain by supplying 832 * an mbuf **mp0 for use in returning the chain. The uio is then used 833 * only for the count in uio_resid. 834 */ 835 int 836 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 837 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 838 { 839 struct mbuf *m, **mp; 840 int flags, len, error, s, offset, moff, type, orig_resid; 841 struct protosw *pr; 842 struct mbuf *nextrecord; 843 int mbuf_removed = 0; 844 845 pr = so->so_proto; 846 mp = mp0; 847 type = 0; 848 orig_resid = uio->uio_resid; 849 if (paddr) 850 *paddr = 0; 851 if (controlp) 852 *controlp = 0; 853 if (flagsp) 854 flags = *flagsp &~ MSG_EOR; 855 else 856 flags = 0; 857 858 if ((flags & MSG_DONTWAIT) == 0) 859 sodopendfree(so); 860 861 if (flags & MSG_OOB) { 862 m = m_get(M_WAIT, MT_DATA); 863 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 864 (struct mbuf *)(long)(flags & MSG_PEEK), (struct mbuf *)0, 865 (struct proc *)0); 866 if (error) 867 goto bad; 868 do { 869 error = uiomove(mtod(m, caddr_t), 870 (int) min(uio->uio_resid, m->m_len), uio); 871 m = m_free(m); 872 } while (uio->uio_resid && error == 0 && m); 873 bad: 874 if (m) 875 m_freem(m); 876 return (error); 877 } 878 if (mp) 879 *mp = (struct mbuf *)0; 880 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 881 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0, 882 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 883 884 restart: 885 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 886 return (error); 887 s = splsoftnet(); 888 889 m = so->so_rcv.sb_mb; 890 /* 891 * If we have less data than requested, block awaiting more 892 * (subject to any timeout) if: 893 * 1. the current count is less than the low water mark, 894 * 2. MSG_WAITALL is set, and it is possible to do the entire 895 * receive operation at once if we block (resid <= hiwat), or 896 * 3. MSG_DONTWAIT is not set. 897 * If MSG_WAITALL is set but resid is larger than the receive buffer, 898 * we have to do the receive in sections, and thus risk returning 899 * a short count if a timeout or signal occurs after we start. 900 */ 901 if (m == 0 || (((flags & MSG_DONTWAIT) == 0 && 902 so->so_rcv.sb_cc < uio->uio_resid) && 903 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 904 ((flags & MSG_WAITALL) && uio->uio_resid <= so->so_rcv.sb_hiwat)) && 905 m->m_nextpkt == 0 && (pr->pr_flags & PR_ATOMIC) == 0)) { 906 #ifdef DIAGNOSTIC 907 if (m == 0 && so->so_rcv.sb_cc) 908 panic("receive 1"); 909 #endif 910 if (so->so_error) { 911 if (m) 912 goto dontblock; 913 error = so->so_error; 914 if ((flags & MSG_PEEK) == 0) 915 so->so_error = 0; 916 goto release; 917 } 918 if (so->so_state & SS_CANTRCVMORE) { 919 if (m) 920 goto dontblock; 921 else 922 goto release; 923 } 924 for (; m; m = m->m_next) 925 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 926 m = so->so_rcv.sb_mb; 927 goto dontblock; 928 } 929 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 930 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 931 error = ENOTCONN; 932 goto release; 933 } 934 if (uio->uio_resid == 0) 935 goto release; 936 if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) { 937 error = EWOULDBLOCK; 938 goto release; 939 } 940 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 941 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 942 sbunlock(&so->so_rcv); 943 error = sbwait(&so->so_rcv); 944 splx(s); 945 if (error) 946 return (error); 947 goto restart; 948 } 949 dontblock: 950 /* 951 * On entry here, m points to the first record of the socket buffer. 