xref: /netbsd-src/sys/kern/sysv_sem.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: sysv_sem.c,v 1.97 2019/04/10 10:03:50 pgoyette Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Implementation of SVID semaphores
35  *
36  * Author: Daniel Boulet
37  *
38  * This software is provided ``AS IS'' without any warranties of any kind.
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.97 2019/04/10 10:03:50 pgoyette Exp $");
43 
44 #ifdef _KERNEL_OPT
45 #include "opt_sysv.h"
46 #endif
47 
48 #include <sys/param.h>
49 #include <sys/kernel.h>
50 #include <sys/sem.h>
51 #include <sys/sysctl.h>
52 #include <sys/kmem.h>
53 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
54 #include <sys/syscallargs.h>
55 #include <sys/kauth.h>
56 #include <sys/once.h>
57 
58 /*
59  * Memory areas:
60  *  1st: Pool of semaphore identifiers
61  *  2nd: Semaphores
62  *  3rd: Conditional variables
63  *  4th: Undo structures
64  */
65 struct semid_ds *	sema			__read_mostly;
66 static struct __sem *	sem			__read_mostly;
67 static kcondvar_t *	semcv			__read_mostly;
68 static int *		semu			__read_mostly;
69 
70 static kmutex_t		semlock			__cacheline_aligned;
71 static bool		sem_realloc_state	__read_mostly;
72 static kcondvar_t	sem_realloc_cv;
73 
74 /*
75  * List of active undo structures, total number of semaphores,
76  * and total number of semop waiters.
77  */
78 static struct sem_undo *semu_list		__read_mostly;
79 static u_int		semtot			__cacheline_aligned;
80 static u_int		sem_waiters		__cacheline_aligned;
81 
82 /* Macro to find a particular sem_undo vector */
83 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
84 
85 #ifdef SEM_DEBUG
86 #define SEM_PRINTF(a) printf a
87 #else
88 #define SEM_PRINTF(a)
89 #endif
90 
91 void *hook;	/* cookie from exithook_establish() */
92 
93 extern int kern_has_sysvsem;
94 
95 SYSCTL_SETUP_PROTO(sysctl_ipc_sem_setup);
96 
97 struct sem_undo *semu_alloc(struct proc *);
98 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
99 void semundo_clear(int, int);
100 
101 static ONCE_DECL(exithook_control);
102 static int seminit_exithook(void);
103 
104 int
105 seminit(struct sysctllog **clog)
106 {
107 	int i, sz;
108 	vaddr_t v;
109 
110 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
111 	cv_init(&sem_realloc_cv, "semrealc");
112 	sem_realloc_state = false;
113 	semtot = 0;
114 	sem_waiters = 0;
115 
116 	/* Allocate the wired memory for our structures */
117 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
118 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
119 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
120 	    ALIGN(seminfo.semmnu * seminfo.semusz);
121 	sz = round_page(sz);
122 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
123 	if (v == 0) {
124 		printf("sysv_sem: cannot allocate memory");
125 		return ENOMEM;
126 	}
127 	sema = (void *)v;
128 	sem = (void *)((uintptr_t)sema +
129 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
130 	semcv = (void *)((uintptr_t)sem +
131 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
132 	semu = (void *)((uintptr_t)semcv +
133 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
134 
135 	for (i = 0; i < seminfo.semmni; i++) {
136 		sema[i]._sem_base = 0;
137 		sema[i].sem_perm.mode = 0;
138 		cv_init(&semcv[i], "semwait");
139 	}
140 	for (i = 0; i < seminfo.semmnu; i++) {
141 		struct sem_undo *suptr = SEMU(semu, i);
142 		suptr->un_proc = NULL;
143 	}
144 	semu_list = NULL;
145 
146 	kern_has_sysvsem = 1;
147 
148 #ifdef _MODULE
149 	if (clog)
150 		sysctl_ipc_sem_setup(clog);
151 #endif
152 	return 0;
153 }
154 
155 static int
156 seminit_exithook(void)
157 {
158 
159 	hook = exithook_establish(semexit, NULL);
160 	return 0;
161 }
162 
163 int
164 semfini(void)
165 {
166 	int i, sz;
167 	vaddr_t v = (vaddr_t)sema;
168 
169 	/* Don't allow module unload if we're busy */
170 	mutex_enter(&semlock);
171 	if (semtot) {
172 		mutex_exit(&semlock);
173 		return 1;
174 	}
175 
176 	/* Remove the exit hook */
177 	if (hook)
178 		exithook_disestablish(hook);
179 
180 	/* Destroy all our condvars */
181 	for (i = 0; i < seminfo.semmni; i++) {
182 		cv_destroy(&semcv[i]);
183 	}
184 
185 	/* Free the wired memory that we allocated */
186 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
187 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
188 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
189 	    ALIGN(seminfo.semmnu * seminfo.semusz);
190 	sz = round_page(sz);
191 	uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
192 
193 	/* Destroy the last cv and mutex */
