xref: /netbsd-src/sys/kern/uipc_mbuf.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /*	$NetBSD: uipc_mbuf.c,v 1.252 2023/11/27 02:50:27 ozaki-r Exp $	*/
2 
3 /*
4  * Copyright (c) 1999, 2001, 2018 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and Maxime Villard.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1988, 1991, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)uipc_mbuf.c	8.4 (Berkeley) 2/14/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: uipc_mbuf.c,v 1.252 2023/11/27 02:50:27 ozaki-r Exp $");
66 
67 #ifdef _KERNEL_OPT
68 #include "opt_mbuftrace.h"
69 #include "opt_nmbclusters.h"
70 #include "opt_ddb.h"
71 #include "ether.h"
72 #endif
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/atomic.h>
77 #include <sys/cpu.h>
78 #include <sys/proc.h>
79 #include <sys/mbuf.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82 #include <sys/domain.h>
83 #include <sys/protosw.h>
84 #include <sys/percpu.h>
85 #include <sys/pool.h>
86 #include <sys/socket.h>
87 #include <sys/sysctl.h>
88 
89 #include <net/if.h>
90 
91 pool_cache_t mb_cache;	/* mbuf cache */
92 static pool_cache_t mcl_cache;	/* mbuf cluster cache */
93 
94 struct mbstat mbstat;
95 int max_linkhdr;
96 int max_protohdr;
97 int max_hdr;
98 int max_datalen;
99 
100 static void mb_drain(void *, int);
101 static int mb_ctor(void *, void *, int);
102 
103 static void sysctl_kern_mbuf_setup(void);
104 
105 static struct sysctllog *mbuf_sysctllog;
106 
107 static struct mbuf *m_copy_internal(struct mbuf *, int, int, int, bool);
108 static struct mbuf *m_split_internal(struct mbuf *, int, int, bool);
109 static int m_copyback_internal(struct mbuf **, int, int, const void *,
110     int, int);
111 
112 /* Flags for m_copyback_internal. */
113 #define	CB_COPYBACK	0x0001	/* copyback from cp */
114 #define	CB_PRESERVE	0x0002	/* preserve original data */
115 #define	CB_COW		0x0004	/* do copy-on-write */
116 #define	CB_EXTEND	0x0008	/* extend chain */
117 
118 static const char mclpool_warnmsg[] =
119     "WARNING: mclpool limit reached; increase kern.mbuf.nmbclusters";
120 
121 MALLOC_DEFINE(M_MBUF, "mbuf", "mbuf");
122 
123 static percpu_t *mbstat_percpu;
124 
125 #ifdef MBUFTRACE
126 struct mownerhead mowners = LIST_HEAD_INITIALIZER(mowners);
127 struct mowner unknown_mowners[] = {
128 	MOWNER_INIT("unknown", "free"),
129 	MOWNER_INIT("unknown", "data"),
130 	MOWNER_INIT("unknown", "header"),
131 	MOWNER_INIT("unknown", "soname"),
132 	MOWNER_INIT("unknown", "soopts"),
133 	MOWNER_INIT("unknown", "ftable"),
134 	MOWNER_INIT("unknown", "control"),
135 	MOWNER_INIT("unknown", "oobdata"),
136 };
137 struct mowner revoked_mowner = MOWNER_INIT("revoked", "");
138 #endif
139 
140 #define	MEXT_ISEMBEDDED(m) ((m)->m_ext_ref == (m))
141 
142 #define	MCLADDREFERENCE(o, n)						\
143 do {									\
144 	KASSERT(((o)->m_flags & M_EXT) != 0);				\
145 	KASSERT(((n)->m_flags & M_EXT) == 0);				\
146 	KASSERT((o)->m_ext.ext_refcnt >= 1);				\
147 	(n)->m_flags |= ((o)->m_flags & M_EXTCOPYFLAGS);		\
148 	atomic_inc_uint(&(o)->m_ext.ext_refcnt);			\
149 	(n)->m_ext_ref = (o)->m_ext_ref;				\
150 	mowner_ref((n), (n)->m_flags);					\
151 } while (/* CONSTCOND */ 0)
152 
153 static int
154 nmbclusters_limit(void)
155 {
156 #if defined(PMAP_MAP_POOLPAGE)
157 	/* direct mapping, doesn't use space in kmem_arena */
158 	vsize_t max_size = physmem / 4;
159 #else
160 	vsize_t max_size = MIN(physmem / 4, nkmempages / 4);
161 #endif
162 
163 	max_size = max_size * PAGE_SIZE / MCLBYTES;
164 #ifdef NMBCLUSTERS_MAX
165 	max_size = MIN(max_size, NMBCLUSTERS_MAX);
166 #endif
167 
168 	return max_size;
169 }
170 
171 /*
172  * Initialize the mbuf allocator.
173  */
174 void
175 mbinit(void)
176 {
177 
178 	CTASSERT(sizeof(struct _m_ext) <= MHLEN);
179 	CTASSERT(sizeof(struct mbuf) == MSIZE);
180 
181 	sysctl_kern_mbuf_setup();
182 
183 	mb_cache = pool_cache_init(msize, 0, 0, 0, "mbpl",
184 	    NULL, IPL_VM, mb_ctor, NULL, NULL);
185 	KASSERT(mb_cache != NULL);
186 
187 	mcl_cache = pool_cache_init(mclbytes, COHERENCY_UNIT, 0, 0, "mclpl",
188 	    NULL, IPL_VM, NULL, NULL, NULL);
189 	KASSERT(mcl_cache != NULL);
190 
191 	pool_cache_set_drain_hook(mb_cache, mb_drain, NULL);
192 	pool_cache_set_drain_hook(mcl_cache, mb_drain, NULL);
193 
194 	/*
195 	 * Set an arbitrary default limit on the number of mbuf clusters.
196 	 */
197 #ifdef NMBCLUSTERS
198 	nmbclusters = MIN(NMBCLUSTERS, nmbclusters_limit());
199 #else
200 	nmbclusters = MAX(1024,
201 	    (vsize_t)physmem * PAGE_SIZE / MCLBYTES / 16);
202 	nmbclusters = MIN(nmbclusters, nmbclusters_limit());
203 #endif
204 
205 	/*
206 	 * Set the hard limit on the mclpool to the number of
207 	 * mbuf clusters the kernel is to support.  Log the limit
208 	 * reached message max once a minute.
209 	 */
210 	pool_cache_sethardlimit(mcl_cache, nmbclusters, mclpool_warnmsg, 60);
211 
212 	mbstat_percpu = percpu_alloc(sizeof(struct mbstat_cpu));
213 
214 	/*
215 	 * Set a low water mark for both mbufs and clusters.  This should
216 	 * help ensure that they can be allocated in a memory starvation
217 	 * situation.  This is important for e.g. diskless systems which
218 	 * must allocate mbufs in order for the pagedaemon to clean pages.
219 	 */
220 	pool_cache_setlowat(mb_cache, mblowat);
221 	pool_cache_setlowat(mcl_cache, mcllowat);
222 
223 #ifdef MBUFTRACE
224 	{
225 		/*
226 		 * Attach the unknown mowners.
227 		 */
228 		int i;
229 		MOWNER_ATTACH(&revoked_mowner);
230 		for (i = sizeof(unknown_mowners)/sizeof(unknown_mowners[0]);
231 		     i-- > 0; )
232 			MOWNER_ATTACH(&unknown_mowners[i]);
233 	}
234 #endif
235 }
236 
237 static void
238 mb_drain(void *arg, int flags)
239 {
240 	struct domain *dp;
241 	const struct protosw *pr;
242 	struct ifnet *ifp;
243 	int s;
244 
245 	KERNEL_LOCK(1, NULL);
246 	s = splvm();
247 	DOMAIN_FOREACH(dp) {
248 		for (pr = dp->dom_protosw;
249 		     pr < dp->dom_protoswNPROTOSW; pr++)
250 			if (pr->pr_drain)
251 				(*pr->pr_drain)();
252 	}
253 	/* XXX we cannot use psref in H/W interrupt */
254 	if (!cpu_intr_p()) {
255 		int bound = curlwp_bind();
256 		IFNET_READER_FOREACH(ifp) {
257 			struct psref psref;
258 
259 			if_acquire(ifp, &psref);
260 
261 			if (ifp->if_drain)
262 				(*ifp->if_drain)(ifp);
263 
264 			if_release(ifp, &psref);
265 		}
266 		curlwp_bindx(bound);
267 	}
268 	splx(s);
269 	mbstat.m_drain++;
270 	KERNEL_UNLOCK_ONE(NULL);
271 }
272 
273 /*
274  * sysctl helper routine for the kern.mbuf subtree.
275  * nmbclusters, mblowat and mcllowat need range
276  * checking and pool tweaking after being reset.