952 * While we process the initial mbufs containing address and control 953 * info, we save a copy of m->m_nextpkt into nextrecord. 954 */ 955 #ifdef notyet /* XXXX */ 956 if (uio->uio_procp) 957 uio->uio_procp->p_stats->p_ru.ru_msgrcv++; 958 #endif 959 KASSERT(m == so->so_rcv.sb_mb); 960 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 961 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 962 nextrecord = m->m_nextpkt; 963 if (pr->pr_flags & PR_ADDR) { 964 #ifdef DIAGNOSTIC 965 if (m->m_type != MT_SONAME) 966 panic("receive 1a"); 967 #endif 968 orig_resid = 0; 969 if (flags & MSG_PEEK) { 970 if (paddr) 971 *paddr = m_copy(m, 0, m->m_len); 972 m = m->m_next; 973 } else { 974 sbfree(&so->so_rcv, m); 975 mbuf_removed = 1; 976 if (paddr) { 977 *paddr = m; 978 so->so_rcv.sb_mb = m->m_next; 979 m->m_next = 0; 980 m = so->so_rcv.sb_mb; 981 } else { 982 MFREE(m, so->so_rcv.sb_mb); 983 m = so->so_rcv.sb_mb; 984 } 985 } 986 } 987 while (m && m->m_type == MT_CONTROL && error == 0) { 988 if (flags & MSG_PEEK) { 989 if (controlp) 990 *controlp = m_copy(m, 0, m->m_len); 991 m = m->m_next; 992 } else { 993 sbfree(&so->so_rcv, m); 994 mbuf_removed = 1; 995 if (controlp) { 996 if (pr->pr_domain->dom_externalize && 997 mtod(m, struct cmsghdr *)->cmsg_type == 998 SCM_RIGHTS) 999 error = (*pr->pr_domain->dom_externalize)(m); 1000 *controlp = m; 1001 so->so_rcv.sb_mb = m->m_next; 1002 m->m_next = 0; 1003 m = so->so_rcv.sb_mb; 1004 } else { 1005 MFREE(m, so->so_rcv.sb_mb); 1006 m = so->so_rcv.sb_mb; 1007 } 1008 } 1009 if (controlp) { 1010 orig_resid = 0; 1011 controlp = &(*controlp)->m_next; 1012 } 1013 } 1014 1015 /* 1016 * If m is non-NULL, we have some data to read. From now on, 1017 * make sure to keep sb_lastrecord consistent when working on 1018 * the last packet on the chain (nextrecord == NULL) and we 1019 * change m->m_nextpkt. 1020 */ 1021 if (m) { 1022 if ((flags & MSG_PEEK) == 0) { 1023 m->m_nextpkt = nextrecord; 1024 /* 1025 * If nextrecord == NULL (this is a single chain), 1026 * then sb_lastrecord may not be valid here if m 1027 * was changed earlier. 1028 */ 1029 if (nextrecord == NULL) { 1030 KASSERT(so->so_rcv.sb_mb == m); 1031 so->so_rcv.sb_lastrecord = m; 1032 } 1033 } 1034 type = m->m_type; 1035 if (type == MT_OOBDATA) 1036 flags |= MSG_OOB; 1037 } else { 1038 if ((flags & MSG_PEEK) == 0) { 1039 KASSERT(so->so_rcv.sb_mb == m); 1040 so->so_rcv.sb_mb = nextrecord; 1041 SB_EMPTY_FIXUP(&so->so_rcv); 1042 } 1043 } 1044 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1045 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1046 1047 moff = 0; 1048 offset = 0; 1049 while (m && uio->uio_resid > 0 && error == 0) { 1050 if (m->m_type == MT_OOBDATA) { 1051 if (type != MT_OOBDATA) 1052 break; 1053 } else if (type == MT_OOBDATA) 1054 break; 1055 #ifdef DIAGNOSTIC 1056 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1057 panic("receive 3"); 1058 #endif 1059 so->so_state &= ~SS_RCVATMARK; 1060 len = uio->uio_resid; 1061 if (so->so_oobmark && len > so->so_oobmark - offset) 1062 len = so->so_oobmark - offset; 1063 if (len > m->m_len - moff) 1064 len = m->m_len - moff; 1065 /* 1066 * If mp is set, just pass back the mbufs. 1067 * Otherwise copy them out via the uio, then free. 1068 * Sockbuf must be consistent here (points to current mbuf, 1069 * it points to next record) when we drop priority; 1070 * we must note any additions to the sockbuf when we 1071 * block interrupts again. 