xref: /netbsd-src/sys/kern/sysv_sem.c (revision b1c86f5f087524e68db12794ee9c3e3da1ab17a0)
1 /*	$NetBSD: sysv_sem.c,v 1.86 2009/10/05 23:46:02 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2007 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center, and by Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Implementation of SVID semaphores
35  *
36  * Author: Daniel Boulet
37  *
38  * This software is provided ``AS IS'' without any warranties of any kind.
39  */
40 
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: sysv_sem.c,v 1.86 2009/10/05 23:46:02 rmind Exp $");
43 
44 #define SYSVSEM
45 
46 #include <sys/param.h>
47 #include <sys/kernel.h>
48 #include <sys/sem.h>
49 #include <sys/sysctl.h>
50 #include <sys/kmem.h>
51 #include <sys/mount.h>		/* XXX for <sys/syscallargs.h> */
52 #include <sys/syscallargs.h>
53 #include <sys/kauth.h>
54 
55 /*
56  * Memory areas:
57  *  1st: Pool of semaphore identifiers
58  *  2nd: Semaphores
59  *  3rd: Conditional variables
60  *  4th: Undo structures
61  */
62 struct semid_ds		*sema;
63 static struct __sem	*sem;
64 static kcondvar_t	*semcv;
65 static int		*semu;
66 
67 static kmutex_t	semlock;
68 static struct	sem_undo *semu_list;	/* list of active undo structures */
69 static u_int	semtot = 0;		/* total number of semaphores */
70 
71 static u_int	sem_waiters = 0;	/* total number of semop waiters */
72 static bool	sem_realloc_state;
73 static kcondvar_t sem_realloc_cv;
74 
75 /* Macro to find a particular sem_undo vector */
76 #define SEMU(s, ix)	((struct sem_undo *)(((long)s) + ix * seminfo.semusz))
77 
78 #ifdef SEM_DEBUG
79 #define SEM_PRINTF(a) printf a
80 #else
81 #define SEM_PRINTF(a)
82 #endif
83 
84 struct sem_undo *semu_alloc(struct proc *);
85 int semundo_adjust(struct proc *, struct sem_undo **, int, int, int);
86 void semundo_clear(int, int);
87 
88 void
89 seminit(void)
90 {
91 	int i, sz;
92 	vaddr_t v;
93 
94 	mutex_init(&semlock, MUTEX_DEFAULT, IPL_NONE);
95 	cv_init(&sem_realloc_cv, "semrealc");
96 	sem_realloc_state = false;
97 
98 	/* Allocate the wired memory for our structures */
99 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
100 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
101 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
102 	    ALIGN(seminfo.semmnu * seminfo.semusz);
103 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
104 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
105 	if (v == 0)
106 		panic("sysv_sem: cannot allocate memory");
107 	sema = (void *)v;
108 	sem = (void *)((uintptr_t)sema +
109 	    ALIGN(seminfo.semmni * sizeof(struct semid_ds)));
110 	semcv = (void *)((uintptr_t)sem +
111 	    ALIGN(seminfo.semmns * sizeof(struct __sem)));
112 	semu = (void *)((uintptr_t)semcv +
113 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)));
114 
115 	for (i = 0; i < seminfo.semmni; i++) {
116 		sema[i]._sem_base = 0;
117 		sema[i].sem_perm.mode = 0;
118 		cv_init(&semcv[i], "semwait");
119 	}
120 	for (i = 0; i < seminfo.semmnu; i++) {
121 		struct sem_undo *suptr = SEMU(semu, i);
122 		suptr->un_proc = NULL;
123 	}
124 	semu_list = NULL;
125 	exithook_establish(semexit, NULL);
126 }
127 
128 static int
129 semrealloc(int newsemmni, int newsemmns, int newsemmnu)
130 {
131 	struct semid_ds *new_sema, *old_sema;
132 	struct __sem *new_sem;
133 	struct sem_undo *new_semu_list, *suptr, *nsuptr;
134 	int *new_semu;
135 	kcondvar_t *new_semcv;
136 	vaddr_t v;
137 	int i, j, lsemid, nmnus, sz;
138 
139 	if (newsemmni < 1 || newsemmns < 1 || newsemmnu < 1)
140 		return EINVAL;
141 
142 	/* Allocate the wired memory for our structures */
143 	sz = ALIGN(newsemmni * sizeof(struct semid_ds)) +
144 	    ALIGN(newsemmns * sizeof(struct __sem)) +
145 	    ALIGN(newsemmni * sizeof(kcondvar_t)) +
146 	    ALIGN(newsemmnu * seminfo.semusz);
147 	v = uvm_km_alloc(kernel_map, round_page(sz), 0,
148 	    UVM_KMF_WIRED|UVM_KMF_ZERO);
149 	if (v == 0)
150 		return ENOMEM;
151 
152 	mutex_enter(&semlock);
153 	if (sem_realloc_state) {
154 		mutex_exit(&semlock);
155 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
156 		return EBUSY;
157 	}
158 	sem_realloc_state = true;
159 	if (sem_waiters) {
160 		/*
161 		 * Mark reallocation state, wake-up all waiters,
162 		 * and wait while they will all exit.
