xref: /netbsd-src/sys/kern/sysv_shm.c (revision 267197ec1eebfcb9810ea27a89625b6ddf68e3e7)
1 /*	$NetBSD: sysv_shm.c,v 1.105 2008/01/30 21:09:41 njoly Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Mindaugas Rasiukevicius.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. All advertising materials mentioning features or use of this software
20  *    must display the following acknowledgement:
21  *	This product includes software developed by the NetBSD
22  *	Foundation, Inc. and its contributors.
23  * 4. Neither the name of The NetBSD Foundation nor the names of its
24  *    contributors may be used to endorse or promote products derived
25  *    from this software without specific prior written permission.
26  *
27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * Copyright (c) 1994 Adam Glass and Charles M. Hannum.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Adam Glass and Charles M.
54  *	Hannum.
55  * 4. The names of the authors may not be used to endorse or promote products
56  *    derived from this software without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
59  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
60  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
61  * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT,
62  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
63  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
64  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
65  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
66  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
67  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
68  */
69 
70 #include <sys/cdefs.h>
71 __KERNEL_RCSID(0, "$NetBSD: sysv_shm.c,v 1.105 2008/01/30 21:09:41 njoly Exp $");
72 
73 #define SYSVSHM
74 
75 #include <sys/param.h>
76 #include <sys/kernel.h>
77 #include <sys/kmem.h>
78 #include <sys/shm.h>
79 #include <sys/mutex.h>
80 #include <sys/mman.h>
81 #include <sys/stat.h>
82 #include <sys/sysctl.h>
83 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
84 #include <sys/syscallargs.h>
85 #include <sys/queue.h>
86 #include <sys/pool.h>
87 #include <sys/kauth.h>
88 
89 #include <uvm/uvm_extern.h>
90 #include <uvm/uvm_object.h>
91 
92 int shm_nused;
93 struct	shmid_ds *shmsegs;
94 
95 struct shmmap_entry {
96 	SLIST_ENTRY(shmmap_entry) next;
97 	vaddr_t va;
98 	int shmid;
99 };
100 
101 static kmutex_t		shm_lock;
102 static kcondvar_t *	shm_cv;
103 static struct pool	shmmap_entry_pool;
104 static int		shm_last_free, shm_committed, shm_use_phys;
105 
106 static kcondvar_t	shm_realloc_cv;
107 static bool		shm_realloc_state;
108 static u_int		shm_realloc_disable;
109 
110 struct shmmap_state {
111 	unsigned int nitems;
112 	unsigned int nrefs;
113 	SLIST_HEAD(, shmmap_entry) entries;
114 };
115 
116 #ifdef SHMDEBUG
117 #define SHMPRINTF(a) printf a
118 #else
119 #define SHMPRINTF(a)
120 #endif
121 
122 static int shmrealloc(int);
123 
124 /*
125  * Find the shared memory segment by the identifier.
126  *  => must be called with shm_lock held;
127  */
128 static struct shmid_ds *
129 shm_find_segment_by_shmid(int shmid)
130 {
131 	int segnum;
132 	struct shmid_ds *shmseg;
133 
134 	KASSERT(mutex_owned(&shm_lock));
135 
136 	segnum = IPCID_TO_IX(shmid);
137 	if (segnum < 0 || segnum >= shminfo.shmmni)
138 		return NULL;
139 	shmseg = &shmsegs[segnum];
140 	if ((shmseg->shm_perm.mode & SHMSEG_ALLOCATED) == 0)
141 		return NULL;
142 	if ((shmseg->shm_perm.mode &
143 	    (SHMSEG_REMOVED|SHMSEG_RMLINGER)) == SHMSEG_REMOVED)
144 		return NULL;
145 	if (shmseg->shm_perm._seq != IPCID_TO_SEQ(shmid))
146 		return NULL;
147 
148 	return shmseg;
149 }
150 
151 /*
152  * Free memory segment.
153  *  => must be called with shm_lock held;
154  */
155 static void
156 shm_free_segment(int segnum)
157 {
158 	struct shmid_ds *shmseg;
159 	size_t size;
160 	bool wanted;
161 
162 	KASSERT(mutex_owned(&shm_lock));
163 
164 	shmseg = &shmsegs[segnum];
165 	SHMPRINTF(("shm freeing key 0x%lx seq 0x%x\n",
166 	    shmseg->shm_perm._key, shmseg->shm_perm._seq));
167 
168 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
169 	wanted = (shmseg->shm_perm.mode & SHMSEG_WANTED);
170 
171 	shmseg->_shm_internal = NULL;
172 	shm_committed -= btoc(size);
173 	shm_nused--;
174 	shmseg->shm_perm.mode = SHMSEG_FREE;
175 	shm_last_free = segnum;
176 	if (wanted == true)
177 		cv_broadcast(&shm_cv[segnum]);
178 }
179 
180 /*
181  * Delete entry from the shm map.
