1 /* $NetBSD: uipc_socket.c,v 1.151 2008/02/06 21:57:54 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 2002, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of Wasabi Systems, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1982, 1986, 1988, 1990, 1993 41 * The Regents of the University of California. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)uipc_socket.c 8.6 (Berkeley) 5/2/95 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: uipc_socket.c,v 1.151 2008/02/06 21:57:54 ad Exp $"); 72 73 #include "opt_sock_counters.h" 74 #include "opt_sosend_loan.h" 75 #include "opt_mbuftrace.h" 76 #include "opt_somaxkva.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/proc.h> 81 #include <sys/file.h> 82 #include <sys/filedesc.h> 83 #include <sys/malloc.h> 84 #include <sys/mbuf.h> 85 #include <sys/domain.h> 86 #include <sys/kernel.h> 87 #include <sys/protosw.h> 88 #include <sys/socket.h> 89 #include <sys/socketvar.h> 90 #include <sys/signalvar.h> 91 #include <sys/resourcevar.h> 92 #include <sys/pool.h> 93 #include <sys/event.h> 94 #include <sys/poll.h> 95 #include <sys/kauth.h> 96 #include <sys/mutex.h> 97 #include <sys/condvar.h> 98 99 #include <uvm/uvm.h> 100 101 POOL_INIT(socket_pool, sizeof(struct socket), 0, 0, 0, "sockpl", NULL, 102 IPL_SOFTNET); 103 104 MALLOC_DEFINE(M_SOOPTS, "soopts", "socket options"); 105 MALLOC_DEFINE(M_SONAME, "soname", "socket name"); 106 107 extern const struct fileops socketops; 108 109 extern int somaxconn; /* patchable (XXX sysctl) */ 110 int somaxconn = SOMAXCONN; 111 112 #ifdef SOSEND_COUNTERS 113 #include <sys/device.h> 114 115 static struct evcnt sosend_loan_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 116 NULL, "sosend", "loan big"); 117 static struct evcnt sosend_copy_big = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 118 NULL, "sosend", "copy big"); 119 static struct evcnt sosend_copy_small = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 120 NULL, "sosend", "copy small"); 121 static struct evcnt sosend_kvalimit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, 122 NULL, "sosend", "kva limit"); 123 124 #define SOSEND_COUNTER_INCR(ev) (ev)->ev_count++ 125 126 EVCNT_ATTACH_STATIC(sosend_loan_big); 127 EVCNT_ATTACH_STATIC(sosend_copy_big); 128 EVCNT_ATTACH_STATIC(sosend_copy_small); 129 EVCNT_ATTACH_STATIC(sosend_kvalimit); 130 #else 131 132 #define SOSEND_COUNTER_INCR(ev) /* nothing */ 133 134 #endif /* SOSEND_COUNTERS */ 135 136 static struct callback_entry sokva_reclaimerentry; 137 138 #ifdef SOSEND_NO_LOAN 139 int sock_loan_thresh = -1; 140 #else 141 int sock_loan_thresh = 4096; 142 #endif 143 144 static kmutex_t so_pendfree_lock; 145 static struct mbuf *so_pendfree; 146 147 #ifndef SOMAXKVA 148 #define SOMAXKVA (16 * 1024 * 1024) 149 #endif 150 int somaxkva = SOMAXKVA; 151 static int socurkva; 152 static kcondvar_t socurkva_cv; 153 154 #define SOCK_LOAN_CHUNK 65536 155 156 static size_t sodopendfree(void); 157 static size_t sodopendfreel(void); 158 159 static vsize_t 160 sokvareserve(struct socket *so, vsize_t len) 161 { 162 int error; 163 164 mutex_enter(&so_pendfree_lock); 165 while (socurkva + len > somaxkva) { 166 size_t freed; 167 168 /* 169 * try to do pendfree. 170 */ 171 172 freed = sodopendfreel(); 173 174 /* 175 * if some kva was freed, try again. 176 */ 177 178 if (freed) 179 continue; 180 181 SOSEND_COUNTER_INCR(&sosend_kvalimit); 182 error = cv_wait_sig(&socurkva_cv, &so_pendfree_lock); 183 if (error) { 184 len = 0; 185 break; 186 } 187 } 188 socurkva += len; 189 mutex_exit(&so_pendfree_lock); 190 return len; 191 } 192 193 static void 194 sokvaunreserve(vsize_t len) 195 { 196 197 mutex_enter(&so_pendfree_lock); 198 socurkva -= len; 199 cv_broadcast(&socurkva_cv); 200 mutex_exit(&so_pendfree_lock); 201 } 202 203 /* 204 * sokvaalloc: allocate kva for loan. 205 */ 206 207 vaddr_t 208 sokvaalloc(vsize_t len, struct socket *so) 209 { 210 vaddr_t lva; 211 212 /* 213 * reserve kva. 214 */ 215 216 if (sokvareserve(so, len) == 0) 217 return 0; 218 219 /* 220 * allocate kva. 221 */ 222 223 lva = uvm_km_alloc(kernel_map, len, 0, UVM_KMF_VAONLY | UVM_KMF_WAITVA); 224 if (lva == 0) { 225 sokvaunreserve(len); 226 return (0); 227 } 228 229 return lva; 230 } 231 232 /* 233 * sokvafree: free kva for loan. 234 */ 235 236 void 237 sokvafree(vaddr_t sva, vsize_t len) 238 { 239 240 /* 241 * free kva. 242 */ 243 244 uvm_km_free(kernel_map, sva, len, UVM_KMF_VAONLY); 245 246 /* 247 * unreserve kva. 248 */ 249 250 sokvaunreserve(len); 251 } 252 253 static void 254 sodoloanfree(struct vm_page **pgs, void *buf, size_t size) 255 { 256 vaddr_t va, sva, eva; 257 vsize_t len; 258 paddr_t pa; 259 int i, npgs; 260 261 eva = round_page((vaddr_t) buf + size); 262 sva = trunc_page((vaddr_t) buf); 263 len = eva - sva; 264 npgs = len >> PAGE_SHIFT; 265 266 if (__predict_false(pgs == NULL)) { 267 pgs = alloca(npgs * sizeof(*pgs)); 268 269 for (i = 0, va = sva; va < eva; i++, va += PAGE_SIZE) { 270 if (pmap_extract(pmap_kernel(), va, &pa) == false) 271 panic("sodoloanfree: va 0x%lx not mapped", va); 272 pgs[i] = PHYS_TO_VM_PAGE(pa); 273 } 274 } 275 276 pmap_kremove(sva, len); 277 pmap_update(pmap_kernel()); 278 uvm_unloan(pgs, npgs, UVM_LOAN_TOPAGE); 279 sokvafree(sva, len); 280 } 281 282 static size_t 283 sodopendfree() 284 { 285 size_t rv; 286 287 mutex_enter(&so_pendfree_lock); 288 rv = sodopendfreel(); 289 mutex_exit(&so_pendfree_lock); 290 291 return rv; 292 } 293 294 /* 295 * sodopendfreel: free mbufs on "pendfree" list. 296 * unlock and relock so_pendfree_lock when freeing mbufs. 297 * 298 * => called with so_pendfree_lock held. 299 */ 300 301 static size_t 302 sodopendfreel() 303 { 304 struct mbuf *m, *next; 305 size_t rv = 0; 306 307 KASSERT(mutex_owned(&so_pendfree_lock)); 308 309 while (so_pendfree != NULL) { 310 m = so_pendfree; 311 so_pendfree = NULL; 312 mutex_exit(&so_pendfree_lock); 313 314 for (; m != NULL; m = next) { 315 next = m->m_next; 316 317 rv += m->m_ext.ext_size; 318 sodoloanfree((m->m_flags & M_EXT_PAGES) ? 