163 		 */
164 		for (i = 0; i < seminfo.semmni; i++)
165 			cv_broadcast(&semcv[i]);
166 		while (sem_waiters)
167 			cv_wait(&sem_realloc_cv, &semlock);
168 	}
169 	old_sema = sema;
170 
171 	/* Get the number of last slot */
172 	lsemid = 0;
173 	for (i = 0; i < seminfo.semmni; i++)
174 		if (sema[i].sem_perm.mode & SEM_ALLOC)
175 			lsemid = i;
176 
177 	/* Get the number of currently used undo structures */
178 	nmnus = 0;
179 	for (i = 0; i < seminfo.semmnu; i++) {
180 		suptr = SEMU(semu, i);
181 		if (suptr->un_proc == NULL)
182 			continue;
183 		nmnus++;
184 	}
185 
186 	/* We cannot reallocate less memory than we use */
187 	if (lsemid >= newsemmni || semtot > newsemmns || nmnus > newsemmnu) {
188 		mutex_exit(&semlock);
189 		uvm_km_free(kernel_map, v, sz, UVM_KMF_WIRED);
190 		return EBUSY;
191 	}
192 
193 	new_sema = (void *)v;
194 	new_sem = (void *)((uintptr_t)new_sema +
195 	    ALIGN(newsemmni * sizeof(struct semid_ds)));
196 	new_semcv = (void *)((uintptr_t)new_sem +
197 	    ALIGN(newsemmns * sizeof(struct __sem)));
198 	new_semu = (void *)((uintptr_t)new_semcv +
199 	    ALIGN(newsemmni * sizeof(kcondvar_t)));
200 
201 	/* Initialize all semaphore identifiers and condvars */
202 	for (i = 0; i < newsemmni; i++) {
203 		new_sema[i]._sem_base = 0;
204 		new_sema[i].sem_perm.mode = 0;
205 		cv_init(&new_semcv[i], "semwait");
206 	}
207 	for (i = 0; i < newsemmnu; i++) {
208 		nsuptr = SEMU(new_semu, i);
209 		nsuptr->un_proc = NULL;
210 	}
211 
212 	/*
213 	 * Copy all identifiers, semaphores and list of the
214 	 * undo structures to the new memory allocation.
215 	 */
216 	j = 0;
217 	for (i = 0; i <= lsemid; i++) {
218 		if ((sema[i].sem_perm.mode & SEM_ALLOC) == 0)
219 			continue;
220 		memcpy(&new_sema[i], &sema[i], sizeof(struct semid_ds));
221 		new_sema[i]._sem_base = &new_sem[j];
222 		memcpy(new_sema[i]._sem_base, sema[i]._sem_base,
223 		    (sizeof(struct __sem) * sema[i].sem_nsems));
224 		j += sema[i].sem_nsems;
225 	}
226 	KASSERT(j == semtot);
227 
228 	j = 0;
229 	new_semu_list = NULL;
230 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
231 		KASSERT(j < newsemmnu);
232 		nsuptr = SEMU(new_semu, j);
233 		memcpy(nsuptr, suptr, SEMUSZ);
234 		nsuptr->un_next = new_semu_list;
235 		new_semu_list = nsuptr;
236 		j++;
237 	}
238 
239 	for (i = 0; i < seminfo.semmni; i++) {
240 		KASSERT(cv_has_waiters(&semcv[i]) == false);
241 		cv_destroy(&semcv[i]);
242 	}
243 
244 	sz = ALIGN(seminfo.semmni * sizeof(struct semid_ds)) +
245 	    ALIGN(seminfo.semmns * sizeof(struct __sem)) +
246 	    ALIGN(seminfo.semmni * sizeof(kcondvar_t)) +
247 	    ALIGN(seminfo.semmnu * seminfo.semusz);
248 
249 	/* Set the pointers and update the new values */
250 	sema = new_sema;
251 	sem = new_sem;
252 	semcv = new_semcv;
253 	semu = new_semu;
254 	semu_list = new_semu_list;
255 
256 	seminfo.semmni = newsemmni;
257 	seminfo.semmns = newsemmns;
258 	seminfo.semmnu = newsemmnu;
259 
260 	/* Reallocation completed - notify all waiters, if any */
261 	sem_realloc_state = false;
262 	cv_broadcast(&sem_realloc_cv);
263 	mutex_exit(&semlock);
264 
265 	uvm_km_free(kernel_map, (vaddr_t)old_sema, sz, UVM_KMF_WIRED);
266 	return 0;
267 }
268 
269 /*
270  * Placebo.
271  */
272 
273 int
274 sys_semconfig(struct lwp *l, const struct sys_semconfig_args *uap, register_t *retval)
275 {
276 
277 	*retval = 0;
278 	return 0;
279 }
280 
281 /*
282  * Allocate a new sem_undo structure for a process.
283  * => Returns NULL on failure.
