1 /* $NetBSD: sysv_shm.c,v 1.106 2008/04/12 20:49:22 rmind Exp $ */ 2 3 /*- 4 * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, 9 * NASA Ames Research Center, and by Mindaugas Rasiukevicius. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. All advertising materials mentioning features or use of this software 20 * must display the following acknowledgement: 21 * This product includes software developed by the NetBSD 22 * Foundation, Inc. and its contributors. 23 * 4. Neither the name of The NetBSD Foundation nor the names of its 24 * contributors may be used to endorse or promote products derived 25 * from this software without specific prior written permission. 26 * 27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * Copyright (c) 1994 Adam Glass and Charles M. Hannum. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Adam Glass and Charles M. 54 * Hannum. 55 * 4. The names of the authors may not be used to endorse or promote products 56 * derived from this software without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 59 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 60 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 61 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 62 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 63 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 64 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 65 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 66 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 67 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70 #include <sys/cdefs.h> 71 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.106 2008/04/12 20:49:22 rmind Exp $"); 72 73 #define SYSVSHM 74 75 #include <sys/param.h> 76 #include <sys/kernel.h> 77 #include <sys/kmem.h> 78 #include <sys/shm.h> 79 #include <sys/mutex.h> 80 #include <sys/mman.h> 81 #include <sys/stat.h> 82 #include <sys/sysctl.h> 83 #include <sys/mount.h> /* XXX for <sys/syscallargs.h> */ 84 #include <sys/syscallargs.h> 85 #include <sys/queue.h> 86 #include <sys/pool.h> 87 #include <sys/kauth.h> 88 89 #include <uvm/uvm_extern.h> 90 #include <uvm/uvm_object.h> 91 92 int shm_nused; 93 struct shmid_ds *shmsegs; 94 95 struct shmmap_entry { 96 SLIST_ENTRY(shmmap_entry) next; 97 vaddr_t va; 98 int shmid; 99 }; 100 101 static kmutex_t shm_lock; 102 static kcondvar_t * shm_cv; 103 static struct pool shmmap_entry_pool; 104 static int shm_last_free, shm_use_phys; 105 static size_t shm_committed; 106 107 static kcondvar_t shm_realloc_cv; 108 static bool shm_realloc_state; 109 static u_int shm_realloc_disable; 110 111 struct shmmap_state { 112 unsigned int nitems; 113 unsigned int nrefs; 114 SLIST_HEAD(, shmmap_entry) entries; 115 }; 116 117 #ifdef SHMDEBUG 118 #define SHMPRINTF(a) printf a 119 #else 120 #define SHMPRINTF(a) 121 #endif 122 123 static int shmrealloc(int); 124 125 /* 126 * Find the shared memory segment by the identifier. 127 * => must be called with shm_lock held; 128 */ 129 static struct shmid_ds * 130 shm_find_segment_by_shmid(int shmid) 131 { 132 int segnum; 133 struct shmid_ds *shmseg; 134 135 KASSERT(mutex_owned(&shm_lock)); 136 137 segnum = IPCID_TO_IX(shmid); 138 if (segnum < 0 || segnum >= shminfo.shmmni) 139 return NULL; 140 shmseg = &shmsegs[segnum]; 141 if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0) 142 return NULL; 143 if ((shmseg->shm_perm.mode & 144 (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED) 145 return NULL; 146 if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid)) 147 return NULL; 148 149 return shmseg; 150 } 151 152 /* 153 * Free memory segment. 