319 m->m_ext.ext_pgs : NULL, m->m_ext.ext_buf, 320 m->m_ext.ext_size); 321 pool_cache_put(mb_cache, m); 322 } 323 324 mutex_enter(&so_pendfree_lock); 325 } 326 327 return (rv); 328 } 329 330 void 331 soloanfree(struct mbuf *m, void *buf, size_t size, void *arg) 332 { 333 334 if (m == NULL) { 335 336 /* 337 * called from MEXTREMOVE. 338 */ 339 340 sodoloanfree(NULL, buf, size); 341 return; 342 } 343 344 /* 345 * postpone freeing mbuf. 346 * 347 * we can't do it in interrupt context 348 * because we need to put kva back to kernel_map. 349 */ 350 351 mutex_enter(&so_pendfree_lock); 352 m->m_next = so_pendfree; 353 so_pendfree = m; 354 cv_broadcast(&socurkva_cv); 355 mutex_exit(&so_pendfree_lock); 356 } 357 358 static long 359 sosend_loan(struct socket *so, struct uio *uio, struct mbuf *m, long space) 360 { 361 struct iovec *iov = uio->uio_iov; 362 vaddr_t sva, eva; 363 vsize_t len; 364 vaddr_t lva, va; 365 int npgs, i, error; 366 367 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) 368 return (0); 369 370 if (iov->iov_len < (size_t) space) 371 space = iov->iov_len; 372 if (space > SOCK_LOAN_CHUNK) 373 space = SOCK_LOAN_CHUNK; 374 375 eva = round_page((vaddr_t) iov->iov_base + space); 376 sva = trunc_page((vaddr_t) iov->iov_base); 377 len = eva - sva; 378 npgs = len >> PAGE_SHIFT; 379 380 /* XXX KDASSERT */ 381 KASSERT(npgs <= M_EXT_MAXPAGES); 382 383 lva = sokvaalloc(len, so); 384 if (lva == 0) 385 return 0; 386 387 error = uvm_loan(&uio->uio_vmspace->vm_map, sva, len, 388 m->m_ext.ext_pgs, UVM_LOAN_TOPAGE); 389 if (error) { 390 sokvafree(lva, len); 391 return (0); 392 } 393 394 for (i = 0, va = lva; i < npgs; i++, va += PAGE_SIZE) 395 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(m->m_ext.ext_pgs[i]), 396 VM_PROT_READ); 397 pmap_update(pmap_kernel()); 398 399 lva += (vaddr_t) iov->iov_base & PAGE_MASK; 400 401 MEXTADD(m, (void *) lva, space, M_MBUF, soloanfree, so); 402 m->m_flags |= M_EXT_PAGES | M_EXT_ROMAP; 403 404 uio->uio_resid -= space; 405 /* uio_offset not updated, not set/used for write(2) */ 406 uio->uio_iov->iov_base = (char *)uio->uio_iov->iov_base + space; 407 uio->uio_iov->iov_len -= space; 408 if (uio->uio_iov->iov_len == 0) { 409 uio->uio_iov++; 410 uio->uio_iovcnt--; 411 } 412 413 return (space); 414 } 415 416 static int 417 sokva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg) 418 { 419 420 KASSERT(ce == &sokva_reclaimerentry); 421 KASSERT(obj == NULL); 422 423 sodopendfree(); 424 if (!vm_map_starved_p(kernel_map)) { 425 return CALLBACK_CHAIN_ABORT; 426 } 427 return CALLBACK_CHAIN_CONTINUE; 428 } 429 430 struct mbuf * 431 getsombuf(struct socket *so, int type) 432 { 433 struct mbuf *m; 434 435 m = m_get(M_WAIT, type); 436 MCLAIM(m, so->so_mowner); 437 return m; 438 } 439 440 struct mbuf * 441 m_intopt(struct socket *so, int val) 442 { 443 struct mbuf *m; 444 445 m = getsombuf(so, MT_SOOPTS); 446 m->m_len = sizeof(int); 447 *mtod(m, int *) = val; 448 return m; 449 } 450 451 void 452 soinit(void) 453 { 454 455 mutex_init(&so_pendfree_lock, MUTEX_DEFAULT, IPL_VM); 456 cv_init(&socurkva_cv, "sokva"); 457 458 /* Set the initial adjusted socket buffer size. */ 459 if (sb_max_set(sb_max)) 460 panic("bad initial sb_max value: %lu", sb_max); 461 462 callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback, 463 &sokva_reclaimerentry, NULL, sokva_reclaim_callback); 464 } 465 466 /* 467 * Socket operation routines. 468 * These routines are called by the routines in 469 * sys_socket.c or from a system process, and 470 * implement the semantics of socket operations by 471 * switching out to the protocol specific routines. 472 */ 473 /*ARGSUSED*/ 474 int 475 socreate(int dom, struct socket **aso, int type, int proto, struct lwp *l) 476 { 477 const struct protosw *prp; 478 struct socket *so; 479 uid_t uid; 480 int error, s; 481 482 error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_SOCKET, 483 KAUTH_REQ_NETWORK_SOCKET_OPEN, KAUTH_ARG(dom), KAUTH_ARG(type), 484 KAUTH_ARG(proto)); 485 if (error != 0) 486 return error; 487 488 if (proto) 489 prp = pffindproto(dom, proto, type); 490 else 491 prp = pffindtype(dom, type); 492 if (prp == NULL) { 493 /* no support for domain */ 494 if (pffinddomain(dom) == 0) 495 return EAFNOSUPPORT; 496 /* no support for socket type */ 497 if (proto == 0 && type != 0) 498 return EPROTOTYPE; 499 return EPROTONOSUPPORT; 500 } 501 if (prp->pr_usrreq == NULL) 502 return EPROTONOSUPPORT; 503 if (prp->pr_type != type) 504 return EPROTOTYPE; 505 s = splsoftnet(); 506 so = pool_get(&socket_pool, PR_WAITOK); 507 memset(so, 0, sizeof(*so)); 508 TAILQ_INIT(&so->so_q0); 509 TAILQ_INIT(&so->so_q); 510 so->so_type = type; 511 so->so_proto = prp; 512 so->so_send = sosend; 513 so->so_receive = soreceive; 514 #ifdef MBUFTRACE 515 so->so_rcv.sb_mowner = &prp->pr_domain->dom_mowner; 516 so->so_snd.sb_mowner = &prp->pr_domain->dom_mowner; 517 so->so_mowner = &prp->pr_domain->dom_mowner; 518 #endif 519 selinit(&so->so_rcv.sb_sel); 520 selinit(&so->so_snd.sb_sel); 521 uid = kauth_cred_geteuid(l->l_cred); 522 so->so_uidinfo = uid_find(uid); 523 error = (*prp->pr_usrreq)(so, PRU_ATTACH, NULL, 524 (struct mbuf *)(long)proto, NULL, l); 525 if (error != 0) { 526 so->so_state |= SS_NOFDREF; 527 sofree(so); 528 splx(s); 529 return error; 530 } 531 splx(s); 532 *aso = so; 533 return 0; 534 } 535 536 /* On success, write file descriptor to fdout and return zero. On 537 * failure, return non-zero; *fdout will be undefined. 