284  */
285 struct sem_undo *
286 semu_alloc(struct proc *p)
287 {
288 	struct sem_undo *suptr, **supptr;
289 	bool attempted = false;
290 	int i;
291 
292 	KASSERT(mutex_owned(&semlock));
293 again:
294 	/* Look for a free structure. */
295 	for (i = 0; i < seminfo.semmnu; i++) {
296 		suptr = SEMU(semu, i);
297 		if (suptr->un_proc == NULL) {
298 			/* Found.  Fill it in and return. */
299 			suptr->un_next = semu_list;
300 			semu_list = suptr;
301 			suptr->un_cnt = 0;
302 			suptr->un_proc = p;
303 			return suptr;
304 		}
305 	}
306 
307 	/* Not found.  Attempt to free some structures. */
308 	if (!attempted) {
309 		bool freed = false;
310 
311 		attempted = true;
312 		supptr = &semu_list;
313 		while ((suptr = *supptr) != NULL) {
314 			if (suptr->un_cnt == 0)  {
315 				suptr->un_proc = NULL;
316 				*supptr = suptr->un_next;
317 				freed = true;
318 			} else {
319 				supptr = &suptr->un_next;
320 			}
321 		}
322 		if (freed) {
323 			goto again;
324 		}
325 	}
326 	return NULL;
327 }
328 
329 /*
330  * Adjust a particular entry for a particular proc
331  */
332 
333 int
334 semundo_adjust(struct proc *p, struct sem_undo **supptr, int semid, int semnum,
335     int adjval)
336 {
337 	struct sem_undo *suptr;
338 	struct undo *sunptr;
339 	int i;
340 
341 	KASSERT(mutex_owned(&semlock));
342 
343 	/*
344 	 * Look for and remember the sem_undo if the caller doesn't
345 	 * provide it
346 	 */
347 
348 	suptr = *supptr;
349 	if (suptr == NULL) {
350 		for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
351 			if (suptr->un_proc == p)
352 				break;
353 
354 		if (suptr == NULL) {
355 			suptr = semu_alloc(p);
356 			if (suptr == NULL)
357 				return (ENOSPC);
358 		}
359 		*supptr = suptr;
360 	}
361 
362 	/*
363 	 * Look for the requested entry and adjust it (delete if
364 	 * adjval becomes 0).
365 	 */
366 	sunptr = &suptr->un_ent[0];
367 	for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
368 		if (sunptr->un_id != semid || sunptr->un_num != semnum)
369 			continue;
370 		sunptr->un_adjval += adjval;
371 		if (sunptr->un_adjval == 0) {
372 			suptr->un_cnt--;
373 			if (i < suptr->un_cnt)
374 				suptr->un_ent[i] =
375 				    suptr->un_ent[suptr->un_cnt];
376 		}
377 		return (0);
378 	}
379 
380 	/* Didn't find the right entry - create it */
381 	if (suptr->un_cnt == SEMUME)
382 		return (EINVAL);
383 
384 	sunptr = &suptr->un_ent[suptr->un_cnt];
385 	suptr->un_cnt++;
386 	sunptr->un_adjval = adjval;
387 	sunptr->un_id = semid;
388 	sunptr->un_num = semnum;
389 	return (0);
390 }
391 
392 void
393 semundo_clear(int semid, int semnum)
394 {
395 	struct sem_undo *suptr;
396 	struct undo *sunptr, *sunend;
397 
398 	KASSERT(mutex_owned(&semlock));
399 
400 	for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next)
401 		for (sunptr = &suptr->un_ent[0],
402 		    sunend = sunptr + suptr->un_cnt; sunptr < sunend;) {
403 			if (sunptr->un_id == semid) {
404 				if (semnum == -1 || sunptr->un_num == semnum) {
405 					suptr->un_cnt--;
406 					sunend--;
407 					if (sunptr != sunend)
408 						*sunptr = *sunend;
409 					if (semnum != -1)
410 						break;
411 					else
412 						continue;
413 				}
414 			}
415 			sunptr++;
416 		}
417 }
418 
419 int
420 sys_____semctl50(struct lwp *l, const struct sys_____semctl50_args *uap,
421     register_t *retval)
422 {
423 	/* {
424 		syscallarg(int) semid;
425 		syscallarg(int) semnum;
426 		syscallarg(int) cmd;
427 		syscallarg(union __semun *) arg;
428 	} */
429 	struct semid_ds sembuf;
430 	int cmd, error;
431 	void *pass_arg;
432 	union __semun karg;
433 
434 	cmd = SCARG(uap, cmd);
435 
436 	pass_arg = get_semctl_arg(cmd, &sembuf, &karg);
437 
438 	if (pass_arg) {
439 		error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
440 		if (error)
441 			return error;
442 		if (cmd == IPC_SET) {
443 			error = copyin(karg.buf, &sembuf, sizeof(sembuf));
444 			if (error)
445 				return (error);
446 		}
447 	}
448 
449 	error = semctl1(l, SCARG(uap, semid), SCARG(uap, semnum), cmd,
450 	    pass_arg, retval);
451 
452 	if (error == 0 && cmd == IPC_STAT)
453 		error = copyout(&sembuf, karg.buf, sizeof(sembuf));
454 
455 	return (error);
456 }
457 
458 int
459 semctl1(struct lwp *l, int semid, int semnum, int cmd, void *v,
460     register_t *retval)
461 {