182  *  => must be called with shm_lock held;
183  */
184 static struct uvm_object *
185 shm_delete_mapping(struct shmmap_state *shmmap_s,
186     struct shmmap_entry *shmmap_se)
187 {
188 	struct uvm_object *uobj = NULL;
189 	struct shmid_ds *shmseg;
190 	int segnum;
191 
192 	KASSERT(mutex_owned(&shm_lock));
193 
194 	segnum = IPCID_TO_IX(shmmap_se->shmid);
195 	shmseg = &shmsegs[segnum];
196 	SLIST_REMOVE(&shmmap_s->entries, shmmap_se, shmmap_entry, next);
197 	shmmap_s->nitems--;
198 	shmseg->shm_dtime = time_second;
199 	if ((--shmseg->shm_nattch <= 0) &&
200 	    (shmseg->shm_perm.mode & SHMSEG_REMOVED)) {
201 		uobj = shmseg->_shm_internal;
202 		shm_free_segment(segnum);
203 	}
204 
205 	return uobj;
206 }
207 
208 /*
209  * Get a non-shared shm map for that vmspace.  Note, that memory
210  * allocation might be performed with lock held.
211  */
212 static struct shmmap_state *
213 shmmap_getprivate(struct proc *p)
214 {
215 	struct shmmap_state *oshmmap_s, *shmmap_s;
216 	struct shmmap_entry *oshmmap_se, *shmmap_se;
217 
218 	KASSERT(mutex_owned(&shm_lock));
219 
220 	/* 1. A shm map with refcnt = 1, used by ourselves, thus return */
221 	oshmmap_s = (struct shmmap_state *)p->p_vmspace->vm_shm;
222 	if (oshmmap_s && oshmmap_s->nrefs == 1)
223 		return oshmmap_s;
224 
225 	/* 2. No shm map preset - create a fresh one */
226 	shmmap_s = kmem_zalloc(sizeof(struct shmmap_state), KM_SLEEP);
227 	shmmap_s->nrefs = 1;
228 	SLIST_INIT(&shmmap_s->entries);
229 	p->p_vmspace->vm_shm = (void *)shmmap_s;
230 
231 	if (oshmmap_s == NULL)
232 		return shmmap_s;
233 
234 	SHMPRINTF(("shmmap_getprivate: vm %p split (%d entries), was used by %d\n",
235 	    p->p_vmspace, oshmmap_s->nitems, oshmmap_s->nrefs));
236 
237 	/* 3. A shared shm map, copy to a fresh one and adjust refcounts */
238 	SLIST_FOREACH(oshmmap_se, &oshmmap_s->entries, next) {
239 		shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
240 		shmmap_se->va = oshmmap_se->va;
241 		shmmap_se->shmid = oshmmap_se->shmid;
242 		SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
243 	}
244 	shmmap_s->nitems = oshmmap_s->nitems;
245 	oshmmap_s->nrefs--;
246 
247 	return shmmap_s;
248 }
249 
250 /*
251  * Lock/unlock the memory.
252  *  => must be called with shm_lock held;
253  *  => called from one place, thus, inline;
254  */
255 static inline int
256 shm_memlock(struct lwp *l, struct shmid_ds *shmseg, int shmid, int cmd)
257 {
258 	struct proc *p = l->l_proc;
259 	struct shmmap_entry *shmmap_se;
260 	struct shmmap_state *shmmap_s;
261 	size_t size;
262 	int error;
263 
264 	KASSERT(mutex_owned(&shm_lock));
265 	shmmap_s = shmmap_getprivate(p);
266 
267 	/* Find our shared memory address by shmid */
268 	SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next) {
269 		if (shmmap_se->shmid != shmid)
270 			continue;
271 
272 		size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
273 
274 		if (cmd == SHM_LOCK &&
275 		    (shmseg->shm_perm.mode & SHMSEG_WIRED) == 0) {
276 			/* Wire the object and map, then tag it */
277 			error = uobj_wirepages(shmseg->_shm_internal, 0,
278 			    round_page(shmseg->shm_segsz));
279 			if (error)
280 				return EIO;
281 			error = uvm_map_pageable(&p->p_vmspace->vm_map,
282 			    shmmap_se->va, shmmap_se->va + size, false, 0);
283 			if (error) {
284 				uobj_unwirepages(shmseg->_shm_internal, 0,
285 				    round_page(shmseg->shm_segsz));
286 				if (error == EFAULT)
287 					error = ENOMEM;
288 				return error;
289 			}
290 			shmseg->shm_perm.mode |= SHMSEG_WIRED;
291 
292 		} else if (cmd == SHM_UNLOCK &&
293 		    (shmseg->shm_perm.mode & SHMSEG_WIRED) != 0) {
294 			/* Unwire the object and map, then untag it */
295 			uobj_unwirepages(shmseg->_shm_internal, 0,
296 			    round_page(shmseg->shm_segsz));
297 			error = uvm_map_pageable(&p->p_vmspace->vm_map,
298 			    shmmap_se->va, shmmap_se->va + size, true, 0);
299 			if (error)
300 				return EIO;
301 			shmseg->shm_perm.mode &= ~SHMSEG_WIRED;
302 		}
303 	}
304 
305 	return 0;
306 }
307 
308 /*
309  * Unmap shared memory.