1072 */ 1073 if (mp == 0) { 1074 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1075 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1076 splx(s); 1077 error = uiomove(mtod(m, caddr_t) + moff, (int)len, uio); 1078 s = splsoftnet(); 1079 if (error) { 1080 /* 1081 * If any part of the record has been removed 1082 * (such as the MT_SONAME mbuf, which will 1083 * happen when PR_ADDR, and thus also 1084 * PR_ATOMIC, is set), then drop the entire 1085 * record to maintain the atomicity of the 1086 * receive operation. 1087 * 1088 * This avoids a later panic("receive 1a") 1089 * when compiled with DIAGNOSTIC. 1090 */ 1091 if (m && mbuf_removed 1092 && (pr->pr_flags & PR_ATOMIC)) 1093 (void) sbdroprecord(&so->so_rcv); 1094 1095 goto release; 1096 } 1097 } else 1098 uio->uio_resid -= len; 1099 if (len == m->m_len - moff) { 1100 if (m->m_flags & M_EOR) 1101 flags |= MSG_EOR; 1102 if (flags & MSG_PEEK) { 1103 m = m->m_next; 1104 moff = 0; 1105 } else { 1106 nextrecord = m->m_nextpkt; 1107 sbfree(&so->so_rcv, m); 1108 if (mp) { 1109 *mp = m; 1110 mp = &m->m_next; 1111 so->so_rcv.sb_mb = m = m->m_next; 1112 *mp = (struct mbuf *)0; 1113 } else { 1114 MFREE(m, so->so_rcv.sb_mb); 1115 m = so->so_rcv.sb_mb; 1116 } 1117 /* 1118 * If m != NULL, we also know that 1119 * so->so_rcv.sb_mb != NULL. 1120 */ 1121 KASSERT(so->so_rcv.sb_mb == m); 1122 if (m) { 1123 m->m_nextpkt = nextrecord; 1124 if (nextrecord == NULL) 1125 so->so_rcv.sb_lastrecord = m; 1126 } else { 1127 so->so_rcv.sb_mb = nextrecord; 1128 SB_EMPTY_FIXUP(&so->so_rcv); 1129 } 1130 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1131 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1132 } 1133 } else { 1134 if (flags & MSG_PEEK) 1135 moff += len; 1136 else { 1137 if (mp) 1138 *mp = m_copym(m, 0, len, M_WAIT); 1139 m->m_data += len; 1140 m->m_len -= len; 1141 so->so_rcv.sb_cc -= len; 1142 } 1143 } 1144 if (so->so_oobmark) { 1145 if ((flags & MSG_PEEK) == 0) { 1146 so->so_oobmark -= len; 1147 if (so->so_oobmark == 0) { 1148 so->so_state |= SS_RCVATMARK; 1149 break; 1150 } 1151 } else { 1152 offset += len; 1153 if (offset == so->so_oobmark) 1154 break; 1155 } 1156 } 1157 if (flags & MSG_EOR) 1158 break; 1159 /* 1160 * If the MSG_WAITALL flag is set (for non-atomic socket), 1161 * we must not quit until "uio->uio_resid == 0" or an error 1162 * termination. If a signal/timeout occurs, return 1163 * with a short count but without error. 1164 * Keep sockbuf locked against other readers. 1165 */ 1166 while (flags & MSG_WAITALL && m == 0 && uio->uio_resid > 0 && 1167 !sosendallatonce(so) && !nextrecord) { 1168 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1169 break; 1170 /* 1171 * If we are peeking and the socket receive buffer is 1172 * full, stop since we can't get more data to peek at. 1173 */ 1174 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1175 break; 1176 /* 1177 * If we've drained the socket buffer, tell the 1178 * protocol in case it needs to do something to 1179 * get it filled again. 1180 */ 1181 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1182 (*pr->pr_usrreq)(so, PRU_RCVD, 1183 (struct mbuf *)0, 1184 (struct mbuf *)(long)flags, 1185 (struct mbuf *)0, 1186 (struct proc *)0); 1187 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1188 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1189 error = sbwait(&so->so_rcv); 1190 if (error) { 1191 sbunlock(&so->so_rcv); 1192 splx(s); 1193 return (0); 1194 } 1195 if ((m = so->so_rcv.sb_mb) != NULL) 1196 nextrecord = m->m_nextpkt; 1197 } 1198 } 1199 1200 if (m && pr->pr_flags & PR_ATOMIC) { 1201 flags |= MSG_TRUNC; 1202 if ((flags & MSG_PEEK) == 0) 1203 (void) sbdroprecord(&so->so_rcv); 1204 } 1205 if ((flags & MSG_PEEK) == 0) { 1206 if (m == 0) { 1207 /* 1208 * First part is an inline SB_EMPTY_FIXUP(). Second 1209 * part makes sure sb_lastrecord is up-to-date if 1210 * there is still data in the socket buffer. 