154 * => must be called with shm_lock held; 155 */ 156 static void 157 shm_free_segment(int segnum) 158 { 159 struct shmid_ds *shmseg; 160 size_t size; 161 bool wanted; 162 163 KASSERT(mutex_owned(&shm_lock)); 164 165 shmseg = &shmsegs[segnum]; 166 SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n", 167 shmseg->shm_perm._key, shmseg->shm_perm._seq)); 168 169 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; 170 wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED); 171 172 shmseg->_shm_internal = NULL; 173 shm_committed -= btoc(size); 174 shm_nused--; 175 shmseg->shm_perm.mode = SHMSEG_FREE; 176 shm_last_free = segnum; 177 if (wanted == true) 178 cv_broadcast(&shm_cv[segnum]); 179 } 180 181 /* 182 * Delete entry from the shm map. 183 * => must be called with shm_lock held; 184 */ 185 static struct uvm_object * 186 shm_delete_mapping(struct shmmap_state *shmmap_s, 187 struct shmmap_entry *shmmap_se) 188 { 189 struct uvm_object *uobj = NULL; 190 struct shmid_ds *shmseg; 191 int segnum; 192 193 KASSERT(mutex_owned(&shm_lock)); 194 195 segnum = IPCID_TO_IX(shmmap_se->shmid); 196 shmseg = &shmsegs[segnum]; 197 SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next); 198 shmmap_s->nitems--; 199 shmseg->shm_dtime = time_second; 200 if ((--shmseg->shm_nattch <= 0) && 201 (shmseg->shm_perm.mode & SHMSEG_REMOVED)) { 202 uobj = shmseg->_shm_internal; 203 shm_free_segment(segnum); 204 } 205 206 return uobj; 207 } 208 209 /* 210 * Get a non-shared shm map for that vmspace. Note, that memory 211 * allocation might be performed with lock held. 212 */ 213 static struct shmmap_state * 214 shmmap_getprivate(struct proc *p) 215 { 216 struct shmmap_state *oshmmap_s, *shmmap_s; 217 struct shmmap_entry *oshmmap_se, *shmmap_se; 218 219 KASSERT(mutex_owned(&shm_lock)); 220 221 /* 1. A shm map with refcnt = 1, used by ourselves, thus return */ 222 oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm; 223 if (oshmmap_s && oshmmap_s->nrefs == 1) 224 return oshmmap_s; 225 226 /* 2. No shm map preset - create a fresh one */ 227 shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP); 228 shmmap_s->nrefs = 1; 229 SLIST_INIT(&shmmap_s->entries); 230 p->p_vmspace->vm_shm = (void *)shmmap_s; 231 232 if (oshmmap_s == NULL) 233 return shmmap_s; 234 235 SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n", 236 p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs)); 237 238 /* 3. A shared shm map, copy to a fresh one and adjust refcounts */ 239 SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) { 240 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK); 241 shmmap_se->va = oshmmap_se->va; 242 shmmap_se->shmid = oshmmap_se->shmid; 243 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next); 244 } 245 shmmap_s->nitems = oshmmap_s->nitems; 246 oshmmap_s->nrefs--; 247 248 return shmmap_s; 249 } 250 251 /* 252 * Lock/unlock the memory. 253 * => must be called with shm_lock held; 254 * => called from one place, thus, inline; 255 */ 256 static inline int 257 shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd) 258 { 259 struct proc *p = l->l_proc; 260 struct shmmap_entry *shmmap_se; 261 struct shmmap_state *shmmap_s; 262 size_t size; 263 int error; 264 265 KASSERT(mutex_owned(&shm_lock)); 266 shmmap_s = shmmap_getprivate(p); 267 268 /* Find our shared memory address by shmid */ 269 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) { 270 if (shmmap_se->shmid != shmid) 271 continue; 272 273 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; 274 275 if (cmd == SHM_LOCK && 276 (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) { 277 /* Wire the object and map, then tag it */ 278 error = uobj_wirepages(shmseg->_shm_internal, 0, 279 round_page(shmseg->shm_segsz)); 280 if (error) 281 return EIO; 282 error = uvm_map_pageable(&p->p_vmspace->vm_map, 283 shmmap_se->va, shmmap_se->va + size, false, 0); 284 if (error) { 285 uobj_unwirepages(shmseg->_shm_internal, 0, 286 round_page(shmseg->shm_segsz)); 287 