310  */
311 int
312 sys_shmdt(struct lwp *l, const struct sys_shmdt_args *uap, register_t *retval)
313 {
314 	/* {
315 		syscallarg(const void *) shmaddr;
316 	} */
317 	struct proc *p = l->l_proc;
318 	struct shmmap_state *shmmap_s1, *shmmap_s;
319 	struct shmmap_entry *shmmap_se;
320 	struct uvm_object *uobj;
321 	struct shmid_ds *shmseg;
322 	size_t size;
323 
324 	mutex_enter(&shm_lock);
325 	/* In case of reallocation, we will wait for completion */
326 	while (__predict_false(shm_realloc_state))
327 		cv_wait(&shm_realloc_cv, &shm_lock);
328 
329 	shmmap_s1 = (struct shmmap_state *)p->p_vmspace->vm_shm;
330 	if (shmmap_s1 == NULL) {
331 		mutex_exit(&shm_lock);
332 		return EINVAL;
333 	}
334 
335 	/* Find the map entry */
336 	SLIST_FOREACH(shmmap_se, &shmmap_s1->entries, next)
337 		if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
338 			break;
339 	if (shmmap_se == NULL) {
340 		mutex_exit(&shm_lock);
341 		return EINVAL;
342 	}
343 
344 	shmmap_s = shmmap_getprivate(p);
345 	if (shmmap_s != shmmap_s1) {
346 		/* Map has been copied, lookup entry in new map */
347 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
348 			if (shmmap_se->va == (vaddr_t)SCARG(uap, shmaddr))
349 				break;
350 		if (shmmap_se == NULL) {
351 			mutex_exit(&shm_lock);
352 			return EINVAL;
353 		}
354 	}
355 
356 	SHMPRINTF(("shmdt: vm %p: remove %d @%lx\n",
357 	    p->p_vmspace, shmmap_se->shmid, shmmap_se->va));
358 
359 	/* Delete the entry from shm map */
360 	uobj = shm_delete_mapping(shmmap_s, shmmap_se);
361 	shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
362 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
363 	mutex_exit(&shm_lock);
364 
365 	uvm_deallocate(&p->p_vmspace->vm_map, shmmap_se->va, size);
366 	if (uobj != NULL)
367 		uao_detach(uobj);
368 	pool_put(&shmmap_entry_pool, shmmap_se);
369 
370 	return 0;
371 }
372 
373 /*
374  * Map shared memory.
375  */
376 int
377 sys_shmat(struct lwp *l, const struct sys_shmat_args *uap, register_t *retval)
378 {
379 	/* {
380 		syscallarg(int) shmid;
381 		syscallarg(const void *) shmaddr;
382 		syscallarg(int) shmflg;
383 	} */
384 	int error, flags = 0;
385 	struct proc *p = l->l_proc;
386 	kauth_cred_t cred = l->l_cred;
387 	struct shmid_ds *shmseg;
388 	struct shmmap_state *shmmap_s;
389 	struct shmmap_entry *shmmap_se;
390 	struct uvm_object *uobj;
391 	struct vmspace *vm;
392 	vaddr_t attach_va;
393 	vm_prot_t prot;
394 	vsize_t size;
395 
396 	/* Allocate a new map entry and set it */
397 	shmmap_se = pool_get(&shmmap_entry_pool, PR_WAITOK);
398 
399 	mutex_enter(&shm_lock);
400 	/* In case of reallocation, we will wait for completion */
401 	while (__predict_false(shm_realloc_state))
402 		cv_wait(&shm_realloc_cv, &shm_lock);
403 
404 	shmseg = shm_find_segment_by_shmid(SCARG(uap, shmid));
405 	if (shmseg == NULL) {
406 		error = EINVAL;
407 		goto err;
408 	}
409 	error = ipcperm(cred, &shmseg->shm_perm,
410 	    (SCARG(uap, shmflg) & SHM_RDONLY) ? IPC_R : IPC_R|IPC_W);
411 	if (error)
412 		goto err;
413 
414 	vm = p->p_vmspace;
415 	shmmap_s = (struct shmmap_state *)vm->vm_shm;
416 	if (shmmap_s && shmmap_s->nitems >= shminfo.shmseg) {
417 		error = EMFILE;
418 		goto err;
419 	}
420 
421 	size = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
422 	prot = VM_PROT_READ;
423 	if ((SCARG(uap, shmflg) & SHM_RDONLY) == 0)
424 		prot |= VM_PROT_WRITE;
425 	if (SCARG(uap, shmaddr)) {
426 		flags |= UVM_FLAG_FIXED;
427 		if (SCARG(uap, shmflg) & SHM_RND)
428 			attach_va =
429 			    (vaddr_t)SCARG(uap, shmaddr) & ~(SHMLBA-1);
430 		else if (((vaddr_t)SCARG(uap, shmaddr) & (SHMLBA-1)) == 0)
431 			attach_va = (vaddr_t)SCARG(uap, shmaddr);
432 		else {
433 			error = EINVAL;
434 			goto err;
435 		}
436 	} else {
437 		/* This is just a hint to uvm_mmap() about where to put it. */
438 		attach_va = p->p_emul->e_vm_default_addr(p,
439 		    (vaddr_t)vm->vm_daddr, size);
440 	}
441 
442 	/*
443 	 * Create a map entry, add it to the list and increase the counters.
444 	 * The lock will be dropped before the mapping, disable reallocation.