277  */
278 static int
279 sysctl_kern_mbuf(SYSCTLFN_ARGS)
280 {
281 	int error, newval;
282 	struct sysctlnode node;
283 
284 	node = *rnode;
285 	node.sysctl_data = &newval;
286 	switch (rnode->sysctl_num) {
287 	case MBUF_NMBCLUSTERS:
288 	case MBUF_MBLOWAT:
289 	case MBUF_MCLLOWAT:
290 		newval = *(int*)rnode->sysctl_data;
291 		break;
292 	case MBUF_NMBCLUSTERS_LIMIT:
293 		newval = nmbclusters_limit();
294 		break;
295 	default:
296 		return EOPNOTSUPP;
297 	}
298 
299 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
300 	if (error || newp == NULL)
301 		return error;
302 	if (newval < 0)
303 		return EINVAL;
304 
305 	switch (node.sysctl_num) {
306 	case MBUF_NMBCLUSTERS:
307 		if (newval < nmbclusters)
308 			return EINVAL;
309 		if (newval > nmbclusters_limit())
310 			return EINVAL;
311 		nmbclusters = newval;
312 		pool_cache_sethardlimit(mcl_cache, nmbclusters,
313 		    mclpool_warnmsg, 60);
314 		break;
315 	case MBUF_MBLOWAT:
316 		mblowat = newval;
317 		pool_cache_setlowat(mb_cache, mblowat);
318 		break;
319 	case MBUF_MCLLOWAT:
320 		mcllowat = newval;
321 		pool_cache_setlowat(mcl_cache, mcllowat);
322 		break;
323 	}
324 
325 	return 0;
326 }
327 
328 #ifdef MBUFTRACE
329 static void
330 mowner_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
331 {
332 	struct mowner_counter *mc = v1;
333 	struct mowner_user *mo_user = v2;
334 	int i;
335 
336 	for (i = 0; i < MOWNER_COUNTER_NCOUNTERS; i++) {
337 		mo_user->mo_counter[i] += mc->mc_counter[i];
338 	}
339 }
340 
341 static void
342 mowner_convert_to_user(struct mowner *mo, struct mowner_user *mo_user)
343 {
344 
345 	memset(mo_user, 0, sizeof(*mo_user));
346 	CTASSERT(sizeof(mo_user->mo_name) == sizeof(mo->mo_name));
347 	CTASSERT(sizeof(mo_user->mo_descr) == sizeof(mo->mo_descr));
348 	memcpy(mo_user->mo_name, mo->mo_name, sizeof(mo->mo_name));
349 	memcpy(mo_user->mo_descr, mo->mo_descr, sizeof(mo->mo_descr));
350 	percpu_foreach(mo->mo_counters, mowner_convert_to_user_cb, mo_user);
351 }
352 
353 static int
354 sysctl_kern_mbuf_mowners(SYSCTLFN_ARGS)
355 {
356 	struct mowner *mo;
357 	size_t len = 0;
358 	int error = 0;
359 
360 	if (namelen != 0)
361 		return EINVAL;
362 	if (newp != NULL)
363 		return EPERM;
364 
365 	LIST_FOREACH(mo, &mowners, mo_link) {
366 		struct mowner_user mo_user;
367 
368 		mowner_convert_to_user(mo, &mo_user);
369 
370 		if (oldp != NULL) {
371 			if (*oldlenp - len < sizeof(mo_user)) {
372 				error = ENOMEM;
373 				break;
374 			}
375 			error = copyout(&mo_user, (char *)oldp + len,
376 			    sizeof(mo_user));
377 			if (error)
378 				break;
379 		}
380 		len += sizeof(mo_user);
381 	}
382 
383 	if (error == 0)
384 		*oldlenp = len;
385 
386 	return error;
387 }
388 #endif /* MBUFTRACE */
389 
390 void
391 mbstat_type_add(int type, int diff)
392 {
393 	struct mbstat_cpu *mb;
394 	int s;
395 
396 	s = splvm();
397 	mb = percpu_getref(mbstat_percpu);
398 	mb->m_mtypes[type] += diff;
399 	percpu_putref(mbstat_percpu);
400 	splx(s);
401 }
402 
403 static void
404 mbstat_convert_to_user_cb(void *v1, void *v2, struct cpu_info *ci)
405 {
406 	struct mbstat_cpu *mbsc = v1;
407 	struct mbstat *mbs = v2;
408 	int i;
409 
410 	for (i = 0; i < __arraycount(mbs->m_mtypes); i++) {
411 		mbs->m_mtypes[i] += mbsc->m_mtypes[i];
412 	}
413 }
414 
415 static void
416 mbstat_convert_to_user(struct mbstat *mbs)
417 {
418 
419 	memset(mbs, 0, sizeof(*mbs));
420 	mbs->m_drain = mbstat.m_drain;
421 	percpu_foreach(mbstat_percpu, mbstat_convert_to_user_cb, mbs);
422 }
423 
424 static int
425 sysctl_kern_mbuf_stats(SYSCTLFN_ARGS)
426 {
427 	struct sysctlnode node;
428 	struct mbstat mbs;
429 
430 	mbstat_convert_to_user(&mbs);
431 	node = *rnode;
432 	node.sysctl_data = &mbs;
433 	node.sysctl_size = sizeof(mbs);
434 	return sysctl_lookup(SYSCTLFN_CALL(&node));
435 }
436 
437 static void
438 sysctl_kern_mbuf_setup(void)
439 {
440 
441 	KASSERT(mbuf_sysctllog == NULL);
442 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
443 		       CTLFLAG_PERMANENT,
444 		       CTLTYPE_NODE, "mbuf",
445 		       SYSCTL_DESCR("mbuf control variables"),
446 		       NULL, 0, NULL, 0,
447 		       CTL_KERN, KERN_MBUF, CTL_EOL);
448 
449 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
450 		       CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
451 		       CTLTYPE_INT, "msize",
452 		       SYSCTL_DESCR("mbuf base size"),
453 		       NULL, msize, NULL, 0,
454 		       CTL_KERN, KERN_MBUF, MBUF_MSIZE, CTL_EOL);
455 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
456 		       CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
457 		       CTLTYPE_INT, "mclbytes",
458 		       SYSCTL_DESCR("mbuf cluster size"),
459 		       NULL, mclbytes, NULL, 0,
460 		       CTL_KERN, KERN_MBUF, MBUF_MCLBYTES, CTL_EOL);
461 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
462 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
463 		       CTLTYPE_INT, "nmbclusters",
464 		       SYSCTL_DESCR("Limit on the number of mbuf clusters"),
465 		       sysctl_kern_mbuf, 0, &nmbclusters, 0,
466 		       CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS, CTL_EOL);
467 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
468 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
469 		       CTLTYPE_INT, "mblowat",
470 		       SYSCTL_DESCR("mbuf low water mark"),
471 		       sysctl_kern_mbuf, 0, &mblowat, 0,
472 		       CTL_KERN, KERN_MBUF, MBUF_MBLOWAT, CTL_EOL);
473 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
474 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
475 		       CTLTYPE_INT, "mcllowat",
476 		       SYSCTL_DESCR("mbuf cluster low water mark"),
477 		       sysctl_kern_mbuf, 0, &mcllowat, 0,
478 		       CTL_KERN, KERN_MBUF, MBUF_MCLLOWAT, CTL_EOL);
479 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
480 		       CTLFLAG_PERMANENT,
481 		       CTLTYPE_STRUCT, "stats",
482 		       SYSCTL_DESCR("mbuf allocation statistics"),
483 		       sysctl_kern_mbuf_stats, 0, NULL, 0,
484 		       CTL_KERN, KERN_MBUF, MBUF_STATS, CTL_EOL);
485 #ifdef MBUFTRACE
486 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
487 		       CTLFLAG_PERMANENT,
488 		       CTLTYPE_STRUCT, "mowners",
489 		       SYSCTL_DESCR("Information about mbuf owners"),
490 		       sysctl_kern_mbuf_mowners, 0, NULL, 0,
491 		       CTL_KERN, KERN_MBUF, MBUF_MOWNERS, CTL_EOL);
492 #endif
493 	sysctl_createv(&mbuf_sysctllog, 0, NULL, NULL,
494 		       CTLFLAG_PERMANENT|CTLFLAG_READONLY,
495 		       CTLTYPE_INT, "nmbclusters_limit",
496 		       SYSCTL_DESCR("Limit of nmbclusters"),
497 		       sysctl_kern_mbuf, 0, NULL, 0,
498 		       CTL_KERN, KERN_MBUF, MBUF_NMBCLUSTERS_LIMIT, CTL_EOL);
499 }
500 
501 static int
502 mb_ctor(void *arg, void *object, int flags)
503 {
504 	struct mbuf *m = object;
505 
506 #ifdef POOL_VTOPHYS
507 	m->m_paddr = POOL_VTOPHYS(m);
508 #else
509 	m->m_paddr = M_PADDR_INVALID;
510 #endif
511 	return 0;
512 }
513 
514 /*
515  * Add mbuf to the end of a chain
516  */
517 struct mbuf *
518 m_add(struct mbuf *c, struct mbuf *m)
519 {
520 	struct mbuf *n;
521 
522 	if (c == NULL)
523 		return m;
524 
525 	for (n = c; n->m_next != NULL; n = n->m_next)
526 		continue;
527 	n->m_next = m;
528 	return c;
529 }
530 
531 struct mbuf *
532 m_get(int how, int type)
533 {
534 	struct mbuf *m;
535 
536 	KASSERT(type != MT_FREE);
537 
538 	m = pool_cache_get(mb_cache,
539 	    how == M_WAIT ? PR_WAITOK|PR_LIMITFAIL : PR_NOWAIT);
540 	if (m == NULL)
541 		return NULL;
542 	KASSERTMSG(((vaddr_t)m->m_dat & PAGE_MASK) + MLEN <= PAGE_SIZE,
543 	    "m=%p m->m_dat=%p"
544 	    " MLEN=%u PAGE_MASK=0x%x PAGE_SIZE=%u",
545 	    m, m->m_dat,
546 	    (unsigned)MLEN, (unsigned)PAGE_MASK, (unsigned)PAGE_SIZE);
547 
548 	mbstat_type_add(type, 1);
549 
550 	mowner_init(m, type);
551 	m->m_ext_ref = m; /* default */
552 	m->m_type = type;
553 	m->m_len = 0;
554 	m->m_next = NULL;
555 	m->m_nextpkt = NULL; /* default */
556 	m->m_data = m->m_dat;
557 	m->m_flags = 0; /* default */
558 
559 	return m;
560 }
561 
562 struct mbuf *
563 m_gethdr(int how, int type)
564 {
565 	struct mbuf *m;
566 
567 	m = m_get(how, type);
568 	if (m == NULL)
569 		return NULL;
570 
571 	m->m_data = m->m_pktdat;
572 	m->m_flags = M_PKTHDR;
573 
574 	m_reset_rcvif(m);
575 	m->m_pkthdr.len = 0;
576 	m->m_pkthdr.csum_flags = 0;
577 	m->m_pkthdr.csum_data = 0;
578 	m->m_pkthdr.segsz = 0;
579 	m->m_pkthdr.ether_vtag = 0;
580 	m->m_pkthdr.pkthdr_flags = 0;
581 	SLIST_INIT(&m->m_pkthdr.tags);
582 
583 	m->m_pkthdr.pattr_class = NULL;
584 	m->m_pkthdr.pattr_af = AF_UNSPEC;
585 	m->m_pkthdr.pattr_hdr = NULL;
586 
587 	return m;
588 }
589 
590 struct mbuf *
591 m_get_n(int how, int type, size_t alignbytes, size_t nbytes)
592 {
593 	struct mbuf *m;
594 
595 	if (alignbytes > MCLBYTES || nbytes > MCLBYTES - alignbytes)
596 		return NULL;
597 	if ((m = m_get(how, type)) == NULL)
598 		return NULL;
599 	if (nbytes + alignbytes > MLEN) {
600 		m_clget(m, how);
601 		if ((m->m_flags & M_EXT) == 0) {
602 			m_free(m);
603 			return NULL;
604 		}
605 	}
606 	m->m_len = alignbytes + nbytes;
607 	m_adj(m, alignbytes);
608 
609 	return m;
610 }
611 
612 struct mbuf *
613 m_gethdr_n(int how, int type, size_t alignbytes, size_t nbytes)
614 {
615 	struct mbuf *m;
616 
617 	if (nbytes > MCLBYTES || nbytes > MCLBYTES - alignbytes)
618 		return NULL;
619 	if ((m = m_gethdr(how, type)) == NULL)
620 		return NULL;
621 	if (alignbytes + nbytes > MHLEN) {
622 		m_clget(m, how);
623 		if ((m->m_flags & M_EXT) == 0) {
624 			m_free(m);
625 			return NULL;
626 		}
627 	}
628 	m->m_len = m->m_pkthdr.len = alignbytes + nbytes;
629 	m_adj(m, alignbytes);
630 
631 	return m;
632 }
633 
634 void
635 m_clget(struct mbuf *m, int how)
636 {
637 	m->m_ext_storage.ext_buf = (char *)pool_cache_get_paddr(mcl_cache,
638 	    how == M_WAIT ? (PR_WAITOK|PR_LIMITFAIL) : PR_NOWAIT,
639 	    &m->m_ext_storage.ext_paddr);
640 
641 	if (m->m_ext_storage.ext_buf == NULL)
642 		return;
643 
644 	KASSERTMSG((((vaddr_t)m->m_ext_storage.ext_buf & PAGE_MASK) + mclbytes
645 		<= PAGE_SIZE),
646 	    "m=%p m->m_ext_storage.ext_buf=%p"
647 	    " mclbytes=%u PAGE_MASK=0x%x PAGE_SIZE=%u",
648 	    m, m->m_dat,
649 	    (unsigned)mclbytes, (unsigned)PAGE_MASK, (unsigned)PAGE_SIZE);
650 
651 	MCLINITREFERENCE(m);
652 	m->m_data = m->m_ext.ext_buf;
653 	m->m_flags = (m->m_flags & ~M_EXTCOPYFLAGS) |
654 	    M_EXT|M_EXT_CLUSTER|M_EXT_RW;
655 	m->m_ext.ext_size = MCLBYTES;
656 	m->m_ext.ext_free = NULL;
657 	m->m_ext.ext_arg = NULL;
658 	/* ext_paddr initialized above */
659 
660 	mowner_ref(m, M_EXT|M_EXT_CLUSTER);
661 }
662 
663 struct mbuf *
664 m_getcl(int how, int type, int flags)
665 {
666 	struct mbuf *mp;
667 
668 	if ((flags & M_PKTHDR) != 0)
669 		mp = m_gethdr(how, type);
670 	else
671 		mp = m_get(how, type);
672 
673 	if (mp == NULL)
674 		return NULL;
675 
676 	MCLGET(mp, how);
677 	if ((mp->m_flags & M_EXT) != 0)
678 		return mp;
679 
680 	m_free(mp);
681 	return NULL;
682 }
683 
684 /*
685  * Utility function for M_PREPEND. Do *NOT* use it directly.