538 */ 539 int 540 fsocreate(int domain, struct socket **sop, int type, int protocol, 541 struct lwp *l, int *fdout) 542 { 543 struct filedesc *fdp; 544 struct socket *so; 545 struct file *fp; 546 int fd, error; 547 548 fdp = l->l_proc->p_fd; 549 /* falloc() will use the desciptor for us */ 550 if ((error = falloc(l, &fp, &fd)) != 0) 551 return (error); 552 fp->f_flag = FREAD|FWRITE; 553 fp->f_type = DTYPE_SOCKET; 554 fp->f_ops = &socketops; 555 error = socreate(domain, &so, type, protocol, l); 556 if (error != 0) { 557 FILE_UNUSE(fp, l); 558 fdremove(fdp, fd); 559 ffree(fp); 560 } else { 561 if (sop != NULL) 562 *sop = so; 563 fp->f_data = so; 564 FILE_SET_MATURE(fp); 565 FILE_UNUSE(fp, l); 566 *fdout = fd; 567 } 568 return error; 569 } 570 571 int 572 sobind(struct socket *so, struct mbuf *nam, struct lwp *l) 573 { 574 int s, error; 575 576 s = splsoftnet(); 577 error = (*so->so_proto->pr_usrreq)(so, PRU_BIND, NULL, nam, NULL, l); 578 splx(s); 579 return error; 580 } 581 582 int 583 solisten(struct socket *so, int backlog, struct lwp *l) 584 { 585 int s, error; 586 587 s = splsoftnet(); 588 error = (*so->so_proto->pr_usrreq)(so, PRU_LISTEN, NULL, 589 NULL, NULL, l); 590 if (error != 0) { 591 splx(s); 592 return error; 593 } 594 if (TAILQ_EMPTY(&so->so_q)) 595 so->so_options |= SO_ACCEPTCONN; 596 if (backlog < 0) 597 backlog = 0; 598 so->so_qlimit = min(backlog, somaxconn); 599 splx(s); 600 return 0; 601 } 602 603 void 604 sofree(struct socket *so) 605 { 606 607 if (so->so_pcb || (so->so_state & SS_NOFDREF) == 0) 608 return; 609 if (so->so_head) { 610 /* 611 * We must not decommission a socket that's on the accept(2) 612 * queue. If we do, then accept(2) may hang after select(2) 613 * indicated that the listening socket was ready. 614 */ 615 if (!soqremque(so, 0)) 616 return; 617 } 618 if (so->so_rcv.sb_hiwat) 619 (void)chgsbsize(so->so_uidinfo, &so->so_rcv.sb_hiwat, 0, 620 RLIM_INFINITY); 621 if (so->so_snd.sb_hiwat) 622 (void)chgsbsize(so->so_uidinfo, &so->so_snd.sb_hiwat, 0, 623 RLIM_INFINITY); 624 sbrelease(&so->so_snd, so); 625 sorflush(so); 626 seldestroy(&so->so_rcv.sb_sel); 627 seldestroy(&so->so_snd.sb_sel); 628 pool_put(&socket_pool, so); 629 } 630 631 /* 632 * Close a socket on last file table reference removal. 633 * Initiate disconnect if connected. 634 * Free socket when disconnect complete. 635 */ 636 int 637 soclose(struct socket *so) 638 { 639 struct socket *so2; 640 int s, error; 641 642 error = 0; 643 s = splsoftnet(); /* conservative */ 644 if (so->so_options & SO_ACCEPTCONN) { 645 while ((so2 = TAILQ_FIRST(&so->so_q0)) != 0) { 646 (void) soqremque(so2, 0); 647 (void) soabort(so2); 648 } 649 while ((so2 = TAILQ_FIRST(&so->so_q)) != 0) { 650 (void) soqremque(so2, 1); 651 (void) soabort(so2); 652 } 653 } 654 if (so->so_pcb == 0) 655 goto discard; 656 if (so->so_state & SS_ISCONNECTED) { 657 if ((so->so_state & SS_ISDISCONNECTING) == 0) { 658 error = sodisconnect(so); 659 if (error) 660 goto drop; 661 } 662 if (so->so_options & SO_LINGER) { 663 if ((so->so_state & SS_ISDISCONNECTING) && so->so_nbio) 664 goto drop; 665 while (so->so_state & SS_ISCONNECTED) { 666 error = tsleep((void *)&so->so_timeo, 667 PSOCK | PCATCH, netcls, 668 so->so_linger * hz); 669 if (error) 670 break; 671 } 672 } 673 } 674 drop: 675 if (so->so_pcb) { 676 int error2 = (*so->so_proto->pr_usrreq)(so, PRU_DETACH, 677 NULL, NULL, NULL, NULL); 678 if (error == 0) 679 error = error2; 680 } 681 discard: 682 if (so->so_state & SS_NOFDREF) 683 panic("soclose: NOFDREF"); 684 so->so_state |= SS_NOFDREF; 685 sofree(so); 686 splx(s); 687 return (error); 688 } 689 690 /* 691 * Must be called at splsoftnet... 692 */ 693 int 694 soabort(struct socket *so) 695 { 696 int error; 697 698 KASSERT(so->so_head == NULL); 699 error = (*so->so_proto->pr_usrreq)(so, PRU_ABORT, NULL, 700 NULL, NULL, NULL); 701 if (error) { 702 sofree(so); 703 } 704 return error; 705 } 706 707 int 708 soaccept(struct socket *so, struct mbuf *nam) 709 { 710 int s, error; 711 712 error = 0; 713 s = splsoftnet(); 714 if ((so->so_state & SS_NOFDREF) == 0) 715 panic("soaccept: !NOFDREF"); 716 so->so_state &= ~SS_NOFDREF; 717 if ((so->so_state & SS_ISDISCONNECTED) == 0 || 718 (so->so_proto->pr_flags & PR_ABRTACPTDIS) == 0) 719 error = (*so->so_proto->pr_usrreq)(so, PRU_ACCEPT, 720 NULL, nam, NULL, NULL); 721 else 722 error = ECONNABORTED; 723 724 splx(s); 725 return (error); 726 } 727 728 int 729 soconnect(struct socket *so, struct mbuf *nam, struct lwp *l) 730 { 731 int s, error; 732 733 if (so->so_options & SO_ACCEPTCONN) 734 return (EOPNOTSUPP); 735 s = splsoftnet(); 736 /* 737 * If protocol is connection-based, can only connect once. 738 * Otherwise, if connected, try to disconnect first. 739 * This allows user to disconnect by connecting to, e.g., 740 * a null address. 741 */ 742 if (so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING) && 743 ((so->so_proto->pr_flags & PR_CONNREQUIRED) || 744 (error = sodisconnect(so)))) 745 error = EISCONN; 746 else 747 error = (*so->so_proto->pr_usrreq)(so, PRU_CONNECT, 748 NULL, nam, NULL, l); 749 splx(s); 750 return (error); 751 } 752 753 int 754 soconnect2(struct socket *so1, struct socket *so2) 755 { 756 int s, error; 757 758 s = splsoftnet(); 759 error = (*so1->so_proto->pr_usrreq)(so1, PRU_CONNECT2, 760 NULL, (struct mbuf *)so2, NULL, NULL); 761 splx(s); 762 return (error); 763 } 764 765 int 766 sodisconnect(struct socket *so) 767 { 768 int s, error; 769 770 s = splsoftnet(); 771 if ((so->so_state & SS_ISCONNECTED) == 0) { 772 error = ENOTCONN; 773 goto bad; 774 } 775 if (so->so_state & SS_ISDISCONNECTING) { 776 error = EALREADY; 777 goto bad; 778 } 779 error = (*so->so_proto->pr_usrreq)(so, PRU_DISCONNECT, 780 NULL, NULL, NULL, NULL); 781 bad: 782 splx(s); 783 sodopendfree(); 784 return (error); 785 } 786 787 #define SBLOCKWAIT(f) (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK) 788 /* 789 * Send on a socket. 790 * If send must go all at once and message is larger than 791 * send buffering, then hard error. 