445 	 */
446 	shmmap_s = shmmap_getprivate(p);
447 	SLIST_INSERT_HEAD(&shmmap_s->entries, shmmap_se, next);
448 	shmmap_s->nitems++;
449 	shmseg->shm_lpid = p->p_pid;
450 	shmseg->shm_nattch++;
451 	shm_realloc_disable++;
452 	mutex_exit(&shm_lock);
453 
454 	/*
455 	 * Add a reference to the memory object, map it to the
456 	 * address space, and lock the memory, if needed.
457 	 */
458 	uobj = shmseg->_shm_internal;
459 	uao_reference(uobj);
460 	error = uvm_map(&vm->vm_map, &attach_va, size, uobj, 0, 0,
461 	    UVM_MAPFLAG(prot, prot, UVM_INH_SHARE, UVM_ADV_RANDOM, flags));
462 	if (error)
463 		goto err_detach;
464 	if (shm_use_phys || (shmseg->shm_perm.mode & SHMSEG_WIRED)) {
465 		error = uvm_map_pageable(&vm->vm_map, attach_va,
466 		    attach_va + size, false, 0);
467 		if (error) {
468 			if (error == EFAULT)
469 				error = ENOMEM;
470 			uvm_deallocate(&vm->vm_map, attach_va, size);
471 			goto err_detach;
472 		}
473 	}
474 
475 	/* Set the new address, and update the time */
476 	mutex_enter(&shm_lock);
477 	shmmap_se->va = attach_va;
478 	shmmap_se->shmid = SCARG(uap, shmid);
479 	shmseg->shm_atime = time_second;
480 	shm_realloc_disable--;
481 	retval[0] = attach_va;
482 	SHMPRINTF(("shmat: vm %p: add %d @%lx\n",
483 	    p->p_vmspace, shmmap_se->shmid, attach_va));
484 err:
485 	cv_broadcast(&shm_realloc_cv);
486 	mutex_exit(&shm_lock);
487 	if (error && shmmap_se)
488 		pool_put(&shmmap_entry_pool, shmmap_se);
489 	return error;
490 
491 err_detach:
492 	uao_detach(uobj);
493 	mutex_enter(&shm_lock);
494 	uobj = shm_delete_mapping(shmmap_s, shmmap_se);
495 	shm_realloc_disable--;
496 	cv_broadcast(&shm_realloc_cv);
497 	mutex_exit(&shm_lock);
498 	if (uobj != NULL)
499 		uao_detach(uobj);
500 	pool_put(&shmmap_entry_pool, shmmap_se);
501 	return error;
502 }
503 
504 /*
505  * Shared memory control operations.
506  */
507 int
508 sys___shmctl13(struct lwp *l, const struct sys___shmctl13_args *uap, register_t *retval)
509 {
510 	/* {
511 		syscallarg(int) shmid;
512 		syscallarg(int) cmd;
513 		syscallarg(struct shmid_ds *) buf;
514 	} */
515 	struct shmid_ds shmbuf;
516 	int cmd, error;
517 
518 	cmd = SCARG(uap, cmd);
519 	if (cmd == IPC_SET) {
520 		error = copyin(SCARG(uap, buf), &shmbuf, sizeof(shmbuf));
521 		if (error)
522 			return error;
523 	}
524 
525 	error = shmctl1(l, SCARG(uap, shmid), cmd,
526 	    (cmd == IPC_SET || cmd == IPC_STAT) ? &shmbuf : NULL);
527 
528 	if (error == 0 && cmd == IPC_STAT)
529 		error = copyout(&shmbuf, SCARG(uap, buf), sizeof(shmbuf));
530 
531 	return error;
532 }
533 
534 int
535 shmctl1(struct lwp *l, int shmid, int cmd, struct shmid_ds *shmbuf)
536 {
537 	struct uvm_object *uobj = NULL;
538 	kauth_cred_t cred = l->l_cred;
539 	struct shmid_ds *shmseg;
540 	int error = 0;
541 
542 	mutex_enter(&shm_lock);
543 	/* In case of reallocation, we will wait for completion */
544 	while (__predict_false(shm_realloc_state))
545 		cv_wait(&shm_realloc_cv, &shm_lock);
546 
547 	shmseg = shm_find_segment_by_shmid(shmid);
548 	if (shmseg == NULL) {
549 		mutex_exit(&shm_lock);
550 		return EINVAL;
551 	}
552 
553 	switch (cmd) {
554 	case IPC_STAT:
555 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_R)) != 0)
556 			break;
557 		memcpy(shmbuf, shmseg, sizeof(struct shmid_ds));
558 		break;
559 	case IPC_SET:
560 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
561 			break;
562 		shmseg->shm_perm.uid = shmbuf->shm_perm.uid;
563 		shmseg->shm_perm.gid = shmbuf->shm_perm.gid;
564 		shmseg->shm_perm.mode =
565 		    (shmseg->shm_perm.mode & ~ACCESSPERMS) |
566 		    (shmbuf->shm_perm.mode & ACCESSPERMS);
567 		shmseg->shm_ctime = time_second;
568 		break;
569 	case IPC_RMID:
570 		if ((error = ipcperm(cred, &shmseg->shm_perm, IPC_M)) != 0)
571 			break;
572 		shmseg->shm_perm._key = IPC_PRIVATE;
573 		shmseg->shm_perm.mode |= SHMSEG_REMOVED;
574 		if (shmseg->shm_nattch <= 0) {
575 			uobj = shmseg->_shm_internal;
576 			shm_free_segment(IPCID_TO_IX(shmid));
577 		}
578 		break;
579 	case SHM_LOCK:
580 	case SHM_UNLOCK:
581 		if ((error = kauth_authorize_generic(cred,
582 		    KAUTH_GENERIC_ISSUSER, NULL)) != 0)
583 			break;
584 		error = shm_memlock(l, shmseg, shmid, cmd);
585 		break;
586 	default:
587 		error = EINVAL;
588 	}
589 
590 	mutex_exit(&shm_lock);
591 	if (uobj != NULL)
592 		uao_detach(uobj);
593 	return error;
594 }
595 
596 /*
597  * Try to take an already existing segment.