if (error == EFAULT) 288 error = ENOMEM; 289 return error; 290 } 291 shmseg->shm_perm.mode |= SHMSEG_WIRED; 292 293 } else if (cmd == SHM_UNLOCK && 294 (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) { 295 /* Unwire the object and map, then untag it */ 296 uobj_unwirepages(shmseg->_shm_internal, 0, 297 round_page(shmseg->shm_segsz)); 298 error = uvm_map_pageable(&p->p_vmspace->vm_map, 299 shmmap_se->va, shmmap_se->va + size, true, 0); 300 if (error) 301 return EIO; 302 shmseg->shm_perm.mode &= ~SHMSEG_WIRED; 303 } 304 } 305 306 return 0; 307 } 308 309 /* 310 * Unmap shared memory. 311 */ 312 int 313 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval) 314 { 315 /* { 316 syscallarg(const void *) shmaddr; 317 } */ 318 struct proc *p = l->l_proc; 319 struct shmmap_state *shmmap_s1, *shmmap_s; 320 struct shmmap_entry *shmmap_se; 321 struct uvm_object *uobj; 322 struct shmid_ds *shmseg; 323 size_t size; 324 325 mutex_enter(&shm_lock); 326 /* In case of reallocation, we will wait for completion */ 327 while (__predict_false(shm_realloc_state)) 328 cv_wait(&shm_realloc_cv, &shm_lock); 329 330 shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm; 331 if (shmmap_s1 == NULL) { 332 mutex_exit(&shm_lock); 333 return EINVAL; 334 } 335 336 /* Find the map entry */ 337 SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next) 338 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr)) 339 break; 340 if (shmmap_se == NULL) { 341 mutex_exit(&shm_lock); 342 return EINVAL; 343 } 344 345 shmmap_s = shmmap_getprivate(p); 346 if (shmmap_s != shmmap_s1) { 347 /* Map has been copied, lookup entry in new map */ 348 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) 349 if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr)) 350 break; 351 if (shmmap_se == NULL) { 352 mutex_exit(&shm_lock); 353 return EINVAL; 354 } 355 } 356 357 SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n", 358 p->p_vmspace, shmmap_se->shmid, shmmap_se->va)); 359 360 /* Delete the entry from shm map */ 361 uobj = shm_delete_mapping(shmmap_s, shmmap_se); 362 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)]; 363 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; 364 mutex_exit(&shm_lock); 365 366 uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size); 367 if (uobj != NULL) 368 uao_detach(uobj); 369 pool_put(&shmmap_entry_pool, shmmap_se); 370 371 return 0; 372 } 373 374 /* 375 * Map shared memory. 376 */ 377 int 378 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval) 379 { 380 /* { 381 syscallarg(int) shmid; 382 syscallarg(const void *) shmaddr; 383 syscallarg(int) shmflg; 384 } */ 385 int error, flags = 0; 386 struct proc *p = l->l_proc; 387 kauth_cred_t cred = l->l_cred; 388 struct shmid_ds *shmseg; 389 struct shmmap_state *shmmap_s; 390 struct shmmap_entry *shmmap_se; 391 struct uvm_object *uobj; 392 struct vmspace *vm; 393 vaddr_t attach_va; 394 vm_prot_t prot; 395 vsize_t size; 396 397 /* Allocate a new map entry and set it */ 398 shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK); 399 400 mutex_enter(&shm_lock); 401 /* In case of reallocation, we will wait for completion */ 402 while (__predict_false(shm_realloc_state)) 403 cv_wait(&shm_realloc_cv, &shm_lock); 404 405 shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid)); 406 if (shmseg == NULL) { 407 error = EINVAL; 408 goto err; 409 } 410 error = ipcperm(cred, &shmseg->shm_perm, 411 (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W); 412 if (error) 413 goto err; 414 415 vm = p->p_vmspace; 416 shmmap_s = (struct shmmap_state *)vm->vm_shm; 417 if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) { 418 error = EMFILE; 419 goto err; 420 } 421 422 size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; 423 prot = VM_PROT_READ; 424 