686  */
687 struct mbuf *
688 m_prepend(struct mbuf *m, int len, int how)
689 {
690 	struct mbuf *mn;
691 
692 	if (__predict_false(len > MHLEN)) {
693 		panic("%s: len > MHLEN", __func__);
694 	}
695 
696 	KASSERT(len != M_COPYALL);
697 	mn = m_get(how, m->m_type);
698 	if (mn == NULL) {
699 		m_freem(m);
700 		return NULL;
701 	}
702 
703 	if (m->m_flags & M_PKTHDR) {
704 		m_move_pkthdr(mn, m);
705 	} else {
706 		MCLAIM(mn, m->m_owner);
707 	}
708 	mn->m_next = m;
709 	m = mn;
710 
711 	if (m->m_flags & M_PKTHDR) {
712 		if (len < MHLEN)
713 			m_align(m, len);
714 	} else {
715 		if (len < MLEN)
716 			m_align(m, len);
717 	}
718 
719 	m->m_len = len;
720 	return m;
721 }
722 
723 struct mbuf *
724 m_copym(struct mbuf *m, int off, int len, int wait)
725 {
726 	/* Shallow copy on M_EXT. */
727 	return m_copy_internal(m, off, len, wait, false);
728 }
729 
730 struct mbuf *
731 m_dup(struct mbuf *m, int off, int len, int wait)
732 {
733 	/* Deep copy. */
734 	return m_copy_internal(m, off, len, wait, true);
735 }
736 
737 static inline int
738 m_copylen(int len, int copylen)
739 {
740 	return (len == M_COPYALL) ? copylen : uimin(len, copylen);
741 }
742 
743 static struct mbuf *
744 m_copy_internal(struct mbuf *m, int off0, int len, int wait, bool deep)
745 {
746 	struct mbuf *m0 __diagused = m;
747 	int len0 __diagused = len;
748 	struct mbuf *n, **np;
749 	int off = off0;
750 	struct mbuf *top;
751 	int copyhdr = 0;
752 
753 	if (off < 0 || (len != M_COPYALL && len < 0))
754 		panic("%s: off %d, len %d", __func__, off, len);
755 	if (off == 0 && m->m_flags & M_PKTHDR)
756 		copyhdr = 1;
757 	while (off > 0) {
758 		if (m == NULL)
759 			panic("%s: m == NULL, off %d", __func__, off);
760 		if (off < m->m_len)
761 			break;
762 		off -= m->m_len;
763 		m = m->m_next;
764 	}
765 
766 	np = &top;
767 	top = NULL;
768 	while (len == M_COPYALL || len > 0) {
769 		if (m == NULL) {
770 			if (len != M_COPYALL)
771 				panic("%s: m == NULL, len %d [!COPYALL]",
772 				    __func__, len);
773 			break;
774 		}
775 
776 		n = m_get(wait, m->m_type);
777 		*np = n;
778 		if (n == NULL)
779 			goto nospace;
780 		MCLAIM(n, m->m_owner);
781 
782 		if (copyhdr) {
783 			m_copy_pkthdr(n, m);
784 			if (len == M_COPYALL)
785 				n->m_pkthdr.len -= off0;
786 			else
787 				n->m_pkthdr.len = len;
788 			copyhdr = 0;
789 		}
790 		n->m_len = m_copylen(len, m->m_len - off);
791 
792 		if (m->m_flags & M_EXT) {
793 			if (!deep) {
794 				n->m_data = m->m_data + off;
795 				MCLADDREFERENCE(m, n);
796 			} else {
797 				/*
798 				 * We don't care if MCLGET fails. n->m_len is
799 				 * recomputed and handles that.
800 				 */
801 				MCLGET(n, wait);
802 				n->m_len = 0;
803 				n->m_len = M_TRAILINGSPACE(n);
804 				n->m_len = m_copylen(len, n->m_len);
805 				n->m_len = uimin(n->m_len, m->m_len - off);
806 				memcpy(mtod(n, void *), mtod(m, char *) + off,
807 				    (unsigned)n->m_len);
808 			}
809 		} else {
810 			memcpy(mtod(n, void *), mtod(m, char *) + off,
811 			    (unsigned)n->m_len);
812 		}
813 
814 		if (len != M_COPYALL)
815 			len -= n->m_len;
816 		off += n->m_len;
817 
818 		KASSERTMSG(off <= m->m_len,
819 		    "m=%p m->m_len=%d off=%d len=%d m0=%p off0=%d len0=%d",
820 		    m, m->m_len, off, len, m0, off0, len0);
821 
822 		if (off == m->m_len) {
823 			m = m->m_next;
824 			off = 0;
825 		}
826 		np = &n->m_next;
827 	}
828 
829 	return top;
830 
831 nospace:
832 	m_freem(top);
833 	return NULL;
834 }
835 
836 /*
837  * Copy an entire packet, including header (which must be present).
838  * An optimization of the common case 'm_copym(m, 0, M_COPYALL, how)'.
839  */
840 struct mbuf *
841 m_copypacket(struct mbuf *m, int how)
842 {
843 	struct mbuf *top, *n, *o;
844 
845 	if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
846 		panic("%s: no header (m = %p)", __func__, m);
847 	}
848 
849 	n = m_get(how, m->m_type);
850 	top = n;
851 	if (!n)
852 		goto nospace;
853 
854 	MCLAIM(n, m->m_owner);
855 	m_copy_pkthdr(n, m);
856 	n->m_len = m->m_len;
857 	if (m->m_flags & M_EXT) {
858 		n->m_data = m->m_data;
859 		MCLADDREFERENCE(m, n);
860 	} else {
861 		memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
862 	}
863 
864 	m = m->m_next;
865 	while (m) {
866 		o = m_get(how, m->m_type);
867 		if (!o)
868 			goto nospace;
869 
870 		MCLAIM(o, m->m_owner);
871 		n->m_next = o;
872 		n = n->m_next;
873 
874 		n->m_len = m->m_len;
875 		if (m->m_flags & M_EXT) {
876 			n->m_data = m->m_data;
877 			MCLADDREFERENCE(m, n);
878 		} else {
879 			memcpy(mtod(n, char *), mtod(m, char *), n->m_len);
880 		}
881 
882 		m = m->m_next;
883 	}
884 	return top;
885 
886 nospace:
887 	m_freem(top);
888 	return NULL;
889 }
890 
891 void
892 m_copydata(struct mbuf *m, int off, int len, void *cp)
893 {
894 	unsigned int count;
895 	struct mbuf *m0 = m;
896 	int len0 = len;
897 	int off0 = off;
898 	void *cp0 = cp;
899 
900 	KASSERT(len != M_COPYALL);
901 	if (off < 0 || len < 0)
902 		panic("m_copydata: off %d, len %d", off, len);
903 	while (off > 0) {
904 		if (m == NULL)
905 			panic("m_copydata(%p,%d,%d,%p): m=NULL, off=%d (%d)",
906 			    m0, len0, off0, cp0, off, off0 - off);
907 		if (off < m->m_len)
908 			break;
909 		off -= m->m_len;
910 		m = m->m_next;
911 	}
912 	while (len > 0) {
913 		if (m == NULL)
914 			panic("m_copydata(%p,%d,%d,%p): "
915 			    "m=NULL, off=%d (%d), len=%d (%d)",
916 			    m0, len0, off0, cp0,
917 			    off, off0 - off, len, len0 - len);
918 		count = uimin(m->m_len - off, len);
919 		memcpy(cp, mtod(m, char *) + off, count);
920 		len -= count;
921 		cp = (char *)cp + count;
922 		off = 0;
923 		m = m->m_next;
924 	}
925 }
926 
927 /*
928  * Concatenate mbuf chain n to m.
929  * n might be copied into m (when n->m_len is small), therefore data portion of
930  * n could be copied into an mbuf of different mbuf type.
931  * Any m_pkthdr is not updated.
932  */
933 void
934 m_cat(struct mbuf *m, struct mbuf *n)
935 {
936 
937 	while (m->m_next)
938 		m = m->m_next;
939 	while (n) {
940 		if (M_READONLY(m) || n->m_len > M_TRAILINGSPACE(m)) {
941 			/* just join the two chains */
942 			m->m_next = n;
943 			return;
944 		}
945 		/* splat the data from one into the other */
946 		memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
947 		    (u_int)n->m_len);
948 		m->m_len += n->m_len;
949 		n = m_free(n);
950 	}
951 }
952 
953 void
954 m_adj(struct mbuf *mp, int req_len)
955 {
956 	int len = req_len;
957 	struct mbuf *m;
958 	int count;
959 
960 	if ((m = mp) == NULL)
961 		return;
962 	if (len >= 0) {
963 		/*
964 		 * Trim from head.