598  *  => must be called with shm_lock held;
599  *  => called from one place, thus, inline;
600  */
601 static inline int
602 shmget_existing(struct lwp *l, const struct sys_shmget_args *uap, int mode,
603     register_t *retval)
604 {
605 	struct shmid_ds *shmseg;
606 	kauth_cred_t cred = l->l_cred;
607 	int segnum, error;
608 again:
609 	KASSERT(mutex_owned(&shm_lock));
610 
611 	/* Find segment by key */
612 	for (segnum = 0; segnum < shminfo.shmmni; segnum++)
613 		if ((shmsegs[segnum].shm_perm.mode & SHMSEG_ALLOCATED) &&
614 		    shmsegs[segnum].shm_perm._key == SCARG(uap, key))
615 			break;
616 	if (segnum == shminfo.shmmni) {
617 		/* Not found */
618 		return -1;
619 	}
620 
621 	shmseg = &shmsegs[segnum];
622 	if (shmseg->shm_perm.mode & SHMSEG_REMOVED) {
623 		/*
624 		 * This segment is in the process of being allocated.  Wait
625 		 * until it's done, and look the key up again (in case the
626 		 * allocation failed or it was freed).
627 		 */
628 		shmseg->shm_perm.mode |= SHMSEG_WANTED;
629 		error = cv_wait_sig(&shm_cv[segnum], &shm_lock);
630 		if (error)
631 			return error;
632 		goto again;
633 	}
634 
635 	/* Check the permission, segment size and appropriate flag */
636 	error = ipcperm(cred, &shmseg->shm_perm, mode);
637 	if (error)
638 		return error;
639 	if (SCARG(uap, size) && SCARG(uap, size) > shmseg->shm_segsz)
640 		return EINVAL;
641 	if ((SCARG(uap, shmflg) & (IPC_CREAT | IPC_EXCL)) ==
642 	    (IPC_CREAT | IPC_EXCL))
643 		return EEXIST;
644 
645 	*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
646 	return 0;
647 }
648 
649 int
650 sys_shmget(struct lwp *l, const struct sys_shmget_args *uap, register_t *retval)
651 {
652 	/* {
653 		syscallarg(key_t) key;
654 		syscallarg(size_t) size;
655 		syscallarg(int) shmflg;
656 	} */
657 	struct shmid_ds *shmseg;
658 	kauth_cred_t cred = l->l_cred;
659 	key_t key = SCARG(uap, key);
660 	size_t size;
661 	int error, mode, segnum;
662 	bool lockmem;
663 
664 	mode = SCARG(uap, shmflg) & ACCESSPERMS;
665 	if (SCARG(uap, shmflg) & _SHM_RMLINGER)
666 		mode |= SHMSEG_RMLINGER;
667 
668 	SHMPRINTF(("shmget: key 0x%lx size 0x%x shmflg 0x%x mode 0x%x\n",
669 	    SCARG(uap, key), SCARG(uap, size), SCARG(uap, shmflg), mode));
670 
671 	mutex_enter(&shm_lock);
672 	/* In case of reallocation, we will wait for completion */
673 	while (__predict_false(shm_realloc_state))
674 		cv_wait(&shm_realloc_cv, &shm_lock);
675 
676 	if (key != IPC_PRIVATE) {
677 		error = shmget_existing(l, uap, mode, retval);
678 		if (error != -1) {
679 			mutex_exit(&shm_lock);
680 			return error;
681 		}
682 		if ((SCARG(uap, shmflg) & IPC_CREAT) == 0) {
683 			mutex_exit(&shm_lock);
684 			return ENOENT;
685 		}
686 	}
687 	error = 0;
688 
689 	/*
690 	 * Check the for the limits.
691 	 */
692 	size = SCARG(uap, size);
693 	if (size < shminfo.shmmin || size > shminfo.shmmax) {
694 		mutex_exit(&shm_lock);
695 		return EINVAL;
696 	}
697 	if (shm_nused >= shminfo.shmmni) {
698 		mutex_exit(&shm_lock);
699 		return ENOSPC;
700 	}
701 	size = (size + PGOFSET) & ~PGOFSET;
702 	if (shm_committed + btoc(size) > shminfo.shmall) {
703 		mutex_exit(&shm_lock);
704 		return ENOMEM;
705 	}
706 
707 	/* Find the first available segment */
708 	if (shm_last_free < 0) {
709 		for (segnum = 0; segnum < shminfo.shmmni; segnum++)
710 			if (shmsegs[segnum].shm_perm.mode & SHMSEG_FREE)
711 				break;
712 		KASSERT(segnum < shminfo.shmmni);
713 	} else {
714 		segnum = shm_last_free;
715 		shm_last_free = -1;
716 	}
717 
718 	/*
719 	 * Initialize the segment.