1211 */ 1212 so->so_rcv.sb_mb = nextrecord; 1213 if (so->so_rcv.sb_mb == NULL) { 1214 so->so_rcv.sb_mbtail = NULL; 1215 so->so_rcv.sb_lastrecord = NULL; 1216 } else if (nextrecord->m_nextpkt == NULL) 1217 so->so_rcv.sb_lastrecord = nextrecord; 1218 } 1219 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1220 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1221 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1222 (*pr->pr_usrreq)(so, PRU_RCVD, (struct mbuf *)0, 1223 (struct mbuf *)(long)flags, (struct mbuf *)0, 1224 (struct proc *)0); 1225 } 1226 if (orig_resid == uio->uio_resid && orig_resid && 1227 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1228 sbunlock(&so->so_rcv); 1229 splx(s); 1230 goto restart; 1231 } 1232 1233 if (flagsp) 1234 *flagsp |= flags; 1235 release: 1236 sbunlock(&so->so_rcv); 1237 splx(s); 1238 return (error); 1239 } 1240 1241 int 1242 soshutdown(struct socket *so, int how) 1243 { 1244 struct protosw *pr; 1245 1246 pr = so->so_proto; 1247 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1248 return (EINVAL); 1249 1250 if (how == SHUT_RD || how == SHUT_RDWR) 1251 sorflush(so); 1252 if (how == SHUT_WR || how == SHUT_RDWR) 1253 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, (struct mbuf *)0, 1254 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0); 1255 return (0); 1256 } 1257 1258 void 1259 sorflush(struct socket *so) 1260 { 1261 struct sockbuf *sb, asb; 1262 struct protosw *pr; 1263 int s; 1264 1265 sb = &so->so_rcv; 1266 pr = so->so_proto; 1267 sb->sb_flags |= SB_NOINTR; 1268 (void) sblock(sb, M_WAITOK); 1269 s = splnet(); 1270 socantrcvmore(so); 1271 sbunlock(sb); 1272 asb = *sb; 1273 memset((caddr_t)sb, 0, sizeof(*sb)); 1274 splx(s); 1275 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1276 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1277 sbrelease(&asb); 1278 } 1279 1280 int 1281 sosetopt(struct socket *so, int level, int optname, struct mbuf *m0) 1282 { 1283 int error; 1284 struct mbuf *m; 1285 1286 error = 0; 1287 m = m0; 1288 if (level != SOL_SOCKET) { 1289 if (so->so_proto && so->so_proto->pr_ctloutput) 1290 return ((*so->so_proto->pr_ctloutput) 1291 (PRCO_SETOPT, so, level, optname, &m0)); 1292 error = ENOPROTOOPT; 1293 } else { 1294 switch (optname) { 1295 1296 case SO_LINGER: 1297 if (m == NULL || m->m_len != sizeof(struct linger)) { 1298 error = EINVAL; 1299 goto bad; 1300 } 1301 so->so_linger = mtod(m, struct linger *)->l_linger; 1302 /* fall thru... */ 1303 1304 case SO_DEBUG: 1305 case SO_KEEPALIVE: 1306 case SO_DONTROUTE: 1307 case SO_USELOOPBACK: 1308 case SO_BROADCAST: 1309 case SO_REUSEADDR: 1310 case SO_REUSEPORT: 1311 case SO_OOBINLINE: 1312 case SO_TIMESTAMP: 1313 if (m == NULL || m->m_len < sizeof(int)) { 1314 error = EINVAL; 1315 goto bad; 1316 } 1317 if (*mtod(m, int *)) 1318 so->so_options |= optname; 1319 else 1320 so->so_options &= ~optname; 1321 break; 1322 1323 case SO_SNDBUF: 1324 case SO_RCVBUF: 1325 case SO_SNDLOWAT: 1326 case SO_RCVLOWAT: 1327 { 1328 int optval; 1329 1330 if (m == NULL || m->m_len < sizeof(int)) { 1331 error = EINVAL; 1332 goto bad; 1333 } 1334 1335 /* 1336 * Values < 1 make no sense for any of these 1337 * options, so disallow them. 1338 */ 1339 optval = *mtod(m, int *); 1340 if (optval < 1) { 1341 error = EINVAL; 1342 goto bad; 1343 } 1344 1345 switch (optname) { 1346 1347 case SO_SNDBUF: 1348 case SO_RCVBUF: 1349 if (sbreserve(optname == SO_SNDBUF ? 