965 		 */
966 		while (m != NULL && len > 0) {
967 			if (m->m_len <= len) {
968 				len -= m->m_len;
969 				m->m_len = 0;
970 				m = m->m_next;
971 			} else {
972 				m->m_len -= len;
973 				m->m_data += len;
974 				len = 0;
975 			}
976 		}
977 		if (mp->m_flags & M_PKTHDR)
978 			mp->m_pkthdr.len -= (req_len - len);
979 	} else {
980 		/*
981 		 * Trim from tail.  Scan the mbuf chain,
982 		 * calculating its length and finding the last mbuf.
983 		 * If the adjustment only affects this mbuf, then just
984 		 * adjust and return.  Otherwise, rescan and truncate
985 		 * after the remaining size.
986 		 */
987 		len = -len;
988 		count = 0;
989 		for (;;) {
990 			count += m->m_len;
991 			if (m->m_next == NULL)
992 				break;
993 			m = m->m_next;
994 		}
995 		if (m->m_len >= len) {
996 			m->m_len -= len;
997 			if (mp->m_flags & M_PKTHDR)
998 				mp->m_pkthdr.len -= len;
999 			return;
1000 		}
1001 
1002 		count -= len;
1003 		if (count < 0)
1004 			count = 0;
1005 
1006 		/*
1007 		 * Correct length for chain is "count".
1008 		 * Find the mbuf with last data, adjust its length,
1009 		 * and toss data from remaining mbufs on chain.
1010 		 */
1011 		m = mp;
1012 		if (m->m_flags & M_PKTHDR)
1013 			m->m_pkthdr.len = count;
1014 		for (; m; m = m->m_next) {
1015 			if (m->m_len >= count) {
1016 				m->m_len = count;
1017 				break;
1018 			}
1019 			count -= m->m_len;
1020 		}
1021 		if (m) {
1022 			while (m->m_next)
1023 				(m = m->m_next)->m_len = 0;
1024 		}
1025 	}
1026 }
1027 
1028 /*
1029  * m_ensure_contig: rearrange an mbuf chain that given length of bytes
1030  * would be contiguous and in the data area of an mbuf (therefore, mtod()
1031  * would work for a structure of given length).
1032  *
1033  * => On success, returns true and the resulting mbuf chain; false otherwise.
1034  * => The mbuf chain may change, but is always preserved valid.
1035  */
1036 bool
1037 m_ensure_contig(struct mbuf **m0, int len)
1038 {
1039 	struct mbuf *n = *m0, *m;
1040 	size_t count, space;
1041 
1042 	KASSERT(len != M_COPYALL);
1043 	/*
1044 	 * If first mbuf has no cluster, and has room for len bytes
1045 	 * without shifting current data, pullup into it,
1046 	 * otherwise allocate a new mbuf to prepend to the chain.
1047 	 */
1048 	if ((n->m_flags & M_EXT) == 0 &&
1049 	    n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
1050 		if (n->m_len >= len) {
1051 			return true;
1052 		}
1053 		m = n;
1054 		n = n->m_next;
1055 		len -= m->m_len;
1056 	} else {
1057 		if (len > MHLEN) {
1058 			return false;
1059 		}
1060 		m = m_get(M_DONTWAIT, n->m_type);
1061 		if (m == NULL) {
1062 			return false;
1063 		}
1064 		MCLAIM(m, n->m_owner);
1065 		if (n->m_flags & M_PKTHDR) {
1066 			m_move_pkthdr(m, n);
1067 		}
1068 	}
1069 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1070 	do {
1071 		count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
1072 		memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1073 		  (unsigned)count);
1074 		len -= count;
1075 		m->m_len += count;
1076 		n->m_len -= count;
1077 		space -= count;
1078 		if (n->m_len)
1079 			n->m_data += count;
1080 		else
1081 			n = m_free(n);
1082 	} while (len > 0 && n);
1083 
1084 	m->m_next = n;
1085 	*m0 = m;
1086 
1087 	return len <= 0;
1088 }
1089 
1090 /*
1091  * m_pullup: same as m_ensure_contig(), but destroys mbuf chain on error.
1092  */
1093 struct mbuf *
1094 m_pullup(struct mbuf *n, int len)
1095 {
1096 	struct mbuf *m = n;
1097 
1098 	KASSERT(len != M_COPYALL);
1099 	if (!m_ensure_contig(&m, len)) {
1100 		KASSERT(m != NULL);
1101 		m_freem(m);
1102 		m = NULL;
1103 	}
1104 	return m;
1105 }
1106 
1107 /*
1108  * ensure that [off, off + len) is contiguous on the mbuf chain "m".
1109  * packet chain before "off" is kept untouched.
1110  * if offp == NULL, the target will start at <retval, 0> on resulting chain.
1111  * if offp != NULL, the target will start at <retval, *offp> on resulting chain.
1112  *
1113  * on error return (NULL return value), original "m" will be freed.
1114  *
1115  * XXX M_TRAILINGSPACE/M_LEADINGSPACE on shared cluster (sharedcluster)
1116  */
1117 struct mbuf *
1118 m_pulldown(struct mbuf *m, int off, int len, int *offp)
1119 {
1120 	struct mbuf *n, *o;
1121 	int hlen, tlen, olen;
1122 	int sharedcluster;
1123 
1124 	/* Check invalid arguments. */
1125 	if (m == NULL)
1126 		panic("%s: m == NULL", __func__);
1127 	if (len > MCLBYTES) {
1128 		m_freem(m);
1129 		return NULL;
1130 	}
1131 
1132 	n = m;
1133 	while (n != NULL && off > 0) {
1134 		if (n->m_len > off)
1135 			break;
1136 		off -= n->m_len;
1137 		n = n->m_next;
1138 	}
1139 	/* Be sure to point non-empty mbuf. */
1140 	while (n != NULL && n->m_len == 0)
1141 		n = n->m_next;
1142 	if (!n) {
1143 		m_freem(m);
1144 		return NULL;	/* mbuf chain too short */
1145 	}
1146 
1147 	sharedcluster = M_READONLY(n);
1148 
1149 	/*
1150 	 * The target data is on <n, off>. If we got enough data on the mbuf
1151 	 * "n", we're done.
1152 	 */
1153 #ifdef __NO_STRICT_ALIGNMENT
1154 	if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster)
1155 #else
1156 	if ((off == 0 || offp) && len <= n->m_len - off && !sharedcluster &&
1157 	    ALIGNED_POINTER((mtod(n, char *) + off), uint32_t))
1158 #endif
1159 		goto ok;
1160 
1161 	/*
1162 	 * When (len <= n->m_len - off) and (off != 0), it is a special case.
1163 	 * Len bytes from <n, off> sit in single mbuf, but the caller does
1164 	 * not like the starting position (off).
1165 	 *
1166 	 * Chop the current mbuf into two pieces, set off to 0.
1167 	 */
1168 	if (len <= n->m_len - off) {
1169 		struct mbuf *mlast;
1170 
1171 		o = m_dup(n, off, n->m_len - off, M_DONTWAIT);
1172 		if (o == NULL) {
1173 			m_freem(m);
1174 			return NULL;	/* ENOBUFS */
1175 		}
1176 		KASSERTMSG(o->m_len >= len, "o=%p o->m_len=%d len=%d",
1177 		    o, o->m_len, len);
1178 		for (mlast = o; mlast->m_next != NULL; mlast = mlast->m_next)
1179 			;
1180 		n->m_len = off;
1181 		mlast->m_next = n->m_next;
1182 		n->m_next = o;
1183 		n = o;
1184 		off = 0;
1185 		goto ok;
1186 	}
1187 
1188 	/*
1189 	 * We need to take hlen from <n, off> and tlen from <n->m_next, 0>,
1190 	 * and construct contiguous mbuf with m_len == len.
1191 	 *
1192 	 * Note that hlen + tlen == len, and tlen > 0.
1193 	 */
1194 	hlen = n->m_len - off;
1195 	tlen = len - hlen;
1196 
1197 	/*
1198 	 * Ensure that we have enough trailing data on mbuf chain. If not,
1199 	 * we can do nothing about the chain.
1200 	 */
1201 	olen = 0;
1202 	for (o = n->m_next; o != NULL; o = o->m_next)
1203 		olen += o->m_len;
1204 	if (hlen + olen < len) {
1205 		m_freem(m);
1206 		return NULL;	/* mbuf chain too short */
1207 	}
1208 
1209 	/*
1210 	 * Easy cases first. We need to use m_copydata() to get data from
1211 	 * <n->m_next, 0>.
1212 	 */
1213 	if ((off == 0 || offp) && M_TRAILINGSPACE(n) >= tlen &&
1214 	    !sharedcluster) {
1215 		m_copydata(n->m_next, 0, tlen, mtod(n, char *) + n->m_len);
1216 		n->m_len += tlen;
1217 		m_adj(n->m_next, tlen);
1218 		goto ok;
1219 	}
1220 	if ((off == 0 || offp) && M_LEADINGSPACE(n->m_next) >= hlen &&
1221 #ifndef __NO_STRICT_ALIGNMENT
1222 	    ALIGNED_POINTER((n->m_next->m_data - hlen), uint32_t) &&
1223 #endif
1224 	    !sharedcluster && n->m_next->m_len >= tlen) {
1225 		n->m_next->m_data -= hlen;
1226 		n->m_next->m_len += hlen;
1227 		memcpy(mtod(n->m_next, void *), mtod(n, char *) + off, hlen);
1228 		n->m_len -= hlen;
1229 		n = n->m_next;
1230 		off = 0;
1231 		goto ok;
1232 	}
1233 
1234 	/*
1235 	 * Now, we need to do the hard way. Don't copy as there's no room
1236 	 * on both ends.
1237 	 */
1238 	o = m_get(M_DONTWAIT, m->m_type);
1239 	if (o && len > MLEN) {
1240 		MCLGET(o, M_DONTWAIT);
1241 		if ((o->m_flags & M_EXT) == 0) {
1242 			m_free(o);
1243 			o = NULL;
1244 		}
1245 	}
1246 	if (!o) {
1247 		m_freem(m);
1248 		return NULL;	/* ENOBUFS */
1249 	}
1250 	/* get hlen from <n, off> into <o, 0> */
1251 	o->m_len = hlen;
1252 	memcpy(mtod(o, void *), mtod(n, char *) + off, hlen);
1253 	n->m_len -= hlen;
1254 	/* get tlen from <n->m_next, 0> into <o, hlen> */
1255 	m_copydata(n->m_next, 0, tlen, mtod(o, char *) + o->m_len);
1256 	o->m_len += tlen;
1257 	m_adj(n->m_next, tlen);
1258 	o->m_next = n->m_next;
1259 	n->m_next = o;
1260 	n = o;
1261 	off = 0;
1262 
1263 ok:
1264 	if (offp)
1265 		*offp = off;
1266 	return n;
1267 }
1268 
1269 /*
1270  * Like m_pullup(), except a new mbuf is always allocated, and we allow
1271  * the amount of empty space before the data in the new mbuf to be specified
1272  * (in the event that the caller expects to prepend later).