462 	kauth_cred_t cred = l->l_cred;
463 	union __semun *arg = v;
464 	struct semid_ds *sembuf = v, *semaptr;
465 	int i, error, ix;
466 
467 	SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
468 	    semid, semnum, cmd, v));
469 
470 	mutex_enter(&semlock);
471 
472 	ix = IPCID_TO_IX(semid);
473 	if (ix < 0 || ix >= seminfo.semmni) {
474 		mutex_exit(&semlock);
475 		return (EINVAL);
476 	}
477 
478 	semaptr = &sema[ix];
479 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
480 	    semaptr->sem_perm._seq != IPCID_TO_SEQ(semid)) {
481 		mutex_exit(&semlock);
482 		return (EINVAL);
483 	}
484 
485 	switch (cmd) {
486 	case IPC_RMID:
487 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
488 			break;
489 		semaptr->sem_perm.cuid = kauth_cred_geteuid(cred);
490 		semaptr->sem_perm.uid = kauth_cred_geteuid(cred);
491 		semtot -= semaptr->sem_nsems;
492 		for (i = semaptr->_sem_base - sem; i < semtot; i++)
493 			sem[i] = sem[i + semaptr->sem_nsems];
494 		for (i = 0; i < seminfo.semmni; i++) {
495 			if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
496 			    sema[i]._sem_base > semaptr->_sem_base)
497 				sema[i]._sem_base -= semaptr->sem_nsems;
498 		}
499 		semaptr->sem_perm.mode = 0;
500 		semundo_clear(ix, -1);
501 		cv_broadcast(&semcv[ix]);
502 		break;
503 
504 	case IPC_SET:
505 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
506 			break;
507 		KASSERT(sembuf != NULL);
508 		semaptr->sem_perm.uid = sembuf->sem_perm.uid;
509 		semaptr->sem_perm.gid = sembuf->sem_perm.gid;
510 		semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
511 		    (sembuf->sem_perm.mode & 0777);
512 		semaptr->sem_ctime = time_second;
513 		break;
514 
515 	case IPC_STAT:
516 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
517 			break;
518 		KASSERT(sembuf != NULL);
519 		memcpy(sembuf, semaptr, sizeof(struct semid_ds));
520 		sembuf->sem_perm.mode &= 0777;
521 		break;
522 
523 	case GETNCNT:
524 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
525 			break;
526 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
527 			error = EINVAL;
528 			break;
529 		}
530 		*retval = semaptr->_sem_base[semnum].semncnt;
531 		break;
532 
533 	case GETPID:
534 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
535 			break;
536 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
537 			error = EINVAL;
538 			break;
539 		}
540 		*retval = semaptr->_sem_base[semnum].sempid;
541 		break;
542 
543 	case GETVAL:
544 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
545 			break;
546 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
547 			error = EINVAL;
548 			break;
549 		}
550 		*retval = semaptr->_sem_base[semnum].semval;
551 		break;
552 
553 	case GETALL:
554 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
555 			break;
556 		KASSERT(arg != NULL);
557 		for (i = 0; i < semaptr->sem_nsems; i++) {
558 			error = copyout(&semaptr->_sem_base[i].semval,
559 			    &arg->array[i], sizeof(arg->array[i]));
560 			if (error != 0)
561 				break;
562 		}
563 		break;
564 
565 	case GETZCNT:
566 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
567 			break;
568 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
569 			error = EINVAL;
570 			break;
571 		}
572 		*retval = semaptr->_sem_base[semnum].semzcnt;
573 		break;
574 
575 	case SETVAL:
576 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
577 			break;
578 		if (semnum < 0 || semnum >= semaptr->sem_nsems) {
579 			error = EINVAL;
580 			break;
581 		}
582 		KASSERT(arg != NULL);
583 		if ((unsigned int)arg->val > seminfo.semvmx) {
584 			error = ERANGE;
585 			break;
586 		}
587 		semaptr->_sem_base[semnum].semval = arg->val;
588 		semundo_clear(ix, semnum);
589 		cv_broadcast(&semcv[ix]);
590 		break;
591 
592 	case SETALL:
593 		if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
594 			break;
595 		KASSERT(arg != NULL);
596 		for (i = 0; i < semaptr->sem_nsems; i++) {
597 			unsigned short semval;
598 			error = copyin(&arg->array[i], &semval,
599 			    sizeof(arg->array[i]));
600 			if (error != 0)
601 				break;
602 			if ((unsigned int)semval > seminfo.semvmx) {
603 				error = ERANGE;
604 				break;
605 			}
606 			semaptr->_sem_base[i].semval = semval;
607 		}
608 		semundo_clear(ix, -1);
609 		cv_broadcast(&semcv[ix]);
610 		break;
611 