194 	cv_destroy(&sem_realloc_cv);
195 	mutex_exit(&semlock);
196 	mutex_destroy(&semlock);
197 
198 	kern_has_sysvsem = 0;
199 
200 	return 0;
201 }
202 
203 static int
204 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
205 {
206 	struct semid_ds *new_sema, *old_sema;
207 	struct __sem *new_sem;
208 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
209 	int *new_semu;
210 	kcondvar_t *new_semcv;
211 	vaddr_t v;
212 	int i, j, lsemid, nmnus, sz;
213 
214 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
215 		return EINVAL;
216 
217 	/* Allocate the wired memory for our structures */
218 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
219 	    ALIGN(newsemmns * sizeof(struct __sem)) +
220 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
221 	    ALIGN(newsemmnu * seminfo.semusz);
222 	sz = round_page(sz);
223 	v = uvm_km_alloc(kernel_map, sz, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
224 	if (v == 0)
225 		return ENOMEM;
226 
227 	mutex_enter(&semlock);
228 	if (sem_realloc_state) {
229 		mutex_exit(&semlock);
230 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
231 		return EBUSY;
232 	}
233 	sem_realloc_state = true;
234 	if (sem_waiters) {
235 		/*
236 		 * Mark reallocation state, wake-up all waiters,
237 		 * and wait while they will all exit.
238 		 */
239 		for (i = 0; i < seminfo.semmni; i++)
240 			cv_broadcast(&semcv[i]);
241 		while (sem_waiters)
242 			cv_wait(&sem_realloc_cv, &semlock);
243 	}
244 	old_sema = sema;
245 
246 	/* Get the number of last slot */
247 	lsemid = 0;
248 	for (i = 0; i < seminfo.semmni; i++)
249 		if (sema[i].sem_perm.mode & SEM_ALLOC)
250 			lsemid = i;
251 
252 	/* Get the number of currently used undo structures */
253 	nmnus = 0;
254 	for (i = 0; i < seminfo.semmnu; i++) {
255 		suptr = SEMU(semu, i);
256 		if (suptr->un_proc == NULL)
257 			continue;
258 		nmnus++;
259 	}
260 
261 	/* We cannot reallocate less memory than we use */
262 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
263 		mutex_exit(&semlock);
264 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
265 		return EBUSY;
266 	}
267 
268 	new_sema = (void *)v;
269 	new_sem = (void *)((uintptr_t)new_sema +
270 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
271 	new_semcv = (void *)((uintptr_t)new_sem +
272 	    ALIGN(newsemmns * sizeof(struct __sem)));
273 	new_semu = (void *)((uintptr_t)new_semcv +
274 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
275 
276 	/* Initialize all semaphore identifiers and condvars */
277 	for (i = 0; i < newsemmni; i++) {
278 		new_sema[i]._sem_base = 0;
279 		new_sema[i].sem_perm.mode = 0;
280 		cv_init(&new_semcv[i], "semwait");
281 	}
282 	for (i = 0; i < newsemmnu; i++) {
283 		nsuptr = SEMU(new_semu, i);
284 		nsuptr->un_proc = NULL;
285 	}
286 
287 	/*
288 	 * Copy all identifiers, semaphores and list of the
289 	 * undo structures to the new memory allocation.
290 	 */
291 	j = 0;
292 	for (i = 0; i <= lsemid; i++) {
293 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
294 			continue;
295 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
296 		new_sema[i]._sem_base = &new_sem[j];
297 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
298 		    (sizeof(struct __sem) * sema[i].sem_nsems));
299 		j += sema[i].sem_nsems;
300 	}
301 	KASSERT(j == semtot);
302 
303 	j = 0;
304 	new_semu_list = NULL;
305 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
306 		KASSERT(j < newsemmnu);
307 		nsuptr = SEMU(new_semu, j);
308 		memcpy(nsuptr, suptr, SEMUSZ);
309 		nsuptr->un_next = new_semu_list;
310 		new_semu_list = nsuptr;
311 		j++;
312 	}
313 
314 	for (i = 0; i < seminfo.semmni; i++) {
315 		KASSERT(cv_has_waiters(&semcv[i]) == false);
316 		cv_destroy(&semcv[i]);
317 	}
318 
319 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
320 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
321 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
322 	    ALIGN(seminfo.semmnu * seminfo.semusz);
323 	sz = round_page(sz);
324 
325 	/* Set the pointers and update the new values */
326 	sema = new_sema;
327 	sem = new_sem;
328 	semcv = new_semcv;
329 	semu = new_semu;
330 	semu_list = new_semu_list;
331 
332 	seminfo.semmni = newsemmni;
333 	seminfo.semmns = newsemmns;
334 	seminfo.semmnu = newsemmnu;
335 
336 	/* Reallocation completed - notify all waiters, if any */
337 	sem_realloc_state = false;
338 	cv_broadcast(&sem_realloc_cv);
339 	mutex_exit(&semlock);
340 
341 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
342 	return 0;
343 }
344 
345 /*
346  * Placebo.