if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0) 425 prot |= VM_PROT_WRITE; 426 if (SCARG(uap, shmaddr)) { 427 flags |= UVM_FLAG_FIXED; 428 if (SCARG(uap, shmflg) & SHM_RND) 429 attach_va = 430 (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1); 431 else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0) 432 attach_va = (vaddr_t)SCARG(uap, shmaddr); 433 else { 434 error = EINVAL; 435 goto err; 436 } 437 } else { 438 /* This is just a hint to uvm_mmap() about where to put it. */ 439 attach_va = p->p_emul->e_vm_default_addr(p, 440 (vaddr_t)vm->vm_daddr, size); 441 } 442 443 /* 444 * Create a map entry, add it to the list and increase the counters. 445 * The lock will be dropped before the mapping, disable reallocation. 446 */ 447 shmmap_s = shmmap_getprivate(p); 448 SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next); 449 shmmap_s->nitems++; 450 shmseg->shm_lpid = p->p_pid; 451 shmseg->shm_nattch++; 452 shm_realloc_disable++; 453 mutex_exit(&shm_lock); 454 455 /* 456 * Add a reference to the memory object, map it to the 457 * address space, and lock the memory, if needed. 458 */ 459 uobj = shmseg->_shm_internal; 460 uao_reference(uobj); 461 error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0, 462 UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags)); 463 if (error) 464 goto err_detach; 465 if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) { 466 error = uvm_map_pageable(&vm->vm_map, attach_va, 467 attach_va + size, false, 0); 468 if (error) { 469 if (error == EFAULT) 470 error = ENOMEM; 471 uvm_deallocate(&vm->vm_map, attach_va, size); 472 goto err_detach; 473 } 474 } 475 476 /* Set the new address, and update the time */ 477 mutex_enter(&shm_lock); 478 shmmap_se->va = attach_va; 479 shmmap_se->shmid = SCARG(uap, shmid); 480 shmseg->shm_atime = time_second; 481 shm_realloc_disable--; 482 retval[0] = attach_va; 483 SHMPRINTF(("shmat: vm %p: add %d @%lx\n", 484 p->p_vmspace, shmmap_se->shmid, attach_va)); 485 err: 486 cv_broadcast(&shm_realloc_cv); 487 mutex_exit(&shm_lock); 488 if (error && shmmap_se) 489 pool_put(&shmmap_entry_pool, shmmap_se); 490 return error; 491 492 err_detach: 493 uao_detach(uobj); 494 mutex_enter(&shm_lock); 495 uobj = shm_delete_mapping(shmmap_s, shmmap_se); 496 shm_realloc_disable--; 497 cv_broadcast(&shm_realloc_cv); 498 mutex_exit(&shm_lock); 499 if (uobj != NULL) 500 uao_detach(uobj); 501 pool_put(&shmmap_entry_pool, shmmap_se); 502 return error; 503 } 504 505 /* 506 * Shared memory control operations. 507 */ 508 int 509 sys___shmctl13(struct lwp *l, const struct sys___shmctl13_args *uap, register_t *retval) 510 { 511 /* { 512 syscallarg(int) shmid; 513 syscallarg(int) cmd; 514 syscallarg(struct shmid_ds *) buf; 515 } */ 516 struct shmid_ds shmbuf; 517 int cmd, error; 518 519 cmd = SCARG(uap, cmd); 520 if (cmd == IPC_SET) { 521 error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf)); 522 if (error) 523 return error; 524 } 525 526 error = shmctl1(l, SCARG(uap, shmid), cmd, 527 (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL); 528 529 if (error == 0 && cmd == IPC_STAT) 530 error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf)); 531 532 return error; 533 } 534 535 int 536 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf) 537 { 538 struct uvm_object *uobj = NULL; 539 kauth_cred_t cred = l->l_cred; 540 struct shmid_ds *shmseg; 541 int error = 0; 542 543 mutex_enter(&shm_lock); 544 /* In case of reallocation, we will wait for completion */ 545 while (__predict_false(shm_realloc_state)) 546 cv_wait(&shm_realloc_cv, &shm_lock); 547 548 shmseg = shm_find_segment_by_shmid(shmid); 549 if (shmseg == NULL) { 550 mutex_exit(&shm_lock); 551 return EINVAL; 552 } 553 554 switch (cmd) { 555 case IPC_STAT: 556 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0) 557 break; 