612 	default:
613 		error = EINVAL;
614 		break;
615 	}
616 
617 	mutex_exit(&semlock);
618 	return (error);
619 }
620 
621 int
622 sys_semget(struct lwp *l, const struct sys_semget_args *uap, register_t *retval)
623 {
624 	/* {
625 		syscallarg(key_t) key;
626 		syscallarg(int) nsems;
627 		syscallarg(int) semflg;
628 	} */
629 	int semid, error = 0;
630 	int key = SCARG(uap, key);
631 	int nsems = SCARG(uap, nsems);
632 	int semflg = SCARG(uap, semflg);
633 	kauth_cred_t cred = l->l_cred;
634 
635 	SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
636 
637 	mutex_enter(&semlock);
638 
639 	if (key != IPC_PRIVATE) {
640 		for (semid = 0; semid < seminfo.semmni; semid++) {
641 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
642 			    sema[semid].sem_perm._key == key)
643 				break;
644 		}
645 		if (semid < seminfo.semmni) {
646 			SEM_PRINTF(("found public key\n"));
647 			if ((error = ipcperm(cred, &sema[semid].sem_perm,
648 			    semflg & 0700)))
649 			    	goto out;
650 			if (nsems > 0 && sema[semid].sem_nsems < nsems) {
651 				SEM_PRINTF(("too small\n"));
652 				error = EINVAL;
653 				goto out;
654 			}
655 			if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
656 				SEM_PRINTF(("not exclusive\n"));
657 				error = EEXIST;
658 				goto out;
659 			}
660 			goto found;
661 		}
662 	}
663 
664 	SEM_PRINTF(("need to allocate the semid_ds\n"));
665 	if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
666 		if (nsems <= 0 || nsems > seminfo.semmsl) {
667 			SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
668 			    seminfo.semmsl));
669 			error = EINVAL;
670 			goto out;
671 		}
672 		if (nsems > seminfo.semmns - semtot) {
673 			SEM_PRINTF(("not enough semaphores left "
674 			    "(need %d, got %d)\n",
675 			    nsems, seminfo.semmns - semtot));
676 			error = ENOSPC;
677 			goto out;
678 		}
679 		for (semid = 0; semid < seminfo.semmni; semid++) {
680 			if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
681 				break;
682 		}
683 		if (semid == seminfo.semmni) {
684 			SEM_PRINTF(("no more semid_ds's available\n"));
685 			error = ENOSPC;
686 			goto out;
687 		}
688 		SEM_PRINTF(("semid %d is available\n", semid));
689 		sema[semid].sem_perm._key = key;
690 		sema[semid].sem_perm.cuid = kauth_cred_geteuid(cred);
691 		sema[semid].sem_perm.uid = kauth_cred_geteuid(cred);
692 		sema[semid].sem_perm.cgid = kauth_cred_getegid(cred);
693 		sema[semid].sem_perm.gid = kauth_cred_getegid(cred);
694 		sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
695 		sema[semid].sem_perm._seq =
696 		    (sema[semid].sem_perm._seq + 1) & 0x7fff;
697 		sema[semid].sem_nsems = nsems;
698 		sema[semid].sem_otime = 0;
699 		sema[semid].sem_ctime = time_second;
700 		sema[semid]._sem_base = &sem[semtot];
701 		semtot += nsems;
702 		memset(sema[semid]._sem_base, 0,
703 		    sizeof(sema[semid]._sem_base[0]) * nsems);
704 		SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
705 		    &sem[semtot]));
706 	} else {
707 		SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
708 		error = ENOENT;
709 		goto out;
710 	}
711 
712  found:
713 	*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
714  out:
715 	mutex_exit(&semlock);
716 	return (error);
717 }
718 
719 #define SMALL_SOPS 8
720 
721 int
722 sys_semop(struct lwp *l, const struct sys_semop_args *uap, register_t *retval)
723 {
724 	/* {
725 		syscallarg(int) semid;
726 		syscallarg(struct sembuf *) sops;
727 		syscallarg(size_t) nsops;
728 	} */
729 	struct proc *p = l->l_proc;
730 	int semid = SCARG(uap, semid), seq;
731 	size_t nsops = SCARG(uap, nsops);
732 	struct sembuf small_sops[SMALL_SOPS];
733 	struct sembuf *sops;
734 	struct semid_ds *semaptr;
735 	struct sembuf *sopptr = NULL;
736 	struct __sem *semptr = NULL;
737 	struct sem_undo *suptr = NULL;
738 	kauth_cred_t cred = l->l_cred;
739 	int i, error;
740 	int do_wakeup, do_undos;
741 
742 	SEM_PRINTF(("call to semop(%d, %p, %zd)\n", semid, SCARG(uap,sops), nsops));
743 
744 	if (__predict_false((p->p_flag & PK_SYSVSEM) == 0)) {
745 		mutex_enter(p->p_lock);
746 		p->p_flag |= PK_SYSVSEM;
747 		mutex_exit(p->p_lock);
748 	}
749 
750 restart:
751 	if (nsops <= SMALL_SOPS) {
752 		sops = small_sops;
753 	} else if (nsops <= seminfo.semopm) {
754 		sops = kmem_alloc(nsops * sizeof(*sops), KM_SLEEP);