347  */
348 
349 int
350 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
351 {
352 
353 	RUN_ONCE(&exithook_control, seminit_exithook);
354 
355 	*retval = 0;
356 	return 0;
357 }
358 
359 /*
360  * Allocate a new sem_undo structure for a process.
361  * => Returns NULL on failure.
362  */
363 struct sem_undo *
364 semu_alloc(struct proc *p)
365 {
366 	struct sem_undo *suptr, **supptr;
367 	bool attempted = false;
368 	int i;
369 
370 	KASSERT(mutex_owned(&semlock));
371 again:
372 	/* Look for a free structure. */
373 	for (i = 0; i < seminfo.semmnu; i++) {
374 		suptr = SEMU(semu, i);
375 		if (suptr->un_proc == NULL) {
376 			/* Found.  Fill it in and return. */
377 			suptr->un_next = semu_list;
378 			semu_list = suptr;
379 			suptr->un_cnt = 0;
380 			suptr->un_proc = p;
381 			return suptr;
382 		}
383 	}
384 
385 	/* Not found.  Attempt to free some structures. */
386 	if (!attempted) {
387 		bool freed = false;
388 
389 		attempted = true;
390 		supptr = &semu_list;
391 		while ((suptr = *supptr) != NULL) {
392 			if (suptr->un_cnt == 0)  {
393 				suptr->un_proc = NULL;
394 				*supptr = suptr->un_next;
395 				freed = true;
396 			} else {
397 				supptr = &suptr->un_next;
398 			}
399 		}
400 		if (freed) {
401 			goto again;
402 		}
403 	}
404 	return NULL;
405 }
406 
407 /*
408  * Adjust a particular entry for a particular proc
409  */
410 
411 int
412 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
413     int adjval)
414 {
415 	struct sem_undo *suptr;
416 	struct sem_undo_entry *sunptr;
417 	int i;
418 
419 	KASSERT(mutex_owned(&semlock));
420 
421 	/*
422 	 * Look for and remember the sem_undo if the caller doesn't
423 	 * provide it
424 	 */
425 
426 	suptr = *supptr;
427 	if (suptr == NULL) {
428 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
429 			if (suptr->un_proc == p)
430 				break;
431 
432 		if (suptr == NULL) {
433 			suptr = semu_alloc(p);
434 			if (suptr == NULL)
435 				return (ENOSPC);
436 		}
437 		*supptr = suptr;
438 	}
439 
440 	/*
441 	 * Look for the requested entry and adjust it (delete if
442 	 * adjval becomes 0).
443 	 */
444 	sunptr = &suptr->un_ent[0];
445 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
446 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
447 			continue;
448 		sunptr->un_adjval += adjval;
449 		if (sunptr->un_adjval == 0) {
450 			suptr->un_cnt--;
451 			if (i < suptr->un_cnt)
452 				suptr->un_ent[i] =
453 				    suptr->un_ent[suptr->un_cnt];
454 		}
455 		return (0);
456 	}
457 
458 	/* Didn't find the right entry - create it */
459 	if (suptr->un_cnt == SEMUME)
460 		return (EINVAL);
461 
462 	sunptr = &suptr->un_ent[suptr->un_cnt];
463 	suptr->un_cnt++;
464 	sunptr->un_adjval = adjval;
465 	sunptr->un_id = semid;
466 	sunptr->un_num = semnum;
467 	return (0);
468 }
469 
470 void
471 semundo_clear(int semid, int semnum)
472 {
473 	struct sem_undo *suptr;
474 	struct sem_undo_entry *sunptr, *sunend;
475 
476 	KASSERT(mutex_owned(&semlock));
477 
478 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
479 		for (sunptr = &suptr->un_ent[0],
480 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
481 			if (sunptr->un_id == semid) {
482 				if (semnum == -1 || sunptr->un_num == semnum) {
483 					suptr->un_cnt--;
484 					sunend--;
485 					if (sunptr != sunend)
486 						*sunptr = *sunend;
487 					if (semnum != -1)
488 						break;
489 					else
490 						continue;
491 				}
492 			}
493 			sunptr++;
494 		}
495 }
496 
497 int
498 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
499     register_t *retval)
500 {
501 	/* {
502 		syscallarg(int) semid;
503 		syscallarg(int) semnum;
504 		syscallarg(int) cmd;
505 		syscallarg(union __semun *) arg;
506 	} */
507 	struct semid_ds sembuf;
508 	int cmd, error;
509 	void *pass_arg;
510 	union __semun karg;
511 
512 	RUN_ONCE(&exithook_control, seminit_exithook);
513 
514 	cmd = SCARG(uap, cmd);
515 
516 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
517 
518 	if (pass_arg) {
519 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
520 		if (error)
521 			return error;
522 		if (cmd == IPC_SET) {
523 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
524 			if (error)