720 	 * We will drop the lock while allocating the memory, thus mark the
721 	 * segment present, but removed, that no other thread could take it.
722 	 * Also, disable reallocation, while lock is dropped.
723 	 */
724 	shmseg = &shmsegs[segnum];
725 	shmseg->shm_perm.mode = SHMSEG_ALLOCATED | SHMSEG_REMOVED;
726 	shm_committed += btoc(size);
727 	shm_nused++;
728 	lockmem = shm_use_phys;
729 	shm_realloc_disable++;
730 	mutex_exit(&shm_lock);
731 
732 	/* Allocate the memory object and lock it if needed */
733 	shmseg->_shm_internal = uao_create(size, 0);
734 	if (lockmem) {
735 		/* Wire the pages and tag it */
736 		error = uobj_wirepages(shmseg->_shm_internal, 0,
737 		    round_page(shmseg->shm_segsz));
738 		if (error) {
739 			mutex_enter(&shm_lock);
740 			shm_free_segment(segnum);
741 			shm_realloc_disable--;
742 			mutex_exit(&shm_lock);
743 			return error;
744 		}
745 	}
746 
747 	/*
748 	 * Please note, while segment is marked, there are no need to hold the
749 	 * lock, while setting it (except shm_perm.mode).
750 	 */
751 	shmseg->shm_perm._key = SCARG(uap, key);
752 	shmseg->shm_perm._seq = (shmseg->shm_perm._seq + 1) & 0x7fff;
753 	*retval = IXSEQ_TO_IPCID(segnum, shmseg->shm_perm);
754 
755 	shmseg->shm_perm.cuid = shmseg->shm_perm.uid = kauth_cred_geteuid(cred);
756 	shmseg->shm_perm.cgid = shmseg->shm_perm.gid = kauth_cred_getegid(cred);
757 	shmseg->shm_segsz = SCARG(uap, size);
758 	shmseg->shm_cpid = l->l_proc->p_pid;
759 	shmseg->shm_lpid = shmseg->shm_nattch = 0;
760 	shmseg->shm_atime = shmseg->shm_dtime = 0;
761 	shmseg->shm_ctime = time_second;
762 
763 	/*
764 	 * Segment is initialized.
765 	 * Enter the lock, mark as allocated, and notify waiters (if any).
766 	 * Also, unmark the state of reallocation.
767 	 */
768 	mutex_enter(&shm_lock);
769 	shmseg->shm_perm.mode = (shmseg->shm_perm.mode & SHMSEG_WANTED) |
770 	    (mode & (ACCESSPERMS | SHMSEG_RMLINGER)) |
771 	    SHMSEG_ALLOCATED | (lockmem ? SHMSEG_WIRED : 0);
772 	if (shmseg->shm_perm.mode & SHMSEG_WANTED) {
773 		shmseg->shm_perm.mode &= ~SHMSEG_WANTED;
774 		cv_broadcast(&shm_cv[segnum]);
775 	}
776 	shm_realloc_disable--;
777 	cv_broadcast(&shm_realloc_cv);
778 	mutex_exit(&shm_lock);
779 
780 	return error;
781 }
782 
783 void
784 shmfork(struct vmspace *vm1, struct vmspace *vm2)
785 {
786 	struct shmmap_state *shmmap_s;
787 	struct shmmap_entry *shmmap_se;
788 
789 	SHMPRINTF(("shmfork %p->%p\n", vm1, vm2));
790 	mutex_enter(&shm_lock);
791 	vm2->vm_shm = vm1->vm_shm;
792 	if (vm1->vm_shm) {
793 		shmmap_s = (struct shmmap_state *)vm1->vm_shm;
794 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
795 			shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch++;
796 		shmmap_s->nrefs++;
797 	}
798 	mutex_exit(&shm_lock);
799 }
800 
801 void
802 shmexit(struct vmspace *vm)
803 {
804 	struct shmmap_state *shmmap_s;
805 	struct shmmap_entry *shmmap_se;
806 	struct uvm_object **uobj;
807 	size_t *size;
808 	u_int i, n;
809 
810 	SLIST_HEAD(, shmmap_entry) tmp_entries;
811 
812 	mutex_enter(&shm_lock);
813 	shmmap_s = (struct shmmap_state *)vm->vm_shm;
814 	if (shmmap_s == NULL) {
815 		mutex_exit(&shm_lock);
816 		return;
817 	}
818 
819 	vm->vm_shm = NULL;
820 
821 	if (--shmmap_s->nrefs > 0) {
822 		SHMPRINTF(("shmexit: vm %p drop ref (%d entries), refs = %d\n",
823 		    vm, shmmap_s->nitems, shmmap_s->nrefs));
824 		SLIST_FOREACH(shmmap_se, &shmmap_s->entries, next)
825 			shmsegs[IPCID_TO_IX(shmmap_se->shmid)].shm_nattch--;
826 		mutex_exit(&shm_lock);
827 		return;
828 	}
829 
830 	KASSERT(shmmap_s->nrefs == 0);
831 	n = shmmap_s->nitems;
832 	SHMPRINTF(("shmexit: vm %p cleanup (%d entries)\n", vm, n));
833 	mutex_exit(&shm_lock);
834 	if (n == 0) {
835 		kmem_free(shmmap_s, sizeof(struct shmmap_state));