1350 &so->so_snd : &so->so_rcv, 1351 (u_long) optval) == 0) { 1352 error = ENOBUFS; 1353 goto bad; 1354 } 1355 break; 1356 1357 /* 1358 * Make sure the low-water is never greater than 1359 * the high-water. 1360 */ 1361 case SO_SNDLOWAT: 1362 so->so_snd.sb_lowat = 1363 (optval > so->so_snd.sb_hiwat) ? 1364 so->so_snd.sb_hiwat : optval; 1365 break; 1366 case SO_RCVLOWAT: 1367 so->so_rcv.sb_lowat = 1368 (optval > so->so_rcv.sb_hiwat) ? 1369 so->so_rcv.sb_hiwat : optval; 1370 break; 1371 } 1372 break; 1373 } 1374 1375 case SO_SNDTIMEO: 1376 case SO_RCVTIMEO: 1377 { 1378 struct timeval *tv; 1379 short val; 1380 1381 if (m == NULL || m->m_len < sizeof(*tv)) { 1382 error = EINVAL; 1383 goto bad; 1384 } 1385 tv = mtod(m, struct timeval *); 1386 if (tv->tv_sec > (SHRT_MAX - tv->tv_usec / tick) / hz) { 1387 error = EDOM; 1388 goto bad; 1389 } 1390 val = tv->tv_sec * hz + tv->tv_usec / tick; 1391 if (val == 0 && tv->tv_usec != 0) 1392 val = 1; 1393 1394 switch (optname) { 1395 1396 case SO_SNDTIMEO: 1397 so->so_snd.sb_timeo = val; 1398 break; 1399 case SO_RCVTIMEO: 1400 so->so_rcv.sb_timeo = val; 1401 break; 1402 } 1403 break; 1404 } 1405 1406 default: 1407 error = ENOPROTOOPT; 1408 break; 1409 } 1410 if (error == 0 && so->so_proto && so->so_proto->pr_ctloutput) { 1411 (void) ((*so->so_proto->pr_ctloutput) 1412 (PRCO_SETOPT, so, level, optname, &m0)); 1413 m = NULL; /* freed by protocol */ 1414 } 1415 } 1416 bad: 1417 if (m) 1418 (void) m_free(m); 1419 return (error); 1420 } 1421 1422 int 1423 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1424 { 1425 struct mbuf *m; 1426 1427 if (level != SOL_SOCKET) { 1428 if (so->so_proto && so->so_proto->pr_ctloutput) { 1429 return ((*so->so_proto->pr_ctloutput) 1430 (PRCO_GETOPT, so, level, optname, mp)); 1431 } else 1432 return (ENOPROTOOPT); 1433 } else { 1434 m = m_get(M_WAIT, MT_SOOPTS); 1435 m->m_len = sizeof(int); 1436 1437 switch (optname) { 1438 1439 case SO_LINGER: 1440 m->m_len = sizeof(struct linger); 1441 mtod(m, struct linger *)->l_onoff = 1442 so->so_options & SO_LINGER; 1443 mtod(m, struct linger *)->l_linger = so->so_linger; 1444 break; 1445 1446 case SO_USELOOPBACK: 1447 case SO_DONTROUTE: 1448 case SO_DEBUG: 1449 case SO_KEEPALIVE: 1450 case SO_REUSEADDR: 1451 case SO_REUSEPORT: 1452 case SO_BROADCAST: 1453 case SO_OOBINLINE: 1454 case SO_TIMESTAMP: 1455 *mtod(m, int *) = so->so_options & optname; 1456 break; 1457 1458 case SO_TYPE: 1459 *mtod(m, int *) = so->so_type; 1460 break; 1461 1462 case SO_ERROR: 1463 *mtod(m, int *) = so->so_error; 1464 so->so_error = 0; 1465 break; 1466 1467 case SO_SNDBUF: 1468 *mtod(m, int *) = so->so_snd.sb_hiwat; 1469 break; 1470 1471 case SO_RCVBUF: 1472 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1473 break; 1474 1475 case SO_SNDLOWAT: 1476 *mtod(m, int *) = so->so_snd.sb_lowat; 1477 break; 1478 1479 case SO_RCVLOWAT: 1480 *mtod(m, int *) = so->so_rcv.sb_lowat; 1481 break; 1482 1483 case SO_SNDTIMEO: 1484 case SO_RCVTIMEO: 1485 { 1486 int val = (optname == SO_SNDTIMEO ? 