1273  */
1274 struct mbuf *
1275 m_copyup(struct mbuf *n, int len, int dstoff)
1276 {
1277 	struct mbuf *m;
1278 	int count, space;
1279 
1280 	KASSERT(len != M_COPYALL);
1281 	if (len > ((int)MHLEN - dstoff))
1282 		goto bad;
1283 	m = m_get(M_DONTWAIT, n->m_type);
1284 	if (m == NULL)
1285 		goto bad;
1286 	MCLAIM(m, n->m_owner);
1287 	if (n->m_flags & M_PKTHDR) {
1288 		m_move_pkthdr(m, n);
1289 	}
1290 	m->m_data += dstoff;
1291 	space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
1292 	do {
1293 		count = uimin(uimin(uimax(len, max_protohdr), space), n->m_len);
1294 		memcpy(mtod(m, char *) + m->m_len, mtod(n, void *),
1295 		    (unsigned)count);
1296 		len -= count;
1297 		m->m_len += count;
1298 		n->m_len -= count;
1299 		space -= count;
1300 		if (n->m_len)
1301 			n->m_data += count;
1302 		else
1303 			n = m_free(n);
1304 	} while (len > 0 && n);
1305 	if (len > 0) {
1306 		(void) m_free(m);
1307 		goto bad;
1308 	}
1309 	m->m_next = n;
1310 	return m;
1311  bad:
1312 	m_freem(n);
1313 	return NULL;
1314 }
1315 
1316 struct mbuf *
1317 m_split(struct mbuf *m0, int len, int wait)
1318 {
1319 	return m_split_internal(m0, len, wait, true);
1320 }
1321 
1322 static struct mbuf *
1323 m_split_internal(struct mbuf *m0, int len0, int wait, bool copyhdr)
1324 {
1325 	struct mbuf *m, *n;
1326 	unsigned len = len0, remain, len_save;
1327 
1328 	KASSERT(len0 != M_COPYALL);
1329 	for (m = m0; m && len > m->m_len; m = m->m_next)
1330 		len -= m->m_len;
1331 	if (m == NULL)
1332 		return NULL;
1333 
1334 	remain = m->m_len - len;
1335 	if (copyhdr && (m0->m_flags & M_PKTHDR)) {
1336 		n = m_gethdr(wait, m0->m_type);
1337 		if (n == NULL)
1338 			return NULL;
1339 
1340 		MCLAIM(n, m0->m_owner);
1341 		m_copy_rcvif(n, m0);
1342 		n->m_pkthdr.len = m0->m_pkthdr.len - len0;
1343 		len_save = m0->m_pkthdr.len;
1344 		m0->m_pkthdr.len = len0;
1345 
1346 		if ((m->m_flags & M_EXT) == 0 && remain > MHLEN) {
1347 			/* m can't be the lead packet */
1348 			m_align(n, 0);
1349 			n->m_len = 0;
1350 			n->m_next = m_split(m, len, wait);
1351 			if (n->m_next == NULL) {
1352 				(void)m_free(n);
1353 				m0->m_pkthdr.len = len_save;
1354 				return NULL;
1355 			}
1356 			return n;
1357 		}
1358 	} else if (remain == 0) {
1359 		n = m->m_next;
1360 		m->m_next = NULL;
1361 		return n;
1362 	} else {
1363 		n = m_get(wait, m->m_type);
1364 		if (n == NULL)
1365 			return NULL;
1366 		MCLAIM(n, m->m_owner);
1367 	}
1368 
1369 	if (m->m_flags & M_EXT) {
1370 		n->m_data = m->m_data + len;
1371 		MCLADDREFERENCE(m, n);
1372 	} else {
1373 		m_align(n, remain);
1374 		memcpy(mtod(n, void *), mtod(m, char *) + len, remain);
1375 	}
1376 
1377 	n->m_len = remain;
1378 	m->m_len = len;
1379 	n->m_next = m->m_next;
1380 	m->m_next = NULL;
1381 	return n;
1382 }
1383 
1384 /*
1385  * Routine to copy from device local memory into mbufs.
1386  */
1387 struct mbuf *
1388 m_devget(char *buf, int totlen, int off, struct ifnet *ifp)
1389 {
1390 	struct mbuf *m;
1391 	struct mbuf *top = NULL, **mp = &top;
1392 	char *cp, *epkt;
1393 	int len;
1394 
1395 	cp = buf;
1396 	epkt = cp + totlen;
1397 	if (off) {
1398 		/*
1399 		 * If 'off' is non-zero, packet is trailer-encapsulated,
1400 		 * so we have to skip the type and length fields.
1401 		 */
1402 		cp += off + 2 * sizeof(uint16_t);
1403 		totlen -= 2 * sizeof(uint16_t);
1404 	}
1405 
1406 	m = m_gethdr(M_DONTWAIT, MT_DATA);
1407 	if (m == NULL)
1408 		return NULL;
1409 	m_set_rcvif(m, ifp);
1410 	m->m_pkthdr.len = totlen;
1411 	m->m_len = MHLEN;
1412 
1413 	while (totlen > 0) {
1414 		if (top) {
1415 			m = m_get(M_DONTWAIT, MT_DATA);
1416 			if (m == NULL) {
1417 				m_freem(top);
1418 				return NULL;
1419 			}
1420 			m->m_len = MLEN;
1421 		}
1422 
1423 		len = uimin(totlen, epkt - cp);
1424 
1425 		if (len >= MINCLSIZE) {
1426 			MCLGET(m, M_DONTWAIT);
1427 			if ((m->m_flags & M_EXT) == 0) {
1428 				m_free(m);
1429 				m_freem(top);
1430 				return NULL;
1431 			}
1432 			m->m_len = len = uimin(len, MCLBYTES);
1433 		} else {
1434 			/*
1435 			 * Place initial small packet/header at end of mbuf.
1436 			 */
1437 			if (len < m->m_len) {
1438 				if (top == 0 && len + max_linkhdr <= m->m_len)
1439 					m->m_data += max_linkhdr;
1440 				m->m_len = len;
1441 			} else
1442 				len = m->m_len;
1443 		}
1444 
1445 		memcpy(mtod(m, void *), cp, (size_t)len);
1446 
1447 		cp += len;
1448 		*mp = m;
1449 		mp = &m->m_next;
1450 		totlen -= len;
1451 		if (cp == epkt)
1452 			cp = buf;
1453 	}
1454 
1455 	return top;
1456 }
1457 
1458 /*
1459  * Copy data from a buffer back into the indicated mbuf chain,
1460  * starting "off" bytes from the beginning, extending the mbuf
1461  * chain if necessary.
1462  */
1463 void
1464 m_copyback(struct mbuf *m0, int off, int len, const void *cp)
1465 {
1466 #if defined(DEBUG)
1467 	struct mbuf *origm = m0;
1468 	int error;
1469 #endif
1470 
1471 	if (m0 == NULL)
1472 		return;
1473 
1474 #if defined(DEBUG)
1475 	error =
1476 #endif
1477 	m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_EXTEND,
1478 	    M_DONTWAIT);
1479 
1480 #if defined(DEBUG)
1481 	if (error != 0 || (m0 != NULL && origm != m0))
1482 		panic("m_copyback");
1483 #endif
1484 }
1485 
1486 struct mbuf *
1487 m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
1488 {
1489 	int error;
1490 
1491 	/* don't support chain expansion */
1492 	KASSERT(len != M_COPYALL);
1493 	KDASSERT(off + len <= m_length(m0));
1494 
1495 	error = m_copyback_internal(&m0, off, len, cp, CB_COPYBACK|CB_COW,
1496 	    how);
1497 	if (error) {
1498 		/*
1499 		 * no way to recover from partial success.
1500 		 * just free the chain.
1501 		 */
1502 		m_freem(m0);
1503 		return NULL;
1504 	}
1505 	return m0;
1506 }
1507 
1508 int
1509 m_makewritable(struct mbuf **mp, int off, int len, int how)
1510 {
1511 	int error;
1512 #if defined(DEBUG)
1513 	int origlen = m_length(*mp);
1514 #endif
1515 
1516 	error = m_copyback_internal(mp, off, len, NULL, CB_PRESERVE|CB_COW,
1517 	    how);
1518 	if (error)
1519 		return error;
1520 
1521 #if defined(DEBUG)
1522 	int reslen = 0;
1523 	for (struct mbuf *n = *mp; n; n = n->m_next)
1524 		reslen += n->m_len;
1525 	if (origlen != reslen)
1526 		panic("m_makewritable: length changed");
1527 	if (((*mp)->m_flags & M_PKTHDR) != 0 && reslen != (*mp)->m_pkthdr.len)
1528 		panic("m_makewritable: inconsist");
1529 #endif
1530 
1531 	return 0;
1532 }
1533 
1534 static int
1535 m_copyback_internal(struct mbuf **mp0, int off, int len, const void *vp,
1536     int flags, int how)
1537 {
1538 	int mlen;
1539 	struct mbuf *m, *n;
1540 	struct mbuf **mp;
1541 	int totlen = 0;
1542 	const char *cp = vp;
1543 
1544 	KASSERT(mp0 != NULL);
1545 	KASSERT(*mp0 != NULL);
1546 	KASSERT((flags & CB_PRESERVE) == 0 || cp == NULL);
1547 	KASSERT((flags & CB_COPYBACK) == 0 || cp != NULL);
1548 
1549 	if (len == M_COPYALL)
1550 		len = m_length(*mp0) - off;
1551 
1552 	/*
1553 	 * we don't bother to update "totlen" in the case of CB_COW,
1554 	 * assuming that CB_EXTEND and CB_COW are exclusive.
1555 	 */
1556 
1557 	KASSERT((~flags & (CB_EXTEND|CB_COW)) != 0);
1558 
1559 	mp = mp0;
1560 	m = *mp;
1561 	while (off > (mlen = m->m_len)) {
1562 		off -= mlen;
1563 		totlen += mlen;
1564 		if (m->m_next == NULL) {
1565 			int tspace;
1566 extend:
1567 			if ((flags & CB_EXTEND) == 0)
1568 				goto out;
1569 
1570 			/*
1571 			 * try to make some space at the end of "m".