792 * Lock against other senders. 793 * If must go all at once and not enough room now, then 794 * inform user that this would block and do nothing. 795 * Otherwise, if nonblocking, send as much as possible. 796 * The data to be sent is described by "uio" if nonzero, 797 * otherwise by the mbuf chain "top" (which must be null 798 * if uio is not). Data provided in mbuf chain must be small 799 * enough to send all at once. 800 * 801 * Returns nonzero on error, timeout or signal; callers 802 * must check for short counts if EINTR/ERESTART are returned. 803 * Data and control buffers are freed on return. 804 */ 805 int 806 sosend(struct socket *so, struct mbuf *addr, struct uio *uio, struct mbuf *top, 807 struct mbuf *control, int flags, struct lwp *l) 808 { 809 struct mbuf **mp, *m; 810 struct proc *p; 811 long space, len, resid, clen, mlen; 812 int error, s, dontroute, atomic; 813 814 p = l->l_proc; 815 sodopendfree(); 816 817 clen = 0; 818 atomic = sosendallatonce(so) || top; 819 if (uio) 820 resid = uio->uio_resid; 821 else 822 resid = top->m_pkthdr.len; 823 /* 824 * In theory resid should be unsigned. 825 * However, space must be signed, as it might be less than 0 826 * if we over-committed, and we must use a signed comparison 827 * of space and resid. On the other hand, a negative resid 828 * causes us to loop sending 0-length segments to the protocol. 829 */ 830 if (resid < 0) { 831 error = EINVAL; 832 goto out; 833 } 834 dontroute = 835 (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 && 836 (so->so_proto->pr_flags & PR_ATOMIC); 837 if (p) 838 p->p_stats->p_ru.ru_msgsnd++; 839 if (control) 840 clen = control->m_len; 841 #define snderr(errno) { error = errno; splx(s); goto release; } 842 843 restart: 844 if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0) 845 goto out; 846 do { 847 s = splsoftnet(); 848 if (so->so_state & SS_CANTSENDMORE) 849 snderr(EPIPE); 850 if (so->so_error) { 851 error = so->so_error; 852 so->so_error = 0; 853 splx(s); 854 goto release; 855 } 856 if ((so->so_state & SS_ISCONNECTED) == 0) { 857 if (so->so_proto->pr_flags & PR_CONNREQUIRED) { 858 if ((so->so_state & SS_ISCONFIRMING) == 0 && 859 !(resid == 0 && clen != 0)) 860 snderr(ENOTCONN); 861 } else if (addr == 0) 862 snderr(EDESTADDRREQ); 863 } 864 space = sbspace(&so->so_snd); 865 if (flags & MSG_OOB) 866 space += 1024; 867 if ((atomic && resid > so->so_snd.sb_hiwat) || 868 clen > so->so_snd.sb_hiwat) 869 snderr(EMSGSIZE); 870 if (space < resid + clen && 871 (atomic || space < so->so_snd.sb_lowat || space < clen)) { 872 if (so->so_nbio) 873 snderr(EWOULDBLOCK); 874 sbunlock(&so->so_snd); 875 error = sbwait(&so->so_snd); 876 splx(s); 877 if (error) 878 goto out; 879 goto restart; 880 } 881 splx(s); 882 mp = ⊤ 883 space -= clen; 884 do { 885 if (uio == NULL) { 886 /* 887 * Data is prepackaged in "top". 888 */ 889 resid = 0; 890 if (flags & MSG_EOR) 891 top->m_flags |= M_EOR; 892 } else do { 893 if (top == NULL) { 894 m = m_gethdr(M_WAIT, MT_DATA); 895 mlen = MHLEN; 896 m->m_pkthdr.len = 0; 897 m->m_pkthdr.rcvif = NULL; 898 } else { 899 m = m_get(M_WAIT, MT_DATA); 900 mlen = MLEN; 901 } 902 MCLAIM(m, so->so_snd.sb_mowner); 903 if (sock_loan_thresh >= 0 && 904 uio->uio_iov->iov_len >= sock_loan_thresh && 905 space >= sock_loan_thresh && 906 (len = sosend_loan(so, uio, m, 907 space)) != 0) { 908 SOSEND_COUNTER_INCR(&sosend_loan_big); 909 space -= len; 910 goto have_data; 911 } 912 if (resid >= MINCLSIZE && space >= MCLBYTES) { 913 SOSEND_COUNTER_INCR(&sosend_copy_big); 914 m_clget(m, M_WAIT); 915 if ((m->m_flags & M_EXT) == 0) 916 goto nopages; 917 mlen = MCLBYTES; 918 if (atomic && top == 0) { 919 len = lmin(MCLBYTES - max_hdr, 920 resid); 921 m->m_data += max_hdr; 922 } else 923 len = lmin(MCLBYTES, resid); 924 space -= len; 925 } else { 926 nopages: 927 SOSEND_COUNTER_INCR(&sosend_copy_small); 928 len = lmin(lmin(mlen, resid), space); 929 space -= len; 930 /* 931 * For datagram protocols, leave room 932 * for protocol headers in first mbuf. 933 */ 934 if (atomic && top == 0 && len < mlen) 935 MH_ALIGN(m, len); 936 } 937 error = uiomove(mtod(m, void *), (int)len, uio); 938 have_data: 939 resid = uio->uio_resid; 940 m->m_len = len; 941 *mp = m; 942 top->m_pkthdr.len += len; 943 if (error != 0) 944 goto release; 945 mp = &m->m_next; 946 if (resid <= 0) { 947 if (flags & MSG_EOR) 948 top->m_flags |= M_EOR; 949 break; 950 } 951 } while (space > 0 && atomic); 952 953 s = splsoftnet(); 954 955 if (so->so_state & SS_CANTSENDMORE) 956 snderr(EPIPE); 957 958 if (dontroute) 959 so->so_options |= SO_DONTROUTE; 960 if (resid > 0) 961 so->so_state |= SS_MORETOCOME; 962 error = (*so->so_proto->pr_usrreq)(so, 963 (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND, 964 top, addr, control, curlwp); /* XXX */ 965 if (dontroute) 966 so->so_options &= ~SO_DONTROUTE; 967 if (resid > 0) 968 so->so_state &= ~SS_MORETOCOME; 969 splx(s); 970 971 clen = 0; 972 control = NULL; 973 top = NULL; 974 mp = ⊤ 975 if (error != 0) 976 goto release; 977 } while (resid && space > 0); 978 } while (resid); 979 980 release: 981 sbunlock(&so->so_snd); 982 out: 983 if (top) 984 m_freem(top); 985 if (control) 986 m_freem(control); 987 return (error); 988 } 989 990 /* 991 * Implement receive operations on a socket. 992 * We depend on the way that records are added to the sockbuf 993 * by sbappend*. In particular, each record (mbufs linked through m_next) 994 * must begin with an address if the protocol so specifies, 995 * followed by an optional mbuf or mbufs containing ancillary data, 996 * and then zero or more mbufs of data. 997 * In order to avoid blocking network interrupts for the entire time here, 998 * we splx() while doing the actual copy to user space. 