525 				return (error);
526 		}
527 	}
528 
529 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
530 	    pass_arg, retval);
531 
532 	if (error == 0 && cmd == IPC_STAT)
533 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
534 
535 	return (error);
536 }
537 
538 int
539 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
540     register_t *retval)
541 {
542 	kauth_cred_t cred = l->l_cred;
543 	union __semun *arg = v;
544 	struct semid_ds *sembuf = v, *semaptr;
545 	int i, error, ix;
546 
547 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
548 	    semid, semnum, cmd, v));
549 
550 	mutex_enter(&semlock);
551 
552 	ix = IPCID_TO_IX(semid);
553 	if (ix < 0 || ix >= seminfo.semmni) {
554 		mutex_exit(&semlock);
555 		return (EINVAL);
556 	}
557 
558 	semaptr = &sema[ix];
559 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
560 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
561 		mutex_exit(&semlock);
562 		return (EINVAL);
563 	}
564 
565 	switch (cmd) {
566 	case IPC_RMID:
567 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
568 			break;
569 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
570 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
571 		semtot -= semaptr->sem_nsems;
572 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
573 			sem[i] = sem[i + semaptr->sem_nsems];
574 		for (i = 0; i < seminfo.semmni; i++) {
575 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
576 			    sema[i]._sem_base > semaptr->_sem_base)
577 				sema[i]._sem_base -= semaptr->sem_nsems;
578 		}
579 		semaptr->sem_perm.mode = 0;
580 		semundo_clear(ix, -1);
581 		cv_broadcast(&semcv[ix]);
582 		break;
583 
584 	case IPC_SET:
585 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
586 			break;
587 		KASSERT(sembuf != NULL);
588 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
589 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
590 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
591 		    (sembuf->sem_perm.mode & 0777);
592 		semaptr->sem_ctime = time_second;
593 		break;
594 
595 	case IPC_STAT:
596 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
597 			break;
598 		KASSERT(sembuf != NULL);
599 		memset(sembuf, 0, sizeof *sembuf);
600 		sembuf->sem_perm = semaptr->sem_perm;
601 		sembuf->sem_perm.mode &= 0777;
602 		sembuf->sem_nsems = semaptr->sem_nsems;
603 		sembuf->sem_otime = semaptr->sem_otime;
604 		sembuf->sem_ctime = semaptr->sem_ctime;
605 		break;
606 
607 	case GETNCNT:
608 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
609 			break;
610 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
611 			error = EINVAL;
612 			break;
613 		}
614 		*retval = semaptr->_sem_base[semnum].semncnt;
615 		break;
616 
617 	case GETPID:
618 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
619 			break;
620 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
621 			error = EINVAL;
622 			break;
623 		}
624 		*retval = semaptr->_sem_base[semnum].sempid;
625 		break;
626 
627 	case GETVAL:
628 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
629 			break;
630 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
631 			error = EINVAL;
632 			break;
633 		}
634 		*retval = semaptr->_sem_base[semnum].semval;
635 		break;
636 
637 	case GETALL:
638 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
639 			break;
640 		KASSERT(arg != NULL);
641 		for (i = 0; i < semaptr->sem_nsems; i++) {
642 			error = copyout(&semaptr->_sem_base[i].semval,
643 			    &arg->array[i], sizeof(arg->array[i]));
644 			if (error != 0)
645 				break;
646 		}
647 		break;
648 
649 	case GETZCNT:
650 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
651 			break;
652 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
653 			error = EINVAL;
654 			break;
655 		}
656 		*retval = semaptr->_sem_base[semnum].semzcnt;
657 		break;
658 
659 	case SETVAL:
660 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
661 			break;
662 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
663 			error = EINVAL;
664 			break;
665 		}
666 		KASSERT(arg != NULL);
667 		if ((unsigned int)arg->val > seminfo.semvmx) {
668 			error = ERANGE;
669 			break;
670 		}
671 		semaptr->_sem_base[semnum].semval = arg->val;