1572 			 */
1573 
1574 			mlen = m->m_len;
1575 			if (off + len >= MINCLSIZE &&
1576 			    (m->m_flags & M_EXT) == 0 && m->m_len == 0) {
1577 				MCLGET(m, how);
1578 			}
1579 			tspace = M_TRAILINGSPACE(m);
1580 			if (tspace > 0) {
1581 				tspace = uimin(tspace, off + len);
1582 				KASSERT(tspace > 0);
1583 				memset(mtod(m, char *) + m->m_len, 0,
1584 				    uimin(off, tspace));
1585 				m->m_len += tspace;
1586 				off += mlen;
1587 				totlen -= mlen;
1588 				continue;
1589 			}
1590 
1591 			/*
1592 			 * need to allocate an mbuf.
1593 			 */
1594 
1595 			if (off + len >= MINCLSIZE) {
1596 				n = m_getcl(how, m->m_type, 0);
1597 			} else {
1598 				n = m_get(how, m->m_type);
1599 			}
1600 			if (n == NULL) {
1601 				goto out;
1602 			}
1603 			n->m_len = uimin(M_TRAILINGSPACE(n), off + len);
1604 			memset(mtod(n, char *), 0, uimin(n->m_len, off));
1605 			m->m_next = n;
1606 		}
1607 		mp = &m->m_next;
1608 		m = m->m_next;
1609 	}
1610 	while (len > 0) {
1611 		mlen = m->m_len - off;
1612 		if (mlen != 0 && M_READONLY(m)) {
1613 			/*
1614 			 * This mbuf is read-only. Allocate a new writable
1615 			 * mbuf and try again.
1616 			 */
1617 			char *datap;
1618 			int eatlen;
1619 
1620 			KASSERT((flags & CB_COW) != 0);
1621 
1622 			/*
1623 			 * if we're going to write into the middle of
1624 			 * a mbuf, split it first.
1625 			 */
1626 			if (off > 0) {
1627 				n = m_split_internal(m, off, how, false);
1628 				if (n == NULL)
1629 					goto enobufs;
1630 				m->m_next = n;
1631 				mp = &m->m_next;
1632 				m = n;
1633 				off = 0;
1634 				continue;
1635 			}
1636 
1637 			/*
1638 			 * XXX TODO coalesce into the trailingspace of
1639 			 * the previous mbuf when possible.
1640 			 */
1641 
1642 			/*
1643 			 * allocate a new mbuf.  copy packet header if needed.
1644 			 */
1645 			n = m_get(how, m->m_type);
1646 			if (n == NULL)
1647 				goto enobufs;
1648 			MCLAIM(n, m->m_owner);
1649 			if (off == 0 && (m->m_flags & M_PKTHDR) != 0) {
1650 				m_move_pkthdr(n, m);
1651 				n->m_len = MHLEN;
1652 			} else {
1653 				if (len >= MINCLSIZE)
1654 					MCLGET(n, M_DONTWAIT);
1655 				n->m_len =
1656 				    (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
1657 			}
1658 			if (n->m_len > len)
1659 				n->m_len = len;
1660 
1661 			/*
1662 			 * free the region which has been overwritten.
1663 			 * copying data from old mbufs if requested.
1664 			 */
1665 			if (flags & CB_PRESERVE)
1666 				datap = mtod(n, char *);
1667 			else
1668 				datap = NULL;
1669 			eatlen = n->m_len;
1670 			while (m != NULL && M_READONLY(m) &&
1671 			    n->m_type == m->m_type && eatlen > 0) {
1672 				mlen = uimin(eatlen, m->m_len);
1673 				if (datap) {
1674 					m_copydata(m, 0, mlen, datap);
1675 					datap += mlen;
1676 				}
1677 				m->m_data += mlen;
1678 				m->m_len -= mlen;
1679 				eatlen -= mlen;
1680 				if (m->m_len == 0)
1681 					*mp = m = m_free(m);
1682 			}
1683 			if (eatlen > 0)
1684 				n->m_len -= eatlen;
1685 			n->m_next = m;
1686 			*mp = m = n;
1687 			continue;
1688 		}
1689 		mlen = uimin(mlen, len);
1690 		if (flags & CB_COPYBACK) {
1691 			memcpy(mtod(m, char *) + off, cp, (unsigned)mlen);
1692 			cp += mlen;
1693 		}
1694 		len -= mlen;
1695 		mlen += off;
1696 		off = 0;
1697 		totlen += mlen;
1698 		if (len == 0)
1699 			break;
1700 		if (m->m_next == NULL) {
1701 			goto extend;
1702 		}
1703 		mp = &m->m_next;
1704 		m = m->m_next;
1705 	}
1706 
1707 out:
1708 	if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
1709 		KASSERT((flags & CB_EXTEND) != 0);
1710 		m->m_pkthdr.len = totlen;
1711 	}
1712 
1713 	return 0;
1714 
1715 enobufs:
1716 	return ENOBUFS;
1717 }
1718 
1719 /*
1720  * Compress the mbuf chain. Return the new mbuf chain on success, NULL on
1721  * failure. The first mbuf is preserved, and on success the pointer returned
1722  * is the same as the one passed.
1723  */
1724 struct mbuf *
1725 m_defrag(struct mbuf *m, int how)
1726 {
1727 	struct mbuf *m0, *mn, *n;
1728 	int sz;
1729 
1730 	KASSERT((m->m_flags & M_PKTHDR) != 0);
1731 
1732 	if (m->m_next == NULL)
1733 		return m;
1734 
1735 	/* Defrag to single mbuf if at all possible */
1736 	if ((m->m_flags & M_EXT) == 0 && m->m_pkthdr.len <= MCLBYTES) {
1737 		if (m->m_pkthdr.len <= MHLEN) {
1738 			if (M_TRAILINGSPACE(m) < (m->m_pkthdr.len - m->m_len)) {
1739 				KASSERTMSG(M_LEADINGSPACE(m) +
1740 				    M_TRAILINGSPACE(m) >=
1741 				    (m->m_pkthdr.len - m->m_len),
1742 				    "too small leading %d trailing %d ro? %d"
1743 				    " pkthdr.len %d mlen %d",
1744 				    (int)M_LEADINGSPACE(m),
1745 				    (int)M_TRAILINGSPACE(m),
1746 				    M_READONLY(m),
1747 				    m->m_pkthdr.len, m->m_len);
1748 
1749 				memmove(m->m_pktdat, m->m_data, m->m_len);
1750 				m->m_data = m->m_pktdat;
1751 
1752 				KASSERT(M_TRAILINGSPACE(m) >=
1753 				    (m->m_pkthdr.len - m->m_len));
1754 			}
1755 		} else {
1756 			/* Must copy data before adding cluster */
1757 			m0 = m_get(how, MT_DATA);
1758 			if (m0 == NULL)
1759 				return NULL;
1760 			KASSERTMSG(m->m_len <= MHLEN,
1761 			    "m=%p m->m_len=%d MHLEN=%u",
1762 			    m, m->m_len, (unsigned)MHLEN);
1763 			m_copydata(m, 0, m->m_len, mtod(m0, void *));
1764 
1765 			MCLGET(m, how);
1766 			if ((m->m_flags & M_EXT) == 0) {
1767 				m_free(m0);
1768 				return NULL;
1769 			}
1770 			memcpy(m->m_data, mtod(m0, void *), m->m_len);
1771 			m_free(m0);
1772 		}
1773 		KASSERTMSG(M_TRAILINGSPACE(m) >= (m->m_pkthdr.len - m->m_len),
1774 		    "m=%p M_TRAILINGSPACE(m)=%zd m->m_pkthdr.len=%d"
1775 		    " m->m_len=%d",
1776 		    m, M_TRAILINGSPACE(m), m->m_pkthdr.len, m->m_len);
1777 		m_copydata(m->m_next, 0, m->m_pkthdr.len - m->m_len,
1778 			    mtod(m, char *) + m->m_len);
1779 		m->m_len = m->m_pkthdr.len;
1780 		m_freem(m->m_next);
1781 		m->m_next = NULL;
1782 		return m;
1783 	}
1784 
1785 	m0 = m_get(how, MT_DATA);
1786 	if (m0 == NULL)
1787 		return NULL;
1788 	mn = m0;
1789 
1790 	sz = m->m_pkthdr.len - m->m_len;
1791 	KASSERT(sz >= 0);
1792 
1793 	do {
1794 		if (sz > MLEN) {
1795 			MCLGET(mn, how);
1796 			if ((mn->m_flags & M_EXT) == 0) {
1797 				m_freem(m0);
1798 				return NULL;
1799 			}
1800 		}
1801 
1802 		mn->m_len = MIN(sz, MCLBYTES);
1803 
1804 		m_copydata(m, m->m_pkthdr.len - sz, mn->m_len,
1805 		     mtod(mn, void *));
1806 
1807 		sz -= mn->m_len;
1808 
1809 		if (sz > 0) {
1810 			/* need more mbufs */
1811 			n = m_get(how, MT_DATA);
1812 			if (n == NULL) {
1813 				m_freem(m0);
1814 				return NULL;
1815 			}
1816 
1817 			mn->m_next = n;
1818 			mn = n;
1819 		}
1820 	} while (sz > 0);
1821 
1822 	m_freem(m->m_next);
1823 	m->m_next = m0;
1824 
1825 	return m;
1826 }
1827 
1828 void
1829 m_remove_pkthdr(struct mbuf *m)
1830 {
1831 	KASSERT(m->m_flags & M_PKTHDR);
1832 
1833 	m_tag_delete_chain(m);
1834 	m->m_flags &= ~M_PKTHDR;
1835 	memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
1836 }
1837 
1838 void
1839 m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
1840 {
1841 	KASSERT((to->m_flags & M_EXT) == 0);
1842 	KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1843 	    SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1844 	KASSERT((from->m_flags & M_PKTHDR) != 0);
1845 
1846 	to->m_pkthdr = from->m_pkthdr;
1847 	to->m_flags = from->m_flags & M_COPYFLAGS;
1848 	to->m_data = to->m_pktdat;
1849 
1850 	SLIST_INIT(&to->m_pkthdr.tags);
1851 	m_tag_copy_chain(to, from);
1852 }
1853 
1854 void
1855 m_move_pkthdr(struct mbuf *to, struct mbuf *from)
1856 {
1857 	KASSERT((to->m_flags & M_EXT) == 0);
1858 	KASSERT((to->m_flags & M_PKTHDR) == 0 ||
1859 	    SLIST_FIRST(&to->m_pkthdr.tags) == NULL);
1860 	KASSERT((from->m_flags & M_PKTHDR) != 0);
1861 
1862 	to->m_pkthdr = from->m_pkthdr;
1863 	to->m_flags = from->m_flags & M_COPYFLAGS;
1864 	to->m_data = to->m_pktdat;
1865 
1866 	from->m_flags &= ~M_PKTHDR;
1867 }
1868 
1869 /*
1870  * Set the m_data pointer of a newly-allocated mbuf to place an object of the
1871  * specified size at the end of the mbuf, longword aligned.