999 * Although the sockbuf is locked, new data may still be appended, 1000 * and thus we must maintain consistency of the sockbuf during that time. 1001 * 1002 * The caller may receive the data as a single mbuf chain by supplying 1003 * an mbuf **mp0 for use in returning the chain. The uio is then used 1004 * only for the count in uio_resid. 1005 */ 1006 int 1007 soreceive(struct socket *so, struct mbuf **paddr, struct uio *uio, 1008 struct mbuf **mp0, struct mbuf **controlp, int *flagsp) 1009 { 1010 struct lwp *l = curlwp; 1011 struct mbuf *m, **mp; 1012 int atomic, flags, len, error, s, offset, moff, type, orig_resid; 1013 const struct protosw *pr; 1014 struct mbuf *nextrecord; 1015 int mbuf_removed = 0; 1016 const struct domain *dom; 1017 1018 pr = so->so_proto; 1019 atomic = pr->pr_flags & PR_ATOMIC; 1020 dom = pr->pr_domain; 1021 mp = mp0; 1022 type = 0; 1023 orig_resid = uio->uio_resid; 1024 1025 if (paddr != NULL) 1026 *paddr = NULL; 1027 if (controlp != NULL) 1028 *controlp = NULL; 1029 if (flagsp != NULL) 1030 flags = *flagsp &~ MSG_EOR; 1031 else 1032 flags = 0; 1033 1034 if ((flags & MSG_DONTWAIT) == 0) 1035 sodopendfree(); 1036 1037 if (flags & MSG_OOB) { 1038 m = m_get(M_WAIT, MT_DATA); 1039 error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m, 1040 (struct mbuf *)(long)(flags & MSG_PEEK), NULL, l); 1041 if (error) 1042 goto bad; 1043 do { 1044 error = uiomove(mtod(m, void *), 1045 (int) min(uio->uio_resid, m->m_len), uio); 1046 m = m_free(m); 1047 } while (uio->uio_resid > 0 && error == 0 && m); 1048 bad: 1049 if (m != NULL) 1050 m_freem(m); 1051 return error; 1052 } 1053 if (mp != NULL) 1054 *mp = NULL; 1055 if (so->so_state & SS_ISCONFIRMING && uio->uio_resid) 1056 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, l); 1057 1058 restart: 1059 if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0) 1060 return error; 1061 s = splsoftnet(); 1062 1063 m = so->so_rcv.sb_mb; 1064 /* 1065 * If we have less data than requested, block awaiting more 1066 * (subject to any timeout) if: 1067 * 1. the current count is less than the low water mark, 1068 * 2. MSG_WAITALL is set, and it is possible to do the entire 1069 * receive operation at once if we block (resid <= hiwat), or 1070 * 3. MSG_DONTWAIT is not set. 1071 * If MSG_WAITALL is set but resid is larger than the receive buffer, 1072 * we have to do the receive in sections, and thus risk returning 1073 * a short count if a timeout or signal occurs after we start. 1074 */ 1075 if (m == NULL || 1076 ((flags & MSG_DONTWAIT) == 0 && 1077 so->so_rcv.sb_cc < uio->uio_resid && 1078 (so->so_rcv.sb_cc < so->so_rcv.sb_lowat || 1079 ((flags & MSG_WAITALL) && 1080 uio->uio_resid <= so->so_rcv.sb_hiwat)) && 1081 m->m_nextpkt == NULL && !atomic)) { 1082 #ifdef DIAGNOSTIC 1083 if (m == NULL && so->so_rcv.sb_cc) 1084 panic("receive 1"); 1085 #endif 1086 if (so->so_error) { 1087 if (m != NULL) 1088 goto dontblock; 1089 error = so->so_error; 1090 if ((flags & MSG_PEEK) == 0) 1091 so->so_error = 0; 1092 goto release; 1093 } 1094 if (so->so_state & SS_CANTRCVMORE) { 1095 if (m != NULL) 1096 goto dontblock; 1097 else 1098 goto release; 1099 } 1100 for (; m != NULL; m = m->m_next) 1101 if (m->m_type == MT_OOBDATA || (m->m_flags & M_EOR)) { 1102 m = so->so_rcv.sb_mb; 1103 goto dontblock; 1104 } 1105 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 && 1106 (so->so_proto->pr_flags & PR_CONNREQUIRED)) { 1107 error = ENOTCONN; 1108 goto release; 1109 } 1110 if (uio->uio_resid == 0) 1111 goto release; 1112 if (so->so_nbio || (flags & MSG_DONTWAIT)) { 1113 error = EWOULDBLOCK; 1114 goto release; 1115 } 1116 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 1"); 1117 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 1"); 1118 sbunlock(&so->so_rcv); 1119 error = sbwait(&so->so_rcv); 1120 splx(s); 1121 if (error != 0) 1122 return error; 1123 goto restart; 1124 } 1125 dontblock: 1126 /* 1127 * On entry here, m points to the first record of the socket buffer. 1128 * While we process the initial mbufs containing address and control 1129 * info, we save a copy of m->m_nextpkt into nextrecord. 1130 */ 1131 if (l != NULL) 1132 l->l_proc->p_stats->p_ru.ru_msgrcv++; 1133 KASSERT(m == so->so_rcv.sb_mb); 1134 SBLASTRECORDCHK(&so->so_rcv, "soreceive 1"); 1135 SBLASTMBUFCHK(&so->so_rcv, "soreceive 1"); 1136 nextrecord = m->m_nextpkt; 1137 if (pr->pr_flags & PR_ADDR) { 1138 #ifdef DIAGNOSTIC 1139 if (m->m_type != MT_SONAME) 1140 panic("receive 1a"); 1141 #endif 1142 orig_resid = 0; 1143 if (flags & MSG_PEEK) { 1144 if (paddr) 1145 *paddr = m_copy(m, 0, m->m_len); 1146 m = m->m_next; 1147 } else { 1148 sbfree(&so->so_rcv, m); 1149 mbuf_removed = 1; 1150 if (paddr != NULL) { 1151 *paddr = m; 1152 so->so_rcv.sb_mb = m->m_next; 1153 m->m_next = NULL; 1154 m = so->so_rcv.sb_mb; 1155 } else { 1156 MFREE(m, so->so_rcv.sb_mb); 1157 m = so->so_rcv.sb_mb; 1158 } 1159 } 1160 } 1161 while (m != NULL && m->m_type == MT_CONTROL && error == 0) { 1162 if (flags & MSG_PEEK) { 1163 if (controlp != NULL) 1164 *controlp = m_copy(m, 0, m->m_len); 1165 m = m->m_next; 1166 } else { 1167 sbfree(&so->so_rcv, m); 1168 mbuf_removed = 1; 1169 if (controlp != NULL) { 1170 if (dom->dom_externalize && l && 1171 mtod(m, struct cmsghdr *)->cmsg_type == 1172 SCM_RIGHTS) 1173 error = (*dom->dom_externalize)(m, l); 1174 *controlp = m; 1175 so->so_rcv.sb_mb = m->m_next; 1176 m->m_next = NULL; 1177 m = so->so_rcv.sb_mb; 1178 } else { 1179 /* 1180 * Dispose of any SCM_RIGHTS message that went 1181 * through the read path rather than recv. 1182 */ 1183 if (dom->dom_dispose && 1184 mtod(m, struct cmsghdr *)->cmsg_type == SCM_RIGHTS) 1185 (*dom->dom_dispose)(m); 1186 MFREE(m, so->so_rcv.sb_mb); 1187 m = so->so_rcv.sb_mb; 1188 } 1189 } 1190 if (controlp != NULL) { 1191 orig_resid = 0; 1192 controlp = &(*controlp)->m_next; 1193 } 1194 } 1195 1196 /* 1197 * If m is non-NULL, we have some data to read. From now on, 1198 * make sure to keep sb_lastrecord consistent when working on 1199 * the last packet on the chain (nextrecord == NULL) and we 1200 * change m->m_nextpkt. 