672 		semundo_clear(ix, semnum);
673 		cv_broadcast(&semcv[ix]);
674 		break;
675 
676 	case SETALL:
677 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
678 			break;
679 		KASSERT(arg != NULL);
680 		for (i = 0; i < semaptr->sem_nsems; i++) {
681 			unsigned short semval;
682 			error = copyin(&arg->array[i], &semval,
683 			    sizeof(arg->array[i]));
684 			if (error != 0)
685 				break;
686 			if ((unsigned int)semval > seminfo.semvmx) {
687 				error = ERANGE;
688 				break;
689 			}
690 			semaptr->_sem_base[i].semval = semval;
691 		}
692 		semundo_clear(ix, -1);
693 		cv_broadcast(&semcv[ix]);
694 		break;
695 
696 	default:
697 		error = EINVAL;
698 		break;
699 	}
700 
701 	mutex_exit(&semlock);
702 	return (error);
703 }
704 
705 int
706 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
707 {
708 	/* {
709 		syscallarg(key_t) key;
710 		syscallarg(int) nsems;
711 		syscallarg(int) semflg;
712 	} */
713 	int semid, error = 0;
714 	int key = SCARG(uap, key);
715 	int nsems = SCARG(uap, nsems);
716 	int semflg = SCARG(uap, semflg);
717 	kauth_cred_t cred = l->l_cred;
718 
719 	RUN_ONCE(&exithook_control, seminit_exithook);
720 
721 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
722 
723 	mutex_enter(&semlock);
724 
725 	if (key != IPC_PRIVATE) {
726 		for (semid = 0; semid < seminfo.semmni; semid++) {
727 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
728 			    sema[semid].sem_perm._key == key)
729 				break;
730 		}
731 		if (semid < seminfo.semmni) {
732 			SEM_PRINTF(("found public key\n"));
733 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
734 			    semflg & 0700)))
735 			    	goto out;
736 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
737 				SEM_PRINTF(("too small\n"));
738 				error = EINVAL;
739 				goto out;
740 			}
741 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
742 				SEM_PRINTF(("not exclusive\n"));
743 				error = EEXIST;
744 				goto out;
745 			}
746 			goto found;
747 		}
748 	}
749 
750 	SEM_PRINTF(("need to allocate the semid_ds\n"));
751 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
752 		if (nsems <= 0 || nsems > seminfo.semmsl) {
753 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
754 			    seminfo.semmsl));
755 			error = EINVAL;
756 			goto out;
757 		}
758 		if (nsems > seminfo.semmns - semtot) {
759 			SEM_PRINTF(("not enough semaphores left "
760 			    "(need %d, got %d)\n",
761 			    nsems, seminfo.semmns - semtot));
762 			error = ENOSPC;
763 			goto out;
764 		}
765 		for (semid = 0; semid < seminfo.semmni; semid++) {
766 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
767 				break;
768 		}
769 		if (semid == seminfo.semmni) {
770 			SEM_PRINTF(("no more semid_ds's available\n"));
771 			error = ENOSPC;
772 			goto out;
773 		}
774 		SEM_PRINTF(("semid %d is available\n", semid));
775 		sema[semid].sem_perm._key = key;
776 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
777 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
778 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
779 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
780 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
781 		sema[semid].sem_perm._seq =
782 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
783 		sema[semid].sem_nsems = nsems;
784 		sema[semid].sem_otime = 0;
785 		sema[semid].sem_ctime = time_second;
786 		sema[semid]._sem_base = &sem[semtot];
787 		semtot += nsems;
788 		memset(sema[semid]._sem_base, 0,
789 		    sizeof(sema[semid]._sem_base[0]) * nsems);
790 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
791 		    &sem[semtot]));
792 	} else {
793 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
794 		error = ENOENT;
795 		goto out;
796 	}
797 
798  found:
799 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
800  out:
801 	mutex_exit(&semlock);
802 	return (error);
803 }
804 
805 #define SMALL_SOPS 8
806 
807 int
808 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
809 {
810 	/* {
811 		syscallarg(int) semid;
812 		syscallarg(struct sembuf *) sops;
813 		syscallarg(size_t) nsops;
814 	} */
815 	struct proc *p = l->l_proc;
816 	int semid = SCARG(uap, semid), seq;