558 memcpy(shmbuf, shmseg, sizeof(struct shmid_ds)); 559 break; 560 case IPC_SET: 561 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0) 562 break; 563 shmseg->shm_perm.uid = shmbuf->shm_perm.uid; 564 shmseg->shm_perm.gid = shmbuf->shm_perm.gid; 565 shmseg->shm_perm.mode = 566 (shmseg->shm_perm.mode & ~ACCESSPERMS) | 567 (shmbuf->shm_perm.mode & ACCESSPERMS); 568 shmseg->shm_ctime = time_second; 569 break; 570 case IPC_RMID: 571 if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0) 572 break; 573 shmseg->shm_perm._key = IPC_PRIVATE; 574 shmseg->shm_perm.mode |= SHMSEG_REMOVED; 575 if (shmseg->shm_nattch <= 0) { 576 uobj = shmseg->_shm_internal; 577 shm_free_segment(IPCID_TO_IX(shmid)); 578 } 579 break; 580 case SHM_LOCK: 581 case SHM_UNLOCK: 582 if ((error = kauth_authorize_generic(cred, 583 KAUTH_GENERIC_ISSUSER, NULL)) != 0) 584 break; 585 error = shm_memlock(l, shmseg, shmid, cmd); 586 break; 587 default: 588 error = EINVAL; 589 } 590 591 mutex_exit(&shm_lock); 592 if (uobj != NULL) 593 uao_detach(uobj); 594 return error; 595 } 596 597 /* 598 * Try to take an already existing segment. 599 * => must be called with shm_lock held; 600 * => called from one place, thus, inline; 601 */ 602 static inline int 603 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode, 604 register_t *retval) 605 { 606 struct shmid_ds *shmseg; 607 kauth_cred_t cred = l->l_cred; 608 int segnum, error; 609 again: 610 KASSERT(mutex_owned(&shm_lock)); 611 612 /* Find segment by key */ 613 for (segnum = 0; segnum < shminfo.shmmni; segnum++) 614 if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) && 615 shmsegs[segnum].shm_perm._key == SCARG(uap, key)) 616 break; 617 if (segnum == shminfo.shmmni) { 618 /* Not found */ 619 return -1; 620 } 621 622 shmseg = &shmsegs[segnum]; 623 if (shmseg->shm_perm.mode & SHMSEG_REMOVED) { 624 /* 625 * This segment is in the process of being allocated. Wait 626 * until it's done, and look the key up again (in case the 627 * allocation failed or it was freed). 628 */ 629 shmseg->shm_perm.mode |= SHMSEG_WANTED; 630 error = cv_wait_sig(&shm_cv[segnum], &shm_lock); 631 if (error) 632 return error; 633 goto again; 634 } 635 636 /* Check the permission, segment size and appropriate flag */ 637 error = ipcperm(cred, &shmseg->shm_perm, mode); 638 if (error) 639 return error; 640 if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz) 641 return EINVAL; 642 if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) == 643 (IPC_CREAT | IPC_EXCL)) 644 return EEXIST; 645 646 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); 647 return 0; 648 } 649 650 int 651 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval) 652 { 653 /* { 654 syscallarg(key_t) key; 655 syscallarg(size_t) size; 656 syscallarg(int) shmflg; 657 } */ 658 struct shmid_ds *shmseg; 659 kauth_cred_t cred = l->l_cred; 660 key_t key = SCARG(uap, key); 661 size_t size; 662 int error, mode, segnum; 663 bool lockmem; 664 665 mode = SCARG(uap, shmflg) & ACCESSPERMS; 666 if (SCARG(uap, shmflg) & _SHM_RMLINGER) 667 mode |= SHMSEG_RMLINGER; 668 669 SHMPRINTF(("shmget: key 0x%lx size 0x%x shmflg 0x%x mode 0x%x\n", 670 SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode)); 671 672 mutex_enter(&shm_lock); 673 /* In case of reallocation, we will wait for completion */ 674 while (__predict_false(shm_realloc_state)) 675 cv_wait(&shm_realloc_cv, &shm_lock); 676 677 if (key != IPC_PRIVATE) { 678 error = shmget_existing(l, uap, mode, retval); 679 if (error != -1) { 680 mutex_exit(&shm_lock); 681 return error; 682 } 683 if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) { 684 mutex_exit(&shm_lock); 685 return ENOENT; 686 } 687 } 688 error = 0; 689 690 /* 691 * Check the for the limits. 