755 	} else {
756 		SEM_PRINTF(("too many sops (max=%d, nsops=%zd)\n",
757 		    seminfo.semopm, nsops));
758 		return (E2BIG);
759 	}
760 
761 	error = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0]));
762 	if (error) {
763 		SEM_PRINTF(("error = %d from copyin(%p, %p, %zd)\n", error,
764 		    SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
765 		if (sops != small_sops)
766 			kmem_free(sops, nsops * sizeof(*sops));
767 		return error;
768 	}
769 
770 	mutex_enter(&semlock);
771 	/* In case of reallocation, we will wait for completion */
772 	while (__predict_false(sem_realloc_state))
773 		cv_wait(&sem_realloc_cv, &semlock);
774 
775 	semid = IPCID_TO_IX(semid);	/* Convert back to zero origin */
776 	if (semid < 0 || semid >= seminfo.semmni) {
777 		error = EINVAL;
778 		goto out;
779 	}
780 
781 	semaptr = &sema[semid];
782 	seq = IPCID_TO_SEQ(SCARG(uap, semid));
783 	if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
784 	    semaptr->sem_perm._seq != seq) {
785 		error = EINVAL;
786 		goto out;
787 	}
788 
789 	if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
790 		SEM_PRINTF(("error = %d from ipaccess\n", error));
791 		goto out;
792 	}
793 
794 	for (i = 0; i < nsops; i++)
795 		if (sops[i].sem_num >= semaptr->sem_nsems) {
796 			error = EFBIG;
797 			goto out;
798 		}
799 
800 	/*
801 	 * Loop trying to satisfy the vector of requests.
802 	 * If we reach a point where we must wait, any requests already
803 	 * performed are rolled back and we go to sleep until some other
804 	 * process wakes us up.  At this point, we start all over again.
805 	 *
806 	 * This ensures that from the perspective of other tasks, a set
807 	 * of requests is atomic (never partially satisfied).
808 	 */
809 	do_undos = 0;
810 
811 	for (;;) {
812 		do_wakeup = 0;
813 
814 		for (i = 0; i < nsops; i++) {
815 			sopptr = &sops[i];
816 			semptr = &semaptr->_sem_base[sopptr->sem_num];
817 
818 			SEM_PRINTF(("semop:  semaptr=%p, sem_base=%p, "
819 			    "semptr=%p, sem[%d]=%d : op=%d, flag=%s\n",
820 			    semaptr, semaptr->_sem_base, semptr,
821 			    sopptr->sem_num, semptr->semval, sopptr->sem_op,
822 			    (sopptr->sem_flg & IPC_NOWAIT) ?
823 			    "nowait" : "wait"));
824 
825 			if (sopptr->sem_op < 0) {
826 				if ((int)(semptr->semval +
827 				    sopptr->sem_op) < 0) {
828 					SEM_PRINTF(("semop:  "
829 					    "can't do it now\n"));
830 					break;
831 				} else {
832 					semptr->semval += sopptr->sem_op;
833 					if (semptr->semval == 0 &&
834 					    semptr->semzcnt > 0)
835 						do_wakeup = 1;
836 				}
837 				if (sopptr->sem_flg & SEM_UNDO)
838 					do_undos = 1;
839 			} else if (sopptr->sem_op == 0) {
840 				if (semptr->semval > 0) {
841 					SEM_PRINTF(("semop:  not zero now\n"));
842 					break;
843 				}
844 			} else {
845 				if (semptr->semncnt > 0)
846 					do_wakeup = 1;
847 				semptr->semval += sopptr->sem_op;
848 				if (sopptr->sem_flg & SEM_UNDO)
849 					do_undos = 1;
850 			}
851 		}
852 
853 		/*
854 		 * Did we get through the entire vector?
855 		 */
856 		if (i >= nsops)
857 			goto done;
858 
859 		/*
860 		 * No ... rollback anything that we've already done
861 		 */
862 		SEM_PRINTF(("semop:  rollback 0 through %d\n", i - 1));
863 		while (i-- > 0)
864 			semaptr->_sem_base[sops[i].sem_num].semval -=
865 			    sops[i].sem_op;
866 
867 		/*
868 		 * If the request that we couldn't satisfy has the
869 		 * NOWAIT flag set then return with EAGAIN.
870 		 */
871 		if (sopptr->sem_flg & IPC_NOWAIT) {
872 			error = EAGAIN;
873 			goto out;
874 		}
875 
876 		if (sopptr->sem_op == 0)
877 			semptr->semzcnt++;
878 		else
879 			semptr->semncnt++;
880 
881 		sem_waiters++;
882 		SEM_PRINTF(("semop:  good night!\n"));
883 		error = cv_wait_sig(&semcv[semid], &semlock);
884 		SEM_PRINTF(("semop:  good morning (error=%d)!\n", error));
885 		sem_waiters--;
886 
887 		/* Notify reallocator, if it is waiting */
888 		cv_broadcast(&sem_realloc_cv);
889 
890 		/*
891 		 * Make sure that the semaphore still exists
892 		 */
893 		if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
894 		    semaptr->sem_perm._seq != seq) {
895 			error = EIDRM;
896 			goto out;
897 		}
898 
899 		/*
900 		 * The semaphore is still alive.  Readjust the count of
901 		 * waiting processes.