817 	size_t nsops = SCARG(uap, nsops);
818 	struct sembuf small_sops[SMALL_SOPS];
819 	struct sembuf *sops;
820 	struct semid_ds *semaptr;
821 	struct sembuf *sopptr = NULL;
822 	struct __sem *semptr = NULL;
823 	struct sem_undo *suptr = NULL;
824 	kauth_cred_t cred = l->l_cred;
825 	int i, error;
826 	int do_wakeup, do_undos;
827 
828 	RUN_ONCE(&exithook_control, seminit_exithook);
829 
830 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
831 
832 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
833 		mutex_enter(p->p_lock);
834 		p->p_flag |= PK_SYSVSEM;
835 		mutex_exit(p->p_lock);
836 	}
837 
838 restart:
839 	if (nsops <= SMALL_SOPS) {
840 		sops = small_sops;
841 	} else if (nsops <= seminfo.semopm) {
842 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
843 	} else {
844 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
845 		    seminfo.semopm, nsops));
846 		return (E2BIG);
847 	}
848 
849 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
850 	if (error) {
851 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
852 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
853 		if (sops != small_sops)
854 			kmem_free(sops, nsops * sizeof(*sops));
855 		return error;
856 	}
857 
858 	mutex_enter(&semlock);
859 	/* In case of reallocation, we will wait for completion */
860 	while (__predict_false(sem_realloc_state))
861 		cv_wait(&sem_realloc_cv, &semlock);
862 
863 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
864 	if (semid < 0 || semid >= seminfo.semmni) {
865 		error = EINVAL;
866 		goto out;
867 	}
868 
869 	semaptr = &sema[semid];
870 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
871 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
872 	    semaptr->sem_perm._seq != seq) {
873 		error = EINVAL;
874 		goto out;
875 	}
876 
877 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
878 		SEM_PRINTF(("error = %d from ipaccess\n", error));
879 		goto out;
880 	}
881 
882 	for (i = 0; i < nsops; i++)
883 		if (sops[i].sem_num >= semaptr->sem_nsems) {
884 			error = EFBIG;
885 			goto out;
886 		}
887 
888 	/*
889 	 * Loop trying to satisfy the vector of requests.
890 	 * If we reach a point where we must wait, any requests already
891 	 * performed are rolled back and we go to sleep until some other
892 	 * process wakes us up.  At this point, we start all over again.
893 	 *
894 	 * This ensures that from the perspective of other tasks, a set
895 	 * of requests is atomic (never partially satisfied).
896 	 */
897 	do_undos = 0;
898 
899 	for (;;) {
900 		do_wakeup = 0;
901 
902 		for (i = 0; i < nsops; i++) {
903 			sopptr = &sops[i];
904 			semptr = &semaptr->_sem_base[sopptr->sem_num];
905 
906 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
907 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
908 			    semaptr, semaptr->_sem_base, semptr,
909 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
910 			    (sopptr->sem_flg & IPC_NOWAIT) ?
911 			    "nowait" : "wait"));
912 
913 			if (sopptr->sem_op < 0) {
914 				if ((int)(semptr->semval +
915 				    sopptr->sem_op) < 0) {
916 					SEM_PRINTF(("semop:  "
917 					    "can't do it now\n"));
918 					break;
919 				} else {
920 					semptr->semval += sopptr->sem_op;
921 					if (semptr->semval == 0 &&
922 					    semptr->semzcnt > 0)
923 						do_wakeup = 1;
924 				}
925 				if (sopptr->sem_flg & SEM_UNDO)
926 					do_undos = 1;
927 			} else if (sopptr->sem_op == 0) {
928 				if (semptr->semval > 0) {
929 					SEM_PRINTF(("semop:  not zero now\n"));
930 					break;
931 				}
932 			} else {
933 				if (semptr->semncnt > 0)
934 					do_wakeup = 1;
935 				semptr->semval += sopptr->sem_op;
936 				if (sopptr->sem_flg & SEM_UNDO)
937 					do_undos = 1;
938 			}
939 		}
940 
941 		/*
942 		 * Did we get through the entire vector?
943 		 */
944 		if (i >= nsops)
945 			goto done;
946 
947 		/*
948 		 * No ... rollback anything that we've already done
949 		 */
950 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
951 		while (i-- > 0)
952 			semaptr->_sem_base[sops[i].sem_num].semval -=
953 			    sops[i].sem_op;
954 
955 		/*
956 		 * If the request that we couldn't satisfy has the
957 		 * NOWAIT flag set then return with EAGAIN.