836 		return;
837 	}
838 
839 	/* Allocate the arrays */
840 	SLIST_INIT(&tmp_entries);
841 	uobj = kmem_zalloc(n * sizeof(void *), KM_SLEEP);
842 	size = kmem_zalloc(n * sizeof(size_t), KM_SLEEP);
843 
844 	/* Delete the entry from shm map */
845 	i = 0;
846 	mutex_enter(&shm_lock);
847 	while (!SLIST_EMPTY(&shmmap_s->entries)) {
848 		struct shmid_ds *shmseg;
849 
850 		shmmap_se = SLIST_FIRST(&shmmap_s->entries);
851 		shmseg = &shmsegs[IPCID_TO_IX(shmmap_se->shmid)];
852 		size[i] = (shmseg->shm_segsz + PGOFSET) & ~PGOFSET;
853 		uobj[i] = shm_delete_mapping(shmmap_s, shmmap_se);
854 		SLIST_INSERT_HEAD(&tmp_entries, shmmap_se, next);
855 		i++;
856 	}
857 	mutex_exit(&shm_lock);
858 
859 	/* Unmap all segments, free the entries */
860 	i = 0;
861 	while (!SLIST_EMPTY(&tmp_entries)) {
862 		KASSERT(i < n);
863 		shmmap_se = SLIST_FIRST(&tmp_entries);
864 		SLIST_REMOVE(&tmp_entries, shmmap_se, shmmap_entry, next);
865 		uvm_deallocate(&vm->vm_map, shmmap_se->va, size[i]);
866 		if (uobj[i] != NULL)
867 			uao_detach(uobj[i]);
868 		pool_put(&shmmap_entry_pool, shmmap_se);
869 		i++;
870 	}
871 
872 	kmem_free(uobj, n * sizeof(void *));
873 	kmem_free(size, n * sizeof(size_t));
874 	kmem_free(shmmap_s, sizeof(struct shmmap_state));
875 }
876 
877 static int
878 shmrealloc(int newshmni)
879 {
880 	vaddr_t v;
881 	struct shmid_ds *oldshmsegs, *newshmsegs;
882 	kcondvar_t *newshm_cv;
883 	size_t sz;
884 	int i, lsegid;
885 
886 	if (newshmni < 1)
887 		return EINVAL;
888 
889 	/* Allocate new memory area */
890 	sz = ALIGN(newshmni * sizeof(struct shmid_ds)) +
891 	    ALIGN(newshmni * sizeof(kcondvar_t));
892 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
893 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
894 	if (v == 0)
895 		return ENOMEM;
896 
897 	mutex_enter(&shm_lock);
898 	while (shm_realloc_state || shm_realloc_disable)
899 		cv_wait(&shm_realloc_cv, &shm_lock);
900 
901 	/*
902 	 * Get the number of last segment.  Fail we are trying to
903 	 * reallocate less memory than we use.
904 	 */
905 	lsegid = 0;
906 	for (i = 0; i < shminfo.shmmni; i++)
907 		if ((shmsegs[i].shm_perm.mode & SHMSEG_FREE) == 0)
908 			lsegid = i;
909 	if (lsegid >= newshmni) {
910 		mutex_exit(&shm_lock);
911 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
912 		return EBUSY;
913 	}
914 	shm_realloc_state = true;
915 
916 	newshmsegs = (void *)v;
917 	newshm_cv = (void *)(ALIGN(newshmsegs) +
918 	    newshmni * sizeof(struct shmid_ds));
919 
920 	/* Copy all memory to the new area */
921 	for (i = 0; i < shm_nused; i++)
922 		(void)memcpy(&newshmsegs[i], &shmsegs[i],
923 		    sizeof(newshmsegs[0]));
924 
925 	/* Mark as free all new segments, if there is any */
926 	for (; i < newshmni; i++) {
927 		cv_init(&newshm_cv[i], "shmwait");
928 		newshmsegs[i].shm_perm.mode = SHMSEG_FREE;
929 		newshmsegs[i].shm_perm._seq = 0;
930 	}
931 
932 	oldshmsegs = shmsegs;
933 	sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
934 	    ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
935 
936 	shminfo.shmmni = newshmni;
937 	shmsegs = newshmsegs;
938 	shm_cv = newshm_cv;
939 
940 	/* Reallocation completed - notify all waiters, if any */
941 	shm_realloc_state = false;
942 	cv_broadcast(&shm_realloc_cv);
943 	mutex_exit(&shm_lock);
944 
945 	uvm_km_free(kernel_map, (vaddr_t)oldshmsegs, sz, UVM_KMF_WIRED);
946 	return 0;
947 }
948 
949 void
950 shminit(void)
951 {
952 	vaddr_t v;
953 	size_t sz;
954 	int i;
955 
956 	mutex_init(&shm_lock, MUTEX_DEFAULT, IPL_NONE);
957 	pool_init(&shmmap_entry_pool, sizeof(struct shmmap_entry), 0, 0, 0,
958 	    "shmmp", &pool_allocator_nointr, IPL_NONE);
959 	cv_init(&shm_realloc_cv, "shmrealc");
960 
961 	/* Allocate the wired memory for our structures */