902 		 */
903 		semptr = &semaptr->_sem_base[sopptr->sem_num];
904 		if (sopptr->sem_op == 0)
905 			semptr->semzcnt--;
906 		else
907 			semptr->semncnt--;
908 
909 		/* In case of such state, restart the call */
910 		if (sem_realloc_state) {
911 			mutex_exit(&semlock);
912 			goto restart;
913 		}
914 
915 		/* Is it really morning, or was our sleep interrupted? */
916 		if (error != 0) {
917 			error = EINTR;
918 			goto out;
919 		}
920 		SEM_PRINTF(("semop:  good morning!\n"));
921 	}
922 
923 done:
924 	/*
925 	 * Process any SEM_UNDO requests.
926 	 */
927 	if (do_undos) {
928 		for (i = 0; i < nsops; i++) {
929 			/*
930 			 * We only need to deal with SEM_UNDO's for non-zero
931 			 * op's.
932 			 */
933 			int adjval;
934 
935 			if ((sops[i].sem_flg & SEM_UNDO) == 0)
936 				continue;
937 			adjval = sops[i].sem_op;
938 			if (adjval == 0)
939 				continue;
940 			error = semundo_adjust(p, &suptr, semid,
941 			    sops[i].sem_num, -adjval);
942 			if (error == 0)
943 				continue;
944 
945 			/*
946 			 * Oh-Oh!  We ran out of either sem_undo's or undo's.
947 			 * Rollback the adjustments to this point and then
948 			 * rollback the semaphore ups and down so we can return
949 			 * with an error with all structures restored.  We
950 			 * rollback the undo's in the exact reverse order that
951 			 * we applied them.  This guarantees that we won't run
952 			 * out of space as we roll things back out.
953 			 */
954 			while (i-- > 0) {
955 				if ((sops[i].sem_flg & SEM_UNDO) == 0)
956 					continue;
957 				adjval = sops[i].sem_op;
958 				if (adjval == 0)
959 					continue;
960 				if (semundo_adjust(p, &suptr, semid,
961 				    sops[i].sem_num, adjval) != 0)
962 					panic("semop - can't undo undos");
963 			}
964 
965 			for (i = 0; i < nsops; i++)
966 				semaptr->_sem_base[sops[i].sem_num].semval -=
967 				    sops[i].sem_op;
968 
969 			SEM_PRINTF(("error = %d from semundo_adjust\n", error));
970 			goto out;
971 		} /* loop through the sops */
972 	} /* if (do_undos) */
973 
974 	/* We're definitely done - set the sempid's */
975 	for (i = 0; i < nsops; i++) {
976 		sopptr = &sops[i];
977 		semptr = &semaptr->_sem_base[sopptr->sem_num];
978 		semptr->sempid = p->p_pid;
979 	}
980 
981 	/* Update sem_otime */
982 	semaptr->sem_otime = time_second;
983 
984 	/* Do a wakeup if any semaphore was up'd. */
985 	if (do_wakeup) {
986 		SEM_PRINTF(("semop:  doing wakeup\n"));
987 		cv_broadcast(&semcv[semid]);
988 		SEM_PRINTF(("semop:  back from wakeup\n"));
989 	}
990 	SEM_PRINTF(("semop:  done\n"));
991 	*retval = 0;
992 
993  out:
994 	mutex_exit(&semlock);
995 	if (sops != small_sops)
996 		kmem_free(sops, nsops * sizeof(*sops));
997 	return error;
998 }
999 
1000 /*
1001  * Go through the undo structures for this process and apply the
1002  * adjustments to semaphores.
1003  */
1004 /*ARGSUSED*/
1005 void
1006 semexit(struct proc *p, void *v)
1007 {
1008 	struct sem_undo *suptr;
1009 	struct sem_undo **supptr;
1010 
1011 	if ((p->p_flag & PK_SYSVSEM) == 0)
1012 		return;
1013 
1014 	mutex_enter(&semlock);
1015 
1016 	/*
1017 	 * Go through the chain of undo vectors looking for one
1018 	 * associated with this process.
1019 	 */
1020 
1021 	for (supptr = &semu_list; (suptr = *supptr) != NULL;
1022 	    supptr = &suptr->un_next) {
1023 		if (suptr->un_proc == p)
1024 			break;
1025 	}
1026 
1027 	/*
1028 	 * If there is no undo vector, skip to the end.
1029 	 */
1030 
1031 	if (suptr == NULL) {
1032 		mutex_exit(&semlock);
1033 		return;
1034 	}
1035 
1036 	/*
1037 	 * We now have an undo vector for this process.
1038 	 */
1039 
1040 	SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
1041 	    suptr->un_cnt));
1042 
1043 	/*
1044 	 * If there are any active undo elements then process them.