958 		 */
959 		if (sopptr->sem_flg & IPC_NOWAIT) {
960 			error = EAGAIN;
961 			goto out;
962 		}
963 
964 		if (sopptr->sem_op == 0)
965 			semptr->semzcnt++;
966 		else
967 			semptr->semncnt++;
968 
969 		sem_waiters++;
970 		SEM_PRINTF(("semop:  good night!\n"));
971 		error = cv_wait_sig(&semcv[semid], &semlock);
972 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
973 		sem_waiters--;
974 
975 		/* Notify reallocator, if it is waiting */
976 		cv_broadcast(&sem_realloc_cv);
977 
978 		/*
979 		 * Make sure that the semaphore still exists
980 		 */
981 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
982 		    semaptr->sem_perm._seq != seq) {
983 			error = EIDRM;
984 			goto out;
985 		}
986 
987 		/*
988 		 * The semaphore is still alive.  Readjust the count of
989 		 * waiting processes.
990 		 */
991 		semptr = &semaptr->_sem_base[sopptr->sem_num];
992 		if (sopptr->sem_op == 0)
993 			semptr->semzcnt--;
994 		else
995 			semptr->semncnt--;
996 
997 		/* In case of such state, restart the call */
998 		if (sem_realloc_state) {
999 			mutex_exit(&semlock);
1000 			goto restart;
1001 		}
1002 
1003 		/* Is it really morning, or was our sleep interrupted? */
1004 		if (error != 0) {
1005 			error = EINTR;
1006 			goto out;
1007 		}
1008 		SEM_PRINTF(("semop:  good morning!\n"));
1009 	}
1010 
1011 done:
1012 	/*
1013 	 * Process any SEM_UNDO requests.
1014 	 */
1015 	if (do_undos) {
1016 		for (i = 0; i < nsops; i++) {
1017 			/*
1018 			 * We only need to deal with SEM_UNDO's for non-zero
1019 			 * op's.
1020 			 */
1021 			int adjval;
1022 
1023 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
1024 				continue;
1025 			adjval = sops[i].sem_op;
1026 			if (adjval == 0)
1027 				continue;
1028 			error = semundo_adjust(p, &suptr, semid,
1029 			    sops[i].sem_num, -adjval);
1030 			if (error == 0)
1031 				continue;
1032 
1033 			/*
1034 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
1035 			 * Rollback the adjustments to this point and then
1036 			 * rollback the semaphore ups and down so we can return
1037 			 * with an error with all structures restored.  We
1038 			 * rollback the undo's in the exact reverse order that
1039 			 * we applied them.  This guarantees that we won't run
1040 			 * out of space as we roll things back out.
1041 			 */
1042 			while (i-- > 0) {
1043 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
1044 					continue;
1045 				adjval = sops[i].sem_op;
1046 				if (adjval == 0)
1047 					continue;
1048 				if (semundo_adjust(p, &suptr, semid,
1049 				    sops[i].sem_num, adjval) != 0)
1050 					panic("semop - can't undo undos");
1051 			}
1052 
1053 			for (i = 0; i < nsops; i++)
1054 				semaptr->_sem_base[sops[i].sem_num].semval -=
1055 				    sops[i].sem_op;
1056 
1057 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
1058 			goto out;
1059 		} /* loop through the sops */
1060 	} /* if (do_undos) */
1061 
1062 	/* We're definitely done - set the sempid's */
1063 	for (i = 0; i < nsops; i++) {
1064 		sopptr = &sops[i];
1065 		semptr = &semaptr->_sem_base[sopptr->sem_num];
1066 		semptr->sempid = p->p_pid;
1067 	}
1068 
1069 	/* Update sem_otime */
1070 	semaptr->sem_otime = time_second;
1071 
1072 	/* Do a wakeup if any semaphore was up'd. */
1073 	if (do_wakeup) {
1074 		SEM_PRINTF(("semop:  doing wakeup\n"));
1075 		cv_broadcast(&semcv[semid]);
1076 		SEM_PRINTF(("semop:  back from wakeup\n"));
1077 	}
1078 	SEM_PRINTF(("semop:  done\n"));
1079 	*retval = 0;
1080 
1081  out:
1082 	mutex_exit(&semlock);
1083 	if (sops != small_sops)
1084 		kmem_free(sops, nsops * sizeof(*sops));
1085 	return error;
1086 }
1087 
1088 /*
1089  * Go through the undo structures for this process and apply the
1090  * adjustments to semaphores.
1091  */
1092 /*ARGSUSED*/
1093 void
1094 semexit(struct proc *p, void *v)
1095 {
1096 	struct sem_undo *suptr;
1097 	struct sem_undo **supptr;
1098 
1099 	if ((p->p_flag & PK_SYSVSEM) == 0)
1100 		return;
1101 
1102 	mutex_enter(&semlock);
1103 
1104 	/*
1105 	 * Go through the chain of undo vectors looking for one
1106 	 * associated with this process.