1487 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1488 1489 m->m_len = sizeof(struct timeval); 1490 mtod(m, struct timeval *)->tv_sec = val / hz; 1491 mtod(m, struct timeval *)->tv_usec = 1492 (val % hz) * tick; 1493 break; 1494 } 1495 1496 default: 1497 (void)m_free(m); 1498 return (ENOPROTOOPT); 1499 } 1500 *mp = m; 1501 return (0); 1502 } 1503 } 1504 1505 void 1506 sohasoutofband(struct socket *so) 1507 { 1508 struct proc *p; 1509 1510 if (so->so_pgid < 0) 1511 gsignal(-so->so_pgid, SIGURG); 1512 else if (so->so_pgid > 0 && (p = pfind(so->so_pgid)) != 0) 1513 psignal(p, SIGURG); 1514 selwakeup(&so->so_rcv.sb_sel); 1515 } 1516 1517 static void 1518 filt_sordetach(struct knote *kn) 1519 { 1520 struct socket *so; 1521 1522 so = (struct socket *)kn->kn_fp->f_data; 1523 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 1524 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 1525 so->so_rcv.sb_flags &= ~SB_KNOTE; 1526 } 1527 1528 /*ARGSUSED*/ 1529 static int 1530 filt_soread(struct knote *kn, long hint) 1531 { 1532 struct socket *so; 1533 1534 so = (struct socket *)kn->kn_fp->f_data; 1535 kn->kn_data = so->so_rcv.sb_cc; 1536 if (so->so_state & SS_CANTRCVMORE) { 1537 kn->kn_flags |= EV_EOF; 1538 kn->kn_fflags = so->so_error; 1539 return (1); 1540 } 1541 if (so->so_error) /* temporary udp error */ 1542 return (1); 1543 if (kn->kn_sfflags & NOTE_LOWAT) 1544 return (kn->kn_data >= kn->kn_sdata); 1545 return (kn->kn_data >= so->so_rcv.sb_lowat); 1546 } 1547 1548 static void 1549 filt_sowdetach(struct knote *kn) 1550 { 1551 struct socket *so; 1552 1553 so = (struct socket *)kn->kn_fp->f_data; 1554 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 1555 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 1556 so->so_snd.sb_flags &= ~SB_KNOTE; 1557 } 1558 1559 /*ARGSUSED*/ 1560 static int 1561 filt_sowrite(struct knote *kn, long hint) 1562 { 1563 struct socket *so; 1564 1565 so = (struct socket *)kn->kn_fp->f_data; 1566 kn->kn_data = sbspace(&so->so_snd); 1567 if (so->so_state & SS_CANTSENDMORE) { 1568 kn->kn_flags |= EV_EOF; 1569 kn->kn_fflags = so->so_error; 1570 return (1); 1571 } 1572 if (so->so_error) /* temporary udp error */ 1573 return (1); 1574 if (((so->so_state & SS_ISCONNECTED) == 0) && 1575 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1576 return (0); 1577 if (kn->kn_sfflags & NOTE_LOWAT) 1578 return (kn->kn_data >= kn->kn_sdata); 1579 return (kn->kn_data >= so->so_snd.sb_lowat); 1580 } 1581 1582 /*ARGSUSED*/ 1583 static int 1584 filt_solisten(struct knote *kn, long hint) 1585 { 1586 struct socket *so; 1587 1588 so = (struct socket *)kn->kn_fp->f_data; 1589 1590 /* 1591 * Set kn_data to number of incoming connections, not 1592 * counting partial (incomplete) connections. 1593 */ 1594 kn->kn_data = so->so_qlen; 1595 return (kn->kn_data > 0); 1596 } 1597 1598 static const struct filterops solisten_filtops = 1599 { 1, NULL, filt_sordetach, filt_solisten }; 1600 static const struct filterops soread_filtops = 1601 { 1, NULL, filt_sordetach, filt_soread }; 1602 static const struct filterops sowrite_filtops = 1603 { 1, NULL, filt_sowdetach, filt_sowrite }; 1604 1605 int 1606 soo_kqfilter(struct file *fp, struct knote *kn) 1607 { 1608 struct socket *so; 1609 struct sockbuf *sb; 1610 1611 so = (struct socket *)kn->kn_fp->f_data; 1612 switch (kn->kn_filter) { 1613 case EVFILT_READ: 1614 if (so->so_options & SO_ACCEPTCONN) 1615 kn->kn_fop = &solisten_filtops; 1616 else 1617 kn->kn_fop = &soread_filtops; 1618 sb = &so->so_rcv; 1619 break; 1620 case EVFILT_WRITE: 1621 kn->kn_fop = &sowrite_filtops; 1622 sb = &so->so_snd; 1623 break; 1624 default: 1625 return (1); 1626 } 1627 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 1628 sb->sb_flags |= SB_KNOTE; 1629 return (0); 1630 } 1631 1632