1045 	 */
1046 	if (suptr->un_cnt > 0) {
1047 		int ix;
1048 
1049 		for (ix = 0; ix < suptr->un_cnt; ix++) {
1050 			int semid = suptr->un_ent[ix].un_id;
1051 			int semnum = suptr->un_ent[ix].un_num;
1052 			int adjval = suptr->un_ent[ix].un_adjval;
1053 			struct semid_ds *semaptr;
1054 
1055 			semaptr = &sema[semid];
1056 			if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
1057 				panic("semexit - semid not allocated");
1058 			if (semnum >= semaptr->sem_nsems)
1059 				panic("semexit - semnum out of range");
1060 
1061 			SEM_PRINTF(("semexit:  %p id=%d num=%d(adj=%d) ; "
1062 			    "sem=%d\n",
1063 			    suptr->un_proc, suptr->un_ent[ix].un_id,
1064 			    suptr->un_ent[ix].un_num,
1065 			    suptr->un_ent[ix].un_adjval,
1066 			    semaptr->_sem_base[semnum].semval));
1067 
1068 			if (adjval < 0 &&
1069 			    semaptr->_sem_base[semnum].semval < -adjval)
1070 				semaptr->_sem_base[semnum].semval = 0;
1071 			else
1072 				semaptr->_sem_base[semnum].semval += adjval;
1073 
1074 			cv_broadcast(&semcv[semid]);
1075 			SEM_PRINTF(("semexit:  back from wakeup\n"));
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * Deallocate the undo vector.
1081 	 */
1082 	SEM_PRINTF(("removing vector\n"));
1083 	suptr->un_proc = NULL;
1084 	*supptr = suptr->un_next;
1085 	mutex_exit(&semlock);
1086 }
1087 
1088 /*
1089  * Sysctl initialization and nodes.
1090  */
1091 
1092 static int
1093 sysctl_ipc_semmni(SYSCTLFN_ARGS)
1094 {
1095 	int newsize, error;
1096 	struct sysctlnode node;
1097 	node = *rnode;
1098 	node.sysctl_data = &newsize;
1099 
1100 	newsize = seminfo.semmni;
1101 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1102 	if (error || newp == NULL)
1103 		return error;
1104 
1105 	return semrealloc(newsize, seminfo.semmns, seminfo.semmnu);
1106 }
1107 
1108 static int
1109 sysctl_ipc_semmns(SYSCTLFN_ARGS)
1110 {
1111 	int newsize, error;
1112 	struct sysctlnode node;
1113 	node = *rnode;
1114 	node.sysctl_data = &newsize;
1115 
1116 	newsize = seminfo.semmns;
1117 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1118 	if (error || newp == NULL)
1119 		return error;
1120 
1121 	return semrealloc(seminfo.semmni, newsize, seminfo.semmnu);
1122 }
1123 
1124 static int
1125 sysctl_ipc_semmnu(SYSCTLFN_ARGS)
1126 {
1127 	int newsize, error;
1128 	struct sysctlnode node;
1129 	node = *rnode;
1130 	node.sysctl_data = &newsize;
1131 
1132 	newsize = seminfo.semmnu;
1133 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1134 	if (error || newp == NULL)
1135 		return error;
1136 
1137 	return semrealloc(seminfo.semmni, seminfo.semmns, newsize);
1138 }
1139 
1140 SYSCTL_SETUP(sysctl_ipc_sem_setup, "sysctl kern.ipc subtree setup")
1141 {
1142 	const struct sysctlnode *node = NULL;
1143 
1144 	sysctl_createv(clog, 0, NULL, NULL,
1145 		CTLFLAG_PERMANENT,
1146 		CTLTYPE_NODE, "kern", NULL,
1147 		NULL, 0, NULL, 0,
1148 		CTL_KERN, CTL_EOL);
1149 	sysctl_createv(clog, 0, NULL, &node,
1150 		CTLFLAG_PERMANENT,
1151 		CTLTYPE_NODE, "ipc",
1152 		SYSCTL_DESCR("SysV IPC options"),
1153 		NULL, 0, NULL, 0,
1154 		CTL_KERN, KERN_SYSVIPC, CTL_EOL);
1155 
1156 	if (node == NULL)
1157 		return;
1158 
1159 	sysctl_createv(clog, 0, &node, NULL,
1160 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1161 		CTLTYPE_INT, "semmni",
1162 		SYSCTL_DESCR("Max number of number of semaphore identifiers"),
1163 		sysctl_ipc_semmni, 0, &seminfo.semmni, 0,
1164 		CTL_CREATE, CTL_EOL);
1165 	sysctl_createv(clog, 0, &node, NULL,
1166 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1167 		CTLTYPE_INT, "semmns",
1168 		SYSCTL_DESCR("Max number of number of semaphores in system"),
1169 		sysctl_ipc_semmns, 0, &seminfo.semmns, 0,
1170 		CTL_CREATE, CTL_EOL);
1171 	sysctl_createv(clog, 0, &node, NULL,
1172 		CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1173 		CTLTYPE_INT, "semmnu",
1174 		SYSCTL_DESCR("Max number of undo structures in system"),
1175 		sysctl_ipc_semmnu, 0, &seminfo.semmnu, 0,
1176 		CTL_CREATE, CTL_EOL);
1177 }
1178