962 	sz = ALIGN(shminfo.shmmni * sizeof(struct shmid_ds)) +
963 	    ALIGN(shminfo.shmmni * sizeof(kcondvar_t));
964 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
965 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
966 	if (v == 0)
967 		panic("sysv_shm: cannot allocate memory");
968 	shmsegs = (void *)v;
969 	shm_cv = (void *)(ALIGN(shmsegs) +
970 	    shminfo.shmmni * sizeof(struct shmid_ds));
971 
972 	shminfo.shmmax *= PAGE_SIZE;
973 
974 	for (i = 0; i < shminfo.shmmni; i++) {
975 		cv_init(&shm_cv[i], "shmwait");
976 		shmsegs[i].shm_perm.mode = SHMSEG_FREE;
977 		shmsegs[i].shm_perm._seq = 0;
978 	}
979 	shm_last_free = 0;
980 	shm_nused = 0;
981 	shm_committed = 0;
982 	shm_realloc_disable = 0;
983 	shm_realloc_state = false;
984 }
985 
986 static int
987 sysctl_ipc_shmmni(SYSCTLFN_ARGS)
988 {
989 	int newsize, error;
990 	struct sysctlnode node;
991 	node = *rnode;
992 	node.sysctl_data = &newsize;
993 
994 	newsize = shminfo.shmmni;
995 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
996 	if (error || newp == NULL)
997 		return error;
998 
999 	sysctl_unlock();
1000 	error = shmrealloc(newsize);
1001 	sysctl_relock();
1002 	return error;
1003 }
1004 
1005 static int
1006 sysctl_ipc_shmmaxpgs(SYSCTLFN_ARGS)
1007 {
1008 	int newsize, error;
1009 	struct sysctlnode node;
1010 	node = *rnode;
1011 	node.sysctl_data = &newsize;
1012 
1013 	newsize = shminfo.shmall;
1014 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1015 	if (error || newp == NULL)
1016 		return error;
1017 
1018 	if (newsize < 1)
1019 		return EINVAL;
1020 
1021 	shminfo.shmall = newsize;
1022 	shminfo.shmmax = shminfo.shmall * PAGE_SIZE;
1023 
1024 	return 0;
1025 }
1026 
1027 SYSCTL_SETUP(sysctl_ipc_shm_setup, "sysctl kern.ipc subtree setup")
1028 {
1029 
1030 	sysctl_createv(clog, 0, NULL, NULL,
1031 		CTLFLAG_PERMANENT,
1032 		CTLTYPE_NODE, "kern", NULL,
1033 		NULL, 0, NULL, 0,
1034 		CTL_KERN, CTL_EOL);
1035 	sysctl_createv(clog, 0, NULL, NULL,
1036 		CTLFLAG_PERMANENT,
1037 		CTLTYPE_NODE, "ipc",
1038 		SYSCTL_DESCR("SysV IPC options"),
1039 		NULL, 0, NULL, 0,
1040 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1041 	sysctl_createv(clog, 0, NULL, NULL,
1042 		CTLFLAG_PERMANENT | CTLFLAG_READONLY,
1043 		CTLTYPE_INT, "shmmax",
1044 		SYSCTL_DESCR("Max shared memory segment size in bytes"),
1045 		NULL, 0, &shminfo.shmmax, 0,
1046 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAX, CTL_EOL);
1047 	sysctl_createv(clog, 0, NULL, NULL,
1048 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1049 		CTLTYPE_INT, "shmmni",
1050 		SYSCTL_DESCR("Max number of shared memory identifiers"),
1051 		sysctl_ipc_shmmni, 0, &shminfo.shmmni, 0,
1052 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMNI, CTL_EOL);
1053 	sysctl_createv(clog, 0, NULL, NULL,
1054 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1055 		CTLTYPE_INT, "shmseg",
1056 		SYSCTL_DESCR("Max shared memory segments per process"),
1057 		NULL, 0, &shminfo.shmseg, 0,
1058 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMSEG, CTL_EOL);
1059 	sysctl_createv(clog, 0, NULL, NULL,
1060 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1061 		CTLTYPE_INT, "shmmaxpgs",
1062 		SYSCTL_DESCR("Max amount of shared memory in pages"),
1063 		sysctl_ipc_shmmaxpgs, 0, &shminfo.shmall, 0,
1064 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMMAXPGS, CTL_EOL);
1065 	sysctl_createv(clog, 0, NULL, NULL,
1066 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1067 		CTLTYPE_INT, "shm_use_phys",
1068 		SYSCTL_DESCR("Enable/disable locking of shared memory in "
1069 		    "physical memory"), NULL, 0, &shm_use_phys, 0,
1070 		CTL_KERN, KERN_SYSVIPC, KERN_SYSVIPC_SHMUSEPHYS, CTL_EOL);
1071 }
1072