1107 	 */
1108 
1109 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
1110 	    supptr = &suptr->un_next) {
1111 		if (suptr->un_proc == p)
1112 			break;
1113 	}
1114 
1115 	/*
1116 	 * If there is no undo vector, skip to the end.
1117 	 */
1118 
1119 	if (suptr == NULL) {
1120 		mutex_exit(&semlock);
1121 		return;
1122 	}
1123 
1124 	/*
1125 	 * We now have an undo vector for this process.
1126 	 */
1127 
1128 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1129 	    suptr->un_cnt));
1130 
1131 	/*
1132 	 * If there are any active undo elements then process them.
1133 	 */
1134 	if (suptr->un_cnt > 0) {
1135 		int ix;
1136 
1137 		for (ix = 0; ix < suptr->un_cnt; ix++) {
1138 			int semid = suptr->un_ent[ix].un_id;
1139 			int semnum = suptr->un_ent[ix].un_num;
1140 			int adjval = suptr->un_ent[ix].un_adjval;
1141 			struct semid_ds *semaptr;
1142 
1143 			semaptr = &sema[semid];
1144 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1145 			if (semnum >= semaptr->sem_nsems)
1146 				panic("semexit - semnum out of range");
1147 
1148 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
1149 			    "sem=%d\n",
1150 			    suptr->un_proc, suptr->un_ent[ix].un_id,
1151 			    suptr->un_ent[ix].un_num,
1152 			    suptr->un_ent[ix].un_adjval,
1153 			    semaptr->_sem_base[semnum].semval));
1154 
1155 			if (adjval < 0 &&
1156 			    semaptr->_sem_base[semnum].semval < -adjval)
1157 				semaptr->_sem_base[semnum].semval = 0;
1158 			else
1159 				semaptr->_sem_base[semnum].semval += adjval;
1160 
1161 			cv_broadcast(&semcv[semid]);
1162 			SEM_PRINTF(("semexit:  back from wakeup\n"));
1163 		}
1164 	}
1165 
1166 	/*
1167 	 * Deallocate the undo vector.
1168 	 */
1169 	SEM_PRINTF(("removing vector\n"));
1170 	suptr->un_proc = NULL;
1171 	*supptr = suptr->un_next;
1172 	mutex_exit(&semlock);
1173 }
1174 
1175 /*
1176  * Sysctl initialization and nodes.
1177  */
1178 
1179 static int
1180 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1181 {
1182 	int newsize, error;
1183 	struct sysctlnode node;
1184 	node = *rnode;
1185 	node.sysctl_data = &newsize;
1186 
1187 	newsize = seminfo.semmni;
1188 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1189 	if (error || newp == NULL)
1190 		return error;
1191 
1192 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1193 }
1194 
1195 static int
1196 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1197 {
1198 	int newsize, error;
1199 	struct sysctlnode node;
1200 	node = *rnode;
1201 	node.sysctl_data = &newsize;
1202 
1203 	newsize = seminfo.semmns;
1204 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1205 	if (error || newp == NULL)
1206 		return error;
1207 
1208 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1209 }
1210 
1211 static int
1212 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1213 {
1214 	int newsize, error;
1215 	struct sysctlnode node;
1216 	node = *rnode;
1217 	node.sysctl_data = &newsize;
1218 
1219 	newsize = seminfo.semmnu;
1220 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1221 	if (error || newp == NULL)
1222 		return error;
1223 
1224 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1225 }
1226 
1227 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1228 {
1229 	const struct sysctlnode *node = NULL;
1230 
1231 	sysctl_createv(clog, 0, NULL, &node,
1232 		CTLFLAG_PERMANENT,
1233 		CTLTYPE_NODE, "ipc",
1234 		SYSCTL_DESCR("SysV IPC options"),
1235 		NULL, 0, NULL, 0,
1236 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1237 
1238 	if (node == NULL)
1239 		return;
1240 
1241 	sysctl_createv(clog, 0, &node, NULL,
1242 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1243 		CTLTYPE_INT, "semmni",
1244 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1245 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1246 		CTL_CREATE, CTL_EOL);
1247 	sysctl_createv(clog, 0, &node, NULL,
1248 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1249 		CTLTYPE_INT, "semmns",
1250 		SYSCTL_DESCR("Max number of number of semaphores in system"),
1251 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1252 		CTL_CREATE, CTL_EOL);
1253 	sysctl_createv(clog, 0, &node, NULL,
1254 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1255 		CTLTYPE_INT, "semmnu",
1256 		SYSCTL_DESCR("Max number of undo structures in system"),
1257 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1258 		CTL_CREATE, CTL_EOL);
1259 }
1260