1201 */ 1202 if (m != NULL) { 1203 if ((flags & MSG_PEEK) == 0) { 1204 m->m_nextpkt = nextrecord; 1205 /* 1206 * If nextrecord == NULL (this is a single chain), 1207 * then sb_lastrecord may not be valid here if m 1208 * was changed earlier. 1209 */ 1210 if (nextrecord == NULL) { 1211 KASSERT(so->so_rcv.sb_mb == m); 1212 so->so_rcv.sb_lastrecord = m; 1213 } 1214 } 1215 type = m->m_type; 1216 if (type == MT_OOBDATA) 1217 flags |= MSG_OOB; 1218 } else { 1219 if ((flags & MSG_PEEK) == 0) { 1220 KASSERT(so->so_rcv.sb_mb == m); 1221 so->so_rcv.sb_mb = nextrecord; 1222 SB_EMPTY_FIXUP(&so->so_rcv); 1223 } 1224 } 1225 SBLASTRECORDCHK(&so->so_rcv, "soreceive 2"); 1226 SBLASTMBUFCHK(&so->so_rcv, "soreceive 2"); 1227 1228 moff = 0; 1229 offset = 0; 1230 while (m != NULL && uio->uio_resid > 0 && error == 0) { 1231 if (m->m_type == MT_OOBDATA) { 1232 if (type != MT_OOBDATA) 1233 break; 1234 } else if (type == MT_OOBDATA) 1235 break; 1236 #ifdef DIAGNOSTIC 1237 else if (m->m_type != MT_DATA && m->m_type != MT_HEADER) 1238 panic("receive 3"); 1239 #endif 1240 so->so_state &= ~SS_RCVATMARK; 1241 len = uio->uio_resid; 1242 if (so->so_oobmark && len > so->so_oobmark - offset) 1243 len = so->so_oobmark - offset; 1244 if (len > m->m_len - moff) 1245 len = m->m_len - moff; 1246 /* 1247 * If mp is set, just pass back the mbufs. 1248 * Otherwise copy them out via the uio, then free. 1249 * Sockbuf must be consistent here (points to current mbuf, 1250 * it points to next record) when we drop priority; 1251 * we must note any additions to the sockbuf when we 1252 * block interrupts again. 1253 */ 1254 if (mp == NULL) { 1255 SBLASTRECORDCHK(&so->so_rcv, "soreceive uiomove"); 1256 SBLASTMBUFCHK(&so->so_rcv, "soreceive uiomove"); 1257 splx(s); 1258 error = uiomove(mtod(m, char *) + moff, (int)len, uio); 1259 s = splsoftnet(); 1260 if (error != 0) { 1261 /* 1262 * If any part of the record has been removed 1263 * (such as the MT_SONAME mbuf, which will 1264 * happen when PR_ADDR, and thus also 1265 * PR_ATOMIC, is set), then drop the entire 1266 * record to maintain the atomicity of the 1267 * receive operation. 1268 * 1269 * This avoids a later panic("receive 1a") 1270 * when compiled with DIAGNOSTIC. 1271 */ 1272 if (m && mbuf_removed && atomic) 1273 (void) sbdroprecord(&so->so_rcv); 1274 1275 goto release; 1276 } 1277 } else 1278 uio->uio_resid -= len; 1279 if (len == m->m_len - moff) { 1280 if (m->m_flags & M_EOR) 1281 flags |= MSG_EOR; 1282 if (flags & MSG_PEEK) { 1283 m = m->m_next; 1284 moff = 0; 1285 } else { 1286 nextrecord = m->m_nextpkt; 1287 sbfree(&so->so_rcv, m); 1288 if (mp) { 1289 *mp = m; 1290 mp = &m->m_next; 1291 so->so_rcv.sb_mb = m = m->m_next; 1292 *mp = NULL; 1293 } else { 1294 MFREE(m, so->so_rcv.sb_mb); 1295 m = so->so_rcv.sb_mb; 1296 } 1297 /* 1298 * If m != NULL, we also know that 1299 * so->so_rcv.sb_mb != NULL. 1300 */ 1301 KASSERT(so->so_rcv.sb_mb == m); 1302 if (m) { 1303 m->m_nextpkt = nextrecord; 1304 if (nextrecord == NULL) 1305 so->so_rcv.sb_lastrecord = m; 1306 } else { 1307 so->so_rcv.sb_mb = nextrecord; 1308 SB_EMPTY_FIXUP(&so->so_rcv); 1309 } 1310 SBLASTRECORDCHK(&so->so_rcv, "soreceive 3"); 1311 SBLASTMBUFCHK(&so->so_rcv, "soreceive 3"); 1312 } 1313 } else if (flags & MSG_PEEK) 1314 moff += len; 1315 else { 1316 if (mp != NULL) 1317 *mp = m_copym(m, 0, len, M_WAIT); 1318 m->m_data += len; 1319 m->m_len -= len; 1320 so->so_rcv.sb_cc -= len; 1321 } 1322 if (so->so_oobmark) { 1323 if ((flags & MSG_PEEK) == 0) { 1324 so->so_oobmark -= len; 1325 if (so->so_oobmark == 0) { 1326 so->so_state |= SS_RCVATMARK; 1327 break; 1328 } 1329 } else { 1330 offset += len; 1331 if (offset == so->so_oobmark) 1332 break; 1333 } 1334 } 1335 if (flags & MSG_EOR) 1336 break; 1337 /* 1338 * If the MSG_WAITALL flag is set (for non-atomic socket), 1339 * we must not quit until "uio->uio_resid == 0" or an error 1340 * termination. If a signal/timeout occurs, return 1341 * with a short count but without error. 1342 * Keep sockbuf locked against other readers. 1343 */ 1344 while (flags & MSG_WAITALL && m == NULL && uio->uio_resid > 0 && 1345 !sosendallatonce(so) && !nextrecord) { 1346 if (so->so_error || so->so_state & SS_CANTRCVMORE) 1347 break; 1348 /* 1349 * If we are peeking and the socket receive buffer is 1350 * full, stop since we can't get more data to peek at. 1351 */ 1352 if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0) 1353 break; 1354 /* 1355 * If we've drained the socket buffer, tell the 1356 * protocol in case it needs to do something to 1357 * get it filled again. 1358 */ 1359 if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb) 1360 (*pr->pr_usrreq)(so, PRU_RCVD, 1361 NULL, (struct mbuf *)(long)flags, NULL, l); 1362 SBLASTRECORDCHK(&so->so_rcv, "soreceive sbwait 2"); 1363 SBLASTMBUFCHK(&so->so_rcv, "soreceive sbwait 2"); 1364 error = sbwait(&so->so_rcv); 1365 if (error != 0) { 1366 sbunlock(&so->so_rcv); 1367 splx(s); 1368 return 0; 1369 } 1370 if ((m = so->so_rcv.sb_mb) != NULL) 1371 nextrecord = m->m_nextpkt; 1372 } 1373 } 1374 1375 if (m && atomic) { 1376 flags |= MSG_TRUNC; 1377 if ((flags & MSG_PEEK) == 0) 1378 (void) sbdroprecord(&so->so_rcv); 1379 } 1380 if ((flags & MSG_PEEK) == 0) { 1381 if (m == NULL) { 1382 /* 1383 * First part is an inline SB_EMPTY_FIXUP(). Second 1384 * part makes sure sb_lastrecord is up-to-date if 1385 * there is still data in the socket buffer. 