692 */ 693 size = SCARG(uap, size); 694 if (size < shminfo.shmmin || size > shminfo.shmmax) { 695 mutex_exit(&shm_lock); 696 return EINVAL; 697 } 698 if (shm_nused >= shminfo.shmmni) { 699 mutex_exit(&shm_lock); 700 return ENOSPC; 701 } 702 size = (size + PGOFSET) & ~PGOFSET; 703 if (shm_committed + btoc(size) > shminfo.shmall) { 704 mutex_exit(&shm_lock); 705 return ENOMEM; 706 } 707 708 /* Find the first available segment */ 709 if (shm_last_free < 0) { 710 for (segnum = 0; segnum < shminfo.shmmni; segnum++) 711 if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE) 712 break; 713 KASSERT(segnum < shminfo.shmmni); 714 } else { 715 segnum = shm_last_free; 716 shm_last_free = -1; 717 } 718 719 /* 720 * Initialize the segment. 721 * We will drop the lock while allocating the memory, thus mark the 722 * segment present, but removed, that no other thread could take it. 723 * Also, disable reallocation, while lock is dropped. 724 */ 725 shmseg = &shmsegs[segnum]; 726 shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED; 727 shm_committed += btoc(size); 728 shm_nused++; 729 lockmem = shm_use_phys; 730 shm_realloc_disable++; 731 mutex_exit(&shm_lock); 732 733 /* Allocate the memory object and lock it if needed */ 734 shmseg->_shm_internal = uao_create(size, 0); 735 if (lockmem) { 736 /* Wire the pages and tag it */ 737 error = uobj_wirepages(shmseg->_shm_internal, 0, 738 round_page(shmseg->shm_segsz)); 739 if (error) { 740 mutex_enter(&shm_lock); 741 shm_free_segment(segnum); 742 shm_realloc_disable--; 743 mutex_exit(&shm_lock); 744 return error; 745 } 746 } 747 748 /* 749 * Please note, while segment is marked, there are no need to hold the 750 * lock, while setting it (except shm_perm.mode). 751 */ 752 shmseg->shm_perm._key = SCARG(uap, key); 753 shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff; 754 *retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm); 755 756 shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred); 757 shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred); 758 shmseg->shm_segsz = SCARG(uap, size); 759 shmseg->shm_cpid = l->l_proc->p_pid; 760 shmseg->shm_lpid = shmseg->shm_nattch = 0; 761 shmseg->shm_atime = shmseg->shm_dtime = 0; 762 shmseg->shm_ctime = time_second; 763 764 /* 765 * Segment is initialized. 766 * Enter the lock, mark as allocated, and notify waiters (if any). 767 * Also, unmark the state of reallocation. 768 */ 769 mutex_enter(&shm_lock); 770 shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) | 771 (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) | 772 SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0); 773 if (shmseg->shm_perm.mode & SHMSEG_WANTED) { 774 shmseg->shm_perm.mode &= ~SHMSEG_WANTED; 775 cv_broadcast(&shm_cv[segnum]); 776 } 777 shm_realloc_disable--; 778 cv_broadcast(&shm_realloc_cv); 779 mutex_exit(&shm_lock); 780 781 return error; 782 } 783 784 void 785 shmfork(struct vmspace *vm1, struct vmspace *vm2) 786 { 787 struct shmmap_state *shmmap_s; 788 struct shmmap_entry *shmmap_se; 789 790 SHMPRINTF(("shmfork %p->%p\n", vm1, vm2)); 791 mutex_enter(&shm_lock); 792 vm2->vm_shm = vm1->vm_shm; 793 if (vm1->vm_shm) { 794 shmmap_s = (struct shmmap_state *)vm1->vm_shm; 795 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) 796 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++; 797 shmmap_s->nrefs++; 798 } 799 mutex_exit(&shm_lock); 800 } 801 802 void 803 shmexit(struct vmspace *vm) 804 { 805 struct shmmap_state *shmmap_s; 806 struct shmmap_entry *shmmap_se; 807 struct uvm_object **uobj; 808 size_t *size; 809 u_int i, n; 810 811 SLIST_HEAD(, shmmap_entry) tmp_entries; 812 813 mutex_enter(&shm_lock); 814 shmmap_s = (struct shmmap_state *)vm->vm_shm; 815 if (shmmap_s == NULL) { 816 mutex_exit(&shm_lock); 817 return; 818 } 819 820 vm->vm_shm = NULL; 821 822 if (--shmmap_s->nrefs > 0) { 823 SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n", 824 vm, shmmap_s->nitems, shmmap_s->nrefs)); 825 SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) 826 shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--; 827 mutex_exit(&shm_lock); 828 return; 829 } 830 831 KASSERT(shmmap_s->nrefs == 0); 832 n = shmmap_s->nitems; 833 SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, n)); 834 mutex_exit(&shm_lock); 835 if (n == 0) { 836 kmem_free(shmmap_s, sizeof(struct shmmap_state)); 837 return; 838 } 839 840 /* Allocate the arrays */ 841 SLIST_INIT(&tmp_entries); 842 uobj = kmem_zalloc(n * sizeof(void *), KM_SLEEP); 843 size = kmem_zalloc(n * sizeof(size_t), KM_SLEEP); 844 845 /* Delete the entry from shm map */ 846 i = 0; 847 mutex_enter(&shm_lock); 848 while (!SLIST_EMPTY(&shmmap_s->entries)) { 849 struct shmid_ds *shmseg; 850 851 shmmap_se = SLIST_FIRST(&shmmap_s->entries); 852 shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)]; 853 size[i] = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET; 854 uobj[i] = shm_delete_mapping(shmmap_s, shmmap_se); 855 SLIST_INSERT_HEAD(&tmp_entries, shmmap_se, next); 856 i++; 857 } 858 mutex_exit(&shm_lock); 859 860 /* Unmap all segments, free the entries */ 861 i = 0; 862 while (!SLIST_EMPTY(&tmp_entries)) { 863 KASSERT(i < n); 864 shmmap_se = SLIST_FIRST(&tmp_entries); 865 SLIST_REMOVE(&tmp_entries, shmmap_se, shmmap_entry, next); 866 uvm_deallocate(&vm->vm_map, shmmap_se->va, size[i]); 867 if (uobj[i] != NULL) 868 uao_detach(uobj[i]); 869 pool_put(&shmmap_entry_pool, shmmap_se); 870 i++; 871 } 872 873 kmem_free(uobj, n * sizeof(void *)); 874 kmem_free(size, n * sizeof(size_t)); 875 kmem_free(shmmap_s, sizeof(struct shmmap_state)); 876 } 877 878 static int 879 shmrealloc(int newshmni) 880 { 881 vaddr_t v; 882 struct shmid_ds *oldshmsegs, *newshmsegs; 883 kcondvar_t *newshm_cv; 884 size_t sz; 885 int i, lsegid; 886 887 if (newshmni < 1) 888 return EINVAL; 889 890 /* Allocate new memory area */ 891 sz = ALIGN(newshmni * sizeof(struct shmid_ds)) + 892 ALIGN(newshmni * sizeof(kcondvar_t)); 893 v = uvm_km_alloc(kernel_map, round_page(sz), 0, 894 UVM_KMF_WIRED|UVM_KMF_ZERO); 895 if (v == 0) 896 return ENOMEM; 897 898 mutex_enter(&shm_lock); 899 while (shm_realloc_state || shm_realloc_disable) 900 cv_wait(&shm_realloc_cv, &shm_lock); 901 902 /* 903 * Get the number of last segment. Fail we are trying to 904 * reallocate less memory than we use. 905 */ 906 lsegid = 0; 907 for (i = 0; i < shminfo.shmmni; i++) 908 if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0) 909 lsegid = i; 910 if (lsegid >= newshmni) { 911 mutex_exit(&shm_lock); 912 uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED); 913 return EBUSY; 914 } 915 shm_realloc_state = true; 916 917 newshmsegs = (void *)v; 918 newshm_cv = (void *)(ALIGN(newshmsegs) + 919 newshmni * sizeof(struct shmid_ds)); 920 921 /* Copy all memory to the new area */ 922 for (i = 0; i < shm_nused; i++) 923 (void)memcpy(&newshmsegs[i], &shmsegs[i], 924 sizeof(newshmsegs[0])); 925 926 /* Mark as free all new segments, if there is any */ 927 for (; i < newshmni; i++) { 928 cv_init(&newshm_cv[i], "shmwait"); 929 newshmsegs[i].shm_perm.mode = SHMSEG_FREE; 930 newshmsegs[i].shm_perm._seq = 0; 931 } 932 933 oldshmsegs = shmsegs; 934 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) + 935 ALIGN(shminfo.shmmni * sizeof(kcondvar_t)); 936 937 shminfo.shmmni = newshmni; 938 shmsegs = newshmsegs; 939 shm_cv = newshm_cv; 940 941 /* Reallocation completed - notify all waiters, if any */ 942 shm_realloc_state = false; 943 cv_broadcast(&shm_realloc_cv); 944 mutex_exit(&shm_lock); 945 946 uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED); 947 return 0; 948 } 949 950 void 951 shminit(void) 952 { 953 vaddr_t v; 954 size_t sz; 955 int i; 956 957 mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE); 958 pool_init(&shmmap_entry_pool, sizeof(struct shmmap_entry), 0, 0, 0, 959 "shmmp", &pool_allocator_nointr, IPL_NONE); 960 cv_init(&shm_realloc_cv, "shmrealc"); 961 962 /* Allocate the wired memory for our structures */ 963 sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) + 964 ALIGN(shminfo.shmmni * sizeof(kcondvar_t)); 965 v = uvm_km_alloc(kernel_map, round_page(sz), 0, 966 UVM_KMF_WIRED|UVM_KMF_ZERO); 967 if (v == 0) 968 panic("sysv_shm: cannot allocate memory"); 969 shmsegs = (void *)v; 970 shm_cv = (void *)(ALIGN(shmsegs) + 971 shminfo.shmmni * sizeof(struct shmid_ds)); 972 973 shminfo.shmmax *= PAGE_SIZE; 974 975 for (i = 0; i < shminfo.shmmni; i++) { 976 cv_init(&shm_cv[i], "shmwait"); 977 shmsegs[i].shm_perm.mode = SHMSEG_FREE; 978 shmsegs[i].shm_perm._seq = 0; 979 } 980 shm_last_free = 0; 981 shm_nused = 0; 982 shm_committed = 0; 983 shm_realloc_disable = 0; 984 shm_realloc_state = false; 985 } 986 987 static int 988 sysctl_ipc_shmmni(SYSCTLFN_ARGS) 989 { 990 int newsize, error; 991 struct sysctlnode node; 992 node = *rnode; 993 node.sysctl_data = &newsize; 994 995 newsize = shminfo.shmmni; 996 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 997 if (error || newp == NULL) 998 return error; 999 1000 sysctl_unlock(); 1001 error = shmrealloc(newsize); 1002 sysctl_relock(); 1003 return error; 1004 } 1005 1006 static int 1007 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS) 1008 { 1009 int newsize, error; 1010 struct sysctlnode node; 1011 node = *rnode; 1012 node.sysctl_data = &newsize; 1013 1014 newsize = shminfo.shmall; 1015 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1016 if (error || newp == NULL) 1017 return error; 1018 1019 if (newsize < 1) 1020 return EINVAL; 1021 1022 shminfo.shmall = newsize; 1023 shminfo.shmmax = shminfo.shmall * PAGE_SIZE; 1024 1025 return 0; 1026 } 1027 1028 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup") 1029 { 1030 1031 sysctl_createv(clog, 0, NULL, NULL, 1032 CTLFLAG_PERMANENT, 1033 CTLTYPE_NODE, "kern", NULL, 1034 NULL, 0, NULL, 0, 1035 CTL_KERN, CTL_EOL); 1036 sysctl_createv(clog, 0, NULL, NULL, 1037 CTLFLAG_PERMANENT, 1038 CTLTYPE_NODE, "ipc", 1039 SYSCTL_DESCR("SysV IPC options"), 1040 NULL, 0, NULL, 0, 1041 CTL_KERN, KERN_SYSVIPC, CTL_EOL); 1042 sysctl_createv(clog, 0, NULL, NULL, 1043 CTLFLAG_PERMANENT | CTLFLAG_READONLY, 1044 CTLTYPE_INT, "shmmax", 1045 SYSCTL_DESCR("Max shared memory segment size in bytes"), 1046 NULL, 0, &shminfo.shmmax, 0, 1047 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL); 1048 sysctl_createv(clog, 0, NULL, NULL, 1049 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1050 CTLTYPE_INT, "shmmni", 1051 SYSCTL_DESCR("Max number of shared memory identifiers"), 1052 sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0, 1053 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL); 1054 sysctl_createv(clog, 0, NULL, NULL, 1055 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1056 CTLTYPE_INT, "shmseg", 1057 SYSCTL_DESCR("Max shared memory segments per process"), 1058 NULL, 0, &shminfo.shmseg, 0, 1059 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL); 1060 sysctl_createv(clog, 0, NULL, NULL, 1061 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1062 CTLTYPE_INT, "shmmaxpgs", 1063 SYSCTL_DESCR("Max amount of shared memory in pages"), 1064 sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0, 1065 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL); 1066 sysctl_createv(clog, 0, NULL, NULL, 1067 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, 1068 CTLTYPE_INT, "shm_use_phys", 1069 SYSCTL_DESCR("Enable/disable locking of shared memory in " 1070 "physical memory"), NULL, 0, &shm_use_phys, 0, 1071 CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL); 1072 } 1073