1872  */
1873 void
1874 m_align(struct mbuf *m, int len)
1875 {
1876 	int buflen, adjust;
1877 
1878 	KASSERT(len != M_COPYALL);
1879 	KASSERTMSG(M_LEADINGSPACE(m) == 0, "m=%p M_LEADINGSPACE(m)=%zd",
1880 	    m, M_LEADINGSPACE(m));
1881 
1882 	buflen = M_BUFSIZE(m);
1883 
1884 	KASSERTMSG(len <= buflen, "m=%p len=%d buflen=%d", m, len, buflen);
1885 	adjust = buflen - len;
1886 	m->m_data += adjust &~ (sizeof(long)-1);
1887 }
1888 
1889 /*
1890  * Apply function f to the data in an mbuf chain starting "off" bytes from the
1891  * beginning, continuing for "len" bytes.
1892  */
1893 int
1894 m_apply(struct mbuf *m, int off, int len,
1895     int (*f)(void *, void *, unsigned int), void *arg)
1896 {
1897 	unsigned int count;
1898 	int rval;
1899 
1900 	KASSERT(len != M_COPYALL);
1901 	KASSERT(len >= 0);
1902 	KASSERT(off >= 0);
1903 
1904 	while (off > 0) {
1905 		KASSERT(m != NULL);
1906 		if (off < m->m_len)
1907 			break;
1908 		off -= m->m_len;
1909 		m = m->m_next;
1910 	}
1911 	while (len > 0) {
1912 		KASSERT(m != NULL);
1913 		count = uimin(m->m_len - off, len);
1914 
1915 		rval = (*f)(arg, mtod(m, char *) + off, count);
1916 		if (rval)
1917 			return rval;
1918 
1919 		len -= count;
1920 		off = 0;
1921 		m = m->m_next;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 /*
1928  * Return a pointer to mbuf/offset of location in mbuf chain.
1929  */
1930 struct mbuf *
1931 m_getptr(struct mbuf *m, int loc, int *off)
1932 {
1933 
1934 	while (loc >= 0) {
1935 		/* Normal end of search */
1936 		if (m->m_len > loc) {
1937 			*off = loc;
1938 			return m;
1939 		}
1940 
1941 		loc -= m->m_len;
1942 
1943 		if (m->m_next == NULL) {
1944 			if (loc == 0) {
1945 				/* Point at the end of valid data */
1946 				*off = m->m_len;
1947 				return m;
1948 			}
1949 			return NULL;
1950 		} else {
1951 			m = m->m_next;
1952 		}
1953 	}
1954 
1955 	return NULL;
1956 }
1957 
1958 /*
1959  * Release a reference to the mbuf external storage.
1960  *
1961  * => free the mbuf m itself as well.
1962  */
1963 static void
1964 m_ext_free(struct mbuf *m)
1965 {
1966 	const bool embedded = MEXT_ISEMBEDDED(m);
1967 	bool dofree = true;
1968 	u_int refcnt;
1969 
1970 	KASSERT((m->m_flags & M_EXT) != 0);
1971 	KASSERT(MEXT_ISEMBEDDED(m->m_ext_ref));
1972 	KASSERT((m->m_ext_ref->m_flags & M_EXT) != 0);
1973 	KASSERT((m->m_flags & M_EXT_CLUSTER) ==
1974 	    (m->m_ext_ref->m_flags & M_EXT_CLUSTER));
1975 
1976 	if (__predict_false(m->m_type == MT_FREE)) {
1977 		panic("mbuf %p already freed", m);
1978 	}
1979 
1980 	if (__predict_true(m->m_ext.ext_refcnt == 1)) {
1981 		refcnt = m->m_ext.ext_refcnt = 0;
1982 	} else {
1983 		membar_release();
1984 		refcnt = atomic_dec_uint_nv(&m->m_ext.ext_refcnt);
1985 	}
1986 
1987 	if (refcnt > 0) {
1988 		if (embedded) {
1989 			/*
1990 			 * other mbuf's m_ext_ref still points to us.
1991 			 */
1992 			dofree = false;
1993 		} else {
1994 			m->m_ext_ref = m;
1995 		}
1996 	} else {
1997 		/*
1998 		 * dropping the last reference
1999 		 */
2000 		membar_acquire();
2001 		if (!embedded) {
2002 			m->m_ext.ext_refcnt++; /* XXX */
2003 			m_ext_free(m->m_ext_ref);
2004 			m->m_ext_ref = m;
2005 		} else if ((m->m_flags & M_EXT_CLUSTER) != 0) {
2006 			pool_cache_put_paddr(mcl_cache,
2007 			    m->m_ext.ext_buf, m->m_ext.ext_paddr);
2008 		} else if (m->m_ext.ext_free) {
2009 			(*m->m_ext.ext_free)(m,
2010 			    m->m_ext.ext_buf, m->m_ext.ext_size,
2011 			    m->m_ext.ext_arg);
2012 			/*
2013 			 * 'm' is already freed by the ext_free callback.
2014 			 */
2015 			dofree = false;
2016 		} else {
2017 			free(m->m_ext.ext_buf, 0);
2018 		}
2019 	}
2020 
2021 	if (dofree) {
2022 		m->m_type = MT_FREE;
2023 		m->m_data = NULL;
2024 		pool_cache_put(mb_cache, m);
2025 	}
2026 }
2027 
2028 /*
2029  * Free a single mbuf and associated external storage. Return the
2030  * successor, if any.
2031  */
2032 struct mbuf *
2033 m_free(struct mbuf *m)
2034 {
2035 	struct mbuf *n;
2036 
2037 	mowner_revoke(m, 1, m->m_flags);
2038 	mbstat_type_add(m->m_type, -1);
2039 
2040 	if (m->m_flags & M_PKTHDR)
2041 		m_tag_delete_chain(m);
2042 
2043 	n = m->m_next;
2044 
2045 	if (m->m_flags & M_EXT) {
2046 		m_ext_free(m);
2047 	} else {
2048 		if (__predict_false(m->m_type == MT_FREE)) {
2049 			panic("mbuf %p already freed", m);
2050 		}
2051 		m->m_type = MT_FREE;
2052 		m->m_data = NULL;
2053 		pool_cache_put(mb_cache, m);
2054 	}
2055 
2056 	return n;
2057 }
2058 
2059 void
2060 m_freem(struct mbuf *m)
2061 {
2062 	if (m == NULL)
2063 		return;
2064 	do {
2065 		m = m_free(m);
2066 	} while (m);
2067 }
2068 
2069 #if defined(DDB)
2070 void
2071 m_print(const struct mbuf *m, const char *modif, void (*pr)(const char *, ...))
2072 {
2073 	char ch;
2074 	bool opt_c = false;
2075 	bool opt_d = false;
2076 #if NETHER > 0
2077 	bool opt_v = false;
2078 	const struct mbuf *m0 = NULL;
2079 #endif
2080 	int no = 0;
2081 	char buf[512];
2082 
2083 	while ((ch = *(modif++)) != '\0') {
2084 		switch (ch) {
2085 		case 'c':
2086 			opt_c = true;
2087 			break;
2088 		case 'd':
2089 			opt_d = true;
2090 			break;
2091 #if NETHER > 0
2092 		case 'v':
2093 			opt_v = true;
2094 			m0 = m;
2095 			break;
2096 #endif
2097 		default:
2098 			break;
2099 		}
2100 	}
2101 
2102 nextchain:
2103 	(*pr)("MBUF(%d) %p\n", no, m);
2104 	snprintb(buf, sizeof(buf), M_FLAGS_BITS, (u_int)m->m_flags);
2105 	(*pr)("  data=%p, len=%d, type=%d, flags=%s\n",
2106 	    m->m_data, m->m_len, m->m_type, buf);
2107 	if (opt_d) {
2108 		int i;
2109 		unsigned char *p = m->m_data;
2110 
2111 		(*pr)("  data:");
2112 
2113 		for (i = 0; i < m->m_len; i++) {
2114 			if (i % 16 == 0)
2115 				(*pr)("\n");
2116 			(*pr)(" %02x", p[i]);
2117 		}
2118 
2119 		(*pr)("\n");
2120 	}
2121 	(*pr)("  owner=%p, next=%p, nextpkt=%p\n", m->m_owner, m->m_next,
2122 	    m->m_nextpkt);
2123 	(*pr)("  leadingspace=%u, trailingspace=%u, readonly=%u\n",
2124 	    (int)M_LEADINGSPACE(m), (int)M_TRAILINGSPACE(m),
2125 	    (int)M_READONLY(m));
2126 	if ((m->m_flags & M_PKTHDR) != 0) {
2127 		snprintb(buf, sizeof(buf), M_CSUM_BITS, m->m_pkthdr.csum_flags);
2128 		(*pr)("  pktlen=%d, rcvif=%p, csum_flags=%s, csum_data=0x%"
2129 		    PRIx32 ", segsz=%u\n",
2130 		    m->m_pkthdr.len, m_get_rcvif_NOMPSAFE(m),
2131 		    buf, m->m_pkthdr.csum_data, m->m_pkthdr.segsz);
2132 	}
2133 	if ((m->m_flags & M_EXT)) {
2134 		(*pr)("  ext_refcnt=%u, ext_buf=%p, ext_size=%zd, "
2135 		    "ext_free=%p, ext_arg=%p\n",
2136 		    m->m_ext.ext_refcnt,
2137 		    m->m_ext.ext_buf, m->m_ext.ext_size,
2138 		    m->m_ext.ext_free, m->m_ext.ext_arg);
2139 	}
2140 	if ((~m->m_flags & (M_EXT|M_EXT_PAGES)) == 0) {
2141 		vaddr_t sva = (vaddr_t)m->m_ext.ext_buf;
2142 		vaddr_t eva = sva + m->m_ext.ext_size;
2143 		int n = (round_page(eva) - trunc_page(sva)) >> PAGE_SHIFT;
2144 		int i;
2145 
2146 		(*pr)("  pages:");
2147 		for (i = 0; i < n; i ++) {
2148 			(*pr)(" %p", m->m_ext.ext_pgs[i]);
2149 		}
2150 		(*pr)("\n");
2151 	}
2152 
2153 	if (opt_c) {
2154 		m = m->m_next;
2155 		if (m != NULL) {
2156 			no++;
2157 			goto nextchain;
2158 		}
2159 	}
2160 
2161 #if NETHER > 0
2162 	if (opt_v && m0)
2163 		m_examine(m0, AF_ETHER, modif, pr);
2164 #endif
2165 }
2166 #endif /* defined(DDB) */
2167 
2168 #if defined(MBUFTRACE)
2169 void
2170 mowner_init_owner(struct mowner *mo, const char *name, const char *descr)
2171 {
2172 	memset(mo, 0, sizeof(*mo));
2173 	strlcpy(mo->mo_name, name, sizeof(mo->mo_name));