1386 */ 1387 so->so_rcv.sb_mb = nextrecord; 1388 if (so->so_rcv.sb_mb == NULL) { 1389 so->so_rcv.sb_mbtail = NULL; 1390 so->so_rcv.sb_lastrecord = NULL; 1391 } else if (nextrecord->m_nextpkt == NULL) 1392 so->so_rcv.sb_lastrecord = nextrecord; 1393 } 1394 SBLASTRECORDCHK(&so->so_rcv, "soreceive 4"); 1395 SBLASTMBUFCHK(&so->so_rcv, "soreceive 4"); 1396 if (pr->pr_flags & PR_WANTRCVD && so->so_pcb) 1397 (*pr->pr_usrreq)(so, PRU_RCVD, NULL, 1398 (struct mbuf *)(long)flags, NULL, l); 1399 } 1400 if (orig_resid == uio->uio_resid && orig_resid && 1401 (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) { 1402 sbunlock(&so->so_rcv); 1403 splx(s); 1404 goto restart; 1405 } 1406 1407 if (flagsp != NULL) 1408 *flagsp |= flags; 1409 release: 1410 sbunlock(&so->so_rcv); 1411 splx(s); 1412 return error; 1413 } 1414 1415 int 1416 soshutdown(struct socket *so, int how) 1417 { 1418 const struct protosw *pr; 1419 1420 pr = so->so_proto; 1421 if (!(how == SHUT_RD || how == SHUT_WR || how == SHUT_RDWR)) 1422 return (EINVAL); 1423 1424 if (how == SHUT_RD || how == SHUT_RDWR) 1425 sorflush(so); 1426 if (how == SHUT_WR || how == SHUT_RDWR) 1427 return (*pr->pr_usrreq)(so, PRU_SHUTDOWN, NULL, 1428 NULL, NULL, NULL); 1429 return 0; 1430 } 1431 1432 void 1433 sorflush(struct socket *so) 1434 { 1435 struct sockbuf *sb, asb; 1436 const struct protosw *pr; 1437 int s; 1438 1439 sb = &so->so_rcv; 1440 pr = so->so_proto; 1441 sb->sb_flags |= SB_NOINTR; 1442 (void) sblock(sb, M_WAITOK); 1443 s = splnet(); 1444 socantrcvmore(so); 1445 sbunlock(sb); 1446 asb = *sb; 1447 /* 1448 * Clear most of the sockbuf structure, but leave some of the 1449 * fields valid. 1450 */ 1451 memset(&sb->sb_startzero, 0, 1452 sizeof(*sb) - offsetof(struct sockbuf, sb_startzero)); 1453 splx(s); 1454 if (pr->pr_flags & PR_RIGHTS && pr->pr_domain->dom_dispose) 1455 (*pr->pr_domain->dom_dispose)(asb.sb_mb); 1456 sbrelease(&asb, so); 1457 } 1458 1459 static int 1460 sosetopt1(struct socket *so, int level, int optname, struct mbuf *m) 1461 { 1462 int optval, val; 1463 struct linger *l; 1464 struct sockbuf *sb; 1465 struct timeval *tv; 1466 1467 switch (optname) { 1468 1469 case SO_LINGER: 1470 if (m == NULL || m->m_len != sizeof(struct linger)) 1471 return EINVAL; 1472 l = mtod(m, struct linger *); 1473 if (l->l_linger < 0 || l->l_linger > USHRT_MAX || 1474 l->l_linger > (INT_MAX / hz)) 1475 return EDOM; 1476 so->so_linger = l->l_linger; 1477 if (l->l_onoff) 1478 so->so_options |= SO_LINGER; 1479 else 1480 so->so_options &= ~SO_LINGER; 1481 break; 1482 1483 case SO_DEBUG: 1484 case SO_KEEPALIVE: 1485 case SO_DONTROUTE: 1486 case SO_USELOOPBACK: 1487 case SO_BROADCAST: 1488 case SO_REUSEADDR: 1489 case SO_REUSEPORT: 1490 case SO_OOBINLINE: 1491 case SO_TIMESTAMP: 1492 if (m == NULL || m->m_len < sizeof(int)) 1493 return EINVAL; 1494 if (*mtod(m, int *)) 1495 so->so_options |= optname; 1496 else 1497 so->so_options &= ~optname; 1498 break; 1499 1500 case SO_SNDBUF: 1501 case SO_RCVBUF: 1502 case SO_SNDLOWAT: 1503 case SO_RCVLOWAT: 1504 if (m == NULL || m->m_len < sizeof(int)) 1505 return EINVAL; 1506 1507 /* 1508 * Values < 1 make no sense for any of these 1509 * options, so disallow them. 1510 */ 1511 optval = *mtod(m, int *); 1512 if (optval < 1) 1513 return EINVAL; 1514 1515 switch (optname) { 1516 1517 case SO_SNDBUF: 1518 case SO_RCVBUF: 1519 sb = (optname == SO_SNDBUF) ? 1520 &so->so_snd : &so->so_rcv; 1521 if (sbreserve(sb, (u_long)optval, so) == 0) 1522 return ENOBUFS; 1523 sb->sb_flags &= ~SB_AUTOSIZE; 1524 break; 1525 1526 /* 1527 * Make sure the low-water is never greater than 1528 * the high-water. 1529 */ 1530 case SO_SNDLOWAT: 1531 so->so_snd.sb_lowat = 1532 (optval > so->so_snd.sb_hiwat) ? 1533 so->so_snd.sb_hiwat : optval; 1534 break; 1535 case SO_RCVLOWAT: 1536 so->so_rcv.sb_lowat = 1537 (optval > so->so_rcv.sb_hiwat) ? 1538 so->so_rcv.sb_hiwat : optval; 1539 break; 1540 } 1541 break; 1542 1543 case SO_SNDTIMEO: 1544 case SO_RCVTIMEO: 1545 if (m == NULL || m->m_len < sizeof(*tv)) 1546 return EINVAL; 1547 tv = mtod(m, struct timeval *); 1548 if (tv->tv_sec > (INT_MAX - tv->tv_usec / tick) / hz) 1549 return EDOM; 1550 val = tv->tv_sec * hz + tv->tv_usec / tick; 1551 if (val == 0 && tv->tv_usec != 0) 1552 val = 1; 1553 1554 switch (optname) { 1555 1556 case SO_SNDTIMEO: 1557 so->so_snd.sb_timeo = val; 1558 break; 1559 case SO_RCVTIMEO: 1560 so->so_rcv.sb_timeo = val; 1561 break; 1562 } 1563 break; 1564 1565 default: 1566 return ENOPROTOOPT; 1567 } 1568 return 0; 1569 } 1570 1571 int 1572 sosetopt(struct socket *so, int level, int optname, struct mbuf *m) 1573 { 1574 int error, prerr; 1575 1576 if (level == SOL_SOCKET) 1577 error = sosetopt1(so, level, optname, m); 1578 else 1579 error = ENOPROTOOPT; 1580 1581 if ((error == 0 || error == ENOPROTOOPT) && 1582 so->so_proto != NULL && so->so_proto->pr_ctloutput != NULL) { 1583 /* give the protocol stack a shot */ 1584 prerr = (*so->so_proto->pr_ctloutput)(PRCO_SETOPT, so, level, 1585 optname, &m); 1586 if (prerr == 0) 1587 error = 0; 1588 else if (prerr != ENOPROTOOPT) 1589 error = prerr; 1590 } else if (m != NULL) 1591 (void)m_free(m); 1592 return error; 1593 } 1594 1595 int 1596 sogetopt(struct socket *so, int level, int optname, struct mbuf **mp) 1597 { 1598 struct mbuf *m; 1599 1600 if (level != SOL_SOCKET) { 1601 if (so->so_proto && so->so_proto->pr_ctloutput) { 1602 return ((*so->so_proto->pr_ctloutput) 1603 (PRCO_GETOPT, so, level, optname, mp)); 1604 } else 1605 return (ENOPROTOOPT); 1606 } else { 1607 m = m_get(M_WAIT, MT_SOOPTS); 1608 m->m_len = sizeof(int); 1609 1610 switch (optname) { 1611 1612 case SO_LINGER: 1613 m->m_len = sizeof(struct linger); 1614 mtod(m, struct linger *)->l_onoff = 1615 (so->so_options & SO_LINGER) ? 1 : 0; 1616 mtod(m, struct linger *)->l_linger = so->so_linger; 1617 break; 1618 1619 case SO_USELOOPBACK: 1620 case SO_DONTROUTE: 1621 case SO_DEBUG: 1622 case SO_KEEPALIVE: 1623 case SO_REUSEADDR: 1624 case SO_REUSEPORT: 1625 case SO_BROADCAST: 1626 case SO_OOBINLINE: 1627 case SO_TIMESTAMP: 1628 *mtod(m, int *) = (so->so_options & optname) ? 1 : 0; 1629 break; 1630 1631 case SO_TYPE: 1632 *mtod(m, int *) = so->so_type; 1633 break; 1634 1635 case SO_ERROR: 1636 *mtod(m, int *) = so->so_error; 1637 so->so_error = 0; 1638 break; 1639 1640 case SO_SNDBUF: 1641 *mtod(m, int *) = so->so_snd.sb_hiwat; 1642 break; 1643 1644 case SO_RCVBUF: 1645 *mtod(m, int *) = so->so_rcv.sb_hiwat; 1646 break; 1647 1648 case SO_SNDLOWAT: 1649 *mtod(m, int *) = so->so_snd.sb_lowat; 1650 break; 1651 1652 case SO_RCVLOWAT: 1653 *mtod(m, int *) = so->so_rcv.sb_lowat; 1654 break; 1655 1656 case SO_SNDTIMEO: 1657 case SO_RCVTIMEO: 1658 { 1659 int val = (optname == SO_SNDTIMEO ? 1660 so->so_snd.sb_timeo : so->so_rcv.sb_timeo); 1661 1662 m->m_len = sizeof(struct timeval); 1663 mtod(m, struct timeval *)->tv_sec = val / hz; 1664 mtod(m, struct timeval *)->tv_usec = 1665 (val % hz) * tick; 1666 break; 1667 } 1668 1669 case SO_OVERFLOWED: 1670 *mtod(m, int *) = so->so_rcv.sb_overflowed; 1671 break; 1672 1673 default: 1674 (void)m_free(m); 1675 return (ENOPROTOOPT); 1676 } 1677 *mp = m; 1678 return (0); 1679 } 1680 } 1681 1682 void 1683 sohasoutofband(struct socket *so) 1684 { 1685 fownsignal(so->so_pgid, SIGURG, POLL_PRI, POLLPRI|POLLRDBAND, so); 1686 selwakeup(&so->so_rcv.sb_sel); 1687 } 1688 1689 static void 1690 filt_sordetach(struct knote *kn) 1691 { 1692 struct socket *so; 1693 1694 so = (struct socket *)kn->kn_fp->f_data; 1695 SLIST_REMOVE(&so->so_rcv.sb_sel.sel_klist, kn, knote, kn_selnext); 1696 if (SLIST_EMPTY(&so->so_rcv.sb_sel.sel_klist)) 1697 so->so_rcv.sb_flags &= ~SB_KNOTE; 1698 } 1699 1700 /*ARGSUSED*/ 1701 static int 1702 filt_soread(struct knote *kn, long hint) 1703 { 1704 struct socket *so; 1705 1706 so = (struct socket *)kn->kn_fp->f_data; 1707 kn->kn_data = so->so_rcv.sb_cc; 1708 if (so->so_state & SS_CANTRCVMORE) { 1709 kn->kn_flags |= EV_EOF; 1710 kn->kn_fflags = so->so_error; 1711 return (1); 1712 } 1713 if (so->so_error) /* temporary udp error */ 1714 return (1); 1715 if (kn->kn_sfflags & NOTE_LOWAT) 1716 return (kn->kn_data >= kn->kn_sdata); 1717 return (kn->kn_data >= so->so_rcv.sb_lowat); 1718 } 1719 1720 static void 1721 filt_sowdetach(struct knote *kn) 1722 { 1723 struct socket *so; 1724 1725 so = (struct socket *)kn->kn_fp->f_data; 1726 SLIST_REMOVE(&so->so_snd.sb_sel.sel_klist, kn, knote, kn_selnext); 1727 if (SLIST_EMPTY(&so->so_snd.sb_sel.sel_klist)) 1728 so->so_snd.sb_flags &= ~SB_KNOTE; 1729 } 1730 1731 /*ARGSUSED*/ 1732 static int 1733 filt_sowrite(struct knote *kn, long hint) 1734 { 1735 struct socket *so; 1736 1737 so = (struct socket *)kn->kn_fp->f_data; 1738 kn->kn_data = sbspace(&so->so_snd); 1739 if (so->so_state & SS_CANTSENDMORE) { 1740 kn->kn_flags |= EV_EOF; 1741 kn->kn_fflags = so->so_error; 1742 return (1); 1743 } 1744 if (so->so_error) /* temporary udp error */ 1745 return (1); 1746 if (((so->so_state & SS_ISCONNECTED) == 0) && 1747 (so->so_proto->pr_flags & PR_CONNREQUIRED)) 1748 return (0); 1749 if (kn->kn_sfflags & NOTE_LOWAT) 1750 return (kn->kn_data >= kn->kn_sdata); 1751 return (kn->kn_data >= so->so_snd.sb_lowat); 1752 } 1753 1754 /*ARGSUSED*/ 1755 static int 1756 filt_solisten(struct knote *kn, long hint) 1757 { 1758 struct socket *so; 1759 1760 so = (struct socket *)kn->kn_fp->f_data; 1761 1762 /* 1763 * Set kn_data to number of incoming connections, not 1764 * counting partial (incomplete) connections. 1765 */ 1766 kn->kn_data = so->so_qlen; 1767 return (kn->kn_data > 0); 1768 } 1769 1770 static const struct filterops solisten_filtops = 1771 { 1, NULL, filt_sordetach, filt_solisten }; 1772 static const struct filterops soread_filtops = 1773 { 1, NULL, filt_sordetach, filt_soread }; 1774 static const struct filterops sowrite_filtops = 1775 { 1, NULL, filt_sowdetach, filt_sowrite }; 1776 1777 int 1778 soo_kqfilter(struct file *fp, struct knote *kn) 1779 { 1780 struct socket *so; 1781 struct sockbuf *sb; 1782 1783 so = (struct socket *)kn->kn_fp->f_data; 1784 switch (kn->kn_filter) { 1785 case EVFILT_READ: 1786 if (so->so_options & SO_ACCEPTCONN) 1787 kn->kn_fop = &solisten_filtops; 1788 else 1789 kn->kn_fop = &soread_filtops; 1790 sb = &so->so_rcv; 1791 break; 1792 case EVFILT_WRITE: 1793 kn->kn_fop = &sowrite_filtops; 1794 sb = &so->so_snd; 1795 break; 1796 default: 1797 return (EINVAL); 1798 } 1799 SLIST_INSERT_HEAD(&sb->sb_sel.sel_klist, kn, kn_selnext); 1800 sb->sb_flags |= SB_KNOTE; 1801 return (0); 1802 } 1803 1804 #include <sys/sysctl.h> 1805 1806 static int sysctl_kern_somaxkva(SYSCTLFN_PROTO); 1807 1808 /* 1809 * sysctl helper routine for kern.somaxkva. ensures that the given 1810 * value is not too small. 1811 * (XXX should we maybe make sure it's not too large as well?) 1812 */ 1813 static int 1814 sysctl_kern_somaxkva(SYSCTLFN_ARGS) 1815 { 1816 int error, new_somaxkva; 1817 struct sysctlnode node; 1818 1819 new_somaxkva = somaxkva; 1820 node = *rnode; 1821 node.sysctl_data = &new_somaxkva; 1822 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1823 if (error || newp == NULL) 1824 return (error); 1825 1826 if (new_somaxkva < (16 * 1024 * 1024)) /* sanity */ 1827 return (EINVAL); 1828 1829 mutex_enter(&so_pendfree_lock); 1830 somaxkva = new_somaxkva; 1831 cv_broadcast(&socurkva_cv); 1832 mutex_exit(&so_pendfree_lock); 1833 1834 return (error); 1835 } 1836 1837 SYSCTL_SETUP(sysctl_kern_somaxkva_setup, "sysctl kern.somaxkva setup") 1838 { 1839 1840 sysctl_createv(clog, 0, NULL, NULL, 1841 CTLFLAG_PERMANENT, 1842 CTLTYPE_NODE, "kern", NULL, 1843 NULL, 0, NULL, 0, 1844 CTL_KERN, CTL_EOL); 1845 1846 sysctl_createv(clog, 0, NULL, NULL, 1847 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, 1848 CTLTYPE_INT, "somaxkva", 1849 SYSCTL_DESCR("Maximum amount of kernel memory to be " 1850 "used for socket buffers"), 1851 sysctl_kern_somaxkva, 0, NULL, 0, 1852 CTL_KERN, KERN_SOMAXKVA, CTL_EOL); 1853 } 1854