2174 	strlcpy(mo->mo_descr, descr, sizeof(mo->mo_descr));
2175 }
2176 
2177 void
2178 mowner_attach(struct mowner *mo)
2179 {
2180 
2181 	KASSERT(mo->mo_counters == NULL);
2182 	mo->mo_counters = percpu_alloc(sizeof(struct mowner_counter));
2183 
2184 	/* XXX lock */
2185 	LIST_INSERT_HEAD(&mowners, mo, mo_link);
2186 }
2187 
2188 void
2189 mowner_detach(struct mowner *mo)
2190 {
2191 
2192 	KASSERT(mo->mo_counters != NULL);
2193 
2194 	/* XXX lock */
2195 	LIST_REMOVE(mo, mo_link);
2196 
2197 	percpu_free(mo->mo_counters, sizeof(struct mowner_counter));
2198 	mo->mo_counters = NULL;
2199 }
2200 
2201 void
2202 mowner_init(struct mbuf *m, int type)
2203 {
2204 	struct mowner_counter *mc;
2205 	struct mowner *mo;
2206 	int s;
2207 
2208 	m->m_owner = mo = &unknown_mowners[type];
2209 	s = splvm();
2210 	mc = percpu_getref(mo->mo_counters);
2211 	mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2212 	percpu_putref(mo->mo_counters);
2213 	splx(s);
2214 }
2215 
2216 void
2217 mowner_ref(struct mbuf *m, int flags)
2218 {
2219 	struct mowner *mo = m->m_owner;
2220 	struct mowner_counter *mc;
2221 	int s;
2222 
2223 	s = splvm();
2224 	mc = percpu_getref(mo->mo_counters);
2225 	if ((flags & M_EXT) != 0)
2226 		mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2227 	if ((flags & M_EXT_CLUSTER) != 0)
2228 		mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2229 	percpu_putref(mo->mo_counters);
2230 	splx(s);
2231 }
2232 
2233 void
2234 mowner_revoke(struct mbuf *m, bool all, int flags)
2235 {
2236 	struct mowner *mo = m->m_owner;
2237 	struct mowner_counter *mc;
2238 	int s;
2239 
2240 	s = splvm();
2241 	mc = percpu_getref(mo->mo_counters);
2242 	if ((flags & M_EXT) != 0)
2243 		mc->mc_counter[MOWNER_COUNTER_EXT_RELEASES]++;
2244 	if ((flags & M_EXT_CLUSTER) != 0)
2245 		mc->mc_counter[MOWNER_COUNTER_CLUSTER_RELEASES]++;
2246 	if (all)
2247 		mc->mc_counter[MOWNER_COUNTER_RELEASES]++;
2248 	percpu_putref(mo->mo_counters);
2249 	splx(s);
2250 	if (all)
2251 		m->m_owner = &revoked_mowner;
2252 }
2253 
2254 static void
2255 mowner_claim(struct mbuf *m, struct mowner *mo)
2256 {
2257 	struct mowner_counter *mc;
2258 	int flags = m->m_flags;
2259 	int s;
2260 
2261 	s = splvm();
2262 	mc = percpu_getref(mo->mo_counters);
2263 	mc->mc_counter[MOWNER_COUNTER_CLAIMS]++;
2264 	if ((flags & M_EXT) != 0)
2265 		mc->mc_counter[MOWNER_COUNTER_EXT_CLAIMS]++;
2266 	if ((flags & M_EXT_CLUSTER) != 0)
2267 		mc->mc_counter[MOWNER_COUNTER_CLUSTER_CLAIMS]++;
2268 	percpu_putref(mo->mo_counters);
2269 	splx(s);
2270 	m->m_owner = mo;
2271 }
2272 
2273 void
2274 m_claim(struct mbuf *m, struct mowner *mo)
2275 {
2276 
2277 	if (m->m_owner == mo || mo == NULL)
2278 		return;
2279 
2280 	mowner_revoke(m, true, m->m_flags);
2281 	mowner_claim(m, mo);
2282 }
2283 
2284 void
2285 m_claimm(struct mbuf *m, struct mowner *mo)
2286 {
2287 
2288 	for (; m != NULL; m = m->m_next)
2289 		m_claim(m, mo);
2290 }
2291 #endif /* defined(MBUFTRACE) */
2292 
2293 #ifdef DIAGNOSTIC
2294 /*
2295  * Verify that the mbuf chain is not malformed. Used only for diagnostic.
2296  * Panics on error.
2297  */
2298 void
2299 m_verify_packet(struct mbuf *m)
2300 {
2301 	struct mbuf *n = m;
2302 	char *low, *high, *dat;
2303 	int totlen = 0, len;
2304 
2305 	if (__predict_false((m->m_flags & M_PKTHDR) == 0)) {
2306 		panic("%s: mbuf doesn't have M_PKTHDR", __func__);
2307 	}
2308 
2309 	while (n != NULL) {
2310 		if (__predict_false(n->m_type == MT_FREE)) {
2311 			panic("%s: mbuf already freed (n = %p)", __func__, n);
2312 		}
2313 #if 0
2314 		/*
2315 		 * This ought to be a rule of the mbuf API. Unfortunately,
2316 		 * many places don't respect that rule.
2317 		 */
2318 		if (__predict_false((n != m) && (n->m_flags & M_PKTHDR) != 0)) {
2319 			panic("%s: M_PKTHDR set on secondary mbuf", __func__);
2320 		}
2321 #endif
2322 		if (__predict_false(n->m_nextpkt != NULL)) {
2323 			panic("%s: m_nextpkt not null (m_nextpkt = %p)",
2324 			    __func__, n->m_nextpkt);
2325 		}
2326 
2327 		dat = n->m_data;
2328 		len = n->m_len;
2329 		if (__predict_false(len < 0)) {
2330 			panic("%s: incorrect length (len = %d)", __func__, len);
2331 		}
2332 
2333 		low = M_BUFADDR(n);
2334 		high = low + M_BUFSIZE(n);
2335 		if (__predict_false((dat < low) || (dat + len > high))) {
2336 			panic("%s: m_data not in packet"
2337 			    "(dat = %p, len = %d, low = %p, high = %p)",
2338 			    __func__, dat, len, low, high);
2339 		}
2340 
2341 		totlen += len;
2342 		n = n->m_next;
2343 	}
2344 
2345 	if (__predict_false(totlen != m->m_pkthdr.len)) {
2346 		panic("%s: inconsistent mbuf length (%d != %d)", __func__,
2347 		    totlen, m->m_pkthdr.len);
2348 	}
2349 }
2350 #endif
2351 
2352 struct m_tag *
2353 m_tag_get(int type, int len, int wait)
2354 {
2355 	struct m_tag *t;
2356 
2357 	if (len < 0)
2358 		return NULL;
2359 	t = malloc(len + sizeof(struct m_tag), M_PACKET_TAGS, wait);
2360 	if (t == NULL)
2361 		return NULL;
2362 	t->m_tag_id = type;
2363 	t->m_tag_len = len;
2364 	return t;
2365 }
2366 
2367 void
2368 m_tag_free(struct m_tag *t)
2369 {
2370 	free(t, M_PACKET_TAGS);
2371 }
2372 
2373 void
2374 m_tag_prepend(struct mbuf *m, struct m_tag *t)
2375 {
2376 	KASSERT((m->m_flags & M_PKTHDR) != 0);
2377 	SLIST_INSERT_HEAD(&m->m_pkthdr.tags, t, m_tag_link);
2378 }
2379 
2380 void
2381 m_tag_unlink(struct mbuf *m, struct m_tag *t)
2382 {
2383 	KASSERT((m->m_flags & M_PKTHDR) != 0);
2384 	SLIST_REMOVE(&m->m_pkthdr.tags, t, m_tag, m_tag_link);
2385 }
2386 
2387 void
2388 m_tag_delete(struct mbuf *m, struct m_tag *t)
2389 {
2390 	m_tag_unlink(m, t);
2391 	m_tag_free(t);
2392 }
2393 
2394 void
2395 m_tag_delete_chain(struct mbuf *m)
2396 {
2397 	struct m_tag *p, *q;
2398 
2399 	KASSERT((m->m_flags & M_PKTHDR) != 0);
2400 
2401 	p = SLIST_FIRST(&m->m_pkthdr.tags);
2402 	if (p == NULL)
2403 		return;
2404 	while ((q = SLIST_NEXT(p, m_tag_link)) != NULL)
2405 		m_tag_delete(m, q);
2406 	m_tag_delete(m, p);
2407 }
2408 
2409 struct m_tag *
2410 m_tag_find(const struct mbuf *m, int type)
2411 {
2412 	struct m_tag *p;
2413 
2414 	KASSERT((m->m_flags & M_PKTHDR) != 0);
2415 
2416 	p = SLIST_FIRST(&m->m_pkthdr.tags);
2417 	while (p != NULL) {
2418 		if (p->m_tag_id == type)
2419 			return p;
2420 		p = SLIST_NEXT(p, m_tag_link);
2421 	}
2422 	return NULL;
2423 }
2424 
2425 struct m_tag *
2426 m_tag_copy(struct m_tag *t)
2427 {
2428 	struct m_tag *p;
2429 
2430 	p = m_tag_get(t->m_tag_id, t->m_tag_len, M_NOWAIT);
2431 	if (p == NULL)
2432 		return NULL;
2433 	memcpy(p + 1, t + 1, t->m_tag_len);
2434 	return p;
2435 }
2436 
2437 /*
2438  * Copy two tag chains. The destination mbuf (to) loses any attached
2439  * tags even if the operation fails. This should not be a problem, as
2440  * m_tag_copy_chain() is typically called with a newly-allocated
2441  * destination mbuf.
2442  */
2443 int
2444 m_tag_copy_chain(struct mbuf *to, struct mbuf *from)
2445 {
2446 	struct m_tag *p, *t, *tprev = NULL;
2447 
2448 	KASSERT((from->m_flags & M_PKTHDR) != 0);
2449 
2450 	m_tag_delete_chain(to);
2451 	SLIST_FOREACH(p, &from->m_pkthdr.tags, m_tag_link) {
2452 		t = m_tag_copy(p);
2453 		if (t == NULL) {
2454 			m_tag_delete_chain(to);
2455 			return 0;
2456 		}
2457 		if (tprev == NULL)
2458 			SLIST_INSERT_HEAD(&to->m_pkthdr.tags, t, m_tag_link);
2459 		else
2460 			SLIST_INSERT_AFTER(tprev, t, m_tag_link);
2461 		tprev = t;
2462 	}
2463 	return 1;
2464 }
2465